/*- * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2007 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 * $FreeBSD$ */ #include "opt_ddb.h" #include "opt_ipsec.h" #include "opt_inet6.h" #include "opt_mac.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #endif /* INET6 */ #ifdef IPSEC #include #include #endif /* IPSEC */ #ifdef FAST_IPSEC #if defined(IPSEC) || defined(IPSEC_ESP) #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!" #endif #include #include #endif /* FAST_IPSEC */ #include /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */ int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ /* * Reserved ports accessible only to root. There are significant * security considerations that must be accounted for when changing these, * but the security benefits can be great. Please be careful. */ int ipport_reservedhigh = IPPORT_RESERVED - 1; /* 1023 */ int ipport_reservedlow = 0; /* Variables dealing with random ephemeral port allocation. */ int ipport_randomized = 1; /* user controlled via sysctl */ int ipport_randomcps = 10; /* user controlled via sysctl */ int ipport_randomtime = 45; /* user controlled via sysctl */ int ipport_stoprandom = 0; /* toggled by ipport_tick */ int ipport_tcpallocs; int ipport_tcplastcount; #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } static int sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) { int error; error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); if (error == 0) { RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); } return (error); } #undef RANGECHK SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW, &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW, &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW, &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW, &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW, &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW, &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, &ipport_randomized, 0, "Enable random port allocation"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW, &ipport_randomcps, 0, "Maximum number of random port " "allocations before switching to a sequental one"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW, &ipport_randomtime, 0, "Minimum time to keep sequental port " "allocation before switching to a random one"); /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called with * the pcbinfo lock held, and often, the inpcb lock held, as these utility * functions often modify hash chains or addresses in pcbs. */ /* * Allocate a PCB and associate it with the socket. * On success return with the PCB locked. */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) { struct inpcb *inp; int error; INP_INFO_WLOCK_ASSERT(pcbinfo); error = 0; inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); if (inp == NULL) return (ENOBUFS); bzero(inp, inp_zero_size); inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; #ifdef MAC error = mac_init_inpcb(inp, M_NOWAIT); if (error != 0) goto out; SOCK_LOCK(so); mac_create_inpcb_from_socket(so, inp); SOCK_UNLOCK(so); #endif #if defined(IPSEC) || defined(FAST_IPSEC) #ifdef FAST_IPSEC error = ipsec_init_policy(so, &inp->inp_sp); #else error = ipsec_init_pcbpolicy(so, &inp->inp_sp); #endif if (error != 0) goto out; #endif /*IPSEC*/ #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { inp->inp_vflag |= INP_IPV6PROTO; if (ip6_v6only) inp->inp_flags |= IN6P_IPV6_V6ONLY; } #endif LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list); pcbinfo->ipi_count++; so->so_pcb = (caddr_t)inp; #ifdef INET6 if (ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; #endif INP_LOCK(inp); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; #if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC) out: if (error != 0) uma_zfree(pcbinfo->ipi_zone, inp); #endif return (error); } int in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { int anonport, error; INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); INP_LOCK_ASSERT(inp); if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); anonport = inp->inp_lport == 0 && (nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0); error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, &inp->inp_lport, cred); if (error) return (error); if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } /* * Set up a bind operation on a PCB, performing port allocation * as required, but do not actually modify the PCB. Callers can * either complete the bind by setting inp_laddr/inp_lport and * calling in_pcbinshash(), or they can just use the resulting * port and address to authorise the sending of a once-off packet. * * On error, the values of *laddrp and *lportp are not changed. */ int in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, struct ucred *cred) { struct socket *so = inp->inp_socket; unsigned short *lastport; struct sockaddr_in *sin; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct in_addr laddr; u_short lport = 0; int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); int error, prison = 0; int dorandom; INP_INFO_WLOCK_ASSERT(pcbinfo); INP_LOCK_ASSERT(inp); if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; if (nam != NULL && laddr.s_addr != INADDR_ANY) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) wild = INPLOOKUP_WILDCARD; if (nam) { sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sin)) return (EINVAL); #ifdef notdef /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); #endif if (sin->sin_addr.s_addr != INADDR_ANY) if (prison_ip(cred, 0, &sin->sin_addr.s_addr)) return(EINVAL); if (sin->sin_port != *lportp) { /* Don't allow the port to change. */ if (*lportp != 0) return (EINVAL); lport = sin->sin_port; } /* NB: lport is left as 0 if the port isn't being changed. */ if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & SO_REUSEADDR) reuseport = SO_REUSEADDR|SO_REUSEPORT; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ bzero(&sin->sin_zero, sizeof(sin->sin_zero)); if (ifa_ifwithaddr((struct sockaddr *)sin) == 0) return (EADDRNOTAVAIL); } laddr = sin->sin_addr; if (lport) { struct inpcb *t; struct tcptw *tw; /* GROSS */ if (ntohs(lport) <= ipport_reservedhigh && ntohs(lport) >= ipport_reservedlow && priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, SUSER_ALLOWJAIL)) return (EACCES); if (jailed(cred)) prison = 1; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && suser_cred(so->so_cred, SUSER_ALLOWJAIL) != 0) { t = in_pcblookup_local(inp->inp_pcbinfo, sin->sin_addr, lport, prison ? 0 : INPLOOKUP_WILDCARD); /* * XXX * This entire block sorely needs a rewrite. */ if (t && ((t->inp_vflag & INP_TIMEWAIT) == 0) && (so->so_type != SOCK_STREAM || ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (t->inp_socket->so_options & SO_REUSEPORT) == 0) && (so->so_cred->cr_uid != t->inp_socket->so_cred->cr_uid)) return (EADDRINUSE); } if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr)) return (EADDRNOTAVAIL); t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, prison ? 0 : wild); if (t && (t->inp_vflag & INP_TIMEWAIT)) { /* * XXXRW: If an incpb has had its timewait * state recycled, we treat the address as * being in use (for now). This is better * than a panic, but not desirable. */ tw = intotw(inp); if (tw == NULL || (reuseport & tw->tw_so_options) == 0) return (EADDRINUSE); } else if (t && (reuseport & t->inp_socket->so_options) == 0) { #ifdef INET6 if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || INP_SOCKAF(so) == INP_SOCKAF(t->inp_socket)) #endif return (EADDRINUSE); } } } if (*lportp != 0) lport = *lportp; if (lport == 0) { u_short first, last; int count; if (laddr.s_addr != INADDR_ANY) if (prison_ip(cred, 0, &laddr.s_addr)) return (EINVAL); if (inp->inp_flags & INP_HIGHPORT) { first = ipport_hifirstauto; /* sysctl */ last = ipport_hilastauto; lastport = &pcbinfo->lasthi; } else if (inp->inp_flags & INP_LOWPORT) { error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, SUSER_ALLOWJAIL); if (error) return error; first = ipport_lowfirstauto; /* 1023 */ last = ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->lastlow; } else { first = ipport_firstauto; /* sysctl */ last = ipport_lastauto; lastport = &pcbinfo->lastport; } /* * For UDP, use random port allocation as long as the user * allows it. For TCP (and as of yet unknown) connections, * use random port allocation only if the user allows it AND * ipport_tick() allows it. */ if (ipport_randomized && (!ipport_stoprandom || pcbinfo == &udbinfo)) dorandom = 1; else dorandom = 0; /* * It makes no sense to do random port allocation if * we have the only port available. */ if (first == last) dorandom = 0; /* Make sure to not include UDP packets in the count. */ if (pcbinfo != &udbinfo) ipport_tcpallocs++; /* * Simple check to ensure all ports are not used up causing * a deadlock here. * * We split the two cases (up and down) so that the direction * is not being tested on each round of the loop. */ if (first > last) { /* * counting down */ if (dorandom) *lastport = first - (arc4random() % (first - last)); count = first - last; do { if (count-- < 0) /* completely used? */ return (EADDRNOTAVAIL); --*lastport; if (*lastport > first || *lastport < last) *lastport = first; lport = htons(*lastport); } while (in_pcblookup_local(pcbinfo, laddr, lport, wild)); } else { /* * counting up */ if (dorandom) *lastport = first + (arc4random() % (last - first)); count = last - first; do { if (count-- < 0) /* completely used? */ return (EADDRNOTAVAIL); ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); } while (in_pcblookup_local(pcbinfo, laddr, lport, wild)); } } if (prison_ip(cred, 0, &laddr.s_addr)) return (EINVAL); *laddrp = laddr.s_addr; *lportp = lport; return (0); } /* * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { u_short lport, fport; in_addr_t laddr, faddr; int anonport, error; INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); INP_LOCK_ASSERT(inp); lport = inp->inp_lport; laddr = inp->inp_laddr.s_addr; anonport = (lport == 0); error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, NULL, cred); if (error) return (error); /* Do the initial binding of the local address if required. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } } /* Commit the remaining changes. */ inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; inp->inp_faddr.s_addr = faddr; inp->inp_fport = fport; in_pcbrehash(inp); #ifdef IPSEC if (inp->inp_socket->so_type == SOCK_STREAM) ipsec_pcbconn(inp->inp_sp); #endif if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } /* * Set up for a connect from a socket to the specified address. * On entry, *laddrp and *lportp should contain the current local * address and port for the PCB; these are updated to the values * that should be placed in inp_laddr and inp_lport to complete * the connect. * * On success, *faddrp and *fportp will be set to the remote address * and port. These are not updated in the error case. * * If the operation fails because the connection already exists, * *oinpp will be set to the PCB of that connection so that the * caller can decide to override it. In all other cases, *oinpp * is set to NULL. */ int in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, struct inpcb **oinpp, struct ucred *cred) { struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct in_ifaddr *ia; struct sockaddr_in sa; struct ucred *socred; struct inpcb *oinp; struct in_addr laddr, faddr; u_short lport, fport; int error; INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); INP_LOCK_ASSERT(inp); if (oinpp != NULL) *oinpp = NULL; if (nam->sa_len != sizeof (*sin)) return (EINVAL); if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_port == 0) return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; lport = *lportp; faddr = sin->sin_addr; fport = sin->sin_port; socred = inp->inp_socket->so_cred; if (laddr.s_addr == INADDR_ANY && jailed(socred)) { bzero(&sa, sizeof(sa)); sa.sin_addr.s_addr = htonl(prison_getip(socred)); sa.sin_len = sizeof(sa); sa.sin_family = AF_INET; error = in_pcbbind_setup(inp, (struct sockaddr *)&sa, &laddr.s_addr, &lport, cred); if (error) return (error); } if (!TAILQ_EMPTY(&in_ifaddrhead)) { /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (faddr.s_addr == INADDR_ANY) faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr; else if (faddr.s_addr == (u_long)INADDR_BROADCAST && (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags & IFF_BROADCAST)) faddr = satosin(&TAILQ_FIRST( &in_ifaddrhead)->ia_broadaddr)->sin_addr; } if (laddr.s_addr == INADDR_ANY) { ia = (struct in_ifaddr *)0; /* * If route is known our src addr is taken from the i/f, * else punt. * * Find out route to destination */ if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) ia = ip_rtaddr(faddr); /* * If we found a route, use the address corresponding to * the outgoing interface. * * Otherwise assume faddr is reachable on a directly connected * network and try to find a corresponding interface to take * the source address from. */ if (ia == 0) { bzero(&sa, sizeof(sa)); sa.sin_addr = faddr; sa.sin_len = sizeof(sa); sa.sin_family = AF_INET; ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa))); if (ia == 0) ia = ifatoia(ifa_ifwithnet(sintosa(&sa))); if (ia == 0) return (ENETUNREACH); } /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, use the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(faddr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) if (ia->ia_ifp == ifp) break; if (ia == 0) return (EADDRNOTAVAIL); } } laddr = ia->ia_addr.sin_addr; } oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 0, NULL); if (oinp != NULL) { if (oinpp != NULL) *oinpp = oinp; return (EADDRINUSE); } if (lport == 0) { error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, cred); if (error) return (error); } *laddrp = laddr.s_addr; *lportp = lport; *faddrp = faddr.s_addr; *fportp = fport; return (0); } void in_pcbdisconnect(struct inpcb *inp) { INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); INP_LOCK_ASSERT(inp); inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbrehash(inp); #ifdef IPSEC ipsec_pcbdisconn(inp->inp_sp); #endif } /* * In the old world order, in_pcbdetach() served two functions: to detach the * pcb from the socket/potentially free the socket, and to free the pcb * itself. In the new world order, the protocol code is responsible for * managing the relationship with the socket, and this code simply frees the * pcb. */ void in_pcbdetach(struct inpcb *inp) { KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL")); inp->inp_socket->so_pcb = NULL; inp->inp_socket = NULL; } void in_pcbfree(struct inpcb *inp) { struct inpcbinfo *ipi = inp->inp_pcbinfo; KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL")); INP_INFO_WLOCK_ASSERT(ipi); INP_LOCK_ASSERT(inp); #if defined(IPSEC) || defined(FAST_IPSEC) ipsec4_delete_pcbpolicy(inp); #endif /*IPSEC*/ inp->inp_gencnt = ++ipi->ipi_gencnt; in_pcbremlists(inp); if (inp->inp_options) (void)m_free(inp->inp_options); ip_freemoptions(inp->inp_moptions); inp->inp_vflag = 0; #ifdef MAC mac_destroy_inpcb(inp); #endif INP_UNLOCK(inp); uma_zfree(ipi->ipi_zone, inp); } /* * TCP needs to maintain its inpcb structure after the TCP connection has * been torn down. However, it must be disconnected from the inpcb hashes as * it must not prevent binding of future connections to the same port/ip * combination by other inpcbs. */ void in_pcbdrop(struct inpcb *inp) { INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); INP_LOCK_ASSERT(inp); inp->inp_vflag |= INP_DROPPED; if (inp->inp_lport) { struct inpcbport *phd = inp->inp_phd; LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } inp->inp_lport = 0; } } struct sockaddr * in_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in *sin; MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = *addr_p; sin->sin_port = port; return (struct sockaddr *)sin; } /* * The wrapper function will pass down the pcbinfo for this function to lock. * The socket must have a valid * (i.e., non-nil) PCB, but it should be impossible to get an invalid one * except through a kernel programming error, so it is acceptable to panic * (or in this case trap) if the PCB is invalid. (Actually, we don't trap * because there actually /is/ a programming error somewhere... XXX) */ int in_setsockaddr(struct socket *so, struct sockaddr **nam, struct inpcbinfo *pcbinfo) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_setsockaddr: inp == NULL")); INP_LOCK(inp); port = inp->inp_lport; addr = inp->inp_laddr; INP_UNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } /* * The wrapper function will pass down the pcbinfo for this function to lock. */ int in_setpeeraddr(struct socket *so, struct sockaddr **nam, struct inpcbinfo *pcbinfo) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_setpeeraddr: inp == NULL")); INP_LOCK(inp); port = inp->inp_fport; addr = inp->inp_faddr; INP_UNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, struct inpcb *(*notify)(struct inpcb *, int)) { struct inpcb *inp, *ninp; struct inpcbhead *head; INP_INFO_WLOCK(pcbinfo); head = pcbinfo->listhead; for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) { INP_LOCK(inp); ninp = LIST_NEXT(inp, inp_list); #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) { INP_UNLOCK(inp); continue; } #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) { INP_UNLOCK(inp); continue; } if ((*notify)(inp, errno)) INP_UNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } void in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb *inp; struct ip_moptions *imo; int i, gap; INP_INFO_RLOCK(pcbinfo); LIST_FOREACH(inp, pcbinfo->listhead, inp_list) { INP_LOCK(inp); imo = inp->inp_moptions; if ((inp->inp_vflag & INP_IPV4) && imo != NULL) { /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ for (i = 0, gap = 0; i < imo->imo_num_memberships; i++) { if (imo->imo_membership[i]->inm_ifp == ifp) { in_delmulti(imo->imo_membership[i]); gap++; } else if (gap != 0) imo->imo_membership[i - gap] = imo->imo_membership[i]; } imo->imo_num_memberships -= gap; } INP_UNLOCK(inp); } INP_INFO_RUNLOCK(pcbinfo); } /* * Lookup a PCB based on the local address and port. */ #define INP_LOOKUP_MAPPED_PCB_COST 3 struct inpcb * in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, u_int lport_arg, int wild_okay) { struct inpcb *inp; #ifdef INET6 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; #else int matchwild = 3; #endif int wildcard; u_short lport = lport_arg; INP_INFO_WLOCK_ASSERT(pcbinfo); if (!wild_okay) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found. */ return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport, pcbinfo->porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; /* * We never select the PCB that has * INP_IPV6 flag and is bound to :: if * we have another PCB which is bound * to 0.0.0.0. If a PCB has the * INP_IPV6 flag, then we set its cost * higher than IPv4 only PCBs. * * Note that the case only happens * when a socket is bound to ::, under * the condition that the use of the * mapped address is allowed. */ if ((inp->inp_vflag & INP_IPV6) != 0) wildcard += INP_LOOKUP_MAPPED_PCB_COST; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) { break; } } } } return (match); } } #undef INP_LOOKUP_MAPPED_PCB_COST /* * Lookup PCB in hash list. */ struct inpcb * in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp; u_short fport = fport_arg, lport = lport_arg; INP_INFO_RLOCK_ASSERT(pcbinfo); /* * First look for an exact match. */ head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) return (inp); } /* * Then look for a wildcard match, if requested. */ if (wildcard) { struct inpcb *local_wild = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_lport == lport) { if (ifp && ifp->if_type == IFT_FAITH && (inp->inp_flags & INP_FAITH) == 0) continue; if (inp->inp_laddr.s_addr == laddr.s_addr) return (inp); else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 if (INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) local_wild_mapped = inp; else #endif local_wild = inp; } } } #ifdef INET6 if (local_wild == NULL) return (local_wild_mapped); #endif return (local_wild); } return (NULL); } /* * Insert PCB onto various hash lists. */ int in_pcbinshash(struct inpcb *inp) { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; u_int32_t hashkey_faddr; INP_INFO_WLOCK_ASSERT(pcbinfo); INP_LOCK_ASSERT(inp); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; else #endif /* INET6 */ hashkey_faddr = inp->inp_faddr.s_addr; pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)]; pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport, pcbinfo->porthashmask)]; /* * Go through port list and look for a head for this lport. */ LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) break; } /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT); if (phd == NULL) { return (ENOBUFS); /* XXX */ } phd->phd_port = inp->inp_lport; LIST_INIT(&phd->phd_pcblist); LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); LIST_INSERT_HEAD(pcbhash, inp, inp_hash); return (0); } /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. */ void in_pcbrehash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *head; u_int32_t hashkey_faddr; INP_INFO_WLOCK_ASSERT(pcbinfo); INP_LOCK_ASSERT(inp); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; else #endif /* INET6 */ hashkey_faddr = inp->inp_faddr.s_addr; head = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)]; LIST_REMOVE(inp, inp_hash); LIST_INSERT_HEAD(head, inp, inp_hash); } /* * Remove PCB from various lists. */ void in_pcbremlists(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; INP_INFO_WLOCK_ASSERT(pcbinfo); INP_LOCK_ASSERT(inp); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; if (inp->inp_lport) { struct inpcbport *phd = inp->inp_phd; LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } } LIST_REMOVE(inp, inp_list); pcbinfo->ipi_count--; } /* * A set label operation has occurred at the socket layer, propagate the * label change into the in_pcb for the socket. */ void in_pcbsosetlabel(struct socket *so) { #ifdef MAC struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); INP_LOCK(inp); SOCK_LOCK(so); mac_inpcb_sosetlabel(so, inp); SOCK_UNLOCK(so); INP_UNLOCK(inp); #endif } /* * ipport_tick runs once per second, determining if random port allocation * should be continued. If more than ipport_randomcps ports have been * allocated in the last second, then we return to sequential port * allocation. We return to random allocation only once we drop below * ipport_randomcps for at least ipport_randomtime seconds. */ void ipport_tick(void *xtp) { if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) { if (ipport_stoprandom > 0) ipport_stoprandom--; } else ipport_stoprandom = ipport_randomtime; ipport_tcplastcount = ipport_tcpallocs; callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); } #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) { char faddr_str[48], laddr_str[48]; db_print_indent(indent); db_printf("%s at %p\n", name, inc); indent += 2; #ifdef INET6 if (inc->inc_flags == 1) { /* IPv6. */ ip6_sprintf(laddr_str, &inc->inc6_laddr); ip6_sprintf(faddr_str, &inc->inc6_faddr); } else { #endif /* IPv4. */ inet_ntoa_r(inc->inc_laddr, laddr_str); inet_ntoa_r(inc->inc_faddr, faddr_str); #ifdef INET6 } #endif db_print_indent(indent); db_printf("inc_laddr %s inc_lport %u\n", laddr_str, ntohs(inc->inc_lport)); db_print_indent(indent); db_printf("inc_faddr %s inc_fport %u\n", faddr_str, ntohs(inc->inc_fport)); } static void db_print_inpflags(int inp_flags) { int comma; comma = 0; if (inp_flags & INP_RECVOPTS) { db_printf("%sINP_RECVOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVRETOPTS) { db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVDSTADDR) { db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HDRINCL) { db_printf("%sINP_HDRINCL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HIGHPORT) { db_printf("%sINP_HIGHPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_LOWPORT) { db_printf("%sINP_LOWPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ANONPORT) { db_printf("%sINP_ANONPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVIF) { db_printf("%sINP_RECVIF", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_MTUDISC) { db_printf("%sINP_MTUDISC", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_FAITH) { db_printf("%sINP_FAITH", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTTL) { db_printf("%sINP_RECVTTL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DONTFRAG) { db_printf("%sINP_DONTFRAG", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_IPV6_V6ONLY) { db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_PKTINFO) { db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPLIMIT) { db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPOPTS) { db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_DSTOPTS) { db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDR) { db_printf("%sIN6P_RTHDR", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDRDSTOPTS) { db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_TCLASS) { db_printf("%sIN6P_TCLASS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_AUTOFLOWLABEL) { db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RFC2292) { db_printf("%sIN6P_RFC2292", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_MTU) { db_printf("IN6P_MTU%s", comma ? ", " : ""); comma = 1; } } static void db_print_inpvflag(u_char inp_vflag) { int comma; comma = 0; if (inp_vflag & INP_IPV4) { db_printf("%sINP_IPV4", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6) { db_printf("%sINP_IPV6", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6PROTO) { db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_TIMEWAIT) { db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_ONESBCAST) { db_printf("%sINP_ONESBCAST", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_DROPPED) { db_printf("%sINP_DROPPED", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_SOCKREF) { db_printf("%sINP_SOCKREF", comma ? ", " : ""); comma = 1; } } void db_print_inpcb(struct inpcb *inp, const char *name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", name, inp); indent += 2; db_print_indent(indent); db_printf("inp_flow: 0x%x\n", inp->inp_flow); db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); db_print_indent(indent); db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); db_print_indent(indent); db_printf("inp_label: %p inp_flags: 0x%x (", inp->inp_label, inp->inp_flags); db_print_inpflags(inp->inp_flags); db_printf(")\n"); db_print_indent(indent); db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, inp->inp_vflag); db_print_inpvflag(inp->inp_vflag); db_printf(")\n"); db_print_indent(indent); db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); db_print_indent(indent); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { db_printf("in6p_options: %p in6p_outputopts: %p " "in6p_moptions: %p\n", inp->in6p_options, inp->in6p_outputopts, inp->in6p_moptions); db_printf("in6p_icmp6filt: %p in6p_cksum %d " "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, inp->in6p_hops); } else #endif { db_printf("inp_ip_tos: %d inp_ip_options: %p " "inp_ip_moptions: %p\n", inp->inp_ip_tos, inp->inp_options, inp->inp_moptions); } db_print_indent(indent); db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, (uintmax_t)inp->inp_gencnt); } DB_SHOW_COMMAND(inpcb, db_show_inpcb) { struct inpcb *inp; if (!have_addr) { db_printf("usage: show inpcb \n"); return; } inp = (struct inpcb *)addr; db_print_inpcb(inp, "inpcb", 0); } #endif