/* * IP multicast forwarding procedures * * Written by David Waitzman, BBN Labs, August 1988. * Modified by Steve Deering, Stanford, February 1989. * Modified by Mark J. Steiglitz, Stanford, May, 1991 * Modified by Van Jacobson, LBL, January 1993 * Modified by Ajit Thyagarajan, PARC, August 1993 * Modified by Bill Fenner, PARC, April 1995 * * MROUTING Revision: 3.5 * $FreeBSD$ */ #include "opt_mrouting.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef NTOHL #if BYTE_ORDER != BIG_ENDIAN #define NTOHL(d) ((d) = ntohl((d))) #define NTOHS(d) ((d) = ntohs((u_short)(d))) #define HTONL(d) ((d) = htonl((d))) #define HTONS(d) ((d) = htons((u_short)(d))) #else #define NTOHL(d) #define NTOHS(d) #define HTONL(d) #define HTONS(d) #endif #endif #ifndef MROUTING extern u_long _ip_mcast_src __P((int vifi)); extern int _ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo)); extern int _ip_mrouter_done __P((void)); extern int _ip_mrouter_get __P((struct socket *so, struct sockopt *sopt)); extern int _ip_mrouter_set __P((struct socket *so, struct sockopt *sopt)); extern int _mrt_ioctl __P((int req, caddr_t data, struct proc *p)); /* * Dummy routines and globals used when multicast routing is not compiled in. */ struct socket *ip_mrouter = NULL; u_int rsvpdebug = 0; int _ip_mrouter_set(so, sopt) struct socket *so; struct sockopt *sopt; { return(EOPNOTSUPP); } int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set; int _ip_mrouter_get(so, sopt) struct socket *so; struct sockopt *sopt; { return(EOPNOTSUPP); } int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get; int _ip_mrouter_done() { return(0); } int (*ip_mrouter_done)(void) = _ip_mrouter_done; int _ip_mforward(ip, ifp, m, imo) struct ip *ip; struct ifnet *ifp; struct mbuf *m; struct ip_moptions *imo; { return(0); } int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *, struct ip_moptions *) = _ip_mforward; int _mrt_ioctl(int req, caddr_t data, struct proc *p) { return EOPNOTSUPP; } int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl; void rsvp_input(m, off, proto) /* XXX must fixup manually */ struct mbuf *m; int off; int proto; { /* Can still get packets with rsvp_on = 0 if there is a local member * of the group to which the RSVP packet is addressed. But in this * case we want to throw the packet away. */ if (!rsvp_on) { m_freem(m); return; } if (ip_rsvpd != NULL) { if (rsvpdebug) printf("rsvp_input: Sending packet up old-style socket\n"); rip_input(m, off, proto); return; } /* Drop the packet */ m_freem(m); } void ipip_input(struct mbuf *m, int off, int proto) { /* XXX must fixup manually */ rip_input(m, off, proto); } int (*legal_vif_num)(int) = 0; /* * This should never be called, since IP_MULTICAST_VIF should fail, but * just in case it does get called, the code a little lower in ip_output * will assign the packet a local address. */ u_long _ip_mcast_src(int vifi) { return INADDR_ANY; } u_long (*ip_mcast_src)(int) = _ip_mcast_src; int ip_rsvp_vif_init(so, sopt) struct socket *so; struct sockopt *sopt; { return(EINVAL); } int ip_rsvp_vif_done(so, sopt) struct socket *so; struct sockopt *sopt; { return(EINVAL); } void ip_rsvp_force_done(so) struct socket *so; { return; } #else /* MROUTING */ #define M_HASCL(m) ((m)->m_flags & M_EXT) #define INSIZ sizeof(struct in_addr) #define same(a1, a2) \ (bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0) static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables"); /* * Globals. All but ip_mrouter and ip_mrtproto could be static, * except for netstat or debugging purposes. */ #ifndef MROUTE_LKM struct socket *ip_mrouter = NULL; static struct mrtstat mrtstat; #else /* MROUTE_LKM */ extern void X_ipip_input __P((struct mbuf *m, int iphlen)); extern struct mrtstat mrtstat; static int ip_mrtproto; #endif #define NO_RTE_FOUND 0x1 #define RTE_FOUND 0x2 static struct mfc *mfctable[MFCTBLSIZ]; static u_char nexpire[MFCTBLSIZ]; static struct vif viftable[MAXVIFS]; static u_int mrtdebug = 0; /* debug level */ #define DEBUG_MFC 0x02 #define DEBUG_FORWARD 0x04 #define DEBUG_EXPIRE 0x08 #define DEBUG_XMIT 0x10 static u_int tbfdebug = 0; /* tbf debug level */ static u_int rsvpdebug = 0; /* rsvp debug level */ static struct callout_handle expire_upcalls_ch; #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ #define UPCALL_EXPIRE 6 /* number of timeouts */ /* * Define the token bucket filter structures * tbftable -> each vif has one of these for storing info */ static struct tbf tbftable[MAXVIFS]; #define TBF_REPROCESS (hz / 100) /* 100x / second */ /* * 'Interfaces' associated with decapsulator (so we can tell * packets that went through it from ones that get reflected * by a broken gateway). These interfaces are never linked into * the system ifnet list & no routes point to them. I.e., packets * can't be sent this way. They only exist as a placeholder for * multicast source verification. */ static struct ifnet multicast_decap_if[MAXVIFS]; #define ENCAP_TTL 64 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ /* prototype IP hdr for encapsulated packets */ static struct ip multicast_encap_iphdr = { #if BYTE_ORDER == LITTLE_ENDIAN sizeof(struct ip) >> 2, IPVERSION, #else IPVERSION, sizeof(struct ip) >> 2, #endif 0, /* tos */ sizeof(struct ip), /* total length */ 0, /* id */ 0, /* frag offset */ ENCAP_TTL, ENCAP_PROTO, 0, /* checksum */ }; /* * Private variables. */ static vifi_t numvifs = 0; static int have_encap_tunnel = 0; /* * one-back cache used by ipip_input to locate a tunnel's vif * given a datagram's src ip address. */ static u_long last_encap_src; static struct vif *last_encap_vif; static u_long X_ip_mcast_src __P((int vifi)); static int X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo)); static int X_ip_mrouter_done __P((void)); static int X_ip_mrouter_get __P((struct socket *so, struct sockopt *m)); static int X_ip_mrouter_set __P((struct socket *so, struct sockopt *m)); static int X_legal_vif_num __P((int vif)); static int X_mrt_ioctl __P((int cmd, caddr_t data)); static int get_sg_cnt(struct sioc_sg_req *); static int get_vif_cnt(struct sioc_vif_req *); static int ip_mrouter_init(struct socket *, int); static int add_vif(struct vifctl *); static int del_vif(vifi_t); static int add_mfc(struct mfcctl *); static int del_mfc(struct mfcctl *); static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); static int set_assert(int); static void expire_upcalls(void *); static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); static void phyint_send(struct ip *, struct vif *, struct mbuf *); static void encap_send(struct ip *, struct vif *, struct mbuf *); static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long); static void tbf_queue(struct vif *, struct mbuf *); static void tbf_process_q(struct vif *); static void tbf_reprocess_q(void *); static int tbf_dq_sel(struct vif *, struct ip *); static void tbf_send_packet(struct vif *, struct mbuf *); static void tbf_update_tokens(struct vif *); static int priority(struct vif *, struct ip *); void multiencap_decap(struct mbuf *); /* * whether or not special PIM assert processing is enabled. */ static int pim_assert; /* * Rate limit for assert notification messages, in usec */ #define ASSERT_MSG_TIME 3000000 /* * Hash function for a source, group entry */ #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \ ((g) >> 20) ^ ((g) >> 10) ^ (g)) /* * Find a route for a given origin IP address and Multicast group address * Type of service parameter to be added in the future!!! */ #define MFCFIND(o, g, rt) { \ register struct mfc *_rt = mfctable[MFCHASH(o,g)]; \ rt = NULL; \ ++mrtstat.mrts_mfc_lookups; \ while (_rt) { \ if ((_rt->mfc_origin.s_addr == o) && \ (_rt->mfc_mcastgrp.s_addr == g) && \ (_rt->mfc_stall == NULL)) { \ rt = _rt; \ break; \ } \ _rt = _rt->mfc_next; \ } \ if (rt == NULL) { \ ++mrtstat.mrts_mfc_misses; \ } \ } /* * Macros to compute elapsed time efficiently * Borrowed from Van Jacobson's scheduling code */ #define TV_DELTA(a, b, delta) { \ register int xxs; \ \ delta = (a).tv_usec - (b).tv_usec; \ if ((xxs = (a).tv_sec - (b).tv_sec)) { \ switch (xxs) { \ case 2: \ delta += 1000000; \ /* fall through */ \ case 1: \ delta += 1000000; \ break; \ default: \ delta += (1000000 * xxs); \ } \ } \ } #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \ (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec) #ifdef UPCALL_TIMING u_long upcall_data[51]; static void collate(struct timeval *); #endif /* UPCALL_TIMING */ /* * Handle MRT setsockopt commands to modify the multicast routing tables. */ static int X_ip_mrouter_set(so, sopt) struct socket *so; struct sockopt *sopt; { int error, optval; vifi_t vifi; struct vifctl vifc; struct mfcctl mfc; if (so != ip_mrouter && sopt->sopt_name != MRT_INIT) return (EPERM); error = 0; switch (sopt->sopt_name) { case MRT_INIT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; error = ip_mrouter_init(so, optval); break; case MRT_DONE: error = ip_mrouter_done(); break; case MRT_ADD_VIF: error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); if (error) break; error = add_vif(&vifc); break; case MRT_DEL_VIF: error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); if (error) break; error = del_vif(vifi); break; case MRT_ADD_MFC: case MRT_DEL_MFC: error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc); if (error) break; if (sopt->sopt_name == MRT_ADD_MFC) error = add_mfc(&mfc); else error = del_mfc(&mfc); break; case MRT_ASSERT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; set_assert(optval); break; default: error = EOPNOTSUPP; break; } return (error); } #ifndef MROUTE_LKM int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set; #endif /* * Handle MRT getsockopt commands */ static int X_ip_mrouter_get(so, sopt) struct socket *so; struct sockopt *sopt; { int error; static int version = 0x0305; /* !!! why is this here? XXX */ switch (sopt->sopt_name) { case MRT_VERSION: error = sooptcopyout(sopt, &version, sizeof version); break; case MRT_ASSERT: error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert); break; default: error = EOPNOTSUPP; break; } return (error); } #ifndef MROUTE_LKM int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get; #endif /* * Handle ioctl commands to obtain information from the cache */ static int X_mrt_ioctl(cmd, data) int cmd; caddr_t data; { int error = 0; switch (cmd) { case (SIOCGETVIFCNT): return (get_vif_cnt((struct sioc_vif_req *)data)); break; case (SIOCGETSGCNT): return (get_sg_cnt((struct sioc_sg_req *)data)); break; default: return (EINVAL); break; } return error; } #ifndef MROUTE_LKM int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl; #endif /* * returns the packet, byte, rpf-failure count for the source group provided */ static int get_sg_cnt(req) register struct sioc_sg_req *req; { register struct mfc *rt; int s; s = splnet(); MFCFIND(req->src.s_addr, req->grp.s_addr, rt); splx(s); if (rt != NULL) { req->pktcnt = rt->mfc_pkt_cnt; req->bytecnt = rt->mfc_byte_cnt; req->wrong_if = rt->mfc_wrong_if; } else req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; return 0; } /* * returns the input and output packet and byte counts on the vif provided */ static int get_vif_cnt(req) register struct sioc_vif_req *req; { register vifi_t vifi = req->vifi; if (vifi >= numvifs) return EINVAL; req->icount = viftable[vifi].v_pkt_in; req->ocount = viftable[vifi].v_pkt_out; req->ibytes = viftable[vifi].v_bytes_in; req->obytes = viftable[vifi].v_bytes_out; return 0; } /* * Enable multicast routing */ static int ip_mrouter_init(so, version) struct socket *so; int version; { if (mrtdebug) log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP; if (version != 1) return ENOPROTOOPT; if (ip_mrouter != NULL) return EADDRINUSE; ip_mrouter = so; bzero((caddr_t)mfctable, sizeof(mfctable)); bzero((caddr_t)nexpire, sizeof(nexpire)); pim_assert = 0; expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT); if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_init\n"); return 0; } /* * Disable multicast routing */ static int X_ip_mrouter_done() { vifi_t vifi; int i; struct ifnet *ifp; struct ifreq ifr; struct mfc *rt; struct rtdetq *rte; int s; s = splnet(); /* * For each phyint in use, disable promiscuous reception of all IP * multicasts. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_lcl_addr.s_addr != 0 && !(viftable[vifi].v_flags & VIFF_TUNNEL)) { ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET; ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY; ifp = viftable[vifi].v_ifp; if_allmulti(ifp, 0); } } bzero((caddr_t)tbftable, sizeof(tbftable)); bzero((caddr_t)viftable, sizeof(viftable)); numvifs = 0; pim_assert = 0; untimeout(expire_upcalls, (caddr_t)NULL, expire_upcalls_ch); /* * Free all multicast forwarding cache entries. */ for (i = 0; i < MFCTBLSIZ; i++) { for (rt = mfctable[i]; rt != NULL; ) { struct mfc *nr = rt->mfc_next; for (rte = rt->mfc_stall; rte != NULL; ) { struct rtdetq *n = rte->next; m_freem(rte->m); free(rte, M_MRTABLE); rte = n; } free(rt, M_MRTABLE); rt = nr; } } bzero((caddr_t)mfctable, sizeof(mfctable)); /* * Reset de-encapsulation cache */ last_encap_src = 0; last_encap_vif = NULL; have_encap_tunnel = 0; ip_mrouter = NULL; splx(s); if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_done\n"); return 0; } #ifndef MROUTE_LKM int (*ip_mrouter_done)(void) = X_ip_mrouter_done; #endif /* * Set PIM assert processing global */ static int set_assert(i) int i; { if ((i != 1) && (i != 0)) return EINVAL; pim_assert = i; return 0; } /* * Add a vif to the vif table */ static int add_vif(vifcp) register struct vifctl *vifcp; { register struct vif *vifp = viftable + vifcp->vifc_vifi; static struct sockaddr_in sin = {sizeof sin, AF_INET}; struct ifaddr *ifa; struct ifnet *ifp; int error, s; struct tbf *v_tbf = tbftable + vifcp->vifc_vifi; if (vifcp->vifc_vifi >= MAXVIFS) return EINVAL; if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE; /* Find the interface with an address in AF_INET family */ sin.sin_addr = vifcp->vifc_lcl_addr; ifa = ifa_ifwithaddr((struct sockaddr *)&sin); if (ifa == 0) return EADDRNOTAVAIL; ifp = ifa->ifa_ifp; if (vifcp->vifc_flags & VIFF_TUNNEL) { if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) { /* * An encapsulating tunnel is wanted. Tell ipip_input() to * start paying attention to encapsulated packets. */ if (have_encap_tunnel == 0) { have_encap_tunnel = 1; for (s = 0; s < MAXVIFS; ++s) { multicast_decap_if[s].if_name = "mdecap"; multicast_decap_if[s].if_unit = s; } } /* * Set interface to fake encapsulator interface */ ifp = &multicast_decap_if[vifcp->vifc_vifi]; /* * Prepare cached route entry */ bzero(&vifp->v_route, sizeof(vifp->v_route)); } else { log(LOG_ERR, "source routed tunnels not supported\n"); return EOPNOTSUPP; } } else { /* Make sure the interface supports multicast */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return EOPNOTSUPP; /* Enable promiscuous reception of all IP multicasts from the if */ s = splnet(); error = if_allmulti(ifp, 1); splx(s); if (error) return error; } s = splnet(); /* define parameters for the tbf structure */ vifp->v_tbf = v_tbf; GET_TIME(vifp->v_tbf->tbf_last_pkt_t); vifp->v_tbf->tbf_n_tok = 0; vifp->v_tbf->tbf_q_len = 0; vifp->v_tbf->tbf_max_q_len = MAXQSIZE; vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL; vifp->v_flags = vifcp->vifc_flags; vifp->v_threshold = vifcp->vifc_threshold; vifp->v_lcl_addr = vifcp->vifc_lcl_addr; vifp->v_rmt_addr = vifcp->vifc_rmt_addr; vifp->v_ifp = ifp; /* scaling up here allows division by 1024 in critical code */ vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000; vifp->v_rsvp_on = 0; vifp->v_rsvpd = NULL; /* initialize per vif pkt counters */ vifp->v_pkt_in = 0; vifp->v_pkt_out = 0; vifp->v_bytes_in = 0; vifp->v_bytes_out = 0; splx(s); /* Adjust numvifs up if the vifi is higher than numvifs */ if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1; if (mrtdebug) log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n", vifcp->vifc_vifi, (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr), (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr), vifcp->vifc_threshold, vifcp->vifc_rate_limit); return 0; } /* * Delete a vif from the vif table */ static int del_vif(vifi) vifi_t vifi; { register struct vif *vifp = &viftable[vifi]; register struct mbuf *m; struct ifnet *ifp; struct ifreq ifr; int s; if (vifi >= numvifs) return EINVAL; if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL; s = splnet(); if (!(vifp->v_flags & VIFF_TUNNEL)) { ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET; ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY; ifp = vifp->v_ifp; if_allmulti(ifp, 0); } if (vifp == last_encap_vif) { last_encap_vif = 0; last_encap_src = 0; } /* * Free packets queued at the interface */ while (vifp->v_tbf->tbf_q) { m = vifp->v_tbf->tbf_q; vifp->v_tbf->tbf_q = m->m_act; m_freem(m); } bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf))); bzero((caddr_t)vifp, sizeof (*vifp)); if (mrtdebug) log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs); /* Adjust numvifs down */ for (vifi = numvifs; vifi > 0; vifi--) if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break; numvifs = vifi; splx(s); return 0; } /* * Add an mfc entry */ static int add_mfc(mfccp) struct mfcctl *mfccp; { struct mfc *rt; u_long hash; struct rtdetq *rte; register u_short nstl; int s; int i; MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt); /* If an entry already exists, just update the fields */ if (rt) { if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n", (u_long)ntohl(mfccp->mfcc_origin.s_addr), (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); s = splnet(); rt->mfc_parent = mfccp->mfcc_parent; for (i = 0; i < numvifs; i++) rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; splx(s); return 0; } /* * Find the entry for which the upcall was made and update */ s = splnet(); hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) { if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) && (rt->mfc_stall != NULL)) { if (nstl++) log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n", "multiple kernel entries", (u_long)ntohl(mfccp->mfcc_origin.s_addr), (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, (void *)rt->mfc_stall); if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n", (u_long)ntohl(mfccp->mfcc_origin.s_addr), (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, (void *)rt->mfc_stall); rt->mfc_origin = mfccp->mfcc_origin; rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; rt->mfc_parent = mfccp->mfcc_parent; for (i = 0; i < numvifs; i++) rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; /* initialize pkt counters per src-grp */ rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0; rt->mfc_expire = 0; /* Don't clean this guy up */ nexpire[hash]--; /* free packets Qed at the end of this entry */ for (rte = rt->mfc_stall; rte != NULL; ) { struct rtdetq *n = rte->next; ip_mdq(rte->m, rte->ifp, rt, -1); m_freem(rte->m); #ifdef UPCALL_TIMING collate(&(rte->t)); #endif /* UPCALL_TIMING */ free(rte, M_MRTABLE); rte = n; } rt->mfc_stall = NULL; } } /* * It is possible that an entry is being inserted without an upcall */ if (nstl == 0) { if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n", hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr), (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) { if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) { rt->mfc_origin = mfccp->mfcc_origin; rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; rt->mfc_parent = mfccp->mfcc_parent; for (i = 0; i < numvifs; i++) rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; /* initialize pkt counters per src-grp */ rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0; if (rt->mfc_expire) nexpire[hash]--; rt->mfc_expire = 0; } } if (rt == NULL) { /* no upcall, so make a new entry */ rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); if (rt == NULL) { splx(s); return ENOBUFS; } /* insert new entry at head of hash chain */ rt->mfc_origin = mfccp->mfcc_origin; rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; rt->mfc_parent = mfccp->mfcc_parent; for (i = 0; i < numvifs; i++) rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; /* initialize pkt counters per src-grp */ rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0; rt->mfc_expire = 0; rt->mfc_stall = NULL; /* link into table */ rt->mfc_next = mfctable[hash]; mfctable[hash] = rt; } } splx(s); return 0; } #ifdef UPCALL_TIMING /* * collect delay statistics on the upcalls */ static void collate(t) register struct timeval *t; { register u_long d; register struct timeval tp; register u_long delta; GET_TIME(tp); if (TV_LT(*t, tp)) { TV_DELTA(tp, *t, delta); d = delta >> 10; if (d > 50) d = 50; ++upcall_data[d]; } } #endif /* UPCALL_TIMING */ /* * Delete an mfc entry */ static int del_mfc(mfccp) struct mfcctl *mfccp; { struct in_addr origin; struct in_addr mcastgrp; struct mfc *rt; struct mfc **nptr; u_long hash; int s; origin = mfccp->mfcc_origin; mcastgrp = mfccp->mfcc_mcastgrp; hash = MFCHASH(origin.s_addr, mcastgrp.s_addr); if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n", (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); s = splnet(); nptr = &mfctable[hash]; while ((rt = *nptr) != NULL) { if (origin.s_addr == rt->mfc_origin.s_addr && mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr && rt->mfc_stall == NULL) break; nptr = &rt->mfc_next; } if (rt == NULL) { splx(s); return EADDRNOTAVAIL; } *nptr = rt->mfc_next; free(rt, M_MRTABLE); splx(s); return 0; } /* * Send a message to mrouted on the multicast routing socket */ static int socket_send(s, mm, src) struct socket *s; struct mbuf *mm; struct sockaddr_in *src; { if (s) { if (sbappendaddr(&s->so_rcv, (struct sockaddr *)src, mm, (struct mbuf *)0) != 0) { sorwakeup(s); return 0; } } m_freem(mm); return -1; } /* * IP multicast forwarding function. This function assumes that the packet * pointed to by "ip" has arrived on (or is about to be sent to) the interface * pointed to by "ifp", and the packet is to be relayed to other networks * that have members of the packet's destination IP multicast group. * * The packet is returned unscathed to the caller, unless it is * erroneous, in which case a non-zero return value tells the caller to * discard it. */ #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ static int X_ip_mforward(ip, ifp, m, imo) register struct ip *ip; struct ifnet *ifp; struct mbuf *m; struct ip_moptions *imo; { register struct mfc *rt; register u_char *ipoptions; static struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; static int srctun = 0; register struct mbuf *mm; int s; vifi_t vifi; struct vif *vifp; if (mrtdebug & DEBUG_FORWARD) log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n", (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), (void *)ifp); if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) { /* * Packet arrived via a physical interface or * an encapsulated tunnel. */ } else { /* * Packet arrived through a source-route tunnel. * Source-route tunnels are no longer supported. */ if ((srctun++ % 1000) == 0) log(LOG_ERR, "ip_mforward: received source-routed packet from %lx\n", (u_long)ntohl(ip->ip_src.s_addr)); return 1; } if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) { if (ip->ip_ttl < 255) ip->ip_ttl++; /* compensate for -1 in *_send routines */ if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { vifp = viftable + vifi; printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n", ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi, (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", vifp->v_ifp->if_name, vifp->v_ifp->if_unit); } return (ip_mdq(m, ifp, NULL, vifi)); } if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n", ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr)); if(!imo) printf("In fact, no options were specified at all\n"); } /* * Don't forward a packet with time-to-live of zero or one, * or a packet destined to a local-only group. */ if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) return 0; /* * Determine forwarding vifs from the forwarding cache table */ s = splnet(); MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt); /* Entry exists, so forward if necessary */ if (rt != NULL) { splx(s); return (ip_mdq(m, ifp, rt, -1)); } else { /* * If we don't have a route for packet's origin, * Make a copy of the packet & * send message to routing daemon */ register struct mbuf *mb0; register struct rtdetq *rte; register u_long hash; int hlen = ip->ip_hl << 2; #ifdef UPCALL_TIMING struct timeval tp; GET_TIME(tp); #endif mrtstat.mrts_no_route++; if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n", (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); /* * Allocate mbufs early so that we don't do extra work if we are * just going to fail anyway. Make sure to pullup the header so * that other people can't step on it. */ rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT); if (rte == NULL) { splx(s); return ENOBUFS; } mb0 = m_copy(m, 0, M_COPYALL); if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) mb0 = m_pullup(mb0, hlen); if (mb0 == NULL) { free(rte, M_MRTABLE); splx(s); return ENOBUFS; } /* is there an upcall waiting for this packet? */ hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr); for (rt = mfctable[hash]; rt; rt = rt->mfc_next) { if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) && (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) && (rt->mfc_stall != NULL)) break; } if (rt == NULL) { int i; struct igmpmsg *im; /* no upcall, so make a new entry */ rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); if (rt == NULL) { free(rte, M_MRTABLE); m_freem(mb0); splx(s); return ENOBUFS; } /* Make a copy of the header to send to the user level process */ mm = m_copy(mb0, 0, hlen); if (mm == NULL) { free(rte, M_MRTABLE); m_freem(mb0); free(rt, M_MRTABLE); splx(s); return ENOBUFS; } /* * Send message to routing daemon to install * a route into the kernel table */ k_igmpsrc.sin_addr = ip->ip_src; im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_NOCACHE; im->im_mbz = 0; mrtstat.mrts_upcalls++; if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) { log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n"); ++mrtstat.mrts_upq_sockfull; free(rte, M_MRTABLE); m_freem(mb0); free(rt, M_MRTABLE); splx(s); return ENOBUFS; } /* insert new entry at head of hash chain */ rt->mfc_origin.s_addr = ip->ip_src.s_addr; rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; rt->mfc_expire = UPCALL_EXPIRE; nexpire[hash]++; for (i = 0; i < numvifs; i++) rt->mfc_ttls[i] = 0; rt->mfc_parent = -1; /* link into table */ rt->mfc_next = mfctable[hash]; mfctable[hash] = rt; rt->mfc_stall = rte; } else { /* determine if q has overflowed */ int npkts = 0; struct rtdetq **p; for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) npkts++; if (npkts > MAX_UPQ) { mrtstat.mrts_upq_ovflw++; free(rte, M_MRTABLE); m_freem(mb0); splx(s); return 0; } /* Add this entry to the end of the queue */ *p = rte; } rte->m = mb0; rte->ifp = ifp; #ifdef UPCALL_TIMING rte->t = tp; #endif rte->next = NULL; splx(s); return 0; } } #ifndef MROUTE_LKM int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *, struct ip_moptions *) = X_ip_mforward; #endif /* * Clean up the cache entry if upcall is not serviced */ static void expire_upcalls(void *unused) { struct rtdetq *rte; struct mfc *mfc, **nptr; int i; int s; s = splnet(); for (i = 0; i < MFCTBLSIZ; i++) { if (nexpire[i] == 0) continue; nptr = &mfctable[i]; for (mfc = *nptr; mfc != NULL; mfc = *nptr) { /* * Skip real cache entries * Make sure it wasn't marked to not expire (shouldn't happen) * If it expires now */ if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 && --mfc->mfc_expire == 0) { if (mrtdebug & DEBUG_EXPIRE) log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n", (u_long)ntohl(mfc->mfc_origin.s_addr), (u_long)ntohl(mfc->mfc_mcastgrp.s_addr)); /* * drop all the packets * free the mbuf with the pkt, if, timing info */ for (rte = mfc->mfc_stall; rte; ) { struct rtdetq *n = rte->next; m_freem(rte->m); free(rte, M_MRTABLE); rte = n; } ++mrtstat.mrts_cache_cleanups; nexpire[i]--; *nptr = mfc->mfc_next; free(mfc, M_MRTABLE); } else { nptr = &mfc->mfc_next; } } } splx(s); expire_upcalls_ch = timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT); } /* * Packet forwarding routine once entry in the cache is made */ static int ip_mdq(m, ifp, rt, xmt_vif) register struct mbuf *m; register struct ifnet *ifp; register struct mfc *rt; register vifi_t xmt_vif; { register struct ip *ip = mtod(m, struct ip *); register vifi_t vifi; register struct vif *vifp; register int plen = ip->ip_len; /* * Macro to send packet on vif. Since RSVP packets don't get counted on * input, they shouldn't get counted on output, so statistics keeping is * seperate. */ #define MC_SEND(ip,vifp,m) { \ if ((vifp)->v_flags & VIFF_TUNNEL) \ encap_send((ip), (vifp), (m)); \ else \ phyint_send((ip), (vifp), (m)); \ } /* * If xmt_vif is not -1, send on only the requested vif. * * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) */ if (xmt_vif < numvifs) { MC_SEND(ip, viftable + xmt_vif, m); return 1; } /* * Don't forward if it didn't arrive from the parent vif for its origin. */ vifi = rt->mfc_parent; if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { /* came in the wrong interface */ if (mrtdebug & DEBUG_FORWARD) log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", (void *)ifp, vifi, (void *)viftable[vifi].v_ifp); ++mrtstat.mrts_wrong_if; ++rt->mfc_wrong_if; /* * If we are doing PIM assert processing, and we are forwarding * packets on this interface, and it is a broadcast medium * interface (and not a tunnel), send a message to the routing daemon. */ if (pim_assert && rt->mfc_ttls[vifi] && (ifp->if_flags & IFF_BROADCAST) && !(viftable[vifi].v_flags & VIFF_TUNNEL)) { struct sockaddr_in k_igmpsrc; struct mbuf *mm; struct igmpmsg *im; int hlen = ip->ip_hl << 2; struct timeval now; register u_long delta; GET_TIME(now); TV_DELTA(rt->mfc_last_assert, now, delta); if (delta > ASSERT_MSG_TIME) { mm = m_copy(m, 0, hlen); if (mm && (M_HASCL(mm) || mm->m_len < hlen)) mm = m_pullup(mm, hlen); if (mm == NULL) { return ENOBUFS; } rt->mfc_last_assert = now; im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_WRONGVIF; im->im_mbz = 0; im->im_vif = vifi; k_igmpsrc.sin_addr = im->im_src; socket_send(ip_mrouter, mm, &k_igmpsrc); } } return 0; } /* If I sourced this packet, it counts as output, else it was input. */ if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) { viftable[vifi].v_pkt_out++; viftable[vifi].v_bytes_out += plen; } else { viftable[vifi].v_pkt_in++; viftable[vifi].v_bytes_in += plen; } rt->mfc_pkt_cnt++; rt->mfc_byte_cnt += plen; /* * For each vif, decide if a copy of the packet should be forwarded. * Forward if: * - the ttl exceeds the vif's threshold * - there are group members downstream on interface */ for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { vifp->v_pkt_out++; vifp->v_bytes_out += plen; MC_SEND(ip, vifp, m); } return 0; } /* * check if a vif number is legal/ok. This is used by ip_output, to export * numvifs there, */ static int X_legal_vif_num(vif) int vif; { if (vif >= 0 && vif < numvifs) return(1); else return(0); } #ifndef MROUTE_LKM int (*legal_vif_num)(int) = X_legal_vif_num; #endif /* * Return the local address used by this vif */ static u_long X_ip_mcast_src(vifi) int vifi; { if (vifi >= 0 && vifi < numvifs) return viftable[vifi].v_lcl_addr.s_addr; else return INADDR_ANY; } #ifndef MROUTE_LKM u_long (*ip_mcast_src)(int) = X_ip_mcast_src; #endif static void phyint_send(ip, vifp, m) struct ip *ip; struct vif *vifp; struct mbuf *m; { register struct mbuf *mb_copy; register int hlen = ip->ip_hl << 2; /* * Make a new reference to the packet; make sure that * the IP header is actually copied, not just referenced, * so that ip_output() only scribbles on the copy. */ mb_copy = m_copy(m, 0, M_COPYALL); if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) mb_copy = m_pullup(mb_copy, hlen); if (mb_copy == NULL) return; if (vifp->v_rate_limit == 0) tbf_send_packet(vifp, mb_copy); else tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len); } static void encap_send(ip, vifp, m) register struct ip *ip; register struct vif *vifp; register struct mbuf *m; { register struct mbuf *mb_copy; register struct ip *ip_copy; register int i, len = ip->ip_len; /* * copy the old packet & pullup its IP header into the * new mbuf so we can modify it. Try to fill the new * mbuf since if we don't the ethernet driver will. */ MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER); if (mb_copy == NULL) return; mb_copy->m_data += max_linkhdr; mb_copy->m_len = sizeof(multicast_encap_iphdr); if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) { m_freem(mb_copy); return; } i = MHLEN - M_LEADINGSPACE(mb_copy); if (i > len) i = len; mb_copy = m_pullup(mb_copy, i); if (mb_copy == NULL) return; mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr); /* * fill in the encapsulating IP header. */ ip_copy = mtod(mb_copy, struct ip *); *ip_copy = multicast_encap_iphdr; ip_copy->ip_id = ip_id++; ip_copy->ip_len += len; ip_copy->ip_src = vifp->v_lcl_addr; ip_copy->ip_dst = vifp->v_rmt_addr; /* * turn the encapsulated IP header back into a valid one. */ ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr)); --ip->ip_ttl; HTONS(ip->ip_len); HTONS(ip->ip_id); HTONS(ip->ip_off); ip->ip_sum = 0; mb_copy->m_data += sizeof(multicast_encap_iphdr); ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); mb_copy->m_data -= sizeof(multicast_encap_iphdr); if (vifp->v_rate_limit == 0) tbf_send_packet(vifp, mb_copy); else tbf_control(vifp, mb_copy, ip, ip_copy->ip_len); } /* * De-encapsulate a packet and feed it back through ip input (this * routine is called whenever IP gets a packet with proto type * ENCAP_PROTO and a local destination address). */ void #ifdef MROUTE_LKM X_ipip_input(m, off, proto) #else ipip_input(m, off, proto) #endif register struct mbuf *m; int off; int proto; { struct ifnet *ifp = m->m_pkthdr.rcvif; register struct ip *ip = mtod(m, struct ip *); register int hlen = ip->ip_hl << 2; register int s; register struct ifqueue *ifq; register struct vif *vifp; if (!have_encap_tunnel) { rip_input(m, off, proto); return; } /* * dump the packet if it's not to a multicast destination or if * we don't have an encapsulating tunnel with the source. * Note: This code assumes that the remote site IP address * uniquely identifies the tunnel (i.e., that this site has * at most one tunnel with the remote site). */ if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) { ++mrtstat.mrts_bad_tunnel; m_freem(m); return; } if (ip->ip_src.s_addr != last_encap_src) { register struct vif *vife; vifp = viftable; vife = vifp + numvifs; last_encap_src = ip->ip_src.s_addr; last_encap_vif = 0; for ( ; vifp < vife; ++vifp) if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) { if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL) last_encap_vif = vifp; break; } } if ((vifp = last_encap_vif) == 0) { last_encap_src = 0; mrtstat.mrts_cant_tunnel++; /*XXX*/ m_freem(m); if (mrtdebug) log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n", (u_long)ntohl(ip->ip_src.s_addr)); return; } ifp = vifp->v_ifp; if (hlen > IP_HDR_LEN) ip_stripoptions(m, (struct mbuf *) 0); m->m_data += IP_HDR_LEN; m->m_len -= IP_HDR_LEN; m->m_pkthdr.len -= IP_HDR_LEN; m->m_pkthdr.rcvif = ifp; ifq = &ipintrq; s = splimp(); if (IF_QFULL(ifq)) { IF_DROP(ifq); m_freem(m); } else { IF_ENQUEUE(ifq, m); /* * normally we would need a "schednetisr(NETISR_IP)" * here but we were called by ip_input and it is going * to loop back & try to dequeue the packet we just * queued as soon as we return so we avoid the * unnecessary software interrrupt. */ } splx(s); } /* * Token bucket filter module */ static void tbf_control(vifp, m, ip, p_len) register struct vif *vifp; register struct mbuf *m; register struct ip *ip; register u_long p_len; { register struct tbf *t = vifp->v_tbf; if (p_len > MAX_BKT_SIZE) { /* drop if packet is too large */ mrtstat.mrts_pkt2large++; m_freem(m); return; } tbf_update_tokens(vifp); /* if there are enough tokens, * and the queue is empty, * send this packet out */ if (t->tbf_q_len == 0) { /* queue empty, send packet if enough tokens */ if (p_len <= t->tbf_n_tok) { t->tbf_n_tok -= p_len; tbf_send_packet(vifp, m); } else { /* queue packet and timeout till later */ tbf_queue(vifp, m); timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS); } } else if (t->tbf_q_len < t->tbf_max_q_len) { /* finite queue length, so queue pkts and process queue */ tbf_queue(vifp, m); tbf_process_q(vifp); } else { /* queue length too much, try to dq and queue and process */ if (!tbf_dq_sel(vifp, ip)) { mrtstat.mrts_q_overflow++; m_freem(m); return; } else { tbf_queue(vifp, m); tbf_process_q(vifp); } } return; } /* * adds a packet to the queue at the interface */ static void tbf_queue(vifp, m) register struct vif *vifp; register struct mbuf *m; { register int s = splnet(); register struct tbf *t = vifp->v_tbf; if (t->tbf_t == NULL) { /* Queue was empty */ t->tbf_q = m; } else { /* Insert at tail */ t->tbf_t->m_act = m; } /* Set new tail pointer */ t->tbf_t = m; #ifdef DIAGNOSTIC /* Make sure we didn't get fed a bogus mbuf */ if (m->m_act) panic("tbf_queue: m_act"); #endif m->m_act = NULL; t->tbf_q_len++; splx(s); } /* * processes the queue at the interface */ static void tbf_process_q(vifp) register struct vif *vifp; { register struct mbuf *m; register int len; register int s = splnet(); register struct tbf *t = vifp->v_tbf; /* loop through the queue at the interface and send as many packets * as possible */ while (t->tbf_q_len > 0) { m = t->tbf_q; len = mtod(m, struct ip *)->ip_len; /* determine if the packet can be sent */ if (len <= t->tbf_n_tok) { /* if so, * reduce no of tokens, dequeue the packet, * send the packet. */ t->tbf_n_tok -= len; t->tbf_q = m->m_act; if (--t->tbf_q_len == 0) t->tbf_t = NULL; m->m_act = NULL; tbf_send_packet(vifp, m); } else break; } splx(s); } static void tbf_reprocess_q(xvifp) void *xvifp; { register struct vif *vifp = xvifp; if (ip_mrouter == NULL) return; tbf_update_tokens(vifp); tbf_process_q(vifp); if (vifp->v_tbf->tbf_q_len) timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS); } /* function that will selectively discard a member of the queue * based on the precedence value and the priority */ static int tbf_dq_sel(vifp, ip) register struct vif *vifp; register struct ip *ip; { register int s = splnet(); register u_int p; register struct mbuf *m, *last; register struct mbuf **np; register struct tbf *t = vifp->v_tbf; p = priority(vifp, ip); np = &t->tbf_q; last = NULL; while ((m = *np) != NULL) { if (p > priority(vifp, mtod(m, struct ip *))) { *np = m->m_act; /* If we're removing the last packet, fix the tail pointer */ if (m == t->tbf_t) t->tbf_t = last; m_freem(m); /* it's impossible for the queue to be empty, but * we check anyway. */ if (--t->tbf_q_len == 0) t->tbf_t = NULL; splx(s); mrtstat.mrts_drop_sel++; return(1); } np = &m->m_act; last = m; } splx(s); return(0); } static void tbf_send_packet(vifp, m) register struct vif *vifp; register struct mbuf *m; { struct ip_moptions imo; int error; static struct route ro; int s = splnet(); if (vifp->v_flags & VIFF_TUNNEL) { /* If tunnel options */ ip_output(m, (struct mbuf *)0, &vifp->v_route, IP_FORWARDING, (struct ip_moptions *)0); } else { imo.imo_multicast_ifp = vifp->v_ifp; imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; imo.imo_multicast_loop = 1; imo.imo_multicast_vif = -1; /* * Re-entrancy should not be a problem here, because * the packets that we send out and are looped back at us * should get rejected because they appear to come from * the loopback interface, thus preventing looping. */ error = ip_output(m, (struct mbuf *)0, &ro, IP_FORWARDING, &imo); if (mrtdebug & DEBUG_XMIT) log(LOG_DEBUG, "phyint_send on vif %d err %d\n", vifp - viftable, error); } splx(s); } /* determine the current time and then * the elapsed time (between the last time and time now) * in milliseconds & update the no. of tokens in the bucket */ static void tbf_update_tokens(vifp) register struct vif *vifp; { struct timeval tp; register u_long tm; register int s = splnet(); register struct tbf *t = vifp->v_tbf; GET_TIME(tp); TV_DELTA(tp, t->tbf_last_pkt_t, tm); /* * This formula is actually * "time in seconds" * "bytes/second". * * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) * * The (1000/1024) was introduced in add_vif to optimize * this divide into a shift. */ t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8; t->tbf_last_pkt_t = tp; if (t->tbf_n_tok > MAX_BKT_SIZE) t->tbf_n_tok = MAX_BKT_SIZE; splx(s); } static int priority(vifp, ip) register struct vif *vifp; register struct ip *ip; { register int prio; /* temporary hack; may add general packet classifier some day */ /* * The UDP port space is divided up into four priority ranges: * [0, 16384) : unclassified - lowest priority * [16384, 32768) : audio - highest priority * [32768, 49152) : whiteboard - medium priority * [49152, 65536) : video - low priority */ if (ip->ip_p == IPPROTO_UDP) { struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); switch (ntohs(udp->uh_dport) & 0xc000) { case 0x4000: prio = 70; break; case 0x8000: prio = 60; break; case 0xc000: prio = 55; break; default: prio = 50; break; } if (tbfdebug > 1) log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio); } else { prio = 50; } return prio; } /* * End of token bucket filter modifications */ int ip_rsvp_vif_init(so, sopt) struct socket *so; struct sockopt *sopt; { int error, i, s; if (rsvpdebug) printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return EOPNOTSUPP; /* Check mbuf. */ error = sooptcopyin(sopt, &i, sizeof i, sizeof i); if (error) return (error); if (rsvpdebug) printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on); s = splnet(); /* Check vif. */ if (!legal_vif_num(i)) { splx(s); return EADDRNOTAVAIL; } /* Check if socket is available. */ if (viftable[i].v_rsvpd != NULL) { splx(s); return EADDRINUSE; } viftable[i].v_rsvpd = so; /* This may seem silly, but we need to be sure we don't over-increment * the RSVP counter, in case something slips up. */ if (!viftable[i].v_rsvp_on) { viftable[i].v_rsvp_on = 1; rsvp_on++; } splx(s); return 0; } int ip_rsvp_vif_done(so, sopt) struct socket *so; struct sockopt *sopt; { int error, i, s; if (rsvpdebug) printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return EOPNOTSUPP; error = sooptcopyin(sopt, &i, sizeof i, sizeof i); if (error) return (error); s = splnet(); /* Check vif. */ if (!legal_vif_num(i)) { splx(s); return EADDRNOTAVAIL; } if (rsvpdebug) printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n", viftable[i].v_rsvpd, so); viftable[i].v_rsvpd = NULL; /* * This may seem silly, but we need to be sure we don't over-decrement * the RSVP counter, in case something slips up. */ if (viftable[i].v_rsvp_on) { viftable[i].v_rsvp_on = 0; rsvp_on--; } splx(s); return 0; } void ip_rsvp_force_done(so) struct socket *so; { int vifi; register int s; /* Don't bother if it is not the right type of socket. */ if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return; s = splnet(); /* The socket may be attached to more than one vif...this * is perfectly legal. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_rsvpd == so) { viftable[vifi].v_rsvpd = NULL; /* This may seem silly, but we need to be sure we don't * over-decrement the RSVP counter, in case something slips up. */ if (viftable[vifi].v_rsvp_on) { viftable[vifi].v_rsvp_on = 0; rsvp_on--; } } } splx(s); return; } void rsvp_input(m, off, proto) struct mbuf *m; int off; int proto; { int vifi; register struct ip *ip = mtod(m, struct ip *); static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET }; register int s; struct ifnet *ifp; if (rsvpdebug) printf("rsvp_input: rsvp_on %d\n",rsvp_on); /* Can still get packets with rsvp_on = 0 if there is a local member * of the group to which the RSVP packet is addressed. But in this * case we want to throw the packet away. */ if (!rsvp_on) { m_freem(m); return; } /* If the old-style non-vif-associated socket is set, then use * it and ignore the new ones. */ if (ip_rsvpd != NULL) { if (rsvpdebug) printf("rsvp_input: Sending packet up old-style socket\n"); rip_input(m, off, proto); /* xxx */ return; } s = splnet(); if (rsvpdebug) printf("rsvp_input: check vifs\n"); #ifdef DIAGNOSTIC if (!(m->m_flags & M_PKTHDR)) panic("rsvp_input no hdr"); #endif ifp = m->m_pkthdr.rcvif; /* Find which vif the packet arrived on. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_ifp == ifp) break; } if (vifi == numvifs) { /* Can't find vif packet arrived on. Drop packet. */ if (rsvpdebug) printf("rsvp_input: Can't find vif for packet...dropping it.\n"); m_freem(m); splx(s); return; } if (rsvpdebug) printf("rsvp_input: check socket\n"); if (viftable[vifi].v_rsvpd == NULL) { /* drop packet, since there is no specific socket for this * interface */ if (rsvpdebug) printf("rsvp_input: No socket defined for vif %d\n",vifi); m_freem(m); splx(s); return; } rsvp_src.sin_addr = ip->ip_src; if (rsvpdebug && m) printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n", m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv))); if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) { if (rsvpdebug) printf("rsvp_input: Failed to append to socket\n"); } else { if (rsvpdebug) printf("rsvp_input: send packet up\n"); } splx(s); } #ifdef MROUTE_LKM #include #include #include #include MOD_MISC("ip_mroute_mod") static int ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd) { int i; struct lkm_misc *args = lkmtp->private.lkm_misc; int err = 0; switch(cmd) { static int (*old_ip_mrouter_cmd)(); static int (*old_ip_mrouter_done)(); static int (*old_ip_mforward)(); static int (*old_mrt_ioctl)(); static void (*old_proto4_input)(); static int (*old_legal_vif_num)(); extern struct protosw inetsw[]; case LKM_E_LOAD: if(lkmexists(lkmtp) || ip_mrtproto) return(EEXIST); old_ip_mrouter_cmd = ip_mrouter_cmd; ip_mrouter_cmd = X_ip_mrouter_cmd; old_ip_mrouter_done = ip_mrouter_done; ip_mrouter_done = X_ip_mrouter_done; old_ip_mforward = ip_mforward; ip_mforward = X_ip_mforward; old_mrt_ioctl = mrt_ioctl; mrt_ioctl = X_mrt_ioctl; old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input; inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input; old_legal_vif_num = legal_vif_num; legal_vif_num = X_legal_vif_num; ip_mrtproto = IGMP_DVMRP; printf("\nIP multicast routing loaded\n"); break; case LKM_E_UNLOAD: if (ip_mrouter) return EINVAL; ip_mrouter_cmd = old_ip_mrouter_cmd; ip_mrouter_done = old_ip_mrouter_done; ip_mforward = old_ip_mforward; mrt_ioctl = old_mrt_ioctl; inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input; legal_vif_num = old_legal_vif_num; ip_mrtproto = 0; break; default: err = EINVAL; break; } return(err); } int ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) { DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle, nosys); } #endif /* MROUTE_LKM */ #endif /* MROUTING */