/******************************************************************* ** w o r d s . c ** Forth Inspired Command Language ** ANS Forth CORE word-set written in C ** Author: John Sadler (john_sadler@alum.mit.edu) ** Created: 19 July 1997 ** *******************************************************************/ /* $FreeBSD$ */ #ifdef TESTMAIN #include #include #include #include #else #include #endif #include #include "ficl.h" #include "math64.h" static void colonParen(FICL_VM *pVM); static void literalIm(FICL_VM *pVM); static void interpWord(FICL_VM *pVM, STRINGINFO si); /* ** Control structure building words use these ** strings' addresses as markers on the stack to ** check for structure completion. */ static char doTag[] = "do"; static char colonTag[] = "colon"; static char leaveTag[] = "leave"; static char destTag[] = "target"; static char origTag[] = "origin"; /* ** Pointers to various words in the dictionary ** -- initialized by ficlCompileCore, below -- ** for use by compiling words. Colon definitions ** in ficl are lists of pointers to words. A bit ** simple-minded... */ static FICL_WORD *pBranchParen = NULL; static FICL_WORD *pComma = NULL; static FICL_WORD *pDoParen = NULL; static FICL_WORD *pDoesParen = NULL; static FICL_WORD *pExitParen = NULL; static FICL_WORD *pIfParen = NULL; static FICL_WORD *pInterpret = NULL; static FICL_WORD *pLitParen = NULL; static FICL_WORD *pTwoLitParen = NULL; static FICL_WORD *pLoopParen = NULL; static FICL_WORD *pPLoopParen = NULL; static FICL_WORD *pQDoParen = NULL; static FICL_WORD *pSemiParen = NULL; static FICL_WORD *pStore = NULL; static FICL_WORD *pStringLit = NULL; static FICL_WORD *pType = NULL; #if FICL_WANT_LOCALS static FICL_WORD *pGetLocalParen= NULL; static FICL_WORD *pGet2LocalParen= NULL; static FICL_WORD *pGetLocal0 = NULL; static FICL_WORD *pGetLocal1 = NULL; static FICL_WORD *pToLocalParen = NULL; static FICL_WORD *pTo2LocalParen = NULL; static FICL_WORD *pToLocal0 = NULL; static FICL_WORD *pToLocal1 = NULL; static FICL_WORD *pLinkParen = NULL; static FICL_WORD *pUnLinkParen = NULL; static int nLocals = 0; static CELL *pMarkLocals = NULL; static void doLocalIm(FICL_VM *pVM); static void do2LocalIm(FICL_VM *pVM); #endif /* ** C O N T R O L S T R U C T U R E B U I L D E R S ** ** Push current dict location for later branch resolution. ** The location may be either a branch target or a patch address... */ static void markBranch(FICL_DICT *dp, FICL_VM *pVM, char *tag) { stackPushPtr(pVM->pStack, dp->here); stackPushPtr(pVM->pStack, tag); return; } static void markControlTag(FICL_VM *pVM, char *tag) { stackPushPtr(pVM->pStack, tag); return; } static void matchControlTag(FICL_VM *pVM, char *tag) { char *cp = (char *)stackPopPtr(pVM->pStack); if ( strcmp(cp, tag) ) { vmThrowErr(pVM, "Error -- unmatched control structure \"%s\"", tag); } return; } /* ** Expect a branch target address on the param stack, ** compile a literal offset from the current dict location ** to the target address */ static void resolveBackBranch(FICL_DICT *dp, FICL_VM *pVM, char *tag) { long offset; CELL *patchAddr; matchControlTag(pVM, tag); patchAddr = (CELL *)stackPopPtr(pVM->pStack); offset = patchAddr - dp->here; dictAppendCell(dp, LVALUEtoCELL(offset)); return; } /* ** Expect a branch patch address on the param stack, ** compile a literal offset from the patch location ** to the current dict location */ static void resolveForwardBranch(FICL_DICT *dp, FICL_VM *pVM, char *tag) { long offset; CELL *patchAddr; matchControlTag(pVM, tag); patchAddr = (CELL *)stackPopPtr(pVM->pStack); offset = dp->here - patchAddr; *patchAddr = LVALUEtoCELL(offset); return; } /* ** Match the tag to the top of the stack. If success, ** sopy "here" address into the cell whose address is next ** on the stack. Used by do..leave..loop. */ static void resolveAbsBranch(FICL_DICT *dp, FICL_VM *pVM, char *tag) { CELL *patchAddr; char *cp; cp = stackPopPtr(pVM->pStack); if (strcmp(cp, tag)) { vmTextOut(pVM, "Warning -- Unmatched control word: ", 0); vmTextOut(pVM, tag, 1); } patchAddr = (CELL *)stackPopPtr(pVM->pStack); *patchAddr = LVALUEtoCELL(dp->here); return; } /************************************************************************** i s N u m b e r ** Attempts to convert the NULL terminated string in the VM's pad to ** a number using the VM's current base. If successful, pushes the number ** onto the param stack and returns TRUE. Otherwise, returns FALSE. **************************************************************************/ static int isNumber(FICL_VM *pVM, STRINGINFO si) { FICL_INT accum = 0; char isNeg = FALSE; unsigned base = pVM->base; char *cp = SI_PTR(si); FICL_COUNT count= (FICL_COUNT)SI_COUNT(si); unsigned ch; unsigned digit; if (*cp == '-') { cp++; count--; isNeg = TRUE; } else if ((cp[0] == '0') && (cp[1] == 'x')) { /* detect 0xNNNN format for hex numbers */ cp += 2; count -= 2; base = 16; } if (count == 0) return FALSE; while (count-- && ((ch = *cp++) != '\0')) { if (!(isdigit(ch)||isalpha(ch))) return FALSE; digit = ch - '0'; if (digit > 9) digit = tolower(ch) - 'a' + 10; if (digit >= base) return FALSE; accum = accum * base + digit; } if (isNeg) accum = -accum; stackPushINT(pVM->pStack, accum); return TRUE; } static void ficlIsNum(FICL_VM *pVM) { STRINGINFO si; FICL_INT ret; SI_SETLEN(si, stackPopINT(pVM->pStack)); SI_SETPTR(si, stackPopPtr(pVM->pStack)); ret = isNumber(pVM, si) ? FICL_TRUE : FICL_FALSE; stackPushINT(pVM->pStack, ret); return; } /************************************************************************** a d d & f r i e n d s ** **************************************************************************/ static void add(FICL_VM *pVM) { FICL_INT i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif i = stackPopINT(pVM->pStack); i += stackGetTop(pVM->pStack).i; stackSetTop(pVM->pStack, LVALUEtoCELL(i)); return; } static void sub(FICL_VM *pVM) { FICL_INT i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif i = stackPopINT(pVM->pStack); i = stackGetTop(pVM->pStack).i - i; stackSetTop(pVM->pStack, LVALUEtoCELL(i)); return; } static void mul(FICL_VM *pVM) { FICL_INT i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif i = stackPopINT(pVM->pStack); i *= stackGetTop(pVM->pStack).i; stackSetTop(pVM->pStack, LVALUEtoCELL(i)); return; } static void negate(FICL_VM *pVM) { FICL_INT i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif i = -stackPopINT(pVM->pStack); stackPushINT(pVM->pStack, i); return; } static void ficlDiv(FICL_VM *pVM) { FICL_INT i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif i = stackPopINT(pVM->pStack); i = stackGetTop(pVM->pStack).i / i; stackSetTop(pVM->pStack, LVALUEtoCELL(i)); return; } /* ** slash-mod CORE ( n1 n2 -- n3 n4 ) ** Divide n1 by n2, giving the single-cell remainder n3 and the single-cell ** quotient n4. An ambiguous condition exists if n2 is zero. If n1 and n2 ** differ in sign, the implementation-defined result returned will be the ** same as that returned by either the phrase ** >R S>D R> FM/MOD or the phrase >R S>D R> SM/REM . ** NOTE: Ficl complies with the second phrase (symmetric division) */ static void slashMod(FICL_VM *pVM) { DPINT n1; FICL_INT n2; INTQR qr; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 2); #endif n2 = stackPopINT(pVM->pStack); n1.lo = stackPopINT(pVM->pStack); i64Extend(n1); qr = m64SymmetricDivI(n1, n2); stackPushINT(pVM->pStack, qr.rem); stackPushINT(pVM->pStack, qr.quot); return; } static void onePlus(FICL_VM *pVM) { FICL_INT i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif i = stackGetTop(pVM->pStack).i; i += 1; stackSetTop(pVM->pStack, LVALUEtoCELL(i)); return; } static void oneMinus(FICL_VM *pVM) { FICL_INT i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif i = stackGetTop(pVM->pStack).i; i -= 1; stackSetTop(pVM->pStack, LVALUEtoCELL(i)); return; } static void twoMul(FICL_VM *pVM) { FICL_INT i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif i = stackGetTop(pVM->pStack).i; i *= 2; stackSetTop(pVM->pStack, LVALUEtoCELL(i)); return; } static void twoDiv(FICL_VM *pVM) { FICL_INT i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif i = stackGetTop(pVM->pStack).i; i >>= 1; stackSetTop(pVM->pStack, LVALUEtoCELL(i)); return; } static void mulDiv(FICL_VM *pVM) { FICL_INT x, y, z; DPINT prod; #if FICL_ROBUST > 1 vmCheckStack(pVM, 3, 1); #endif z = stackPopINT(pVM->pStack); y = stackPopINT(pVM->pStack); x = stackPopINT(pVM->pStack); prod = m64MulI(x,y); x = m64SymmetricDivI(prod, z).quot; stackPushINT(pVM->pStack, x); return; } static void mulDivRem(FICL_VM *pVM) { FICL_INT x, y, z; DPINT prod; INTQR qr; #if FICL_ROBUST > 1 vmCheckStack(pVM, 3, 2); #endif z = stackPopINT(pVM->pStack); y = stackPopINT(pVM->pStack); x = stackPopINT(pVM->pStack); prod = m64MulI(x,y); qr = m64SymmetricDivI(prod, z); stackPushINT(pVM->pStack, qr.rem); stackPushINT(pVM->pStack, qr.quot); return; } /************************************************************************** b y e ** TOOLS ** Signal the system to shut down - this causes ficlExec to return ** VM_USEREXIT. The rest is up to you. **************************************************************************/ static void bye(FICL_VM *pVM) { vmThrow(pVM, VM_USEREXIT); return; } /************************************************************************** c o l o n d e f i n i t i o n s ** Code to begin compiling a colon definition ** This function sets the state to COMPILE, then creates a ** new word whose name is the next word in the input stream ** and whose code is colonParen. **************************************************************************/ static void colon(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); STRINGINFO si = vmGetWord(pVM); dictCheckThreshold(dp); pVM->state = COMPILE; markControlTag(pVM, colonTag); dictAppendWord2(dp, si, colonParen, FW_DEFAULT | FW_SMUDGE); #if FICL_WANT_LOCALS nLocals = 0; #endif return; } /************************************************************************** c o l o n P a r e n ** This is the code that executes a colon definition. It assumes that the ** virtual machine is running a "next" loop (See the vm.c ** for its implementation of member function vmExecute()). The colon ** code simply copies the address of the first word in the list of words ** to interpret into IP after saving its old value. When we return to the ** "next" loop, the virtual machine will call the code for each word in ** turn. ** **************************************************************************/ static void colonParen(FICL_VM *pVM) { IPTYPE tempIP = (IPTYPE) (pVM->runningWord->param); vmPushIP(pVM, tempIP); return; } /************************************************************************** s e m i c o l o n C o I m ** ** IMMEDIATE code for ";". This function sets the state to INTERPRET and ** terminates a word under compilation by appending code for "(;)" to ** the definition. TO DO: checks for leftover branch target tags on the ** return stack and complains if any are found. **************************************************************************/ static void semiParen(FICL_VM *pVM) { vmPopIP(pVM); return; } static void semicolonCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pSemiParen); matchControlTag(pVM, colonTag); #if FICL_WANT_LOCALS assert(pUnLinkParen); if (nLocals > 0) { FICL_DICT *pLoc = ficlGetLoc(); dictEmpty(pLoc, pLoc->pForthWords->size); dictAppendCell(dp, LVALUEtoCELL(pUnLinkParen)); } nLocals = 0; #endif dictAppendCell(dp, LVALUEtoCELL(pSemiParen)); pVM->state = INTERPRET; dictUnsmudge(dp); return; } /************************************************************************** e x i t ** CORE ** This function simply pops the previous instruction ** pointer and returns to the "next" loop. Used for exiting from within ** a definition. Note that exitParen is identical to semiParen - they ** are in two different functions so that "see" can correctly identify ** the end of a colon definition, even if it uses "exit". **************************************************************************/ static void exitParen(FICL_VM *pVM) { vmPopIP(pVM); return; } static void exitCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pExitParen); IGNORE(pVM); #if FICL_WANT_LOCALS if (nLocals > 0) { dictAppendCell(dp, LVALUEtoCELL(pUnLinkParen)); } #endif dictAppendCell(dp, LVALUEtoCELL(pExitParen)); return; } /************************************************************************** c o n s t a n t P a r e n ** This is the run-time code for "constant". It simply returns the ** contents of its word's first data cell. ** **************************************************************************/ void constantParen(FICL_VM *pVM) { FICL_WORD *pFW = pVM->runningWord; #if FICL_ROBUST > 1 vmCheckStack(pVM, 0, 1); #endif stackPush(pVM->pStack, pFW->param[0]); return; } void twoConstParen(FICL_VM *pVM) { FICL_WORD *pFW = pVM->runningWord; #if FICL_ROBUST > 1 vmCheckStack(pVM, 0, 2); #endif stackPush(pVM->pStack, pFW->param[0]); /* lo */ stackPush(pVM->pStack, pFW->param[1]); /* hi */ return; } /************************************************************************** c o n s t a n t ** IMMEDIATE ** Compiles a constant into the dictionary. Constants return their ** value when invoked. Expects a value on top of the parm stack. **************************************************************************/ static void constant(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); STRINGINFO si = vmGetWord(pVM); #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif dictAppendWord2(dp, si, constantParen, FW_DEFAULT); dictAppendCell(dp, stackPop(pVM->pStack)); return; } static void twoConstant(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); STRINGINFO si = vmGetWord(pVM); CELL c; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 0); #endif c = stackPop(pVM->pStack); dictAppendWord2(dp, si, twoConstParen, FW_DEFAULT); dictAppendCell(dp, stackPop(pVM->pStack)); dictAppendCell(dp, c); return; } /************************************************************************** d i s p l a y C e l l ** Drop and print the contents of the cell at the top of the param ** stack **************************************************************************/ static void displayCell(FICL_VM *pVM) { CELL c; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif c = stackPop(pVM->pStack); ltoa((c).i, pVM->pad, pVM->base); strcat(pVM->pad, " "); vmTextOut(pVM, pVM->pad, 0); return; } static void displayCellNoPad(FICL_VM *pVM) { CELL c; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif c = stackPop(pVM->pStack); ltoa((c).i, pVM->pad, pVM->base); vmTextOut(pVM, pVM->pad, 0); return; } static void uDot(FICL_VM *pVM) { FICL_UNS u; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif u = stackPopUNS(pVM->pStack); ultoa(u, pVM->pad, pVM->base); strcat(pVM->pad, " "); vmTextOut(pVM, pVM->pad, 0); return; } static void hexDot(FICL_VM *pVM) { FICL_UNS u; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif u = stackPopUNS(pVM->pStack); ultoa(u, pVM->pad, 16); strcat(pVM->pad, " "); vmTextOut(pVM, pVM->pad, 0); return; } /************************************************************************** d i s p l a y S t a c k ** Display the parameter stack (code for ".s") **************************************************************************/ static void displayStack(FICL_VM *pVM) { int d = stackDepth(pVM->pStack); int i; CELL *pCell; vmCheckStack(pVM, 0, 0); if (d == 0) vmTextOut(pVM, "(Stack Empty)", 1); else { pCell = pVM->pStack->sp; for (i = 0; i < d; i++) { vmTextOut(pVM, ltoa((*--pCell).i, pVM->pad, pVM->base), 1); } } } /************************************************************************** d u p & f r i e n d s ** **************************************************************************/ static void depth(FICL_VM *pVM) { int i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 0, 1); #endif i = stackDepth(pVM->pStack); stackPushINT(pVM->pStack, i); return; } static void drop(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif stackDrop(pVM->pStack, 1); return; } static void twoDrop(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 0); #endif stackDrop(pVM->pStack, 2); return; } static void dup(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 2); #endif stackPick(pVM->pStack, 0); return; } static void twoDup(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 4); #endif stackPick(pVM->pStack, 1); stackPick(pVM->pStack, 1); return; } static void over(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 3); #endif stackPick(pVM->pStack, 1); return; } static void twoOver(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 4, 6); #endif stackPick(pVM->pStack, 3); stackPick(pVM->pStack, 3); return; } static void pick(FICL_VM *pVM) { CELL c = stackPop(pVM->pStack); #if FICL_ROBUST > 1 vmCheckStack(pVM, c.i+1, c.i+2); #endif stackPick(pVM->pStack, c.i); return; } static void questionDup(FICL_VM *pVM) { CELL c; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 2); #endif c = stackGetTop(pVM->pStack); if (c.i != 0) stackPick(pVM->pStack, 0); return; } static void roll(FICL_VM *pVM) { int i = stackPop(pVM->pStack).i; i = (i > 0) ? i : 0; #if FICL_ROBUST > 1 vmCheckStack(pVM, i+1, i+1); #endif stackRoll(pVM->pStack, i); return; } static void minusRoll(FICL_VM *pVM) { int i = stackPop(pVM->pStack).i; i = (i > 0) ? i : 0; #if FICL_ROBUST > 1 vmCheckStack(pVM, i+1, i+1); #endif stackRoll(pVM->pStack, -i); return; } static void rot(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 3, 3); #endif stackRoll(pVM->pStack, 2); return; } static void swap(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 2); #endif stackRoll(pVM->pStack, 1); return; } static void twoSwap(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 4, 4); #endif stackRoll(pVM->pStack, 3); stackRoll(pVM->pStack, 3); return; } /************************************************************************** e m i t & f r i e n d s ** **************************************************************************/ static void emit(FICL_VM *pVM) { char *cp = pVM->pad; int i; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif i = stackPopINT(pVM->pStack); cp[0] = (char)i; cp[1] = '\0'; vmTextOut(pVM, cp, 0); return; } static void cr(FICL_VM *pVM) { vmTextOut(pVM, "", 1); return; } static void commentLine(FICL_VM *pVM) { char *cp = vmGetInBuf(pVM); char *pEnd = vmGetInBufEnd(pVM); char ch = *cp; while ((cp != pEnd) && (ch != '\r') && (ch != '\n')) { ch = *++cp; } /* ** Cope with DOS or UNIX-style EOLs - ** Check for /r, /n, /r/n, or /n/r end-of-line sequences, ** and point cp to next char. If EOL is \0, we're done. */ if (cp != pEnd) { cp++; if ( (cp != pEnd) && (ch != *cp) && ((*cp == '\r') || (*cp == '\n')) ) cp++; } vmUpdateTib(pVM, cp); return; } /* ** paren CORE ** Compilation: Perform the execution semantics given below. ** Execution: ( "ccc" -- ) ** Parse ccc delimited by ) (right parenthesis). ( is an immediate word. ** The number of characters in ccc may be zero to the number of characters ** in the parse area. ** */ static void commentHang(FICL_VM *pVM) { vmParseStringEx(pVM, ')', 0); return; } /************************************************************************** F E T C H & S T O R E ** **************************************************************************/ static void fetch(FICL_VM *pVM) { CELL *pCell; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif pCell = (CELL *)stackPopPtr(pVM->pStack); stackPush(pVM->pStack, *pCell); return; } /* ** two-fetch CORE ( a-addr -- x1 x2 ) ** Fetch the cell pair x1 x2 stored at a-addr. x2 is stored at a-addr and ** x1 at the next consecutive cell. It is equivalent to the sequence ** DUP CELL+ @ SWAP @ . */ static void twoFetch(FICL_VM *pVM) { CELL *pCell; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 2); #endif pCell = (CELL *)stackPopPtr(pVM->pStack); stackPush(pVM->pStack, *pCell++); stackPush(pVM->pStack, *pCell); swap(pVM); return; } /* ** store CORE ( x a-addr -- ) ** Store x at a-addr. */ static void store(FICL_VM *pVM) { CELL *pCell; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 0); #endif pCell = (CELL *)stackPopPtr(pVM->pStack); *pCell = stackPop(pVM->pStack); } /* ** two-store CORE ( x1 x2 a-addr -- ) ** Store the cell pair x1 x2 at a-addr, with x2 at a-addr and x1 at the ** next consecutive cell. It is equivalent to the sequence ** SWAP OVER ! CELL+ ! . */ static void twoStore(FICL_VM *pVM) { CELL *pCell; #if FICL_ROBUST > 1 vmCheckStack(pVM, 3, 0); #endif pCell = (CELL *)stackPopPtr(pVM->pStack); *pCell++ = stackPop(pVM->pStack); *pCell = stackPop(pVM->pStack); } static void plusStore(FICL_VM *pVM) { CELL *pCell; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 0); #endif pCell = (CELL *)stackPopPtr(pVM->pStack); pCell->i += stackPop(pVM->pStack).i; } static void iFetch(FICL_VM *pVM) { UNS32 *pw; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif pw = (UNS32 *)stackPopPtr(pVM->pStack); stackPushUNS(pVM->pStack, (FICL_UNS)*pw); return; } static void iStore(FICL_VM *pVM) { UNS32 *pw; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 0); #endif pw = (UNS32 *)stackPopPtr(pVM->pStack); *pw = (UNS32)(stackPop(pVM->pStack).u); } static void wFetch(FICL_VM *pVM) { UNS16 *pw; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif pw = (UNS16 *)stackPopPtr(pVM->pStack); stackPushUNS(pVM->pStack, (FICL_UNS)*pw); return; } static void wStore(FICL_VM *pVM) { UNS16 *pw; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 0); #endif pw = (UNS16 *)stackPopPtr(pVM->pStack); *pw = (UNS16)(stackPop(pVM->pStack).u); } static void cFetch(FICL_VM *pVM) { UNS8 *pc; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif pc = (UNS8 *)stackPopPtr(pVM->pStack); stackPushUNS(pVM->pStack, (FICL_UNS)*pc); return; } static void cStore(FICL_VM *pVM) { UNS8 *pc; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 0); #endif pc = (UNS8 *)stackPopPtr(pVM->pStack); *pc = (UNS8)(stackPop(pVM->pStack).u); } /************************************************************************** i f C o I m ** IMMEDIATE ** Compiles code for a conditional branch into the dictionary ** and pushes the branch patch address on the stack for later ** patching by ELSE or THEN/ENDIF. **************************************************************************/ static void ifCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pIfParen); dictAppendCell(dp, LVALUEtoCELL(pIfParen)); markBranch(dp, pVM, origTag); dictAppendUNS(dp, 1); return; } /************************************************************************** i f P a r e n ** Runtime code to do "if" or "until": pop a flag from the stack, ** fall through if true, branch if false. Probably ought to be ** called (not?branch) since it does "branch if false". **************************************************************************/ static void ifParen(FICL_VM *pVM) { FICL_UNS flag; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif flag = stackPopUNS(pVM->pStack); if (flag) { /* fall through */ vmBranchRelative(pVM, 1); } else { /* take branch (to else/endif/begin) */ vmBranchRelative(pVM, *(int*)(pVM->ip)); } return; } /************************************************************************** e l s e C o I m ** ** IMMEDIATE -- compiles an "else"... ** 1) Compile a branch and a patch address; the address gets patched ** by "endif" to point past the "else" code. ** 2) Pop the the "if" patch address ** 3) Patch the "if" branch to point to the current compile address. ** 4) Push the "else" patch address. ("endif" patches this to jump past ** the "else" code. **************************************************************************/ static void elseCoIm(FICL_VM *pVM) { CELL *patchAddr; int offset; FICL_DICT *dp = ficlGetDict(); assert(pBranchParen); /* (1) compile branch runtime */ dictAppendCell(dp, LVALUEtoCELL(pBranchParen)); matchControlTag(pVM, origTag); patchAddr = (CELL *)stackPopPtr(pVM->pStack); /* (2) pop "if" patch addr */ markBranch(dp, pVM, origTag); /* (4) push "else" patch addr */ dictAppendUNS(dp, 1); /* (1) compile patch placeholder */ offset = dp->here - patchAddr; *patchAddr = LVALUEtoCELL(offset); /* (3) Patch "if" */ return; } /************************************************************************** b r a n c h P a r e n ** ** Runtime for "(branch)" -- expects a literal offset in the next ** compilation address, and branches to that location. **************************************************************************/ static void branchParen(FICL_VM *pVM) { vmBranchRelative(pVM, *(int *)(pVM->ip)); return; } /************************************************************************** e n d i f C o I m ** **************************************************************************/ static void endifCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); resolveForwardBranch(dp, pVM, origTag); return; } /************************************************************************** h a s h ** hash ( c-addr u -- code) ** calculates hashcode of specified string and leaves it on the stack **************************************************************************/ static void hash(FICL_VM *pVM) { STRINGINFO si; SI_SETLEN(si, stackPopUNS(pVM->pStack)); SI_SETPTR(si, stackPopPtr(pVM->pStack)); stackPushUNS(pVM->pStack, hashHashCode(si)); return; } /************************************************************************** i n t e r p r e t ** This is the "user interface" of a Forth. It does the following: ** while there are words in the VM's Text Input Buffer ** Copy next word into the pad (vmGetWord) ** Attempt to find the word in the dictionary (dictLookup) ** If successful, execute the word. ** Otherwise, attempt to convert the word to a number (isNumber) ** If successful, push the number onto the parameter stack. ** Otherwise, print an error message and exit loop... ** End Loop ** ** From the standard, section 3.4 ** Text interpretation (see 6.1.1360 EVALUATE and 6.1.2050 QUIT) shall ** repeat the following steps until either the parse area is empty or an ** ambiguous condition exists: ** a) Skip leading spaces and parse a name (see 3.4.1); **************************************************************************/ static void interpret(FICL_VM *pVM) { STRINGINFO si = vmGetWord0(pVM); assert(pVM); vmBranchRelative(pVM, -1); /* ** Get next word...if out of text, we're done. */ if (si.count == 0) { vmThrow(pVM, VM_OUTOFTEXT); } interpWord(pVM, si); return; /* back to inner interpreter */ } /************************************************************************** ** From the standard, section 3.4 ** b) Search the dictionary name space (see 3.4.2). If a definition name ** matching the string is found: ** 1.if interpreting, perform the interpretation semantics of the definition ** (see 3.4.3.2), and continue at a); ** 2.if compiling, perform the compilation semantics of the definition ** (see 3.4.3.3), and continue at a). ** ** c) If a definition name matching the string is not found, attempt to ** convert the string to a number (see 3.4.1.3). If successful: ** 1.if interpreting, place the number on the data stack, and continue at a); ** 2.if compiling, compile code that when executed will place the number on ** the stack (see 6.1.1780 LITERAL), and continue at a); ** ** d) If unsuccessful, an ambiguous condition exists (see 3.4.4). **************************************************************************/ static void interpWord(FICL_VM *pVM, STRINGINFO si) { FICL_DICT *dp = ficlGetDict(); FICL_WORD *tempFW; #if FICL_ROBUST dictCheck(dp, pVM, 0); vmCheckStack(pVM, 0, 0); #endif #if FICL_WANT_LOCALS if (nLocals > 0) { tempFW = dictLookupLoc(dp, si); } else #endif tempFW = dictLookup(dp, si); if (pVM->state == INTERPRET) { if (tempFW != NULL) { if (wordIsCompileOnly(tempFW)) { vmThrowErr(pVM, "Error: Compile only!"); } vmExecute(pVM, tempFW); } else if (!isNumber(pVM, si)) { int i = SI_COUNT(si); vmThrowErr(pVM, "%.*s not found", i, SI_PTR(si)); } } else /* (pVM->state == COMPILE) */ { if (tempFW != NULL) { if (wordIsImmediate(tempFW)) { vmExecute(pVM, tempFW); } else { dictAppendCell(dp, LVALUEtoCELL(tempFW)); } } else if (isNumber(pVM, si)) { literalIm(pVM); } else { int i = SI_COUNT(si); vmThrowErr(pVM, "%.*s not found", i, SI_PTR(si)); } } return; } /************************************************************************** l i t e r a l P a r e n ** ** This is the runtime for (literal). It assumes that it is part of a colon ** definition, and that the next CELL contains a value to be pushed on the ** parameter stack at runtime. This code is compiled by "literal". ** **************************************************************************/ static void literalParen(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 0, 1); #endif stackPushINT(pVM->pStack, *(FICL_INT *)(pVM->ip)); vmBranchRelative(pVM, 1); return; } static void twoLitParen(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 0, 2); #endif stackPushINT(pVM->pStack, *((FICL_INT *)(pVM->ip)+1)); stackPushINT(pVM->pStack, *(FICL_INT *)(pVM->ip)); vmBranchRelative(pVM, 2); return; } /************************************************************************** l i t e r a l I m ** ** IMMEDIATE code for "literal". This function gets a value from the stack ** and compiles it into the dictionary preceded by the code for "(literal)". ** IMMEDIATE **************************************************************************/ static void literalIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pLitParen); dictAppendCell(dp, LVALUEtoCELL(pLitParen)); dictAppendCell(dp, stackPop(pVM->pStack)); return; } static void twoLiteralIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pTwoLitParen); dictAppendCell(dp, LVALUEtoCELL(pTwoLitParen)); dictAppendCell(dp, stackPop(pVM->pStack)); dictAppendCell(dp, stackPop(pVM->pStack)); return; } /************************************************************************** l i s t W o r d s ** **************************************************************************/ #define nCOLWIDTH 8 static void listWords(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); FICL_HASH *pHash = dp->pSearch[dp->nLists - 1]; FICL_WORD *wp; int nChars = 0; int len; int y = 0; unsigned i; int nWords = 0; char *cp; char *pPad = pVM->pad; for (i = 0; i < pHash->size; i++) { for (wp = pHash->table[i]; wp != NULL; wp = wp->link, nWords++) { if (wp->nName == 0) /* ignore :noname defs */ continue; cp = wp->name; nChars += sprintf(pPad + nChars, "%s", cp); if (nChars > 70) { pPad[nChars] = '\0'; nChars = 0; y++; if(y>23) { y=0; vmTextOut(pVM, "--- Press Enter to continue ---",0); getchar(); vmTextOut(pVM,"\r",0); } vmTextOut(pVM, pPad, 1); } else { len = nCOLWIDTH - nChars % nCOLWIDTH; while (len-- > 0) pPad[nChars++] = ' '; } if (nChars > 70) { pPad[nChars] = '\0'; nChars = 0; y++; if(y>23) { y=0; vmTextOut(pVM, "--- Press Enter to continue ---",0); getchar(); vmTextOut(pVM,"\r",0); } vmTextOut(pVM, pPad, 1); } } } if (nChars > 0) { pPad[nChars] = '\0'; nChars = 0; vmTextOut(pVM, pPad, 1); } sprintf(pVM->pad, "Dictionary: %d words, %ld cells used of %u total", nWords, (long) (dp->here - dp->dict), dp->size); vmTextOut(pVM, pVM->pad, 1); return; } static void listEnv(FICL_VM *pVM) { FICL_DICT *dp = ficlGetEnv(); FICL_HASH *pHash = dp->pForthWords; FICL_WORD *wp; unsigned i; int nWords = 0; for (i = 0; i < pHash->size; i++) { for (wp = pHash->table[i]; wp != NULL; wp = wp->link, nWords++) { vmTextOut(pVM, wp->name, 1); } } sprintf(pVM->pad, "Environment: %d words, %ld cells used of %u total", nWords, (long) (dp->here - dp->dict), dp->size); vmTextOut(pVM, pVM->pad, 1); return; } /************************************************************************** l o g i c a n d c o m p a r i s o n s ** **************************************************************************/ static void zeroEquals(FICL_VM *pVM) { CELL c; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif c.i = FICL_BOOL(stackPopINT(pVM->pStack) == 0); stackPush(pVM->pStack, c); return; } static void zeroLess(FICL_VM *pVM) { CELL c; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif c.i = FICL_BOOL(stackPopINT(pVM->pStack) < 0); stackPush(pVM->pStack, c); return; } static void zeroGreater(FICL_VM *pVM) { CELL c; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif c.i = FICL_BOOL(stackPopINT(pVM->pStack) > 0); stackPush(pVM->pStack, c); return; } static void isEqual(FICL_VM *pVM) { CELL x, y; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif x = stackPop(pVM->pStack); y = stackPop(pVM->pStack); stackPushINT(pVM->pStack, FICL_BOOL(x.i == y.i)); return; } static void isLess(FICL_VM *pVM) { CELL x, y; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif y = stackPop(pVM->pStack); x = stackPop(pVM->pStack); stackPushINT(pVM->pStack, FICL_BOOL(x.i < y.i)); return; } static void uIsLess(FICL_VM *pVM) { FICL_UNS u1, u2; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif u2 = stackPopUNS(pVM->pStack); u1 = stackPopUNS(pVM->pStack); stackPushINT(pVM->pStack, FICL_BOOL(u1 < u2)); return; } static void isGreater(FICL_VM *pVM) { CELL x, y; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif y = stackPop(pVM->pStack); x = stackPop(pVM->pStack); stackPushINT(pVM->pStack, FICL_BOOL(x.i > y.i)); return; } static void bitwiseAnd(FICL_VM *pVM) { CELL x, y; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif x = stackPop(pVM->pStack); y = stackPop(pVM->pStack); stackPushINT(pVM->pStack, x.i & y.i); return; } static void bitwiseOr(FICL_VM *pVM) { CELL x, y; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif x = stackPop(pVM->pStack); y = stackPop(pVM->pStack); stackPushINT(pVM->pStack, x.i | y.i); return; } static void bitwiseXor(FICL_VM *pVM) { CELL x, y; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif x = stackPop(pVM->pStack); y = stackPop(pVM->pStack); stackPushINT(pVM->pStack, x.i ^ y.i); return; } static void bitwiseNot(FICL_VM *pVM) { CELL x; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif x = stackPop(pVM->pStack); stackPushINT(pVM->pStack, ~x.i); return; } /************************************************************************** D o / L o o p ** do -- IMMEDIATE COMPILE ONLY ** Compiles code to initialize a loop: compile (do), ** allot space to hold the "leave" address, push a branch ** target address for the loop. ** (do) -- runtime for "do" ** pops index and limit from the p stack and moves them ** to the r stack, then skips to the loop body. ** loop -- IMMEDIATE COMPILE ONLY ** +loop ** Compiles code for the test part of a loop: ** compile (loop), resolve forward branch from "do", and ** copy "here" address to the "leave" address allotted by "do" ** i,j,k -- COMPILE ONLY ** Runtime: Push loop indices on param stack (i is innermost loop...) ** Note: each loop has three values on the return stack: ** ( R: leave limit index ) ** "leave" is the absolute address of the next cell after the loop ** limit and index are the loop control variables. ** leave -- COMPILE ONLY ** Runtime: pop the loop control variables, then pop the ** "leave" address and jump (absolute) there. **************************************************************************/ static void doCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pDoParen); dictAppendCell(dp, LVALUEtoCELL(pDoParen)); /* ** Allot space for a pointer to the end ** of the loop - "leave" uses this... */ markBranch(dp, pVM, leaveTag); dictAppendUNS(dp, 0); /* ** Mark location of head of loop... */ markBranch(dp, pVM, doTag); return; } static void doParen(FICL_VM *pVM) { CELL index, limit; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 0); #endif index = stackPop(pVM->pStack); limit = stackPop(pVM->pStack); /* copy "leave" target addr to stack */ stackPushPtr(pVM->rStack, *(pVM->ip++)); stackPush(pVM->rStack, limit); stackPush(pVM->rStack, index); return; } static void qDoCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pQDoParen); dictAppendCell(dp, LVALUEtoCELL(pQDoParen)); /* ** Allot space for a pointer to the end ** of the loop - "leave" uses this... */ markBranch(dp, pVM, leaveTag); dictAppendUNS(dp, 0); /* ** Mark location of head of loop... */ markBranch(dp, pVM, doTag); return; } static void qDoParen(FICL_VM *pVM) { CELL index, limit; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 0); #endif index = stackPop(pVM->pStack); limit = stackPop(pVM->pStack); /* copy "leave" target addr to stack */ stackPushPtr(pVM->rStack, *(pVM->ip++)); if (limit.u == index.u) { vmPopIP(pVM); } else { stackPush(pVM->rStack, limit); stackPush(pVM->rStack, index); } return; } /* ** Runtime code to break out of a do..loop construct ** Drop the loop control variables; the branch address ** past "loop" is next on the return stack. */ static void leaveCo(FICL_VM *pVM) { /* almost unloop */ stackDrop(pVM->rStack, 2); /* exit */ vmPopIP(pVM); return; } static void unloopCo(FICL_VM *pVM) { stackDrop(pVM->rStack, 3); return; } static void loopCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pLoopParen); dictAppendCell(dp, LVALUEtoCELL(pLoopParen)); resolveBackBranch(dp, pVM, doTag); resolveAbsBranch(dp, pVM, leaveTag); return; } static void plusLoopCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pPLoopParen); dictAppendCell(dp, LVALUEtoCELL(pPLoopParen)); resolveBackBranch(dp, pVM, doTag); resolveAbsBranch(dp, pVM, leaveTag); return; } static void loopParen(FICL_VM *pVM) { FICL_INT index = stackGetTop(pVM->rStack).i; FICL_INT limit = stackFetch(pVM->rStack, 1).i; index++; if (index >= limit) { stackDrop(pVM->rStack, 3); /* nuke the loop indices & "leave" addr */ vmBranchRelative(pVM, 1); /* fall through the loop */ } else { /* update index, branch to loop head */ stackSetTop(pVM->rStack, LVALUEtoCELL(index)); vmBranchRelative(pVM, *(int *)(pVM->ip)); } return; } static void plusLoopParen(FICL_VM *pVM) { FICL_INT index = stackGetTop(pVM->rStack).i; FICL_INT limit = stackFetch(pVM->rStack, 1).i; FICL_INT increment = stackPop(pVM->pStack).i; int flag; index += increment; if (increment < 0) flag = (index < limit); else flag = (index >= limit); if (flag) { stackDrop(pVM->rStack, 3); /* nuke the loop indices & "leave" addr */ vmBranchRelative(pVM, 1); /* fall through the loop */ } else { /* update index, branch to loop head */ stackSetTop(pVM->rStack, LVALUEtoCELL(index)); vmBranchRelative(pVM, *(int *)(pVM->ip)); } return; } static void loopICo(FICL_VM *pVM) { CELL index = stackGetTop(pVM->rStack); stackPush(pVM->pStack, index); return; } static void loopJCo(FICL_VM *pVM) { CELL index = stackFetch(pVM->rStack, 3); stackPush(pVM->pStack, index); return; } static void loopKCo(FICL_VM *pVM) { CELL index = stackFetch(pVM->rStack, 6); stackPush(pVM->pStack, index); return; } /************************************************************************** r e t u r n s t a c k ** **************************************************************************/ static void toRStack(FICL_VM *pVM) { stackPush(pVM->rStack, stackPop(pVM->pStack)); return; } static void fromRStack(FICL_VM *pVM) { stackPush(pVM->pStack, stackPop(pVM->rStack)); return; } static void fetchRStack(FICL_VM *pVM) { stackPush(pVM->pStack, stackGetTop(pVM->rStack)); return; } /************************************************************************** v a r i a b l e ** **************************************************************************/ static void variableParen(FICL_VM *pVM) { FICL_WORD *fw = pVM->runningWord; stackPushPtr(pVM->pStack, fw->param); return; } static void variable(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); STRINGINFO si = vmGetWord(pVM); dictAppendWord2(dp, si, variableParen, FW_DEFAULT); dictAllotCells(dp, 1); return; } /************************************************************************** b a s e & f r i e n d s ** **************************************************************************/ static void base(FICL_VM *pVM) { CELL *pBase = (CELL *)(&pVM->base); stackPush(pVM->pStack, LVALUEtoCELL(pBase)); return; } static void decimal(FICL_VM *pVM) { pVM->base = 10; return; } static void hex(FICL_VM *pVM) { pVM->base = 16; return; } /************************************************************************** a l l o t & f r i e n d s ** **************************************************************************/ static void allot(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); FICL_INT i = stackPopINT(pVM->pStack); #if FICL_ROBUST dictCheck(dp, pVM, i); #endif dictAllot(dp, i); return; } static void here(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); stackPushPtr(pVM->pStack, dp->here); return; } static void comma(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); CELL c = stackPop(pVM->pStack); dictAppendCell(dp, c); return; } static void cComma(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); char c = (char)stackPopINT(pVM->pStack); dictAppendChar(dp, c); return; } static void cells(FICL_VM *pVM) { FICL_INT i = stackPopINT(pVM->pStack); stackPushINT(pVM->pStack, i * (FICL_INT)sizeof (CELL)); return; } static void cellPlus(FICL_VM *pVM) { char *cp = stackPopPtr(pVM->pStack); stackPushPtr(pVM->pStack, cp + sizeof (CELL)); return; } /************************************************************************** t i c k ** tick CORE ( "name" -- xt ) ** Skip leading space delimiters. Parse name delimited by a space. Find ** name and return xt, the execution token for name. An ambiguous condition ** exists if name is not found. **************************************************************************/ static void tick(FICL_VM *pVM) { FICL_WORD *pFW = NULL; STRINGINFO si = vmGetWord(pVM); pFW = dictLookup(ficlGetDict(), si); if (!pFW) { int i = SI_COUNT(si); vmThrowErr(pVM, "%.*s not found", i, SI_PTR(si)); } stackPushPtr(pVM->pStack, pFW); return; } static void bracketTickCoIm(FICL_VM *pVM) { tick(pVM); literalIm(pVM); return; } /************************************************************************** p o s t p o n e ** Lookup the next word in the input stream and compile code to ** insert it into definitions created by the resulting word ** (defers compilation, even of immediate words) **************************************************************************/ static void postponeCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); FICL_WORD *pFW; assert(pComma); tick(pVM); pFW = stackGetTop(pVM->pStack).p; if (wordIsImmediate(pFW)) { dictAppendCell(dp, stackPop(pVM->pStack)); } else { literalIm(pVM); dictAppendCell(dp, LVALUEtoCELL(pComma)); } return; } /************************************************************************** e x e c u t e ** Pop an execution token (pointer to a word) off the stack and ** run it **************************************************************************/ static void execute(FICL_VM *pVM) { FICL_WORD *pFW; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif pFW = stackPopPtr(pVM->pStack); vmExecute(pVM, pFW); return; } /************************************************************************** i m m e d i a t e ** Make the most recently compiled word IMMEDIATE -- it executes even ** in compile state (most often used for control compiling words ** such as IF, THEN, etc) **************************************************************************/ static void immediate(FICL_VM *pVM) { IGNORE(pVM); dictSetImmediate(ficlGetDict()); return; } static void compileOnly(FICL_VM *pVM) { IGNORE(pVM); dictSetFlags(ficlGetDict(), FW_COMPILE, 0); return; } /************************************************************************** d o t Q u o t e ** IMMEDIATE word that compiles a string literal for later display ** Compile stringLit, then copy the bytes of the string from the TIB ** to the dictionary. Backpatch the count byte and align the dictionary. ** ** stringlit: Fetch the count from the dictionary, then push the address ** and count on the stack. Finally, update ip to point to the first ** aligned address after the string text. **************************************************************************/ static void stringLit(FICL_VM *pVM) { FICL_STRING *sp = (FICL_STRING *)(pVM->ip); FICL_COUNT count = sp->count; char *cp = sp->text; stackPushPtr(pVM->pStack, cp); stackPushUNS(pVM->pStack, count); cp += count + 1; cp = alignPtr(cp); pVM->ip = (IPTYPE)(void *)cp; return; } static void dotQuoteCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); dictAppendCell(dp, LVALUEtoCELL(pStringLit)); dp->here = PTRtoCELL vmGetString(pVM, (FICL_STRING *)dp->here, '\"'); dictAlign(dp); dictAppendCell(dp, LVALUEtoCELL(pType)); return; } static void dotParen(FICL_VM *pVM) { char *pSrc = vmGetInBuf(pVM); char *pEnd = vmGetInBufEnd(pVM); char *pDest = pVM->pad; char ch; for (ch = *pSrc; (pEnd != pSrc) && (ch != ')'); ch = *++pSrc) *pDest++ = ch; *pDest = '\0'; if ((pEnd != pSrc) && (ch == ')')) pSrc++; vmTextOut(pVM, pVM->pad, 0); vmUpdateTib(pVM, pSrc); return; } /************************************************************************** s l i t e r a l ** STRING ** Interpretation: Interpretation semantics for this word are undefined. ** Compilation: ( c-addr1 u -- ) ** Append the run-time semantics given below to the current definition. ** Run-time: ( -- c-addr2 u ) ** Return c-addr2 u describing a string consisting of the characters ** specified by c-addr1 u during compilation. A program shall not alter ** the returned string. **************************************************************************/ static void sLiteralCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); char *cp, *cpDest; FICL_UNS u; u = stackPopUNS(pVM->pStack); cp = stackPopPtr(pVM->pStack); dictAppendCell(dp, LVALUEtoCELL(pStringLit)); cpDest = (char *) dp->here; *cpDest++ = (char) u; for (; u > 0; --u) { *cpDest++ = *cp++; } *cpDest++ = 0; dp->here = PTRtoCELL alignPtr(cpDest); return; } /************************************************************************** s t a t e ** Return the address of the VM's state member (must be sized the ** same as a CELL for this reason) **************************************************************************/ static void state(FICL_VM *pVM) { stackPushPtr(pVM->pStack, &pVM->state); return; } /************************************************************************** c r e a t e . . . d o e s > ** Make a new word in the dictionary with the run-time effect of ** a variable (push my address), but with extra space allotted ** for use by does> . **************************************************************************/ static void createParen(FICL_VM *pVM) { CELL *pCell = pVM->runningWord->param; stackPushPtr(pVM->pStack, pCell+1); return; } static void create(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); STRINGINFO si = vmGetWord(pVM); dictAppendWord2(dp, si, createParen, FW_DEFAULT); dictAllotCells(dp, 1); return; } static void doDoes(FICL_VM *pVM) { CELL *pCell = pVM->runningWord->param; IPTYPE tempIP = (IPTYPE)((*pCell).p); stackPushPtr(pVM->pStack, pCell+1); vmPushIP(pVM, tempIP); return; } static void doesParen(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); dp->smudge->code = doDoes; dp->smudge->param[0] = LVALUEtoCELL(pVM->ip); vmPopIP(pVM); return; } static void doesCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); #if FICL_WANT_LOCALS assert(pUnLinkParen); if (nLocals > 0) { FICL_DICT *pLoc = ficlGetLoc(); dictEmpty(pLoc, pLoc->pForthWords->size); dictAppendCell(dp, LVALUEtoCELL(pUnLinkParen)); } nLocals = 0; #endif IGNORE(pVM); dictAppendCell(dp, LVALUEtoCELL(pDoesParen)); return; } /************************************************************************** t o b o d y ** to-body CORE ( xt -- a-addr ) ** a-addr is the data-field address corresponding to xt. An ambiguous ** condition exists if xt is not for a word defined via CREATE. **************************************************************************/ static void toBody(FICL_VM *pVM) { FICL_WORD *pFW = stackPopPtr(pVM->pStack); stackPushPtr(pVM->pStack, pFW->param + 1); return; } /* ** from-body ficl ( a-addr -- xt ) ** Reverse effect of >body */ static void fromBody(FICL_VM *pVM) { char *ptr = (char *) stackPopPtr(pVM->pStack) - sizeof (FICL_WORD); stackPushPtr(pVM->pStack, ptr); return; } /* ** >name ficl ( xt -- c-addr u ) ** Push the address and length of a word's name given its address ** xt. */ static void toName(FICL_VM *pVM) { FICL_WORD *pFW = stackPopPtr(pVM->pStack); stackPushPtr(pVM->pStack, pFW->name); stackPushUNS(pVM->pStack, pFW->nName); return; } /************************************************************************** l b r a c k e t e t c ** **************************************************************************/ static void lbracketCoIm(FICL_VM *pVM) { pVM->state = INTERPRET; return; } static void rbracket(FICL_VM *pVM) { pVM->state = COMPILE; return; } /************************************************************************** p i c t u r e d n u m e r i c w o r d s ** ** less-number-sign CORE ( -- ) ** Initialize the pictured numeric output conversion process. ** (clear the pad) **************************************************************************/ static void lessNumberSign(FICL_VM *pVM) { FICL_STRING *sp = PTRtoSTRING pVM->pad; sp->count = 0; return; } /* ** number-sign CORE ( ud1 -- ud2 ) ** Divide ud1 by the number in BASE giving the quotient ud2 and the remainder ** n. (n is the least-significant digit of ud1.) Convert n to external form ** and add the resulting character to the beginning of the pictured numeric ** output string. An ambiguous condition exists if # executes outside of a ** <# #> delimited number conversion. */ static void numberSign(FICL_VM *pVM) { FICL_STRING *sp = PTRtoSTRING pVM->pad; DPUNS u; UNS16 rem; u = u64Pop(pVM->pStack); rem = m64UMod(&u, (UNS16)(pVM->base)); sp->text[sp->count++] = digit_to_char(rem); u64Push(pVM->pStack, u); return; } /* ** number-sign-greater CORE ( xd -- c-addr u ) ** Drop xd. Make the pictured numeric output string available as a character ** string. c-addr and u specify the resulting character string. A program ** may replace characters within the string. */ static void numberSignGreater(FICL_VM *pVM) { FICL_STRING *sp = PTRtoSTRING pVM->pad; sp->text[sp->count] = '\0'; strrev(sp->text); stackDrop(pVM->pStack, 2); stackPushPtr(pVM->pStack, sp->text); stackPushUNS(pVM->pStack, sp->count); return; } /* ** number-sign-s CORE ( ud1 -- ud2 ) ** Convert one digit of ud1 according to the rule for #. Continue conversion ** until the quotient is zero. ud2 is zero. An ambiguous condition exists if ** #S executes outside of a <# #> delimited number conversion. ** TO DO: presently does not use ud1 hi cell - use it! */ static void numberSignS(FICL_VM *pVM) { FICL_STRING *sp = PTRtoSTRING pVM->pad; DPUNS u; UNS16 rem; u = u64Pop(pVM->pStack); do { rem = m64UMod(&u, (UNS16)(pVM->base)); sp->text[sp->count++] = digit_to_char(rem); } while (u.hi || u.lo); u64Push(pVM->pStack, u); return; } /* ** HOLD CORE ( char -- ) ** Add char to the beginning of the pictured numeric output string. An ambiguous ** condition exists if HOLD executes outside of a <# #> delimited number conversion. */ static void hold(FICL_VM *pVM) { FICL_STRING *sp = PTRtoSTRING pVM->pad; int i = stackPopINT(pVM->pStack); sp->text[sp->count++] = (char) i; return; } /* ** SIGN CORE ( n -- ) ** If n is negative, add a minus sign to the beginning of the pictured ** numeric output string. An ambiguous condition exists if SIGN ** executes outside of a <# #> delimited number conversion. */ static void sign(FICL_VM *pVM) { FICL_STRING *sp = PTRtoSTRING pVM->pad; int i = stackPopINT(pVM->pStack); if (i < 0) sp->text[sp->count++] = '-'; return; } /************************************************************************** t o N u m b e r ** to-number CORE ( ud1 c-addr1 u1 -- ud2 c-addr2 u2 ) ** ud2 is the unsigned result of converting the characters within the ** string specified by c-addr1 u1 into digits, using the number in BASE, ** and adding each into ud1 after multiplying ud1 by the number in BASE. ** Conversion continues left-to-right until a character that is not ** convertible, including any + or -, is encountered or the string is ** entirely converted. c-addr2 is the location of the first unconverted ** character or the first character past the end of the string if the string ** was entirely converted. u2 is the number of unconverted characters in the ** string. An ambiguous condition exists if ud2 overflows during the ** conversion. **************************************************************************/ static void toNumber(FICL_VM *pVM) { FICL_UNS count = stackPopUNS(pVM->pStack); char *cp = (char *)stackPopPtr(pVM->pStack); DPUNS accum; FICL_UNS base = pVM->base; FICL_UNS ch; FICL_UNS digit; accum = u64Pop(pVM->pStack); for (ch = *cp; count > 0; ch = *++cp, count--) { if (ch < '0') break; digit = ch - '0'; if (digit > 9) digit = tolower(ch) - 'a' + 10; /* ** Note: following test also catches chars between 9 and a ** because 'digit' is unsigned! */ if (digit >= base) break; accum = m64Mac(accum, base, digit); } u64Push(pVM->pStack, accum); stackPushPtr (pVM->pStack, cp); stackPushUNS(pVM->pStack, count); return; } /************************************************************************** q u i t & a b o r t ** quit CORE ( -- ) ( R: i*x -- ) ** Empty the return stack, store zero in SOURCE-ID if it is present, make ** the user input device the input source, and enter interpretation state. ** Do not display a message. Repeat the following: ** ** Accept a line from the input source into the input buffer, set >IN to ** zero, and interpret. ** Display the implementation-defined system prompt if in ** interpretation state, all processing has been completed, and no ** ambiguous condition exists. **************************************************************************/ static void quit(FICL_VM *pVM) { vmThrow(pVM, VM_QUIT); return; } static void ficlAbort(FICL_VM *pVM) { vmThrow(pVM, VM_ABORT); return; } /************************************************************************** a c c e p t ** accept CORE ( c-addr +n1 -- +n2 ) ** Receive a string of at most +n1 characters. An ambiguous condition ** exists if +n1 is zero or greater than 32,767. Display graphic characters ** as they are received. A program that depends on the presence or absence ** of non-graphic characters in the string has an environmental dependency. ** The editing functions, if any, that the system performs in order to ** construct the string are implementation-defined. ** ** (Although the standard text doesn't say so, I assume that the intent ** of 'accept' is to store the string at the address specified on ** the stack.) ** Implementation: if there's more text in the TIB, use it. Otherwise ** throw out for more text. Copy characters up to the max count into the ** address given, and return the number of actual characters copied. ** ** Note (sobral) this may not be the behavior you'd expect if you're ** trying to get user input at load time! **************************************************************************/ static void accept(FICL_VM *pVM) { FICL_INT count; char *cp; char *pBuf = vmGetInBuf(pVM); char *pEnd = vmGetInBufEnd(pVM); FICL_INT len = pEnd - pBuf; if (len == 0) vmThrow(pVM, VM_RESTART); /* ** Now we have something in the text buffer - use it */ count = stackPopINT(pVM->pStack); cp = stackPopPtr(pVM->pStack); len = (count < len) ? count : len; strncpy(cp, vmGetInBuf(pVM), len); pBuf += len; vmUpdateTib(pVM, pBuf); stackPushINT(pVM->pStack, len); return; } /************************************************************************** a l i g n ** 6.1.0705 ALIGN CORE ( -- ) ** If the data-space pointer is not aligned, reserve enough space to ** align it. **************************************************************************/ static void align(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); IGNORE(pVM); dictAlign(dp); return; } /************************************************************************** a l i g n e d ** **************************************************************************/ static void aligned(FICL_VM *pVM) { void *addr = stackPopPtr(pVM->pStack); stackPushPtr(pVM->pStack, alignPtr(addr)); return; } /************************************************************************** b e g i n & f r i e n d s ** Indefinite loop control structures ** A.6.1.0760 BEGIN ** Typical use: ** : X ... BEGIN ... test UNTIL ; ** or ** : X ... BEGIN ... test WHILE ... REPEAT ; **************************************************************************/ static void beginCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); markBranch(dp, pVM, destTag); return; } static void untilCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pIfParen); dictAppendCell(dp, LVALUEtoCELL(pIfParen)); resolveBackBranch(dp, pVM, destTag); return; } static void whileCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pIfParen); dictAppendCell(dp, LVALUEtoCELL(pIfParen)); markBranch(dp, pVM, origTag); twoSwap(pVM); dictAppendUNS(dp, 1); return; } static void repeatCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pBranchParen); dictAppendCell(dp, LVALUEtoCELL(pBranchParen)); /* expect "begin" branch marker */ resolveBackBranch(dp, pVM, destTag); /* expect "while" branch marker */ resolveForwardBranch(dp, pVM, origTag); return; } static void againCoIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); assert(pBranchParen); dictAppendCell(dp, LVALUEtoCELL(pBranchParen)); /* expect "begin" branch marker */ resolveBackBranch(dp, pVM, destTag); return; } /************************************************************************** c h a r & f r i e n d s ** 6.1.0895 CHAR CORE ( "name" -- char ) ** Skip leading space delimiters. Parse name delimited by a space. ** Put the value of its first character onto the stack. ** ** bracket-char CORE ** Interpretation: Interpretation semantics for this word are undefined. ** Compilation: ( "name" -- ) ** Skip leading space delimiters. Parse name delimited by a space. ** Append the run-time semantics given below to the current definition. ** Run-time: ( -- char ) ** Place char, the value of the first character of name, on the stack. **************************************************************************/ static void ficlChar(FICL_VM *pVM) { STRINGINFO si = vmGetWord(pVM); stackPushUNS(pVM->pStack, (FICL_UNS)(si.cp[0])); return; } static void charCoIm(FICL_VM *pVM) { ficlChar(pVM); literalIm(pVM); return; } /************************************************************************** c h a r P l u s ** char-plus CORE ( c-addr1 -- c-addr2 ) ** Add the size in address units of a character to c-addr1, giving c-addr2. **************************************************************************/ static void charPlus(FICL_VM *pVM) { char *cp = stackPopPtr(pVM->pStack); stackPushPtr(pVM->pStack, cp + 1); return; } /************************************************************************** c h a r s ** chars CORE ( n1 -- n2 ) ** n2 is the size in address units of n1 characters. ** For most processors, this function can be a no-op. To guarantee ** portability, we'll multiply by sizeof (char). **************************************************************************/ #if defined (_M_IX86) #pragma warning(disable: 4127) #endif static void ficlChars(FICL_VM *pVM) { if (sizeof (char) > 1) { FICL_INT i = stackPopINT(pVM->pStack); stackPushINT(pVM->pStack, i * sizeof (char)); } /* otherwise no-op! */ return; } #if defined (_M_IX86) #pragma warning(default: 4127) #endif /************************************************************************** c o u n t ** COUNT CORE ( c-addr1 -- c-addr2 u ) ** Return the character string specification for the counted string stored ** at c-addr1. c-addr2 is the address of the first character after c-addr1. ** u is the contents of the character at c-addr1, which is the length in ** characters of the string at c-addr2. **************************************************************************/ static void count(FICL_VM *pVM) { FICL_STRING *sp = stackPopPtr(pVM->pStack); stackPushPtr(pVM->pStack, sp->text); stackPushUNS(pVM->pStack, sp->count); return; } /************************************************************************** e n v i r o n m e n t ? ** environment-query CORE ( c-addr u -- false | i*x true ) ** c-addr is the address of a character string and u is the string's ** character count. u may have a value in the range from zero to an ** implementation-defined maximum which shall not be less than 31. The ** character string should contain a keyword from 3.2.6 Environmental ** queries or the optional word sets to be checked for correspondence ** with an attribute of the present environment. If the system treats the ** attribute as unknown, the returned flag is false; otherwise, the flag ** is true and the i*x returned is of the type specified in the table for ** the attribute queried. **************************************************************************/ static void environmentQ(FICL_VM *pVM) { FICL_DICT *envp = ficlGetEnv(); FICL_COUNT len = (FICL_COUNT)stackPopUNS(pVM->pStack); char *cp = stackPopPtr(pVM->pStack); FICL_WORD *pFW; STRINGINFO si; &len; /* silence compiler warning... */ SI_PSZ(si, cp); pFW = dictLookup(envp, si); if (pFW != NULL) { vmExecute(pVM, pFW); stackPushINT(pVM->pStack, FICL_TRUE); } else { stackPushINT(pVM->pStack, FICL_FALSE); } return; } /************************************************************************** e v a l u a t e ** EVALUATE CORE ( i*x c-addr u -- j*x ) ** Save the current input source specification. Store minus-one (-1) in ** SOURCE-ID if it is present. Make the string described by c-addr and u ** both the input source and input buffer, set >IN to zero, and interpret. ** When the parse area is empty, restore the prior input source ** specification. Other stack effects are due to the words EVALUATEd. ** **************************************************************************/ static void evaluate(FICL_VM *pVM) { FICL_INT count = stackPopINT(pVM->pStack); char *cp = stackPopPtr(pVM->pStack); CELL id; int result; id = pVM->sourceID; pVM->sourceID.i = -1; result = ficlExecC(pVM, cp, count); pVM->sourceID = id; if (result != VM_OUTOFTEXT) vmThrow(pVM, result); return; } /************************************************************************** s t r i n g q u o t e ** Intrpreting: get string delimited by a quote from the input stream, ** copy to a scratch area, and put its count and address on the stack. ** Compiling: compile code to push the address and count of a string ** literal, compile the string from the input stream, and align the dict ** pointer. **************************************************************************/ static void stringQuoteIm(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); if (pVM->state == INTERPRET) { FICL_STRING *sp = (FICL_STRING *) dp->here; vmGetString(pVM, sp, '\"'); stackPushPtr(pVM->pStack, sp->text); stackPushUNS(pVM->pStack, sp->count); } else /* COMPILE state */ { dictAppendCell(dp, LVALUEtoCELL(pStringLit)); dp->here = PTRtoCELL vmGetString(pVM, (FICL_STRING *)dp->here, '\"'); dictAlign(dp); } return; } /************************************************************************** t y p e ** Pop count and char address from stack and print the designated string. **************************************************************************/ static void type(FICL_VM *pVM) { FICL_UNS count = stackPopUNS(pVM->pStack); char *cp = stackPopPtr(pVM->pStack); char *pDest = (char *)ficlMalloc(count + 1); /* ** Since we don't have an output primitive for a counted string ** (oops), make sure the string is null terminated. If not, copy ** and terminate it. */ if (!pDest) vmThrowErr(pVM, "Error: out of memory"); strncpy(pDest, cp, count); pDest[count] = '\0'; vmTextOut(pVM, pDest, 0); ficlFree(pDest); return; } /************************************************************************** w o r d ** word CORE ( char "ccc" -- c-addr ) ** Skip leading delimiters. Parse characters ccc delimited by char. An ** ambiguous condition exists if the length of the parsed string is greater ** than the implementation-defined length of a counted string. ** ** c-addr is the address of a transient region containing the parsed word ** as a counted string. If the parse area was empty or contained no ** characters other than the delimiter, the resulting string has a zero ** length. A space, not included in the length, follows the string. A ** program may replace characters within the string. ** NOTE! Ficl also NULL-terminates the dest string. **************************************************************************/ static void ficlWord(FICL_VM *pVM) { FICL_STRING *sp = (FICL_STRING *)pVM->pad; char delim = (char)stackPopINT(pVM->pStack); STRINGINFO si; si = vmParseStringEx(pVM, delim, 1); if (SI_COUNT(si) > nPAD-1) SI_SETLEN(si, nPAD-1); sp->count = (FICL_COUNT)SI_COUNT(si); strncpy(sp->text, SI_PTR(si), SI_COUNT(si)); strcat(sp->text, " "); stackPushPtr(pVM->pStack, sp); return; } /************************************************************************** p a r s e - w o r d ** ficl PARSE-WORD ( name -- c-addr u ) ** Skip leading spaces and parse name delimited by a space. c-addr is the ** address within the input buffer and u is the length of the selected ** string. If the parse area is empty, the resulting string has a zero length. **************************************************************************/ static void parseNoCopy(FICL_VM *pVM) { STRINGINFO si = vmGetWord0(pVM); stackPushPtr(pVM->pStack, SI_PTR(si)); stackPushUNS(pVM->pStack, SI_COUNT(si)); return; } /************************************************************************** p a r s e ** CORE EXT ( char "ccc" -- c-addr u ) ** Parse ccc delimited by the delimiter char. ** c-addr is the address (within the input buffer) and u is the length of ** the parsed string. If the parse area was empty, the resulting string has ** a zero length. ** NOTE! PARSE differs from WORD: it does not skip leading delimiters. **************************************************************************/ static void parse(FICL_VM *pVM) { STRINGINFO si; char delim = (char)stackPopINT(pVM->pStack); si = vmParseStringEx(pVM, delim, 0); stackPushPtr(pVM->pStack, SI_PTR(si)); stackPushUNS(pVM->pStack, SI_COUNT(si)); return; } /************************************************************************** f i l l ** CORE ( c-addr u char -- ) ** If u is greater than zero, store char in each of u consecutive ** characters of memory beginning at c-addr. **************************************************************************/ static void fill(FICL_VM *pVM) { char ch = (char)stackPopINT(pVM->pStack); FICL_UNS u = stackPopUNS(pVM->pStack); char *cp = (char *)stackPopPtr(pVM->pStack); while (u > 0) { *cp++ = ch; u--; } return; } /************************************************************************** f i n d ** FIND CORE ( c-addr -- c-addr 0 | xt 1 | xt -1 ) ** Find the definition named in the counted string at c-addr. If the ** definition is not found, return c-addr and zero. If the definition is ** found, return its execution token xt. If the definition is immediate, ** also return one (1), otherwise also return minus-one (-1). For a given ** string, the values returned by FIND while compiling may differ from ** those returned while not compiling. **************************************************************************/ static void find(FICL_VM *pVM) { FICL_STRING *sp = stackPopPtr(pVM->pStack); FICL_WORD *pFW; STRINGINFO si; SI_PFS(si, sp); pFW = dictLookup(ficlGetDict(), si); if (pFW) { stackPushPtr(pVM->pStack, pFW); stackPushINT(pVM->pStack, (wordIsImmediate(pFW) ? 1 : -1)); } else { stackPushPtr(pVM->pStack, sp); stackPushUNS(pVM->pStack, 0); } return; } /************************************************************************** f m S l a s h M o d ** f-m-slash-mod CORE ( d1 n1 -- n2 n3 ) ** Divide d1 by n1, giving the floored quotient n3 and the remainder n2. ** Input and output stack arguments are signed. An ambiguous condition ** exists if n1 is zero or if the quotient lies outside the range of a ** single-cell signed integer. **************************************************************************/ static void fmSlashMod(FICL_VM *pVM) { DPINT d1; FICL_INT n1; INTQR qr; n1 = stackPopINT(pVM->pStack); d1 = i64Pop(pVM->pStack); qr = m64FlooredDivI(d1, n1); stackPushINT(pVM->pStack, qr.rem); stackPushINT(pVM->pStack, qr.quot); return; } /************************************************************************** s m S l a s h R e m ** s-m-slash-rem CORE ( d1 n1 -- n2 n3 ) ** Divide d1 by n1, giving the symmetric quotient n3 and the remainder n2. ** Input and output stack arguments are signed. An ambiguous condition ** exists if n1 is zero or if the quotient lies outside the range of a ** single-cell signed integer. **************************************************************************/ static void smSlashRem(FICL_VM *pVM) { DPINT d1; FICL_INT n1; INTQR qr; n1 = stackPopINT(pVM->pStack); d1 = i64Pop(pVM->pStack); qr = m64SymmetricDivI(d1, n1); stackPushINT(pVM->pStack, qr.rem); stackPushINT(pVM->pStack, qr.quot); return; } static void ficlMod(FICL_VM *pVM) { DPINT d1; FICL_INT n1; INTQR qr; n1 = stackPopINT(pVM->pStack); d1.lo = stackPopINT(pVM->pStack); i64Extend(d1); qr = m64SymmetricDivI(d1, n1); stackPushINT(pVM->pStack, qr.rem); return; } /************************************************************************** u m S l a s h M o d ** u-m-slash-mod CORE ( ud u1 -- u2 u3 ) ** Divide ud by u1, giving the quotient u3 and the remainder u2. ** All values and arithmetic are unsigned. An ambiguous condition ** exists if u1 is zero or if the quotient lies outside the range of a ** single-cell unsigned integer. *************************************************************************/ static void umSlashMod(FICL_VM *pVM) { DPUNS ud; FICL_UNS u1; UNSQR qr; u1 = stackPopUNS(pVM->pStack); ud = u64Pop(pVM->pStack); qr = ficlLongDiv(ud, u1); stackPushUNS(pVM->pStack, qr.rem); stackPushUNS(pVM->pStack, qr.quot); return; } /************************************************************************** l s h i f t ** l-shift CORE ( x1 u -- x2 ) ** Perform a logical left shift of u bit-places on x1, giving x2. ** Put zeroes into the least significant bits vacated by the shift. ** An ambiguous condition exists if u is greater than or equal to the ** number of bits in a cell. ** ** r-shift CORE ( x1 u -- x2 ) ** Perform a logical right shift of u bit-places on x1, giving x2. ** Put zeroes into the most significant bits vacated by the shift. An ** ambiguous condition exists if u is greater than or equal to the ** number of bits in a cell. **************************************************************************/ static void lshift(FICL_VM *pVM) { FICL_UNS nBits = stackPopUNS(pVM->pStack); FICL_UNS x1 = stackPopUNS(pVM->pStack); stackPushUNS(pVM->pStack, x1 << nBits); return; } static void rshift(FICL_VM *pVM) { FICL_UNS nBits = stackPopUNS(pVM->pStack); FICL_UNS x1 = stackPopUNS(pVM->pStack); stackPushUNS(pVM->pStack, x1 >> nBits); return; } /************************************************************************** m S t a r ** m-star CORE ( n1 n2 -- d ) ** d is the signed product of n1 times n2. **************************************************************************/ static void mStar(FICL_VM *pVM) { FICL_INT n2 = stackPopINT(pVM->pStack); FICL_INT n1 = stackPopINT(pVM->pStack); DPINT d; d = m64MulI(n1, n2); i64Push(pVM->pStack, d); return; } static void umStar(FICL_VM *pVM) { FICL_UNS u2 = stackPopUNS(pVM->pStack); FICL_UNS u1 = stackPopUNS(pVM->pStack); DPUNS ud; ud = ficlLongMul(u1, u2); u64Push(pVM->pStack, ud); return; } /************************************************************************** m a x & m i n ** **************************************************************************/ static void ficlMax(FICL_VM *pVM) { FICL_INT n2 = stackPopINT(pVM->pStack); FICL_INT n1 = stackPopINT(pVM->pStack); stackPushINT(pVM->pStack, (n1 > n2) ? n1 : n2); return; } static void ficlMin(FICL_VM *pVM) { FICL_INT n2 = stackPopINT(pVM->pStack); FICL_INT n1 = stackPopINT(pVM->pStack); stackPushINT(pVM->pStack, (n1 < n2) ? n1 : n2); return; } /************************************************************************** m o v e ** CORE ( addr1 addr2 u -- ) ** If u is greater than zero, copy the contents of u consecutive address ** units at addr1 to the u consecutive address units at addr2. After MOVE ** completes, the u consecutive address units at addr2 contain exactly ** what the u consecutive address units at addr1 contained before the move. ** NOTE! This implementation assumes that a char is the same size as ** an address unit. **************************************************************************/ static void move(FICL_VM *pVM) { FICL_UNS u = stackPopUNS(pVM->pStack); char *addr2 = stackPopPtr(pVM->pStack); char *addr1 = stackPopPtr(pVM->pStack); if (u == 0) return; /* ** Do the copy carefully, so as to be ** correct even if the two ranges overlap */ if (addr1 >= addr2) { for (; u > 0; u--) *addr2++ = *addr1++; } else { addr2 += u-1; addr1 += u-1; for (; u > 0; u--) *addr2-- = *addr1--; } return; } /************************************************************************** r e c u r s e ** **************************************************************************/ static void recurseCoIm(FICL_VM *pVM) { FICL_DICT *pDict = ficlGetDict(); IGNORE(pVM); dictAppendCell(pDict, LVALUEtoCELL(pDict->smudge)); return; } /************************************************************************** s t o d ** s-to-d CORE ( n -- d ) ** Convert the number n to the double-cell number d with the same ** numerical value. **************************************************************************/ static void sToD(FICL_VM *pVM) { FICL_INT s = stackPopINT(pVM->pStack); /* sign extend to 64 bits.. */ stackPushINT(pVM->pStack, s); stackPushINT(pVM->pStack, (s < 0) ? -1 : 0); return; } /************************************************************************** s o u r c e ** CORE ( -- c-addr u ) ** c-addr is the address of, and u is the number of characters in, the ** input buffer. **************************************************************************/ static void source(FICL_VM *pVM) { stackPushPtr(pVM->pStack, pVM->tib.cp); stackPushINT(pVM->pStack, vmGetInBufLen(pVM)); return; } /************************************************************************** v e r s i o n ** non-standard... **************************************************************************/ static void ficlVersion(FICL_VM *pVM) { vmTextOut(pVM, "ficl Version " FICL_VER, 1); return; } /************************************************************************** t o I n ** to-in CORE **************************************************************************/ static void toIn(FICL_VM *pVM) { stackPushPtr(pVM->pStack, &pVM->tib.index); return; } /************************************************************************** d e f i n i t i o n s ** SEARCH ( -- ) ** Make the compilation word list the same as the first word list in the ** search order. Specifies that the names of subsequent definitions will ** be placed in the compilation word list. Subsequent changes in the search ** order will not affect the compilation word list. **************************************************************************/ static void definitions(FICL_VM *pVM) { FICL_DICT *pDict = ficlGetDict(); assert(pDict); if (pDict->nLists < 1) { vmThrowErr(pVM, "DEFINITIONS error - empty search order"); } pDict->pCompile = pDict->pSearch[pDict->nLists-1]; return; } /************************************************************************** f o r t h - w o r d l i s t ** SEARCH ( -- wid ) ** Return wid, the identifier of the word list that includes all standard ** words provided by the implementation. This word list is initially the ** compilation word list and is part of the initial search order. **************************************************************************/ static void forthWordlist(FICL_VM *pVM) { FICL_HASH *pHash = ficlGetDict()->pForthWords; stackPushPtr(pVM->pStack, pHash); return; } /************************************************************************** g e t - c u r r e n t ** SEARCH ( -- wid ) ** Return wid, the identifier of the compilation word list. **************************************************************************/ static void getCurrent(FICL_VM *pVM) { ficlLockDictionary(TRUE); stackPushPtr(pVM->pStack, ficlGetDict()->pCompile); ficlLockDictionary(FALSE); return; } /************************************************************************** g e t - o r d e r ** SEARCH ( -- widn ... wid1 n ) ** Returns the number of word lists n in the search order and the word list ** identifiers widn ... wid1 identifying these word lists. wid1 identifies ** the word list that is searched first, and widn the word list that is ** searched last. The search order is unaffected. **************************************************************************/ static void getOrder(FICL_VM *pVM) { FICL_DICT *pDict = ficlGetDict(); int nLists = pDict->nLists; int i; ficlLockDictionary(TRUE); for (i = 0; i < nLists; i++) { stackPushPtr(pVM->pStack, pDict->pSearch[i]); } stackPushUNS(pVM->pStack, nLists); ficlLockDictionary(FALSE); return; } /************************************************************************** s e a r c h - w o r d l i s t ** SEARCH ( c-addr u wid -- 0 | xt 1 | xt -1 ) ** Find the definition identified by the string c-addr u in the word list ** identified by wid. If the definition is not found, return zero. If the ** definition is found, return its execution token xt and one (1) if the ** definition is immediate, minus-one (-1) otherwise. **************************************************************************/ static void searchWordlist(FICL_VM *pVM) { STRINGINFO si; UNS16 hashCode; FICL_WORD *pFW; FICL_HASH *pHash = stackPopPtr(pVM->pStack); si.count = (FICL_COUNT)stackPopUNS(pVM->pStack); si.cp = stackPopPtr(pVM->pStack); hashCode = hashHashCode(si); ficlLockDictionary(TRUE); pFW = hashLookup(pHash, si, hashCode); ficlLockDictionary(FALSE); if (pFW) { stackPushPtr(pVM->pStack, pFW); stackPushINT(pVM->pStack, (wordIsImmediate(pFW) ? 1 : -1)); } else { stackPushUNS(pVM->pStack, 0); } return; } /************************************************************************** s e t - c u r r e n t ** SEARCH ( wid -- ) ** Set the compilation word list to the word list identified by wid. **************************************************************************/ static void setCurrent(FICL_VM *pVM) { FICL_HASH *pHash = stackPopPtr(pVM->pStack); FICL_DICT *pDict = ficlGetDict(); ficlLockDictionary(TRUE); pDict->pCompile = pHash; ficlLockDictionary(FALSE); return; } /************************************************************************** s e t - o r d e r ** SEARCH ( widn ... wid1 n -- ) ** Set the search order to the word lists identified by widn ... wid1. ** Subsequently, word list wid1 will be searched first, and word list ** widn searched last. If n is zero, empty the search order. If n is minus ** one, set the search order to the implementation-defined minimum ** search order. The minimum search order shall include the words ** FORTH-WORDLIST and SET-ORDER. A system shall allow n to ** be at least eight. **************************************************************************/ static void setOrder(FICL_VM *pVM) { int i; int nLists = stackPopINT(pVM->pStack); FICL_DICT *dp = ficlGetDict(); if (nLists > FICL_DEFAULT_VOCS) { vmThrowErr(pVM, "set-order error: list would be too large"); } ficlLockDictionary(TRUE); if (nLists >= 0) { dp->nLists = nLists; for (i = nLists-1; i >= 0; --i) { dp->pSearch[i] = stackPopPtr(pVM->pStack); } } else { dictResetSearchOrder(dp); } ficlLockDictionary(FALSE); return; } /************************************************************************** w o r d l i s t ** SEARCH ( -- wid ) ** Create a new empty word list, returning its word list identifier wid. ** The new word list may be returned from a pool of preallocated word ** lists or may be dynamically allocated in data space. A system shall ** allow the creation of at least 8 new word lists in addition to any ** provided as part of the system. ** Notes: ** 1. ficl creates a new single-list hash in the dictionary and returns ** its address. ** 2. ficl-wordlist takes an arg off the stack indicating the number of ** hash entries in the wordlist. Ficl 2.02 and later define WORDLIST as ** : wordlist 1 ficl-wordlist ; **************************************************************************/ static void wordlist(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); FICL_HASH *pHash; FICL_UNS nBuckets; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif nBuckets = stackPopUNS(pVM->pStack); dictAlign(dp); pHash = (FICL_HASH *)dp->here; dictAllot(dp, sizeof (FICL_HASH) + (nBuckets-1) * sizeof (FICL_WORD *)); pHash->size = nBuckets; hashReset(pHash); stackPushPtr(pVM->pStack, pHash); return; } /************************************************************************** S E A R C H > ** ficl ( -- wid ) ** Pop wid off the search order. Error if the search order is empty **************************************************************************/ static void searchPop(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); int nLists; ficlLockDictionary(TRUE); nLists = dp->nLists; if (nLists == 0) { vmThrowErr(pVM, "search> error: empty search order"); } stackPushPtr(pVM->pStack, dp->pSearch[--dp->nLists]); ficlLockDictionary(FALSE); return; } /************************************************************************** > S E A R C H ** ficl ( wid -- ) ** Push wid onto the search order. Error if the search order is full. **************************************************************************/ static void searchPush(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); ficlLockDictionary(TRUE); if (dp->nLists > FICL_DEFAULT_VOCS) { vmThrowErr(pVM, ">search error: search order overflow"); } dp->pSearch[dp->nLists++] = stackPopPtr(pVM->pStack); ficlLockDictionary(FALSE); return; } /************************************************************************** c o l o n N o N a m e ** CORE EXT ( C: -- colon-sys ) ( S: -- xt ) ** Create an unnamed colon definition and push its address. ** Change state to compile. **************************************************************************/ static void colonNoName(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); FICL_WORD *pFW; STRINGINFO si; SI_SETLEN(si, 0); SI_SETPTR(si, NULL); pVM->state = COMPILE; pFW = dictAppendWord2(dp, si, colonParen, FW_DEFAULT | FW_SMUDGE); stackPushPtr(pVM->pStack, pFW); markControlTag(pVM, colonTag); return; } /************************************************************************** u s e r V a r i a b l e ** user ( u -- ) "name" ** Get a name from the input stream and create a user variable ** with the name and the index supplied. The run-time effect ** of a user variable is to push the address of the indexed cell ** in the running vm's user array. ** ** User variables are vm local cells. Each vm has an array of ** FICL_USER_CELLS of them when FICL_WANT_USER is nonzero. ** Ficl's user facility is implemented with two primitives, ** "user" and "(user)", a variable ("nUser") (in softcore.c) that ** holds the index of the next free user cell, and a redefinition ** (also in softcore) of "user" that defines a user word and increments ** nUser. **************************************************************************/ #if FICL_WANT_USER static void userParen(FICL_VM *pVM) { FICL_INT i = pVM->runningWord->param[0].i; stackPushPtr(pVM->pStack, &pVM->user[i]); return; } static void userVariable(FICL_VM *pVM) { FICL_DICT *dp = ficlGetDict(); STRINGINFO si = vmGetWord(pVM); CELL c; c = stackPop(pVM->pStack); if (c.i >= FICL_USER_CELLS) { vmThrowErr(pVM, "Error - out of user space"); } dictAppendWord2(dp, si, userParen, FW_DEFAULT); dictAppendCell(dp, c); return; } #endif /************************************************************************** t o V a l u e ** CORE EXT ** Interpretation: ( x "name" -- ) ** Skip leading spaces and parse name delimited by a space. Store x in ** name. An ambiguous condition exists if name was not defined by VALUE. ** NOTE: In ficl, VALUE is an alias of CONSTANT **************************************************************************/ static void toValue(FICL_VM *pVM) { STRINGINFO si = vmGetWord(pVM); FICL_DICT *dp = ficlGetDict(); FICL_WORD *pFW; #if FICL_WANT_LOCALS if ((nLocals > 0) && (pVM->state == COMPILE)) { FICL_DICT *pLoc = ficlGetLoc(); pFW = dictLookup(pLoc, si); if (pFW && (pFW->code == doLocalIm)) { dictAppendCell(dp, LVALUEtoCELL(pToLocalParen)); dictAppendCell(dp, LVALUEtoCELL(pFW->param[0])); return; } else if (pFW && pFW->code == do2LocalIm) { dictAppendCell(dp, LVALUEtoCELL(pTo2LocalParen)); dictAppendCell(dp, LVALUEtoCELL(pFW->param[0])); return; } } #endif assert(pStore); pFW = dictLookup(dp, si); if (!pFW) { int i = SI_COUNT(si); vmThrowErr(pVM, "%.*s not found", i, SI_PTR(si)); } if (pVM->state == INTERPRET) pFW->param[0] = stackPop(pVM->pStack); else /* compile code to store to word's param */ { stackPushPtr(pVM->pStack, &pFW->param[0]); literalIm(pVM); dictAppendCell(dp, LVALUEtoCELL(pStore)); } return; } #if FICL_WANT_LOCALS /************************************************************************** l i n k P a r e n ** ( -- ) ** Link a frame on the return stack, reserving nCells of space for ** locals - the value of nCells is the next cell in the instruction ** stream. **************************************************************************/ static void linkParen(FICL_VM *pVM) { FICL_INT nLink = *(FICL_INT *)(pVM->ip); vmBranchRelative(pVM, 1); stackLink(pVM->rStack, nLink); return; } static void unlinkParen(FICL_VM *pVM) { stackUnlink(pVM->rStack); return; } /************************************************************************** d o L o c a l I m ** Immediate - cfa of a local while compiling - when executed, compiles ** code to fetch the value of a local given the local's index in the ** word's pfa **************************************************************************/ static void getLocalParen(FICL_VM *pVM) { FICL_INT nLocal = *(FICL_INT *)(pVM->ip++); stackPush(pVM->pStack, pVM->rStack->pFrame[nLocal]); return; } static void toLocalParen(FICL_VM *pVM) { FICL_INT nLocal = *(FICL_INT *)(pVM->ip++); pVM->rStack->pFrame[nLocal] = stackPop(pVM->pStack); return; } static void getLocal0(FICL_VM *pVM) { stackPush(pVM->pStack, pVM->rStack->pFrame[0]); return; } static void toLocal0(FICL_VM *pVM) { pVM->rStack->pFrame[0] = stackPop(pVM->pStack); return; } static void getLocal1(FICL_VM *pVM) { stackPush(pVM->pStack, pVM->rStack->pFrame[1]); return; } static void toLocal1(FICL_VM *pVM) { pVM->rStack->pFrame[1] = stackPop(pVM->pStack); return; } /* ** Each local is recorded in a private locals dictionary as a ** word that does doLocalIm at runtime. DoLocalIm compiles code ** into the client definition to fetch the value of the ** corresponding local variable from the return stack. ** The private dictionary gets initialized at the end of each block ** that uses locals (in ; and does> for example). */ static void doLocalIm(FICL_VM *pVM) { FICL_DICT *pDict = ficlGetDict(); int nLocal = pVM->runningWord->param[0].i; if (pVM->state == INTERPRET) { stackPush(pVM->pStack, pVM->rStack->pFrame[nLocal]); } else { if (nLocal == 0) { dictAppendCell(pDict, LVALUEtoCELL(pGetLocal0)); } else if (nLocal == 1) { dictAppendCell(pDict, LVALUEtoCELL(pGetLocal1)); } else { dictAppendCell(pDict, LVALUEtoCELL(pGetLocalParen)); dictAppendCell(pDict, LVALUEtoCELL(nLocal)); } } return; } /************************************************************************** l o c a l P a r e n ** paren-local-paren LOCAL ** Interpretation: Interpretation semantics for this word are undefined. ** Execution: ( c-addr u -- ) ** When executed during compilation, (LOCAL) passes a message to the ** system that has one of two meanings. If u is non-zero, ** the message identifies a new local whose definition name is given by ** the string of characters identified by c-addr u. If u is zero, ** the message is last local and c-addr has no significance. ** ** The result of executing (LOCAL) during compilation of a definition is ** to create a set of named local identifiers, each of which is ** a definition name, that only have execution semantics within the scope ** of that definition's source. ** ** local Execution: ( -- x ) ** ** Push the local's value, x, onto the stack. The local's value is ** initialized as described in 13.3.3 Processing locals and may be ** changed by preceding the local's name with TO. An ambiguous condition ** exists when local is executed while in interpretation state. **************************************************************************/ static void localParen(FICL_VM *pVM) { FICL_DICT *pDict = ficlGetDict(); STRINGINFO si; SI_SETLEN(si, stackPopUNS(pVM->pStack)); SI_SETPTR(si, (char *)stackPopPtr(pVM->pStack)); if (SI_COUNT(si) > 0) { /* add a local to the **locals** dict and update nLocals */ FICL_DICT *pLoc = ficlGetLoc(); if (nLocals >= FICL_MAX_LOCALS) { vmThrowErr(pVM, "Error: out of local space"); } dictAppendWord2(pLoc, si, doLocalIm, FW_COMPIMMED); dictAppendCell(pLoc, LVALUEtoCELL(nLocals)); if (nLocals == 0) { /* compile code to create a local stack frame */ dictAppendCell(pDict, LVALUEtoCELL(pLinkParen)); /* save location in dictionary for #locals */ pMarkLocals = pDict->here; dictAppendCell(pDict, LVALUEtoCELL(nLocals)); /* compile code to initialize first local */ dictAppendCell(pDict, LVALUEtoCELL(pToLocal0)); } else if (nLocals == 1) { dictAppendCell(pDict, LVALUEtoCELL(pToLocal1)); } else { dictAppendCell(pDict, LVALUEtoCELL(pToLocalParen)); dictAppendCell(pDict, LVALUEtoCELL(nLocals)); } nLocals++; } else if (nLocals > 0) { /* write nLocals to (link) param area in dictionary */ *(FICL_INT *)pMarkLocals = nLocals; } return; } static void get2LocalParen(FICL_VM *pVM) { FICL_INT nLocal = *(FICL_INT *)(pVM->ip++); stackPush(pVM->pStack, pVM->rStack->pFrame[nLocal]); stackPush(pVM->pStack, pVM->rStack->pFrame[nLocal+1]); return; } static void do2LocalIm(FICL_VM *pVM) { FICL_DICT *pDict = ficlGetDict(); int nLocal = pVM->runningWord->param[0].i; if (pVM->state == INTERPRET) { stackPush(pVM->pStack, pVM->rStack->pFrame[nLocal]); stackPush(pVM->pStack, pVM->rStack->pFrame[nLocal+1]); } else { dictAppendCell(pDict, LVALUEtoCELL(pGet2LocalParen)); dictAppendCell(pDict, LVALUEtoCELL(nLocal)); } return; } static void to2LocalParen(FICL_VM *pVM) { FICL_INT nLocal = *(FICL_INT *)(pVM->ip++); pVM->rStack->pFrame[nLocal+1] = stackPop(pVM->pStack); pVM->rStack->pFrame[nLocal] = stackPop(pVM->pStack); return; } static void twoLocalParen(FICL_VM *pVM) { FICL_DICT *pDict = ficlGetDict(); STRINGINFO si; SI_SETLEN(si, stackPopUNS(pVM->pStack)); SI_SETPTR(si, (char *)stackPopPtr(pVM->pStack)); if (SI_COUNT(si) > 0) { /* add a local to the **locals** dict and update nLocals */ FICL_DICT *pLoc = ficlGetLoc(); if (nLocals >= FICL_MAX_LOCALS) { vmThrowErr(pVM, "Error: out of local space"); } dictAppendWord2(pLoc, si, do2LocalIm, FW_COMPIMMED); dictAppendCell(pLoc, LVALUEtoCELL(nLocals)); if (nLocals == 0) { /* compile code to create a local stack frame */ dictAppendCell(pDict, LVALUEtoCELL(pLinkParen)); /* save location in dictionary for #locals */ pMarkLocals = pDict->here; dictAppendCell(pDict, LVALUEtoCELL(nLocals)); } dictAppendCell(pDict, LVALUEtoCELL(pTo2LocalParen)); dictAppendCell(pDict, LVALUEtoCELL(nLocals)); nLocals += 2; } else if (nLocals > 0) { /* write nLocals to (link) param area in dictionary */ *(FICL_INT *)pMarkLocals = nLocals; } return; } #endif /************************************************************************** setParentWid ** FICL ** setparentwid ( parent-wid wid -- ) ** Set WID's link field to the parent-wid. search-wordlist will ** iterate through all the links when finding words in the child wid. **************************************************************************/ static void setParentWid(FICL_VM *pVM) { FICL_HASH *parent, *child; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 0); #endif child = (FICL_HASH *)stackPopPtr(pVM->pStack); parent = (FICL_HASH *)stackPopPtr(pVM->pStack); child->link = parent; return; } /************************************************************************** s e e ** TOOLS ( "name" -- ) ** Display a human-readable representation of the named word's definition. ** The source of the representation (object-code decompilation, source ** block, etc.) and the particular form of the display is implementation ** defined. ** NOTE: these funcs come late in the file because they reference all ** of the word-builder funcs without declaring them again. Call me lazy. **************************************************************************/ /* ** isAFiclWord ** Vet a candidate pointer carefully to make sure ** it's not some chunk o' inline data... ** It has to have a name, and it has to look ** like it's in the dictionary address range. ** NOTE: this excludes :noname words! */ static int isAFiclWord(FICL_WORD *pFW) { FICL_DICT *pd = ficlGetDict(); if (!dictIncludes(pd, pFW)) return 0; if (!dictIncludes(pd, pFW->name)) return 0; return ((pFW->nName > 0) && (pFW->name[pFW->nName] == '\0')); } /* ** seeColon (for proctologists only) ** Walks a colon definition, decompiling ** on the fly. Knows about primitive control structures. */ static void seeColon(FICL_VM *pVM, CELL *pc) { for (; pc->p != pSemiParen; pc++) { FICL_WORD *pFW = (FICL_WORD *)(pc->p); if (isAFiclWord(pFW)) { if (pFW->code == literalParen) { CELL v = *++pc; if (isAFiclWord(v.p)) { FICL_WORD *pLit = (FICL_WORD *)v.p; sprintf(pVM->pad, " literal %.*s (%#lx)", pLit->nName, pLit->name, v.u); } else sprintf(pVM->pad, " literal %ld (%#lx)", v.i, v.u); } else if (pFW->code == stringLit) { FICL_STRING *sp = (FICL_STRING *)(void *)++pc; pc = (CELL *)alignPtr(sp->text + sp->count + 1) - 1; sprintf(pVM->pad, " s\" %.*s\"", sp->count, sp->text); } else if (pFW->code == ifParen) { CELL c = *++pc; if (c.i > 0) sprintf(pVM->pad, " if / while (branch rel %ld)", c.i); else sprintf(pVM->pad, " until (branch rel %ld)", c.i); } else if (pFW->code == branchParen) { CELL c = *++pc; if (c.i > 0) sprintf(pVM->pad, " else (branch rel %ld)", c.i); else sprintf(pVM->pad, " repeat (branch rel %ld)", c.i); } else if (pFW->code == qDoParen) { CELL c = *++pc; sprintf(pVM->pad, " ?do (leave abs %#lx)", c.u); } else if (pFW->code == doParen) { CELL c = *++pc; sprintf(pVM->pad, " do (leave abs %#lx)", c.u); } else if (pFW->code == loopParen) { CELL c = *++pc; sprintf(pVM->pad, " loop (branch rel %#ld)", c.i); } else if (pFW->code == plusLoopParen) { CELL c = *++pc; sprintf(pVM->pad, " +loop (branch rel %#ld)", c.i); } else /* default: print word's name */ { sprintf(pVM->pad, " %.*s", pFW->nName, pFW->name); } vmTextOut(pVM, pVM->pad, 1); } else /* probably not a word - punt and print value */ { sprintf(pVM->pad, " %ld (%#lx)", pc->i, pc->u); vmTextOut(pVM, pVM->pad, 1); } } vmTextOut(pVM, ";", 1); } /* ** Here's the outer part of the decompiler. It's ** just a big nested conditional that checks the ** CFA of the word to decompile for each kind of ** known word-builder code, and tries to do ** something appropriate. If the CFA is not recognized, ** just indicate that it is a primitive. */ static void see(FICL_VM *pVM) { FICL_WORD *pFW; tick(pVM); pFW = (FICL_WORD *)stackPopPtr(pVM->pStack); if (pFW->code == colonParen) { sprintf(pVM->pad, ": %.*s", pFW->nName, pFW->name); vmTextOut(pVM, pVM->pad, 1); seeColon(pVM, pFW->param); } else if (pFW->code == doDoes) { vmTextOut(pVM, "does>", 1); seeColon(pVM, (CELL *)pFW->param->p); } else if (pFW->code == createParen) { vmTextOut(pVM, "create", 1); } else if (pFW->code == variableParen) { sprintf(pVM->pad, "variable = %ld (%#lx)", pFW->param->i, pFW->param->u); vmTextOut(pVM, pVM->pad, 1); } else if (pFW->code == userParen) { sprintf(pVM->pad, "user variable %ld (%#lx)", pFW->param->i, pFW->param->u); vmTextOut(pVM, pVM->pad, 1); } else if (pFW->code == constantParen) { sprintf(pVM->pad, "constant = %ld (%#lx)", pFW->param->i, pFW->param->u); vmTextOut(pVM, pVM->pad, 1); } else { vmTextOut(pVM, "primitive", 1); } if (pFW->flags & FW_IMMEDIATE) { vmTextOut(pVM, "immediate", 1); } return; } /************************************************************************** c o m p a r e ** STRING ( c-addr1 u1 c-addr2 u2 -- n ) ** Compare the string specified by c-addr1 u1 to the string specified by ** c-addr2 u2. The strings are compared, beginning at the given addresses, ** character by character, up to the length of the shorter string or until a ** difference is found. If the two strings are identical, n is zero. If the two ** strings are identical up to the length of the shorter string, n is minus-one ** (-1) if u1 is less than u2 and one (1) otherwise. If the two strings are not ** identical up to the length of the shorter string, n is minus-one (-1) if the ** first non-matching character in the string specified by c-addr1 u1 has a ** lesser numeric value than the corresponding character in the string specified ** by c-addr2 u2 and one (1) otherwise. **************************************************************************/ static void compareString(FICL_VM *pVM) { char *cp1, *cp2; FICL_UNS u1, u2, uMin; int n = 0; vmCheckStack(pVM, 4, 1); u2 = stackPopUNS(pVM->pStack); cp2 = (char *)stackPopPtr(pVM->pStack); u1 = stackPopUNS(pVM->pStack); cp1 = (char *)stackPopPtr(pVM->pStack); uMin = (u1 < u2)? u1 : u2; for ( ; (uMin > 0) && (n == 0); uMin--) { n = (int)(*cp1++ - *cp2++); } if (n == 0) n = (int)(u1 - u2); if (n < 0) n = -1; else if (n > 0) n = 1; stackPushINT(pVM->pStack, n); return; } /************************************************************************** s o u r c e - i d ** CORE EXT, FILE ( -- 0 | -1 | fileid ) ** Identifies the input source as follows: ** ** SOURCE-ID Input source ** --------- ------------ ** fileid Text file fileid ** -1 String (via EVALUATE) ** 0 User input device **************************************************************************/ static void sourceid(FICL_VM *pVM) { stackPushINT(pVM->pStack, pVM->sourceID.i); return; } /************************************************************************** r e f i l l ** CORE EXT ( -- flag ) ** Attempt to fill the input buffer from the input source, returning a true ** flag if successful. ** When the input source is the user input device, attempt to receive input ** into the terminal input buffer. If successful, make the result the input ** buffer, set >IN to zero, and return true. Receipt of a line containing no ** characters is considered successful. If there is no input available from ** the current input source, return false. ** When the input source is a string from EVALUATE, return false and ** perform no other action. **************************************************************************/ static void refill(FICL_VM *pVM) { static int tries = 0; FICL_INT ret = (pVM->sourceID.i == -1) ? FICL_FALSE : FICL_TRUE; if (ret && tries == 0) { tries = 1; vmThrow(pVM, VM_RESTART); } if (tries == 1) tries = 0; stackPushINT(pVM->pStack, ret); return; } /************************************************************************** f o r g e t ** TOOLS EXT ( "name" -- ) ** Skip leading space delimiters. Parse name delimited by a space. ** Find name, then delete name from the dictionary along with all ** words added to the dictionary after name. An ambiguous ** condition exists if name cannot be found. ** ** If the Search-Order word set is present, FORGET searches the ** compilation word list. An ambiguous condition exists if the ** compilation word list is deleted. **************************************************************************/ static void forgetWid(FICL_VM *pVM) { FICL_DICT *pDict = ficlGetDict(); FICL_HASH *pHash; pHash = (FICL_HASH *)stackPopPtr(pVM->pStack); hashForget(pHash, pDict->here); return; } static void forget(FICL_VM *pVM) { void *where; FICL_DICT *pDict = ficlGetDict(); FICL_HASH *pHash = pDict->pCompile; tick(pVM); where = ((FICL_WORD *)stackPopPtr(pVM->pStack))->name; hashForget(pHash, where); pDict->here = PTRtoCELL where; return; } /************************* freebsd added I/O words **************************/ /* fopen - open a file and return new fd on stack. * * fopen ( count ptr -- fd ) */ static void pfopen(FICL_VM *pVM) { int fd; char *p; #if FICL_ROBUST > 1 vmCheckStack(pVM, 2, 1); #endif (void)stackPopINT(pVM->pStack); /* don't need count value */ p = stackPopPtr(pVM->pStack); fd = open(p, O_RDONLY); stackPushINT(pVM->pStack, fd); return; } /* fclose - close a file who's fd is on stack. * * fclose ( fd -- ) */ static void pfclose(FICL_VM *pVM) { int fd; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif fd = stackPopINT(pVM->pStack); /* get fd */ if (fd != -1) close(fd); return; } /* fread - read file contents * * fread ( fd buf nbytes -- nread ) */ static void pfread(FICL_VM *pVM) { int fd, len; char *buf; #if FICL_ROBUST > 1 vmCheckStack(pVM, 3, 1); #endif len = stackPopINT(pVM->pStack); /* get number of bytes to read */ buf = stackPopPtr(pVM->pStack); /* get buffer */ fd = stackPopINT(pVM->pStack); /* get fd */ if (len > 0 && buf && fd != -1) stackPushINT(pVM->pStack, read(fd, buf, len)); else stackPushINT(pVM->pStack, -1); return; } /* fload - interpret file contents * * fload ( fd -- ) */ static void pfload(FICL_VM *pVM) { int fd; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif fd = stackPopINT(pVM->pStack); /* get fd */ if (fd != -1) ficlExecFD(pVM, fd); return; } /* key - get a character from stdin * * key ( -- char ) */ static void key(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 0, 1); #endif stackPushINT(pVM->pStack, getchar()); return; } /* key? - check for a character from stdin (FACILITY) * * key? ( -- flag ) */ static void keyQuestion(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 0, 1); #endif #ifdef TESTMAIN /* XXX Since we don't fiddle with termios, let it always succeed... */ stackPushINT(pVM->pStack, FICL_TRUE); #else /* But here do the right thing. */ stackPushINT(pVM->pStack, ischar()? FICL_TRUE : FICL_FALSE); #endif return; } /* seconds - gives number of seconds since beginning of time * * beginning of time is defined as: * * BTX - number of seconds since midnight * FreeBSD - number of seconds since Jan 1 1970 * * seconds ( -- u ) */ static void pseconds(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM,0,1); #endif stackPushUNS(pVM->pStack, (FICL_UNS) time(NULL)); return; } /* ms - wait at least that many milliseconds (FACILITY) * * ms ( u -- ) * */ static void ms(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM,1,0); #endif #ifdef TESTMAIN usleep(stackPopUNS(pVM->pStack)*1000); #else delay(stackPopUNS(pVM->pStack)*1000); #endif return; } /* fkey - get a character from a file * * fkey ( file -- char ) */ static void fkey(FICL_VM *pVM) { int i, fd; char ch; #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif fd = stackPopINT(pVM->pStack); i = read(fd, &ch, 1); stackPushINT(pVM->pStack, i > 0 ? ch : -1); return; } /************************************************************************** freebsd exception handling words ** Catch, from ANS Forth standard. Installs a safety net, then EXECUTE ** the word in ToS. If an exception happens, restore the state to what ** it was before, and pushes the exception value on the stack. If not, ** push zero. ** ** Notice that Catch implements an inner interpreter. This is ugly, ** but given how ficl works, it cannot be helped. The problem is that ** colon definitions will be executed *after* the function returns, ** while "code" definitions will be executed immediately. I considered ** other solutions to this problem, but all of them shared the same ** basic problem (with added disadvantages): if ficl ever changes it's ** inner thread modus operandi, one would have to fix this word. ** ** More comments can be found throughout catch's code. ** ** Daniel C. Sobral Jan 09/1999 ** sadler may 2000 -- revised to follow ficl.c:ficlExecXT. **************************************************************************/ static void ficlCatch(FICL_VM *pVM) { static FICL_WORD *pQuit = NULL; int except; jmp_buf vmState; FICL_VM VM; FICL_STACK pStack; FICL_STACK rStack; FICL_WORD *pFW; if (!pQuit) pQuit = ficlLookup("exit-inner"); assert(pVM); assert(pQuit); /* ** Get xt. ** We need this *before* we save the stack pointer, or ** we'll have to pop one element out of the stack after ** an exception. I prefer to get done with it up front. :-) */ #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 0); #endif pFW = stackPopPtr(pVM->pStack); /* ** Save vm's state -- a catch will not back out environmental ** changes. ** ** We are *not* saving dictionary state, since it is ** global instead of per vm, and we are not saving ** stack contents, since we are not required to (and, ** thus, it would be useless). We save pVM, and pVM ** "stacks" (a structure containing general information ** about it, including the current stack pointer). */ memcpy((void*)&VM, (void*)pVM, sizeof(FICL_VM)); memcpy((void*)&pStack, (void*)pVM->pStack, sizeof(FICL_STACK)); memcpy((void*)&rStack, (void*)pVM->rStack, sizeof(FICL_STACK)); /* ** Give pVM a jmp_buf */ pVM->pState = &vmState; /* ** Safety net */ except = setjmp(vmState); switch (except) { /* ** Setup condition - push poison pill so that the VM throws ** VM_INNEREXIT if the XT terminates normally, then execute ** the XT */ case 0: vmPushIP(pVM, &pQuit); /* Open mouth, insert emetic */ vmExecute(pVM, pFW); vmInnerLoop(pVM); break; /* ** Normal exit from XT - lose the poison pill, ** restore old setjmp vector and push a zero. */ case VM_INNEREXIT: vmPopIP(pVM); /* Gack - hurl poison pill */ pVM->pState = VM.pState; /* Restore just the setjmp vector */ stackPushINT(pVM->pStack, 0); /* Push 0 -- everything is ok */ break; /* ** Some other exception got thrown - restore pre-existing VM state ** and push the exception code */ default: /* Restore vm's state */ memcpy((void*)pVM, (void*)&VM, sizeof(FICL_VM)); memcpy((void*)pVM->pStack, (void*)&pStack, sizeof(FICL_STACK)); memcpy((void*)pVM->rStack, (void*)&rStack, sizeof(FICL_STACK)); stackPushINT(pVM->pStack, except);/* Push error */ break; } } /* * Throw -- From ANS Forth standard. * * Throw takes the ToS and, if that's different from zero, * returns to the last executed catch context. Further throws will * unstack previously executed "catches", in LIFO mode. * * Daniel C. Sobral Jan 09/1999 */ static void ficlThrow(FICL_VM *pVM) { int except; except = stackPopINT(pVM->pStack); if (except) vmThrow(pVM, except); } static void ansAllocate(FICL_VM *pVM) { size_t size; void *p; size = stackPopINT(pVM->pStack); p = ficlMalloc(size); stackPushPtr(pVM->pStack, p); if (p) stackPushINT(pVM->pStack, 0); else stackPushINT(pVM->pStack, 1); } static void ansFree(FICL_VM *pVM) { void *p; p = stackPopPtr(pVM->pStack); ficlFree(p); stackPushINT(pVM->pStack, 0); } static void ansResize(FICL_VM *pVM) { size_t size; void *new, *old; size = stackPopINT(pVM->pStack); old = stackPopPtr(pVM->pStack); new = ficlRealloc(old, size); if (new) { stackPushPtr(pVM->pStack, new); stackPushINT(pVM->pStack, 0); } else { stackPushPtr(pVM->pStack, old); stackPushINT(pVM->pStack, 1); } } /* ** Retrieves free space remaining on the dictionary */ static void freeHeap(FICL_VM *pVM) { stackPushINT(pVM->pStack, dictCellsAvail(ficlGetDict())); } /* ** exit-inner ** Signals execXT that an inner loop has completed */ static void ficlExitInner(FICL_VM *pVM) { vmThrow(pVM, VM_INNEREXIT); } /************************************************************************** d n e g a t e ** DOUBLE ( d1 -- d2 ) ** d2 is the negation of d1. **************************************************************************/ static void dnegate(FICL_VM *pVM) { DPINT i = i64Pop(pVM->pStack); i = m64Negate(i); i64Push(pVM->pStack, i); return; } /******************* Increase dictionary size on-demand ******************/ static void ficlDictThreshold(FICL_VM *pVM) { stackPushPtr(pVM->pStack, &dictThreshold); } static void ficlDictIncrease(FICL_VM *pVM) { stackPushPtr(pVM->pStack, &dictIncrease); } /************************* freebsd added trace ***************************/ #ifdef FICL_TRACE static void ficlTrace(FICL_VM *pVM) { #if FICL_ROBUST > 1 vmCheckStack(pVM, 1, 1); #endif ficl_trace = stackPopINT(pVM->pStack); } #endif /************************************************************************** f i c l C o m p i l e C o r e ** Builds the primitive wordset and the environment-query namespace. **************************************************************************/ void ficlCompileCore(FICL_DICT *dp) { assert (dp); /* ** CORE word set ** see softcore.c for definitions of: abs bl space spaces abort" */ pStore = dictAppendWord(dp, "!", store, FW_DEFAULT); dictAppendWord(dp, "#", numberSign, FW_DEFAULT); dictAppendWord(dp, "#>", numberSignGreater,FW_DEFAULT); dictAppendWord(dp, "#s", numberSignS, FW_DEFAULT); dictAppendWord(dp, "\'", tick, FW_DEFAULT); dictAppendWord(dp, "(", commentHang, FW_IMMEDIATE); dictAppendWord(dp, "*", mul, FW_DEFAULT); dictAppendWord(dp, "*/", mulDiv, FW_DEFAULT); dictAppendWord(dp, "*/mod", mulDivRem, FW_DEFAULT); dictAppendWord(dp, "+", add, FW_DEFAULT); dictAppendWord(dp, "+!", plusStore, FW_DEFAULT); dictAppendWord(dp, "+loop", plusLoopCoIm, FW_COMPIMMED); pComma = dictAppendWord(dp, ",", comma, FW_DEFAULT); dictAppendWord(dp, "-", sub, FW_DEFAULT); dictAppendWord(dp, ".", displayCell, FW_DEFAULT); dictAppendWord(dp, ".#", displayCellNoPad, FW_DEFAULT); dictAppendWord(dp, ".\"", dotQuoteCoIm, FW_COMPIMMED); dictAppendWord(dp, "/", ficlDiv, FW_DEFAULT); dictAppendWord(dp, "/mod", slashMod, FW_DEFAULT); dictAppendWord(dp, "0<", zeroLess, FW_DEFAULT); dictAppendWord(dp, "0=", zeroEquals, FW_DEFAULT); dictAppendWord(dp, "0>", zeroGreater, FW_DEFAULT); dictAppendWord(dp, "1+", onePlus, FW_DEFAULT); dictAppendWord(dp, "1-", oneMinus, FW_DEFAULT); dictAppendWord(dp, "2!", twoStore, FW_DEFAULT); dictAppendWord(dp, "2*", twoMul, FW_DEFAULT); dictAppendWord(dp, "2/", twoDiv, FW_DEFAULT); dictAppendWord(dp, "2@", twoFetch, FW_DEFAULT); dictAppendWord(dp, "2drop", twoDrop, FW_DEFAULT); dictAppendWord(dp, "2dup", twoDup, FW_DEFAULT); dictAppendWord(dp, "2over", twoOver, FW_DEFAULT); dictAppendWord(dp, "2swap", twoSwap, FW_DEFAULT); dictAppendWord(dp, ":", colon, FW_DEFAULT); dictAppendWord(dp, ";", semicolonCoIm, FW_COMPIMMED); dictAppendWord(dp, "<", isLess, FW_DEFAULT); dictAppendWord(dp, "<#", lessNumberSign, FW_DEFAULT); dictAppendWord(dp, "=", isEqual, FW_DEFAULT); dictAppendWord(dp, ">", isGreater, FW_DEFAULT); dictAppendWord(dp, ">body", toBody, FW_DEFAULT); dictAppendWord(dp, ">in", toIn, FW_DEFAULT); dictAppendWord(dp, ">number", toNumber, FW_DEFAULT); dictAppendWord(dp, ">r", toRStack, FW_DEFAULT); dictAppendWord(dp, "?dup", questionDup, FW_DEFAULT); dictAppendWord(dp, "@", fetch, FW_DEFAULT); dictAppendWord(dp, "abort", ficlAbort, FW_DEFAULT); dictAppendWord(dp, "accept", accept, FW_DEFAULT); dictAppendWord(dp, "align", align, FW_DEFAULT); dictAppendWord(dp, "aligned", aligned, FW_DEFAULT); dictAppendWord(dp, "allot", allot, FW_DEFAULT); dictAppendWord(dp, "and", bitwiseAnd, FW_DEFAULT); dictAppendWord(dp, "base", base, FW_DEFAULT); dictAppendWord(dp, "begin", beginCoIm, FW_COMPIMMED); dictAppendWord(dp, "c!", cStore, FW_DEFAULT); dictAppendWord(dp, "c,", cComma, FW_DEFAULT); dictAppendWord(dp, "c@", cFetch, FW_DEFAULT); dictAppendWord(dp, "cell+", cellPlus, FW_DEFAULT); dictAppendWord(dp, "cells", cells, FW_DEFAULT); dictAppendWord(dp, "char", ficlChar, FW_DEFAULT); dictAppendWord(dp, "char+", charPlus, FW_DEFAULT); dictAppendWord(dp, "chars", ficlChars, FW_DEFAULT); dictAppendWord(dp, "constant", constant, FW_DEFAULT); dictAppendWord(dp, "count", count, FW_DEFAULT); dictAppendWord(dp, "cr", cr, FW_DEFAULT); dictAppendWord(dp, "create", create, FW_DEFAULT); dictAppendWord(dp, "decimal", decimal, FW_DEFAULT); dictAppendWord(dp, "depth", depth, FW_DEFAULT); dictAppendWord(dp, "do", doCoIm, FW_COMPIMMED); dictAppendWord(dp, "does>", doesCoIm, FW_COMPIMMED); dictAppendWord(dp, "drop", drop, FW_DEFAULT); dictAppendWord(dp, "dup", dup, FW_DEFAULT); dictAppendWord(dp, "else", elseCoIm, FW_COMPIMMED); dictAppendWord(dp, "emit", emit, FW_DEFAULT); dictAppendWord(dp, "environment?", environmentQ,FW_DEFAULT); dictAppendWord(dp, "evaluate", evaluate, FW_DEFAULT); dictAppendWord(dp, "execute", execute, FW_DEFAULT); dictAppendWord(dp, "exit", exitCoIm, FW_COMPIMMED); dictAppendWord(dp, "fill", fill, FW_DEFAULT); dictAppendWord(dp, "find", find, FW_DEFAULT); dictAppendWord(dp, "fm/mod", fmSlashMod, FW_DEFAULT); dictAppendWord(dp, "here", here, FW_DEFAULT); dictAppendWord(dp, "hex", hex, FW_DEFAULT); dictAppendWord(dp, "hold", hold, FW_DEFAULT); dictAppendWord(dp, "i", loopICo, FW_COMPILE); dictAppendWord(dp, "if", ifCoIm, FW_COMPIMMED); dictAppendWord(dp, "immediate", immediate, FW_DEFAULT); dictAppendWord(dp, "invert", bitwiseNot, FW_DEFAULT); dictAppendWord(dp, "j", loopJCo, FW_COMPILE); dictAppendWord(dp, "k", loopKCo, FW_COMPILE); dictAppendWord(dp, "leave", leaveCo, FW_COMPILE); dictAppendWord(dp, "literal", literalIm, FW_IMMEDIATE); dictAppendWord(dp, "loop", loopCoIm, FW_COMPIMMED); dictAppendWord(dp, "lshift", lshift, FW_DEFAULT); dictAppendWord(dp, "m*", mStar, FW_DEFAULT); dictAppendWord(dp, "max", ficlMax, FW_DEFAULT); dictAppendWord(dp, "min", ficlMin, FW_DEFAULT); dictAppendWord(dp, "mod", ficlMod, FW_DEFAULT); dictAppendWord(dp, "move", move, FW_DEFAULT); dictAppendWord(dp, "negate", negate, FW_DEFAULT); dictAppendWord(dp, "or", bitwiseOr, FW_DEFAULT); dictAppendWord(dp, "over", over, FW_DEFAULT); dictAppendWord(dp, "postpone", postponeCoIm, FW_COMPIMMED); dictAppendWord(dp, "quit", quit, FW_DEFAULT); dictAppendWord(dp, "r>", fromRStack, FW_DEFAULT); dictAppendWord(dp, "r@", fetchRStack, FW_DEFAULT); dictAppendWord(dp, "recurse", recurseCoIm, FW_COMPIMMED); dictAppendWord(dp, "repeat", repeatCoIm, FW_COMPIMMED); dictAppendWord(dp, "rot", rot, FW_DEFAULT); dictAppendWord(dp, "rshift", rshift, FW_DEFAULT); dictAppendWord(dp, "s\"", stringQuoteIm, FW_IMMEDIATE); dictAppendWord(dp, "s>d", sToD, FW_DEFAULT); dictAppendWord(dp, "sign", sign, FW_DEFAULT); dictAppendWord(dp, "sm/rem", smSlashRem, FW_DEFAULT); dictAppendWord(dp, "source", source, FW_DEFAULT); dictAppendWord(dp, "state", state, FW_DEFAULT); dictAppendWord(dp, "swap", swap, FW_DEFAULT); dictAppendWord(dp, "then", endifCoIm, FW_COMPIMMED); pType = dictAppendWord(dp, "type", type, FW_DEFAULT); dictAppendWord(dp, "u.", uDot, FW_DEFAULT); dictAppendWord(dp, "u<", uIsLess, FW_DEFAULT); dictAppendWord(dp, "um*", umStar, FW_DEFAULT); dictAppendWord(dp, "um/mod", umSlashMod, FW_DEFAULT); dictAppendWord(dp, "unloop", unloopCo, FW_COMPILE); dictAppendWord(dp, "until", untilCoIm, FW_COMPIMMED); dictAppendWord(dp, "variable", variable, FW_DEFAULT); dictAppendWord(dp, "while", whileCoIm, FW_COMPIMMED); dictAppendWord(dp, "word", ficlWord, FW_DEFAULT); dictAppendWord(dp, "xor", bitwiseXor, FW_DEFAULT); dictAppendWord(dp, "[", lbracketCoIm, FW_COMPIMMED); dictAppendWord(dp, "[\']", bracketTickCoIm,FW_COMPIMMED); dictAppendWord(dp, "[char]", charCoIm, FW_COMPIMMED); dictAppendWord(dp, "]", rbracket, FW_DEFAULT); /* ** CORE EXT word set... ** see softcore.c for other definitions */ dictAppendWord(dp, ".(", dotParen, FW_DEFAULT); dictAppendWord(dp, ":noname", colonNoName, FW_DEFAULT); dictAppendWord(dp, "?do", qDoCoIm, FW_COMPIMMED); dictAppendWord(dp, "again", againCoIm, FW_COMPIMMED); dictAppendWord(dp, "parse", parse, FW_DEFAULT); dictAppendWord(dp, "pick", pick, FW_DEFAULT); dictAppendWord(dp, "roll", roll, FW_DEFAULT); dictAppendWord(dp, "refill", refill, FW_DEFAULT); dictAppendWord(dp, "source-id", sourceid, FW_DEFAULT); dictAppendWord(dp, "to", toValue, FW_IMMEDIATE); dictAppendWord(dp, "value", constant, FW_DEFAULT); dictAppendWord(dp, "\\", commentLine, FW_IMMEDIATE); /* FreeBSD extension words */ dictAppendWord(dp, "fopen", pfopen, FW_DEFAULT); dictAppendWord(dp, "fclose", pfclose, FW_DEFAULT); dictAppendWord(dp, "fread", pfread, FW_DEFAULT); dictAppendWord(dp, "fload", pfload, FW_DEFAULT); dictAppendWord(dp, "fkey", fkey, FW_DEFAULT); dictAppendWord(dp, "key", key, FW_DEFAULT); dictAppendWord(dp, "key?", keyQuestion, FW_DEFAULT); dictAppendWord(dp, "ms", ms, FW_DEFAULT); dictAppendWord(dp, "seconds", pseconds, FW_DEFAULT); dictAppendWord(dp, "heap?", freeHeap, FW_DEFAULT); dictAppendWord(dp, "dictthreshold", ficlDictThreshold, FW_DEFAULT); dictAppendWord(dp, "dictincrease", ficlDictIncrease, FW_DEFAULT); #ifdef FICL_TRACE dictAppendWord(dp, "trace!", ficlTrace, FW_DEFAULT); #endif #ifndef TESTMAIN #ifdef __i386__ dictAppendWord(dp, "outb", ficlOutb, FW_DEFAULT); dictAppendWord(dp, "inb", ficlInb, FW_DEFAULT); #endif dictAppendWord(dp, "setenv", ficlSetenv, FW_DEFAULT); dictAppendWord(dp, "setenv?", ficlSetenvq, FW_DEFAULT); dictAppendWord(dp, "getenv", ficlGetenv, FW_DEFAULT); dictAppendWord(dp, "unsetenv", ficlUnsetenv, FW_DEFAULT); dictAppendWord(dp, "copyin", ficlCopyin, FW_DEFAULT); dictAppendWord(dp, "copyout", ficlCopyout, FW_DEFAULT); #endif #if defined(__i386__) ficlSetEnv("arch-i386", FICL_TRUE); ficlSetEnv("arch-alpha", FICL_FALSE); #elif defined(__alpha__) ficlSetEnv("arch-i386", FICL_FALSE); ficlSetEnv("arch-alpha", FICL_TRUE); #endif /* ** Set CORE environment query values */ ficlSetEnv("/counted-string", FICL_STRING_MAX); ficlSetEnv("/hold", nPAD); ficlSetEnv("/pad", nPAD); ficlSetEnv("address-unit-bits", 8); ficlSetEnv("core", FICL_TRUE); ficlSetEnv("core-ext", FICL_FALSE); ficlSetEnv("floored", FICL_FALSE); ficlSetEnv("max-char", UCHAR_MAX); ficlSetEnvD("max-d", 0x7fffffff, 0xffffffff ); ficlSetEnv("max-n", 0x7fffffff); ficlSetEnv("max-u", 0xffffffff); ficlSetEnvD("max-ud", 0xffffffff, 0xffffffff); ficlSetEnv("return-stack-cells",FICL_DEFAULT_STACK); ficlSetEnv("stack-cells", FICL_DEFAULT_STACK); /* ** DOUBLE word set (partial) */ dictAppendWord(dp, "2constant", twoConstant, FW_IMMEDIATE); dictAppendWord(dp, "2literal", twoLiteralIm, FW_IMMEDIATE); dictAppendWord(dp, "dnegate", dnegate, FW_DEFAULT); /* ** EXCEPTION word set */ dictAppendWord(dp, "catch", ficlCatch, FW_DEFAULT); dictAppendWord(dp, "throw", ficlThrow, FW_DEFAULT); ficlSetEnv("exception", FICL_TRUE); ficlSetEnv("exception-ext", FICL_TRUE); /* ** LOCAL and LOCAL EXT ** see softcore.c for implementation of locals| */ #if FICL_WANT_LOCALS pLinkParen = dictAppendWord(dp, "(link)", linkParen, FW_COMPILE); pUnLinkParen = dictAppendWord(dp, "(unlink)", unlinkParen, FW_COMPILE); dictAppendWord(dp, "doLocal", doLocalIm, FW_COMPIMMED); pGetLocalParen = dictAppendWord(dp, "(@local)", getLocalParen, FW_COMPILE); pToLocalParen = dictAppendWord(dp, "(toLocal)", toLocalParen, FW_COMPILE); pGetLocal0 = dictAppendWord(dp, "(@local0)", getLocal0, FW_COMPILE); pToLocal0 = dictAppendWord(dp, "(toLocal0)",toLocal0, FW_COMPILE); pGetLocal1 = dictAppendWord(dp, "(@local1)", getLocal1, FW_COMPILE); pToLocal1 = dictAppendWord(dp, "(toLocal1)",toLocal1, FW_COMPILE); dictAppendWord(dp, "(local)", localParen, FW_COMPILE); pGet2LocalParen = dictAppendWord(dp, "(@2local)", get2LocalParen, FW_COMPILE); pTo2LocalParen = dictAppendWord(dp, "(to2Local)",to2LocalParen, FW_COMPILE); dictAppendWord(dp, "(2local)", twoLocalParen, FW_COMPILE); ficlSetEnv("locals", FICL_TRUE); ficlSetEnv("locals-ext", FICL_TRUE); ficlSetEnv("#locals", FICL_MAX_LOCALS); #endif /* ** Optional MEMORY-ALLOC word set */ dictAppendWord(dp, "allocate", ansAllocate, FW_DEFAULT); dictAppendWord(dp, "free", ansFree, FW_DEFAULT); dictAppendWord(dp, "resize", ansResize, FW_DEFAULT); ficlSetEnv("memory-alloc", FICL_TRUE); ficlSetEnv("memory-alloc-ext", FICL_FALSE); /* ** optional SEARCH-ORDER word set */ dictAppendWord(dp, ">search", searchPush, FW_DEFAULT); dictAppendWord(dp, "search>", searchPop, FW_DEFAULT); dictAppendWord(dp, "definitions", definitions, FW_DEFAULT); dictAppendWord(dp, "forth-wordlist", forthWordlist, FW_DEFAULT); dictAppendWord(dp, "get-current", getCurrent, FW_DEFAULT); dictAppendWord(dp, "get-order", getOrder, FW_DEFAULT); dictAppendWord(dp, "search-wordlist", searchWordlist, FW_DEFAULT); dictAppendWord(dp, "set-current", setCurrent, FW_DEFAULT); dictAppendWord(dp, "set-order", setOrder, FW_DEFAULT); dictAppendWord(dp, "ficl-wordlist", wordlist, FW_DEFAULT); /* ** Set SEARCH environment query values */ ficlSetEnv("search-order", FICL_TRUE); ficlSetEnv("search-order-ext", FICL_TRUE); ficlSetEnv("wordlists", FICL_DEFAULT_VOCS); /* ** TOOLS and TOOLS EXT */ dictAppendWord(dp, ".s", displayStack, FW_DEFAULT); dictAppendWord(dp, "bye", bye, FW_DEFAULT); dictAppendWord(dp, "forget", forget, FW_DEFAULT); dictAppendWord(dp, "see", see, FW_DEFAULT); dictAppendWord(dp, "words", listWords, FW_DEFAULT); /* ** Set TOOLS environment query values */ ficlSetEnv("tools", FICL_TRUE); ficlSetEnv("tools-ext", FICL_FALSE); /* ** Ficl extras */ dictAppendWord(dp, ".env", listEnv, FW_DEFAULT); dictAppendWord(dp, ".ver", ficlVersion, FW_DEFAULT); dictAppendWord(dp, "-roll", minusRoll, FW_DEFAULT); dictAppendWord(dp, ">name", toName, FW_DEFAULT); dictAppendWord(dp, "body>", fromBody, FW_DEFAULT); dictAppendWord(dp, "compare", compareString, FW_DEFAULT); /* STRING */ dictAppendWord(dp, "compile-only", compileOnly, FW_DEFAULT); dictAppendWord(dp, "endif", endifCoIm, FW_COMPIMMED); dictAppendWord(dp, "forget-wid",forgetWid, FW_DEFAULT); dictAppendWord(dp, "hash", hash, FW_DEFAULT); dictAppendWord(dp, "number?", ficlIsNum, FW_DEFAULT); dictAppendWord(dp, "parse-word",parseNoCopy, FW_DEFAULT); dictAppendWord(dp, "sliteral", sLiteralCoIm, FW_COMPIMMED); /* STRING */ dictAppendWord(dp, "wid-set-super", setParentWid, FW_DEFAULT); dictAppendWord(dp, "i@", iFetch, FW_DEFAULT); dictAppendWord(dp, "i!", iStore, FW_DEFAULT); dictAppendWord(dp, "w@", wFetch, FW_DEFAULT); dictAppendWord(dp, "w!", wStore, FW_DEFAULT); dictAppendWord(dp, "x.", hexDot, FW_DEFAULT); #if FICL_WANT_USER dictAppendWord(dp, "(user)", userParen, FW_DEFAULT); dictAppendWord(dp, "user", userVariable, FW_DEFAULT); #endif /* ** internal support words */ pExitParen = dictAppendWord(dp, "(exit)", exitParen, FW_COMPILE); pSemiParen = dictAppendWord(dp, "(;)", semiParen, FW_COMPILE); pLitParen = dictAppendWord(dp, "(literal)", literalParen, FW_COMPILE); pTwoLitParen = dictAppendWord(dp, "(2literal)",twoLitParen, FW_COMPILE); pStringLit = dictAppendWord(dp, "(.\")", stringLit, FW_COMPILE); pIfParen = dictAppendWord(dp, "(if)", ifParen, FW_COMPILE); pBranchParen = dictAppendWord(dp, "(branch)", branchParen, FW_COMPILE); pDoParen = dictAppendWord(dp, "(do)", doParen, FW_COMPILE); pDoesParen = dictAppendWord(dp, "(does>)", doesParen, FW_COMPILE); pQDoParen = dictAppendWord(dp, "(?do)", qDoParen, FW_COMPILE); pLoopParen = dictAppendWord(dp, "(loop)", loopParen, FW_COMPILE); pPLoopParen = dictAppendWord(dp, "(+loop)", plusLoopParen, FW_COMPILE); pInterpret = dictAppendWord(dp, "interpret", interpret, FW_DEFAULT); dictAppendWord(dp, "(variable)",variableParen, FW_COMPILE); dictAppendWord(dp, "(constant)",constantParen, FW_COMPILE); dictAppendWord(dp, "exit-inner",ficlExitInner, FW_DEFAULT); assert(dictCellsAvail(dp) > 0); return; }