/******************************************************************************* Copyright (c) 2001-2007, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #include __FBSDID("$FreeBSD$"); #include "e1000_phy.h" static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); static void e1000_release_phy(struct e1000_hw *hw); static s32 e1000_acquire_phy(struct e1000_hw *hw); /* Cable length tables */ static const u16 e1000_m88_cable_length_table[] = { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ (sizeof(e1000_m88_cable_length_table) / \ sizeof(e1000_m88_cable_length_table[0])) static const u16 e1000_igp_2_cable_length_table[] = { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, 124}; #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ (sizeof(e1000_igp_2_cable_length_table) / \ sizeof(e1000_igp_2_cable_length_table[0])) /** * e1000_check_reset_block_generic - Check if PHY reset is blocked * @hw - pointer to the HW structure * * Read the PHY management control register and check whether a PHY reset * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise * return E1000_BLK_PHY_RESET (12). **/ s32 e1000_check_reset_block_generic(struct e1000_hw *hw) { u32 manc; DEBUGFUNC("e1000_check_reset_block"); manc = E1000_READ_REG(hw, E1000_MANC); return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : E1000_SUCCESS; } /** * e1000_get_phy_id - Retrieve the PHY ID and revision * @hw - pointer to the HW structure * * Reads the PHY registers and stores the PHY ID and possibly the PHY * revision in the hardware structure. **/ s32 e1000_get_phy_id(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; u16 phy_id; DEBUGFUNC("e1000_get_phy_id"); ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id); if (ret_val) goto out; phy->id = (u32)(phy_id << 16); usec_delay(20); ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id); if (ret_val) goto out; phy->id |= (u32)(phy_id & PHY_REVISION_MASK); phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); out: return ret_val; } /** * e1000_phy_reset_dsp_generic - Reset PHY DSP * @hw - pointer to the HW structure * * Reset the digital signal processor. **/ s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_phy_reset_dsp_generic"); ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); if (ret_val) goto out; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); out: return ret_val; } /** * e1000_read_phy_reg_mdic - Read MDI control register * @hw - pointer to the HW structure * @offset - register offset to be read * @data - pointer to the read data * * Reads the MDI control regsiter in the PHY at offset and stores the * information read to data. **/ static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) { struct e1000_phy_info *phy = &hw->phy; u32 i, mdic = 0; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_read_phy_reg_mdic"); if (offset > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", offset); ret_val = -E1000_ERR_PARAM; goto out; } /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ mdic = ((offset << E1000_MDIC_REG_SHIFT) | (phy->addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_READ)); E1000_WRITE_REG(hw, E1000_MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ for (i = 0; i < 64; i++) { usec_delay(50); mdic = E1000_READ_REG(hw, E1000_MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Read did not complete\n"); ret_val = -E1000_ERR_PHY; goto out; } if (mdic & E1000_MDIC_ERROR) { DEBUGOUT("MDI Error\n"); ret_val = -E1000_ERR_PHY; goto out; } *data = (u16) mdic; out: return ret_val; } /** * e1000_write_phy_reg_mdic - Write MDI control register * @hw - pointer to the HW structure * @offset - register offset to write to * @data - data to write to register at offset * * Writes data to MDI control register in the PHY at offset. **/ static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) { struct e1000_phy_info *phy = &hw->phy; u32 i, mdic = 0; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_write_phy_reg_mdic"); if (offset > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", offset); ret_val = -E1000_ERR_PARAM; goto out; } /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ mdic = (((u32)data) | (offset << E1000_MDIC_REG_SHIFT) | (phy->addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_WRITE)); E1000_WRITE_REG(hw, E1000_MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { usec_delay(5); mdic = E1000_READ_REG(hw, E1000_MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Write did not complete\n"); ret_val = -E1000_ERR_PHY; goto out; } out: return ret_val; } /** * e1000_read_phy_reg_m88 - Read m88 PHY register * @hw - pointer to the HW structure * @offset - register offset to be read * @data - pointer to the read data * * Acquires semaphore, if necessary, then reads the PHY register at offset * and storing the retrieved information in data. Release any acquired * semaphores before exiting. **/ s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_read_phy_reg_m88"); ret_val = e1000_acquire_phy(hw); if (ret_val) goto out; ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); e1000_release_phy(hw); out: return ret_val; } /** * e1000_write_phy_reg_m88 - Write m88 PHY register * @hw - pointer to the HW structure * @offset - register offset to write to * @data - data to write at register offset * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; DEBUGFUNC("e1000_write_phy_reg_m88"); ret_val = e1000_acquire_phy(hw); if (ret_val) goto out; ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); e1000_release_phy(hw); out: return ret_val; } /** * e1000_read_phy_reg_igp - Read igp PHY register * @hw - pointer to the HW structure * @offset - register offset to be read * @data - pointer to the read data * * Acquires semaphore, if necessary, then reads the PHY register at offset * and storing the retrieved information in data. Release any acquired * semaphores before exiting. **/ s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; DEBUGFUNC("e1000_read_phy_reg_igp"); ret_val = e1000_acquire_phy(hw); if (ret_val) goto out; if (offset > MAX_PHY_MULTI_PAGE_REG) { ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, (u16)offset); if (ret_val) { e1000_release_phy(hw); goto out; } } ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); e1000_release_phy(hw); out: return ret_val; } /** * e1000_write_phy_reg_igp - Write igp PHY register * @hw - pointer to the HW structure * @offset - register offset to write to * @data - data to write at register offset * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; DEBUGFUNC("e1000_write_phy_reg_igp"); ret_val = e1000_acquire_phy(hw); if (ret_val) goto out; if (offset > MAX_PHY_MULTI_PAGE_REG) { ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, (u16)offset); if (ret_val) { e1000_release_phy(hw); goto out; } } ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); e1000_release_phy(hw); out: return ret_val; } /** * e1000_read_kmrn_reg_generic - Read kumeran register * @hw - pointer to the HW structure * @offset - register offset to be read * @data - pointer to the read data * * Acquires semaphore, if necessary. Then reads the PHY register at offset * using the kumeran interface. The information retrieved is stored in data. * Release any acquired semaphores before exiting. **/ s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) { u32 kmrnctrlsta; s32 ret_val; DEBUGFUNC("e1000_read_kmrn_reg_generic"); ret_val = e1000_acquire_phy(hw); if (ret_val) goto out; kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); usec_delay(2); kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); *data = (u16)kmrnctrlsta; e1000_release_phy(hw); out: return ret_val; } /** * e1000_write_kmrn_reg_generic - Write kumeran register * @hw - pointer to the HW structure * @offset - register offset to write to * @data - data to write at register offset * * Acquires semaphore, if necessary. Then write the data to PHY register * at the offset using the kumeran interface. Release any acquired semaphores * before exiting. **/ s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) { u32 kmrnctrlsta; s32 ret_val; DEBUGFUNC("e1000_write_kmrn_reg_generic"); ret_val = e1000_acquire_phy(hw); if (ret_val) goto out; kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & E1000_KMRNCTRLSTA_OFFSET) | data; E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); usec_delay(2); e1000_release_phy(hw); out: return ret_val; } /** * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link * @hw - pointer to the HW structure * * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock * and downshift values are set also. **/ s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; DEBUGFUNC("e1000_copper_link_setup_m88"); if (phy->reset_disable) { ret_val = E1000_SUCCESS; goto out; } /* Enable CRS on TX. This must be set for half-duplex operation. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode * 2 - MDI-X mode * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; switch (phy->mdix) { case 1: phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; break; case 2: phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; break; case 3: phy_data |= M88E1000_PSCR_AUTO_X_1000T; break; case 0: default: phy_data |= M88E1000_PSCR_AUTO_X_MODE; break; } /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; if (phy->disable_polarity_correction == 1) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) goto out; if (phy->revision < E1000_REVISION_4) { /* Force TX_CLK in the Extended PHY Specific Control Register * to 25MHz clock. */ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; phy_data |= M88E1000_EPSCR_TX_CLK_25; if ((phy->revision == E1000_REVISION_2) && (phy->id == M88E1111_I_PHY_ID)) { /* 82573L PHY - set the downshift counter to 5x. */ phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; } else { /* Configure Master and Slave downshift values */ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); } ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) goto out; } /* Commit the changes. */ ret_val = e1000_phy_commit(hw); if (ret_val) { DEBUGOUT("Error committing the PHY changes\n"); goto out; } out: return ret_val; } /** * e1000_copper_link_setup_igp - Setup igp PHY's for copper link * @hw - pointer to the HW structure * * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for * igp PHY's. **/ s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_copper_link_setup_igp"); if (phy->reset_disable) { ret_val = E1000_SUCCESS; goto out; } ret_val = e1000_phy_hw_reset(hw); if (ret_val) { DEBUGOUT("Error resetting the PHY.\n"); goto out; } /* Wait 15ms for MAC to configure PHY from NVM settings. */ msec_delay(15); /* The NVM settings will configure LPLU in D3 for * non-IGP1 PHYs. */ if (phy->type == e1000_phy_igp) { /* disable lplu d3 during driver init */ ret_val = e1000_set_d3_lplu_state(hw, FALSE); if (ret_val) { DEBUGOUT("Error Disabling LPLU D3\n"); goto out; } } /* disable lplu d0 during driver init */ ret_val = e1000_set_d0_lplu_state(hw, FALSE); if (ret_val) { DEBUGOUT("Error Disabling LPLU D0\n"); goto out; } /* Configure mdi-mdix settings */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCR_AUTO_MDIX; switch (phy->mdix) { case 1: data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; break; case 2: data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; break; case 0: default: data |= IGP01E1000_PSCR_AUTO_MDIX; break; } ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); if (ret_val) goto out; /* set auto-master slave resolution settings */ if (hw->mac.autoneg) { /* when autonegotiation advertisement is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave * resolution as hardware default. */ if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { /* Disable SmartSpeed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; /* Set auto Master/Slave resolution process */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &data); if (ret_val) goto out; data &= ~CR_1000T_MS_ENABLE; ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data); if (ret_val) goto out; } ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &data); if (ret_val) goto out; /* load defaults for future use */ phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? ((data & CR_1000T_MS_VALUE) ? e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; switch (phy->ms_type) { case e1000_ms_force_master: data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); break; case e1000_ms_force_slave: data |= CR_1000T_MS_ENABLE; data &= ~(CR_1000T_MS_VALUE); break; case e1000_ms_auto: data &= ~CR_1000T_MS_ENABLE; default: break; } ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data); if (ret_val) goto out; } out: return ret_val; } /** * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link * @hw - pointer to the HW structure * * Performs initial bounds checking on autoneg advertisement parameter, then * configure to advertise the full capability. Setup the PHY to autoneg * and restart the negotiation process between the link partner. If * wait_for_link, then wait for autoneg to complete before exiting. **/ s32 e1000_copper_link_autoneg(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_ctrl; DEBUGFUNC("e1000_copper_link_autoneg"); /* Perform some bounds checking on the autoneg advertisement * parameter. */ phy->autoneg_advertised &= phy->autoneg_mask; /* If autoneg_advertised is zero, we assume it was not defaulted * by the calling code so we set to advertise full capability. */ if (phy->autoneg_advertised == 0) phy->autoneg_advertised = phy->autoneg_mask; DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); ret_val = e1000_phy_setup_autoneg(hw); if (ret_val) { DEBUGOUT("Error Setting up Auto-Negotiation\n"); goto out; } DEBUGOUT("Restarting Auto-Neg\n"); /* Restart auto-negotiation by setting the Auto Neg Enable bit and * the Auto Neg Restart bit in the PHY control register. */ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl); if (ret_val) goto out; phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl); if (ret_val) goto out; /* Does the user want to wait for Auto-Neg to complete here, or * check at a later time (for example, callback routine). */ if (phy->wait_for_link) { ret_val = e1000_wait_autoneg(hw); if (ret_val) { DEBUGOUT("Error while waiting for " "autoneg to complete\n"); goto out; } } hw->mac.get_link_status = TRUE; out: return ret_val; } /** * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation * @hw - pointer to the HW structure * * Reads the MII auto-neg advertisement register and/or the 1000T control * register and if the PHY is already setup for auto-negotiation, then * return successful. Otherwise, setup advertisement and flow control to * the appropriate values for the wanted auto-negotiation. **/ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 mii_autoneg_adv_reg; u16 mii_1000t_ctrl_reg = 0; DEBUGFUNC("e1000_phy_setup_autoneg"); phy->autoneg_advertised &= phy->autoneg_mask; /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); if (ret_val) goto out; if (phy->autoneg_mask & ADVERTISE_1000_FULL) { /* Read the MII 1000Base-T Control Register (Address 9). */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); if (ret_val) goto out; } /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ /* First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | NWAY_AR_100TX_HD_CAPS | NWAY_AR_10T_FD_CAPS | NWAY_AR_10T_HD_CAPS); mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_HALF) { DEBUGOUT("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_FULL) { DEBUGOUT("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_HALF) { DEBUGOUT("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_FULL) { DEBUGOUT("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ if (phy->autoneg_advertised & ADVERTISE_1000_HALF) { DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); } /* Do we want to advertise 1000 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { DEBUGOUT("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; } /* Check for a software override of the flow control settings, and * setup the PHY advertisement registers accordingly. If * auto-negotiation is enabled, then software will have to set the * "PAUSE" bits to the correct value in the Auto-Negotiation * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- * negotiation. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * but we do not support receiving pause frames). * 3: Both Rx and TX flow control (symmetric) are enabled. * other: No software override. The flow control configuration * in the EEPROM is used. */ switch (hw->mac.fc) { case e1000_fc_none: /* Flow control (RX & TX) is completely disabled by a * software over-ride. */ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_rx_pause: /* RX Flow control is enabled, and TX Flow control is * disabled, by a software over-ride. */ /* Since there really isn't a way to advertise that we are * capable of RX Pause ONLY, we will advertise that we * support both symmetric and asymmetric RX PAUSE. Later * (in e1000_config_fc_after_link_up) we will disable the * hw's ability to send PAUSE frames. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_tx_pause: /* TX Flow control is enabled, and RX Flow control is * disabled, by a software over-ride. */ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; break; case e1000_fc_full: /* Flow control (both RX and TX) is enabled by a software * over-ride. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; default: DEBUGOUT("Flow control param set incorrectly\n"); ret_val = -E1000_ERR_CONFIG; goto out; } ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); if (ret_val) goto out; DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); if (phy->autoneg_mask & ADVERTISE_1000_FULL) { ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); if (ret_val) goto out; } out: return ret_val; } /** * e1000_setup_copper_link_generic - Configure copper link settings * @hw - pointer to the HW structure * * Calls the appropriate function to configure the link for auto-neg or forced * speed and duplex. Then we check for link, once link is established calls * to configure collision distance and flow control are called. If link is * not established, we return -E1000_ERR_PHY (-2). **/ s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) { s32 ret_val; boolean_t link; DEBUGFUNC("e1000_setup_copper_link_generic"); if (hw->mac.autoneg) { /* Setup autoneg and flow control advertisement and perform * autonegotiation. */ ret_val = e1000_copper_link_autoneg(hw); if (ret_val) goto out; } else { /* PHY will be set to 10H, 10F, 100H or 100F * depending on user settings. */ DEBUGOUT("Forcing Speed and Duplex\n"); ret_val = e1000_phy_force_speed_duplex(hw); if (ret_val) { DEBUGOUT("Error Forcing Speed and Duplex\n"); goto out; } } /* Check link status. Wait up to 100 microseconds for link to become * valid. */ ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, &link); if (ret_val) goto out; if (link) { DEBUGOUT("Valid link established!!!\n"); e1000_config_collision_dist_generic(hw); ret_val = e1000_config_fc_after_link_up_generic(hw); } else { DEBUGOUT("Unable to establish link!!!\n"); } out: return ret_val; } /** * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY * @hw - pointer to the HW structure * * Calls the PHY setup function to force speed and duplex. Clears the * auto-crossover to force MDI manually. Waits for link and returns * successful if link up is successful, else -E1000_ERR_PHY (-2). **/ s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; boolean_t link; DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) goto out; e1000_phy_force_speed_duplex_setup(hw, &phy_data); ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data); if (ret_val) goto out; /* Clear Auto-Crossover to force MDI manually. IGP requires MDI * forced whenever speed and duplex are forced. */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); if (ret_val) goto out; phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); if (ret_val) goto out; DEBUGOUT1("IGP PSCR: %X\n", phy_data); usec_delay(1); if (phy->wait_for_link) { DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) goto out; if (!link) { DEBUGOUT("Link taking longer than expected.\n"); } /* Try once more */ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) goto out; } out: return ret_val; } /** * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY * @hw - pointer to the HW structure * * Calls the PHY setup function to force speed and duplex. Clears the * auto-crossover to force MDI manually. Resets the PHY to commit the * changes. If time expires while waiting for link up, we reset the DSP. * After reset, TX_CLK and CRS on TX must be set. Return successful upon * successful completion, else return corresponding error code. **/ s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; boolean_t link; DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI * forced whenever speed and duplex are forced. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) goto out; DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) goto out; e1000_phy_force_speed_duplex_setup(hw, &phy_data); /* Reset the phy to commit changes. */ phy_data |= MII_CR_RESET; ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data); if (ret_val) goto out; usec_delay(1); if (phy->wait_for_link) { DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) goto out; if (!link) { /* We didn't get link. * Reset the DSP and cross our fingers. */ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x001d); if (ret_val) goto out; ret_val = e1000_phy_reset_dsp_generic(hw); if (ret_val) goto out; } /* Try once more */ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) goto out; } ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; /* Resetting the phy means we need to re-force TX_CLK in the * Extended PHY Specific Control Register to 25MHz clock from * the reset value of 2.5MHz. */ phy_data |= M88E1000_EPSCR_TX_CLK_25; ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) goto out; /* In addition, we must re-enable CRS on Tx for both half and full * duplex. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); out: return ret_val; } /** * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex * @hw - pointer to the HW structure * @phy_ctrl - pointer to current value of PHY_CONTROL * * Forces speed and duplex on the PHY by doing the following: disable flow * control, force speed/duplex on the MAC, disable auto speed detection, * disable auto-negotiation, configure duplex, configure speed, configure * the collision distance, write configuration to CTRL register. The * caller must write to the PHY_CONTROL register for these settings to * take affect. **/ void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) { struct e1000_mac_info *mac = &hw->mac; u32 ctrl; DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); /* Turn off flow control when forcing speed/duplex */ mac->fc = e1000_fc_none; /* Force speed/duplex on the mac */ ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~E1000_CTRL_SPD_SEL; /* Disable Auto Speed Detection */ ctrl &= ~E1000_CTRL_ASDE; /* Disable autoneg on the phy */ *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; /* Forcing Full or Half Duplex? */ if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { ctrl &= ~E1000_CTRL_FD; *phy_ctrl &= ~MII_CR_FULL_DUPLEX; DEBUGOUT("Half Duplex\n"); } else { ctrl |= E1000_CTRL_FD; *phy_ctrl |= MII_CR_FULL_DUPLEX; DEBUGOUT("Full Duplex\n"); } /* Forcing 10mb or 100mb? */ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { ctrl |= E1000_CTRL_SPD_100; *phy_ctrl |= MII_CR_SPEED_100; *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); DEBUGOUT("Forcing 100mb\n"); } else { ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); *phy_ctrl |= MII_CR_SPEED_10; *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); DEBUGOUT("Forcing 10mb\n"); } e1000_config_collision_dist_generic(hw); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); } /** * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 * @hw - pointer to the HW structure * @active boolean used to enable/disable lplu * * Success returns 0, Failure returns 1 * * The low power link up (lplu) state is set to the power management level D3 * and SmartSpeed is disabled when active is true, else clear lplu for D3 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. **/ s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, boolean_t active) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_set_d3_lplu_state_generic"); ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); if (ret_val) goto out; if (!active) { data &= ~IGP02E1000_PM_D3_LPLU; ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) goto out; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { data |= IGP02E1000_PM_D3_LPLU; ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) goto out; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); } out: return ret_val; } /** * e1000_check_downshift_generic - Checks whether a downshift in speed occured * @hw - pointer to the HW structure * * Success returns 0, Failure returns 1 * * A downshift is detected by querying the PHY link health. **/ s32 e1000_check_downshift_generic(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, offset, mask; DEBUGFUNC("e1000_check_downshift_generic"); switch (phy->type) { case e1000_phy_m88: case e1000_phy_gg82563: offset = M88E1000_PHY_SPEC_STATUS; mask = M88E1000_PSSR_DOWNSHIFT; break; case e1000_phy_igp_2: case e1000_phy_igp: case e1000_phy_igp_3: offset = IGP01E1000_PHY_LINK_HEALTH; mask = IGP01E1000_PLHR_SS_DOWNGRADE; break; default: /* speed downshift not supported */ phy->speed_downgraded = FALSE; ret_val = E1000_SUCCESS; goto out; } ret_val = e1000_read_phy_reg(hw, offset, &phy_data); if (!ret_val) phy->speed_downgraded = (phy_data & mask) ? TRUE : FALSE; out: return ret_val; } /** * e1000_check_polarity_m88 - Checks the polarity. * @hw - pointer to the HW structure * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) * * Polarity is determined based on the PHY specific status register. **/ s32 e1000_check_polarity_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_check_polarity_m88"); ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); if (!ret_val) phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal; return ret_val; } /** * e1000_check_polarity_igp - Checks the polarity. * @hw - pointer to the HW structure * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) * * Polarity is determined based on the PHY port status register, and the * current speed (since there is no polarity at 100Mbps). **/ s32 e1000_check_polarity_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data, offset, mask; DEBUGFUNC("e1000_check_polarity_igp"); /* Polarity is determined based on the speed of * our connection. */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); if (ret_val) goto out; if ((data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { offset = IGP01E1000_PHY_PCS_INIT_REG; mask = IGP01E1000_PHY_POLARITY_MASK; } else { /* This really only applies to 10Mbps since * there is no polarity for 100Mbps (always 0). */ offset = IGP01E1000_PHY_PORT_STATUS; mask = IGP01E1000_PSSR_POLARITY_REVERSED; } ret_val = e1000_read_phy_reg(hw, offset, &data); if (!ret_val) phy->cable_polarity = (data & mask) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal; out: return ret_val; } /** * e1000_wait_autoneg_generic - Wait for auto-neg compeletion * @hw - pointer to the HW structure * * Waits for auto-negotiation to complete or for the auto-negotiation time * limit to expire, which ever happens first. **/ s32 e1000_wait_autoneg_generic(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 i, phy_status; DEBUGFUNC("e1000_wait_autoneg_generic"); /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; if (phy_status & MII_SR_AUTONEG_COMPLETE) break; msec_delay(100); } /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation * has completed. */ return ret_val; } /** * e1000_phy_has_link_generic - Polls PHY for link * @hw - pointer to the HW structure * @iterations - number of times to poll for link * @usec_interval - delay between polling attempts * @success - pointer to whether polling was successful or not * * Polls the PHY status register for link, 'iterations' number of times. **/ s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, u32 usec_interval, boolean_t *success) { s32 ret_val = E1000_SUCCESS; u16 i, phy_status; DEBUGFUNC("e1000_phy_has_link_generic"); for (i = 0; i < iterations; i++) { /* Some PHYs require the PHY_STATUS register to be read * twice due to the link bit being sticky. No harm doing * it across the board. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; if (phy_status & MII_SR_LINK_STATUS) break; if (usec_interval >= 1000) msec_delay_irq(usec_interval/1000); else usec_delay(usec_interval); } *success = (i < iterations) ? TRUE : FALSE; return ret_val; } /** * e1000_get_cable_length_m88 - Determine cable length for m88 PHY * @hw - pointer to the HW structure * * Reads the PHY specific status register to retrieve the cable length * information. The cable length is determined by averaging the minimum and * maximum values to get the "average" cable length. The m88 PHY has four * possible cable length values, which are: * Register Value Cable Length * 0 < 50 meters * 1 50 - 80 meters * 2 80 - 110 meters * 3 110 - 140 meters * 4 > 140 meters **/ s32 e1000_get_cable_length_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, index; DEBUGFUNC("e1000_get_cable_length_m88"); ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) goto out; index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> M88E1000_PSSR_CABLE_LENGTH_SHIFT; phy->min_cable_length = e1000_m88_cable_length_table[index]; phy->max_cable_length = e1000_m88_cable_length_table[index+1]; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; out: return ret_val; } /** * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY * @hw - pointer to the HW structure * * The automatic gain control (agc) normalizes the amplitude of the * received signal, adjusting for the attenuation produced by the * cable. By reading the AGC registers, which reperesent the * cobination of course and fine gain value, the value can be put * into a lookup table to obtain the approximate cable length * for each channel. **/ s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, i, agc_value = 0; u16 cur_agc_index, max_agc_index = 0; u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {IGP02E1000_PHY_AGC_A, IGP02E1000_PHY_AGC_B, IGP02E1000_PHY_AGC_C, IGP02E1000_PHY_AGC_D}; DEBUGFUNC("e1000_get_cable_length_igp_2"); /* Read the AGC registers for all channels */ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); if (ret_val) goto out; /* Getting bits 15:9, which represent the combination of * course and fine gain values. The result is a number * that can be put into the lookup table to obtain the * approximate cable length. */ cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & IGP02E1000_AGC_LENGTH_MASK; /* Array index bound check. */ if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || (cur_agc_index == 0)) { ret_val = -E1000_ERR_PHY; goto out; } /* Remove min & max AGC values from calculation. */ if (e1000_igp_2_cable_length_table[min_agc_index] > e1000_igp_2_cable_length_table[cur_agc_index]) min_agc_index = cur_agc_index; if (e1000_igp_2_cable_length_table[max_agc_index] < e1000_igp_2_cable_length_table[cur_agc_index]) max_agc_index = cur_agc_index; agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; } agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + e1000_igp_2_cable_length_table[max_agc_index]); agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); /* Calculate cable length with the error range of +/- 10 meters. */ phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? (agc_value - IGP02E1000_AGC_RANGE) : 0; phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; out: return ret_val; } /** * e1000_get_phy_info_m88 - Retrieve PHY information * @hw - pointer to the HW structure * * Valid for only copper links. Read the PHY status register (sticky read) * to verify that link is up. Read the PHY special control register to * determine the polarity and 10base-T extended distance. Read the PHY * special status register to determine MDI/MDIx and current speed. If * speed is 1000, then determine cable length, local and remote receiver. **/ s32 e1000_get_phy_info_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; boolean_t link; DEBUGFUNC("e1000_get_phy_info_m88"); if (hw->media_type != e1000_media_type_copper) { DEBUGOUT("Phy info is only valid for copper media\n"); ret_val = -E1000_ERR_CONFIG; goto out; } ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) goto out; if (!link) { DEBUGOUT("Phy info is only valid if link is up\n"); ret_val = -E1000_ERR_CONFIG; goto out; } ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) ? TRUE : FALSE; ret_val = e1000_check_polarity_m88(hw); if (ret_val) goto out; ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) goto out; phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? TRUE : FALSE; if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { ret_val = e1000_get_cable_length(hw); if (ret_val) goto out; ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); if (ret_val) goto out; phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; } else { /* Set values to "undefined" */ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; phy->local_rx = e1000_1000t_rx_status_undefined; phy->remote_rx = e1000_1000t_rx_status_undefined; } out: return ret_val; } /** * e1000_get_phy_info_igp - Retrieve igp PHY information * @hw - pointer to the HW structure * * Read PHY status to determine if link is up. If link is up, then * set/determine 10base-T extended distance and polarity correction. Read * PHY port status to determine MDI/MDIx and speed. Based on the speed, * determine on the cable length, local and remote receiver. **/ s32 e1000_get_phy_info_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; boolean_t link; DEBUGFUNC("e1000_get_phy_info_igp"); ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); if (ret_val) goto out; if (!link) { DEBUGOUT("Phy info is only valid if link is up\n"); ret_val = -E1000_ERR_CONFIG; goto out; } phy->polarity_correction = TRUE; ret_val = e1000_check_polarity_igp(hw); if (ret_val) goto out; ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); if (ret_val) goto out; phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? TRUE : FALSE; if ((data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { ret_val = e1000_get_cable_length(hw); if (ret_val) goto out; ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &data); if (ret_val) goto out; phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; } else { phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; phy->local_rx = e1000_1000t_rx_status_undefined; phy->remote_rx = e1000_1000t_rx_status_undefined; } out: return ret_val; } /** * e1000_phy_sw_reset_generic - PHY software reset * @hw - pointer to the HW structure * * Does a software reset of the PHY by reading the PHY control register and * setting/write the control register reset bit to the PHY. **/ s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) { s32 ret_val; u16 phy_ctrl; DEBUGFUNC("e1000_phy_sw_reset_generic"); ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl); if (ret_val) goto out; phy_ctrl |= MII_CR_RESET; ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl); if (ret_val) goto out; usec_delay(1); out: return ret_val; } /** * e1000_phy_hw_reset_generic - PHY hardware reset * @hw - pointer to the HW structure * * Verify the reset block is not blocking us from resetting. Acquire * semaphore (if necessary) and read/set/write the device control reset * bit in the PHY. Wait the appropriate delay time for the device to * reset and relase the semaphore (if necessary). **/ s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u32 ctrl; DEBUGFUNC("e1000_phy_hw_reset_generic"); ret_val = e1000_check_reset_block(hw); if (ret_val) { ret_val = E1000_SUCCESS; goto out; } ret_val = e1000_acquire_phy(hw); if (ret_val) goto out; ctrl = E1000_READ_REG(hw, E1000_CTRL); E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); E1000_WRITE_FLUSH(hw); usec_delay(phy->reset_delay_us); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); E1000_WRITE_FLUSH(hw); usec_delay(150); e1000_release_phy(hw); ret_val = e1000_get_phy_cfg_done(hw); out: return ret_val; } /** * e1000_get_cfg_done_generic - Generic configuration done * @hw - pointer to the HW structure * * Generic function to wait 10 milli-seconds for configuration to complete * and return success. **/ s32 e1000_get_cfg_done_generic(struct e1000_hw *hw) { DEBUGFUNC("e1000_get_cfg_done_generic"); msec_delay_irq(10); return E1000_SUCCESS; } /* Internal function pointers */ /** * e1000_get_phy_cfg_done - Generic PHY configuration done * @hw - pointer to the HW structure * * Return success if silicon family did not implement a family specific * get_cfg_done function. **/ s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) { if (hw->func.get_cfg_done != NULL) return hw->func.get_cfg_done(hw); else return E1000_SUCCESS; } /** * e1000_release_phy - Generic release PHY * @hw - pointer to the HW structure * * Return if silicon family does not require a semaphore when accessing the * PHY. **/ void e1000_release_phy(struct e1000_hw *hw) { if (hw->func.release_phy != NULL) hw->func.release_phy(hw); } /** * e1000_acquire_phy - Generic acquire PHY * @hw - pointer to the HW structure * * Return success if silicon family does not require a semaphore when * accessing the PHY. **/ s32 e1000_acquire_phy(struct e1000_hw *hw) { if (hw->func.acquire_phy != NULL) return hw->func.acquire_phy(hw); else return E1000_SUCCESS; } /** * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex * @hw - pointer to the HW structure * * When the silicon family has not implemented a forced speed/duplex * function for the PHY, simply return E1000_SUCCESS. **/ s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) { if (hw->func.force_speed_duplex != NULL) return hw->func.force_speed_duplex(hw); else return E1000_SUCCESS; } /** * e1000_phy_init_script_igp3 - Inits the IGP3 PHY * @hw - pointer to the HW structure * * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. **/ s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) { DEBUGOUT("Running IGP 3 PHY init script\n"); /* PHY init IGP 3 */ /* Enable rise/fall, 10-mode work in class-A */ e1000_write_phy_reg(hw, 0x2F5B, 0x9018); /* Remove all caps from Replica path filter */ e1000_write_phy_reg(hw, 0x2F52, 0x0000); /* Bias trimming for ADC, AFE and Driver (Default) */ e1000_write_phy_reg(hw, 0x2FB1, 0x8B24); /* Increase Hybrid poly bias */ e1000_write_phy_reg(hw, 0x2FB2, 0xF8F0); /* Add 4% to TX amplitude in Giga mode */ e1000_write_phy_reg(hw, 0x2010, 0x10B0); /* Disable trimming (TTT) */ e1000_write_phy_reg(hw, 0x2011, 0x0000); /* Poly DC correction to 94.6% + 2% for all channels */ e1000_write_phy_reg(hw, 0x20DD, 0x249A); /* ABS DC correction to 95.9% */ e1000_write_phy_reg(hw, 0x20DE, 0x00D3); /* BG temp curve trim */ e1000_write_phy_reg(hw, 0x28B4, 0x04CE); /* Increasing ADC OPAMP stage 1 currents to max */ e1000_write_phy_reg(hw, 0x2F70, 0x29E4); /* Force 1000 ( required for enabling PHY regs configuration) */ e1000_write_phy_reg(hw, 0x0000, 0x0140); /* Set upd_freq to 6 */ e1000_write_phy_reg(hw, 0x1F30, 0x1606); /* Disable NPDFE */ e1000_write_phy_reg(hw, 0x1F31, 0xB814); /* Disable adaptive fixed FFE (Default) */ e1000_write_phy_reg(hw, 0x1F35, 0x002A); /* Enable FFE hysteresis */ e1000_write_phy_reg(hw, 0x1F3E, 0x0067); /* Fixed FFE for short cable lengths */ e1000_write_phy_reg(hw, 0x1F54, 0x0065); /* Fixed FFE for medium cable lengths */ e1000_write_phy_reg(hw, 0x1F55, 0x002A); /* Fixed FFE for long cable lengths */ e1000_write_phy_reg(hw, 0x1F56, 0x002A); /* Enable Adaptive Clip Threshold */ e1000_write_phy_reg(hw, 0x1F72, 0x3FB0); /* AHT reset limit to 1 */ e1000_write_phy_reg(hw, 0x1F76, 0xC0FF); /* Set AHT master delay to 127 msec */ e1000_write_phy_reg(hw, 0x1F77, 0x1DEC); /* Set scan bits for AHT */ e1000_write_phy_reg(hw, 0x1F78, 0xF9EF); /* Set AHT Preset bits */ e1000_write_phy_reg(hw, 0x1F79, 0x0210); /* Change integ_factor of channel A to 3 */ e1000_write_phy_reg(hw, 0x1895, 0x0003); /* Change prop_factor of channels BCD to 8 */ e1000_write_phy_reg(hw, 0x1796, 0x0008); /* Change cg_icount + enable integbp for channels BCD */ e1000_write_phy_reg(hw, 0x1798, 0xD008); /* Change cg_icount + enable integbp + change prop_factor_master * to 8 for channel A */ e1000_write_phy_reg(hw, 0x1898, 0xD918); /* Disable AHT in Slave mode on channel A */ e1000_write_phy_reg(hw, 0x187A, 0x0800); /* Enable LPLU and disable AN to 1000 in non-D0a states, * Enable SPD+B2B */ e1000_write_phy_reg(hw, 0x0019, 0x008D); /* Enable restart AN on an1000_dis change */ e1000_write_phy_reg(hw, 0x001B, 0x2080); /* Enable wh_fifo read clock in 10/100 modes */ e1000_write_phy_reg(hw, 0x0014, 0x0045); /* Restart AN, Speed selection is 1000 */ e1000_write_phy_reg(hw, 0x0000, 0x1340); return E1000_SUCCESS; }