/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2007-2009 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ipsec.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #ifdef INET #include #include #endif #include #include #ifdef TCPHPTS #include #endif #include #include #ifdef INET6 #include #include #include #include #endif /* INET6 */ #include #endif #include #include #define INPCBLBGROUP_SIZMIN 8 #define INPCBLBGROUP_SIZMAX 256 #define INP_FREED 0x00000200 /* See in_pcb.h. */ static struct callout ipport_tick_callout; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ /* * Reserved ports accessible only to root. There are significant * security considerations that must be accounted for when changing these, * but the security benefits can be great. Please be careful. */ VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_reservedlow); /* Variables dealing with random ephemeral port allocation. */ VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ VNET_DEFINE(int, ipport_tcpallocs); VNET_DEFINE_STATIC(int, ipport_tcplastcount); #define V_ipport_tcplastcount VNET(ipport_tcplastcount) #ifdef INET static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp, uint8_t numa_domain); #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } static int sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) { int error; error = sysctl_handle_int(oidp, arg1, arg2, req); if (error == 0) { RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); } return (error); } #undef RANGECHK static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " "allocations before switching to a sequential one"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomtime), 0, "Minimum time to keep sequential port " "allocation before switching to a random one"); #ifdef RATELIMIT counter_u64_t rate_limit_new; counter_u64_t rate_limit_chg; counter_u64_t rate_limit_active; counter_u64_t rate_limit_alloc_fail; counter_u64_t rate_limit_set_ok; static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "IP Rate Limiting"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, &rate_limit_active, "Active rate limited connections"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, &rate_limit_alloc_fail, "Rate limited connection failures"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, &rate_limit_set_ok, "Rate limited setting succeeded"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, &rate_limit_new, "Total Rate limit new attempts"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, &rate_limit_chg, "Total Rate limited change attempts"); #endif /* RATELIMIT */ #endif /* INET */ VNET_DEFINE(uint32_t, in_pcbhashseed); static void in_pcbhashseed_init(void) { V_in_pcbhashseed = arc4random(); } VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, in_pcbhashseed_init, 0); /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called with * the pcbinfo lock held, and often, the inpcb lock held, as these utility * functions often modify hash chains or addresses in pcbs. */ static struct inpcblbgroup * in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, uint8_t numa_domain) { struct inpcblbgroup *grp; size_t bytes; bytes = __offsetof(struct inpcblbgroup, il_inp[size]); grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); if (!grp) return (NULL); grp->il_vflag = vflag; grp->il_lport = port; grp->il_numa_domain = numa_domain; grp->il_dependladdr = *addr; grp->il_inpsiz = size; CK_LIST_INSERT_HEAD(hdr, grp, il_list); return (grp); } static void in_pcblbgroup_free_deferred(epoch_context_t ctx) { struct inpcblbgroup *grp; grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); free(grp, M_PCB); } static void in_pcblbgroup_free(struct inpcblbgroup *grp) { CK_LIST_REMOVE(grp, il_list); NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); } static struct inpcblbgroup * in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, struct inpcblbgroup *old_grp, int size) { struct inpcblbgroup *grp; int i; grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, old_grp->il_lport, &old_grp->il_dependladdr, size, old_grp->il_numa_domain); if (grp == NULL) return (NULL); KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, ("invalid new local group size %d and old local group count %d", grp->il_inpsiz, old_grp->il_inpcnt)); for (i = 0; i < old_grp->il_inpcnt; ++i) grp->il_inp[i] = old_grp->il_inp[i]; grp->il_inpcnt = old_grp->il_inpcnt; in_pcblbgroup_free(old_grp); return (grp); } /* * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] * and shrink group if possible. */ static void in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, int i) { struct inpcblbgroup *grp, *new_grp; grp = *grpp; for (; i + 1 < grp->il_inpcnt; ++i) grp->il_inp[i] = grp->il_inp[i + 1]; grp->il_inpcnt--; if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && grp->il_inpcnt <= grp->il_inpsiz / 4) { /* Shrink this group. */ new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); if (new_grp != NULL) *grpp = new_grp; } } /* * Add PCB to load balance group for SO_REUSEPORT_LB option. */ static int in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) { const static struct timeval interval = { 60, 0 }; static struct timeval lastprint; struct inpcbinfo *pcbinfo; struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; uint32_t idx; pcbinfo = inp->inp_pcbinfo; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); /* * Don't allow jailed socket to join local group. */ if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) return (0); #ifdef INET6 /* * Don't allow IPv4 mapped INET6 wild socket. */ if ((inp->inp_vflag & INP_IPV4) && inp->inp_laddr.s_addr == INADDR_ANY && INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { return (0); } #endif idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; CK_LIST_FOREACH(grp, hdr, il_list) { if (grp->il_vflag == inp->inp_vflag && grp->il_lport == inp->inp_lport && grp->il_numa_domain == numa_domain && memcmp(&grp->il_dependladdr, &inp->inp_inc.inc_ie.ie_dependladdr, sizeof(grp->il_dependladdr)) == 0) break; } if (grp == NULL) { /* Create new load balance group. */ grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, INPCBLBGROUP_SIZMIN, numa_domain); if (grp == NULL) return (ENOBUFS); } else if (grp->il_inpcnt == grp->il_inpsiz) { if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { if (ratecheck(&lastprint, &interval)) printf("lb group port %d, limit reached\n", ntohs(grp->il_lport)); return (0); } /* Expand this local group. */ grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); if (grp == NULL) return (ENOBUFS); } KASSERT(grp->il_inpcnt < grp->il_inpsiz, ("invalid local group size %d and count %d", grp->il_inpsiz, grp->il_inpcnt)); grp->il_inp[grp->il_inpcnt] = inp; grp->il_inpcnt++; return (0); } /* * Remove PCB from load balance group. */ static void in_pcbremlbgrouphash(struct inpcb *inp) { struct inpcbinfo *pcbinfo; struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; int i; pcbinfo = inp->inp_pcbinfo; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); hdr = &pcbinfo->ipi_lbgrouphashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; CK_LIST_FOREACH(grp, hdr, il_list) { for (i = 0; i < grp->il_inpcnt; ++i) { if (grp->il_inp[i] != inp) continue; if (grp->il_inpcnt == 1) { /* We are the last, free this local group. */ in_pcblbgroup_free(grp); } else { /* Pull up inpcbs, shrink group if possible. */ in_pcblbgroup_reorder(hdr, &grp, i); } return; } } } int in_pcblbgroup_numa(struct inpcb *inp, int arg) { struct inpcbinfo *pcbinfo; struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; int err, i; uint8_t numa_domain; switch (arg) { case TCP_REUSPORT_LB_NUMA_NODOM: numa_domain = M_NODOM; break; case TCP_REUSPORT_LB_NUMA_CURDOM: numa_domain = PCPU_GET(domain); break; default: if (arg < 0 || arg >= vm_ndomains) return (EINVAL); numa_domain = arg; } err = 0; pcbinfo = inp->inp_pcbinfo; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK(pcbinfo); hdr = &pcbinfo->ipi_lbgrouphashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; CK_LIST_FOREACH(grp, hdr, il_list) { for (i = 0; i < grp->il_inpcnt; ++i) { if (grp->il_inp[i] != inp) continue; if (grp->il_numa_domain == numa_domain) { goto abort_with_hash_wlock; } /* Remove it from the old group. */ in_pcbremlbgrouphash(inp); /* Add it to the new group based on numa domain. */ in_pcbinslbgrouphash(inp, numa_domain); goto abort_with_hash_wlock; } } err = ENOENT; abort_with_hash_wlock: INP_HASH_WUNLOCK(pcbinfo); return (err); } /* Make sure it is safe to use hashinit(9) on CK_LIST. */ CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); /* * Initialize an inpcbinfo - a per-VNET instance of connections db. */ void in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, u_int hash_nelements, u_int porthash_nelements) { mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, NULL, MTX_DEF); #ifdef VIMAGE pcbinfo->ipi_vnet = curvnet; #endif CK_LIST_INIT(&pcbinfo->ipi_listhead); pcbinfo->ipi_count = 0; pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, &pcbinfo->ipi_hashmask); porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, &pcbinfo->ipi_porthashmask); pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, &pcbinfo->ipi_lbgrouphashmask); pcbinfo->ipi_zone = pcbstor->ips_zone; pcbinfo->ipi_portzone = pcbstor->ips_portzone; pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); } /* * Destroy an inpcbinfo. */ void in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) { KASSERT(pcbinfo->ipi_count == 0, ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, pcbinfo->ipi_porthashmask); hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, pcbinfo->ipi_lbgrouphashmask); mtx_destroy(&pcbinfo->ipi_hash_lock); mtx_destroy(&pcbinfo->ipi_lock); } /* * Initialize a pcbstorage - per protocol zones to allocate inpcbs. */ static void inpcb_dtor(void *, int, void *); static void inpcb_fini(void *, int); void in_pcbstorage_init(void *arg) { struct inpcbstorage *pcbstor = arg; pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, sizeof(struct inpcb), NULL, inpcb_dtor, pcbstor->ips_pcbinit, inpcb_fini, UMA_ALIGN_PTR, UMA_ZONE_SMR); pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_zone_set_smr(pcbstor->ips_portzone, uma_zone_get_smr(pcbstor->ips_zone)); } /* * Destroy a pcbstorage - used by unloadable protocols. */ void in_pcbstorage_destroy(void *arg) { struct inpcbstorage *pcbstor = arg; uma_zdestroy(pcbstor->ips_zone); uma_zdestroy(pcbstor->ips_portzone); } /* * Allocate a PCB and associate it with the socket. * On success return with the PCB locked. */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) { struct inpcb *inp; #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) int error; #endif inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); if (inp == NULL) return (ENOBUFS); bzero(&inp->inp_start_zero, inp_zero_size); #ifdef NUMA inp->inp_numa_domain = M_NODOM; #endif inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; inp->inp_cred = crhold(so->so_cred); inp->inp_inc.inc_fibnum = so->so_fibnum; #ifdef MAC error = mac_inpcb_init(inp, M_NOWAIT); if (error != 0) goto out; mac_inpcb_create(so, inp); #endif #if defined(IPSEC) || defined(IPSEC_SUPPORT) error = ipsec_init_pcbpolicy(inp); if (error != 0) { #ifdef MAC mac_inpcb_destroy(inp); #endif goto out; } #endif /*IPSEC*/ #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { inp->inp_vflag |= INP_IPV6PROTO; if (V_ip6_v6only) inp->inp_flags |= IN6P_IPV6_V6ONLY; } if (V_ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; #endif /* * Routes in inpcb's can cache L2 as well; they are guaranteed * to be cleaned up. */ inp->inp_route.ro_flags = RT_LLE_CACHE; #ifdef TCPHPTS /* * If using hpts lets drop a random number in so * not all new connections fall on the same CPU. */ inp->inp_hpts_cpu = hpts_random_cpu(inp); #endif refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ INP_WLOCK(inp); INP_INFO_WLOCK(pcbinfo); pcbinfo->ipi_count++; inp->inp_gencnt = ++pcbinfo->ipi_gencnt; CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); INP_INFO_WUNLOCK(pcbinfo); so->so_pcb = inp; return (0); #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) out: uma_zfree_smr(pcbinfo->ipi_zone, inp); return (error); #endif } #ifdef INET int in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { int anonport, error; KASSERT(nam == NULL || nam->sa_family == AF_INET, ("%s: invalid address family for %p", __func__, nam)); KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), ("%s: invalid address length for %p", __func__, nam)); INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, &inp->inp_lport, cred); if (error) return (error); if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } #endif #if defined(INET) || defined(INET6) /* * Assign a local port like in_pcb_lport(), but also used with connect() * and a foreign address and port. If fsa is non-NULL, choose a local port * that is unused with those, otherwise one that is completely unused. * lsa can be NULL for IPv6. */ int in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) { struct inpcbinfo *pcbinfo; struct inpcb *tmpinp; unsigned short *lastport; int count, dorandom, error; u_short aux, first, last, lport; #ifdef INET struct in_addr laddr, faddr; #endif #ifdef INET6 struct in6_addr *laddr6, *faddr6; #endif pcbinfo = inp->inp_pcbinfo; /* * Because no actual state changes occur here, a global write lock on * the pcbinfo isn't required. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); if (inp->inp_flags & INP_HIGHPORT) { first = V_ipport_hifirstauto; /* sysctl */ last = V_ipport_hilastauto; lastport = &pcbinfo->ipi_lasthi; } else if (inp->inp_flags & INP_LOWPORT) { error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); if (error) return (error); first = V_ipport_lowfirstauto; /* 1023 */ last = V_ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->ipi_lastlow; } else { first = V_ipport_firstauto; /* sysctl */ last = V_ipport_lastauto; lastport = &pcbinfo->ipi_lastport; } /* * For UDP(-Lite), use random port allocation as long as the user * allows it. For TCP (and as of yet unknown) connections, * use random port allocation only if the user allows it AND * ipport_tick() allows it. */ if (V_ipport_randomized && (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || pcbinfo == &V_ulitecbinfo)) dorandom = 1; else dorandom = 0; /* * It makes no sense to do random port allocation if * we have the only port available. */ if (first == last) dorandom = 0; /* Make sure to not include UDP(-Lite) packets in the count. */ if (pcbinfo != &V_udbinfo && pcbinfo != &V_ulitecbinfo) V_ipport_tcpallocs++; /* * Instead of having two loops further down counting up or down * make sure that first is always <= last and go with only one * code path implementing all logic. */ if (first > last) { aux = first; first = last; last = aux; } #ifdef INET laddr.s_addr = INADDR_ANY; if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { if (lsa != NULL) laddr = ((struct sockaddr_in *)lsa)->sin_addr; if (fsa != NULL) faddr = ((struct sockaddr_in *)fsa)->sin_addr; } #endif #ifdef INET6 laddr6 = NULL; if ((inp->inp_vflag & INP_IPV6) != 0) { if (lsa != NULL) laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; if (fsa != NULL) faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; } #endif tmpinp = NULL; lport = *lportp; if (dorandom) *lastport = first + (arc4random() % (last - first)); count = last - first; do { if (count-- < 0) /* completely used? */ return (EADDRNOTAVAIL); ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); if (fsa != NULL) { #ifdef INET if (lsa->sa_family == AF_INET) { tmpinp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, lookupflags, NULL, M_NODOM); } #endif #ifdef INET6 if (lsa->sa_family == AF_INET6) { tmpinp = in6_pcblookup_hash_locked(pcbinfo, faddr6, fport, laddr6, lport, lookupflags, NULL, M_NODOM); } #endif } else { #ifdef INET6 if ((inp->inp_vflag & INP_IPV6) != 0) tmpinp = in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport, lookupflags, cred); #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET tmpinp = in_pcblookup_local(pcbinfo, laddr, lport, lookupflags, cred); #endif } } while (tmpinp != NULL); *lportp = lport; return (0); } /* * Select a local port (number) to use. */ int in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, struct ucred *cred, int lookupflags) { struct sockaddr_in laddr; if (laddrp) { bzero(&laddr, sizeof(laddr)); laddr.sin_family = AF_INET; laddr.sin_addr = *laddrp; } return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : NULL, lportp, NULL, 0, cred, lookupflags)); } /* * Return cached socket options. */ int inp_so_options(const struct inpcb *inp) { int so_options; so_options = 0; if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) so_options |= SO_REUSEPORT_LB; if ((inp->inp_flags2 & INP_REUSEPORT) != 0) so_options |= SO_REUSEPORT; if ((inp->inp_flags2 & INP_REUSEADDR) != 0) so_options |= SO_REUSEADDR; return (so_options); } #endif /* INET || INET6 */ /* * Check if a new BINDMULTI socket is allowed to be created. * * ni points to the new inp. * oi points to the existing inp. * * This checks whether the existing inp also has BINDMULTI and * whether the credentials match. */ int in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) { /* Check permissions match */ if ((ni->inp_flags2 & INP_BINDMULTI) && (ni->inp_cred->cr_uid != oi->inp_cred->cr_uid)) return (0); /* Check the existing inp has BINDMULTI set */ if ((ni->inp_flags2 & INP_BINDMULTI) && ((oi->inp_flags2 & INP_BINDMULTI) == 0)) return (0); /* * We're okay - either INP_BINDMULTI isn't set on ni, or * it is and it matches the checks. */ return (1); } #ifdef INET /* * Set up a bind operation on a PCB, performing port allocation * as required, but do not actually modify the PCB. Callers can * either complete the bind by setting inp_laddr/inp_lport and * calling in_pcbinshash(), or they can just use the resulting * port and address to authorise the sending of a once-off packet. * * On error, the values of *laddrp and *lportp are not changed. */ int in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, struct ucred *cred) { struct socket *so = inp->inp_socket; struct sockaddr_in *sin; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct in_addr laddr; u_short lport = 0; int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); int error; /* * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here * so that we don't have to add to the (already messy) code below. */ int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); /* * No state changes, so read locks are sufficient here. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); laddr.s_addr = *laddrp; if (nam != NULL && laddr.s_addr != INADDR_ANY) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) lookupflags = INPLOOKUP_WILDCARD; if (nam == NULL) { if ((error = prison_local_ip4(cred, &laddr)) != 0) return (error); } else { sin = (struct sockaddr_in *)nam; KASSERT(sin->sin_family == AF_INET, ("%s: invalid family for address %p", __func__, sin)); KASSERT(sin->sin_len == sizeof(*sin), ("%s: invalid length for address %p", __func__, sin)); error = prison_local_ip4(cred, &sin->sin_addr); if (error) return (error); if (sin->sin_port != *lportp) { /* Don't allow the port to change. */ if (*lportp != 0) return (EINVAL); lport = sin->sin_port; } /* NB: lport is left as 0 if the port isn't being changed. */ if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) reuseport = SO_REUSEADDR|SO_REUSEPORT; /* * XXX: How to deal with SO_REUSEPORT_LB here? * Treat same as SO_REUSEPORT for now. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ bzero(&sin->sin_zero, sizeof(sin->sin_zero)); /* * Is the address a local IP address? * If INP_BINDANY is set, then the socket may be bound * to any endpoint address, local or not. */ if ((inp->inp_flags & INP_BINDANY) == 0 && ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) return (EADDRNOTAVAIL); } laddr = sin->sin_addr; if (lport) { struct inpcb *t; struct tcptw *tw; /* GROSS */ if (ntohs(lport) <= V_ipport_reservedhigh && ntohs(lport) >= V_ipport_reservedlow && priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) return (EACCES); if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, INPLOOKUP_WILDCARD, cred); /* * XXX * This entire block sorely needs a rewrite. */ if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && ((t->inp_flags & INP_TIMEWAIT) == 0) && (so->so_type != SOCK_STREAM || ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (t->inp_flags2 & INP_REUSEPORT) || (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); /* * If the socket is a BINDMULTI socket, then * the credentials need to match and the * original socket also has to have been bound * with BINDMULTI. */ if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, lookupflags, cred); if (t && (t->inp_flags & INP_TIMEWAIT)) { /* * XXXRW: If an incpb has had its timewait * state recycled, we treat the address as * being in use (for now). This is better * than a panic, but not desirable. */ tw = intotw(t); if (tw == NULL || ((reuseport & tw->tw_so_options) == 0 && (reuseport_lb & tw->tw_so_options) == 0)) { return (EADDRINUSE); } } else if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && (reuseport & inp_so_options(t)) == 0 && (reuseport_lb & inp_so_options(t)) == 0) { #ifdef INET6 if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (inp->inp_vflag & INP_IPV6PROTO) == 0 || (t->inp_vflag & INP_IPV6PROTO) == 0) #endif return (EADDRINUSE); if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } } } if (*lportp != 0) lport = *lportp; if (lport == 0) { error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); if (error != 0) return (error); } *laddrp = laddr.s_addr; *lportp = lport; return (0); } /* * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, bool rehash) { u_short lport, fport; in_addr_t laddr, faddr; int anonport, error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); lport = inp->inp_lport; laddr = inp->inp_laddr.s_addr; anonport = (lport == 0); error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, NULL, cred); if (error) return (error); /* Do the initial binding of the local address if required. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { KASSERT(rehash == true, ("Rehashing required for unbound inps")); inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } } /* Commit the remaining changes. */ inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; inp->inp_faddr.s_addr = faddr; inp->inp_fport = fport; if (rehash) { in_pcbrehash(inp); } else { in_pcbinshash(inp); } if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } /* * Do proper source address selection on an unbound socket in case * of connect. Take jails into account as well. */ int in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, struct ucred *cred) { struct ifaddr *ifa; struct sockaddr *sa; struct sockaddr_in *sin, dst; struct nhop_object *nh; int error; NET_EPOCH_ASSERT(); KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); /* * Bypass source address selection and use the primary jail IP * if requested. */ if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) return (0); error = 0; nh = NULL; bzero(&dst, sizeof(dst)); sin = &dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_addr.s_addr = faddr->s_addr; /* * If route is known our src addr is taken from the i/f, * else punt. * * Find out route to destination. */ if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 0, NHR_NONE, 0); /* * If we found a route, use the address corresponding to * the outgoing interface. * * Otherwise assume faddr is reachable on a directly connected * network and try to find a corresponding interface to take * the source address from. */ if (nh == NULL || nh->nh_ifp == NULL) { struct in_ifaddr *ia; struct ifnet *ifp; ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, inp->inp_socket->so_fibnum)); if (ia == NULL) { ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, inp->inp_socket->so_fibnum)); } if (ia == NULL) { error = ENETUNREACH; goto done; } if (cred == NULL || !prison_flag(cred, PR_IP4)) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } ifp = ia->ia_ifp; ia = NULL; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * If the outgoing interface on the route found is not * a loopback interface, use the address from that interface. * In case of jails do those three steps: * 1. check if the interface address belongs to the jail. If so use it. * 2. check if we have any address on the outgoing interface * belonging to this jail. If so use it. * 3. as a last resort return the 'default' jail address. */ if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { struct in_ifaddr *ia; struct ifnet *ifp; /* If not jailed, use the default returned. */ if (cred == NULL || !prison_flag(cred, PR_IP4)) { ia = (struct in_ifaddr *)nh->nh_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* Jailed. */ /* 1. Check if the iface address belongs to the jail. */ sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)nh->nh_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* * 2. Check if we have any address on the outgoing interface * belonging to this jail. */ ia = NULL; ifp = nh->nh_ifp; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * The outgoing interface is marked with 'loopback net', so a route * to ourselves is here. * Try to find the interface of the destination address and then * take the address from there. That interface is not necessarily * a loopback interface. * In case of jails, check that it is an address of the jail * and if we cannot find, fall back to the 'default' jail address. */ if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { struct in_ifaddr *ia; ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); if (cred == NULL || !prison_flag(cred, PR_IP4)) { if (ia == NULL) { error = ENETUNREACH; goto done; } laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* Jailed. */ if (ia != NULL) { struct ifnet *ifp; ifp = ia->ia_ifp; ia = NULL; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } done: return (error); } /* * Set up for a connect from a socket to the specified address. * On entry, *laddrp and *lportp should contain the current local * address and port for the PCB; these are updated to the values * that should be placed in inp_laddr and inp_lport to complete * the connect. * * On success, *faddrp and *fportp will be set to the remote address * and port. These are not updated in the error case. * * If the operation fails because the connection already exists, * *oinpp will be set to the PCB of that connection so that the * caller can decide to override it. In all other cases, *oinpp * is set to NULL. */ int in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, struct inpcb **oinpp, struct ucred *cred) { struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct in_ifaddr *ia; struct inpcb *oinp; struct in_addr laddr, faddr; u_short lport, fport; int error; KASSERT(sin->sin_family == AF_INET, ("%s: invalid address family for %p", __func__, sin)); KASSERT(sin->sin_len == sizeof(*sin), ("%s: invalid address length for %p", __func__, sin)); /* * Because a global state change doesn't actually occur here, a read * lock is sufficient. */ NET_EPOCH_ASSERT(); INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); if (oinpp != NULL) *oinpp = NULL; if (sin->sin_port == 0) return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; lport = *lportp; faddr = sin->sin_addr; fport = sin->sin_port; #ifdef ROUTE_MPATH if (CALC_FLOWID_OUTBOUND) { uint32_t hash_val, hash_type; hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, inp->inp_socket->so_proto->pr_protocol, &hash_type); inp->inp_flowid = hash_val; inp->inp_flowtype = hash_type; } #endif if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (faddr.s_addr == INADDR_ANY) { faddr = IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; if (cred != NULL && (error = prison_get_ip4(cred, &faddr)) != 0) return (error); } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & IFF_BROADCAST) faddr = satosin(&CK_STAILQ_FIRST( &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; } } if (laddr.s_addr == INADDR_ANY) { error = in_pcbladdr(inp, &faddr, &laddr, cred); /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, prefer the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(faddr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if ((ia->ia_ifp == ifp) && (cred == NULL || prison_check_ip4(cred, &ia->ia_addr.sin_addr) == 0)) break; } if (ia == NULL) error = EADDRNOTAVAIL; else { laddr = ia->ia_addr.sin_addr; error = 0; } } } if (error) return (error); } if (lport != 0) { oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, laddr, lport, 0, NULL, M_NODOM); if (oinp != NULL) { if (oinpp != NULL) *oinpp = oinp; return (EADDRINUSE); } } else { struct sockaddr_in lsin, fsin; bzero(&lsin, sizeof(lsin)); bzero(&fsin, sizeof(fsin)); lsin.sin_family = AF_INET; lsin.sin_addr = laddr; fsin.sin_family = AF_INET; fsin.sin_addr = faddr; error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, &lport, (struct sockaddr *)& fsin, fport, cred, INPLOOKUP_WILDCARD); if (error) return (error); } *laddrp = laddr.s_addr; *lportp = lport; *faddrp = faddr.s_addr; *fportp = fport; return (0); } void in_pcbdisconnect(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbrehash(inp); } #endif /* INET */ /* * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. * For most protocols, this will be invoked immediately prior to calling * in_pcbfree(). However, with TCP the inpcb may significantly outlive the * socket, in which case in_pcbfree() is deferred. */ void in_pcbdetach(struct inpcb *inp) { KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); #ifdef RATELIMIT if (inp->inp_snd_tag != NULL) in_pcbdetach_txrtlmt(inp); #endif inp->inp_socket->so_pcb = NULL; inp->inp_socket = NULL; } /* * inpcb hash lookups are protected by SMR section. * * Once desired pcb has been found, switching from SMR section to a pcb * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK * here because SMR is a critical section. * In 99%+ cases inp_smr_lock() would obtain the lock immediately. */ static inline void inp_lock(struct inpcb *inp, const inp_lookup_t lock) { lock == INPLOOKUP_RLOCKPCB ? rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); } static inline void inp_unlock(struct inpcb *inp, const inp_lookup_t lock) { lock == INPLOOKUP_RLOCKPCB ? rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); } static inline int inp_trylock(struct inpcb *inp, const inp_lookup_t lock) { return (lock == INPLOOKUP_RLOCKPCB ? rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); } static inline bool in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) { return (lock == INPLOOKUP_RLOCKPCB ? in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); } bool inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) { MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); if (__predict_true(inp_trylock(inp, lock))) { if (__predict_false(inp->inp_flags & INP_FREED)) { smr_exit(inp->inp_pcbinfo->ipi_smr); inp_unlock(inp, lock); return (false); } smr_exit(inp->inp_pcbinfo->ipi_smr); return (true); } if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { smr_exit(inp->inp_pcbinfo->ipi_smr); inp_lock(inp, lock); if (__predict_false(in_pcbrele(inp, lock))) return (false); /* * inp acquired through refcount & lock for sure didn't went * through uma_zfree(). However, it may have already went * through in_pcbfree() and has another reference, that * prevented its release by our in_pcbrele(). */ if (__predict_false(inp->inp_flags & INP_FREED)) { inp_unlock(inp, lock); return (false); } return (true); } else { smr_exit(inp->inp_pcbinfo->ipi_smr); return (false); } } /* * inp_next() - inpcb hash/list traversal iterator * * Requires initialized struct inpcb_iterator for context. * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). * * - Iterator can have either write-lock or read-lock semantics, that can not * be changed later. * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through * a single hash slot. Note: only rip_input() does the latter. * - Iterator may have optional bool matching function. The matching function * will be executed for each inpcb in the SMR context, so it can not acquire * locks and can safely access only immutable fields of inpcb. * * A fresh initialized iterator has NULL inpcb in its context and that * means that inp_next() call would return the very first inpcb on the list * locked with desired semantic. In all following calls the context pointer * shall hold the current inpcb pointer. The KPI user is not supposed to * unlock the current inpcb! Upon end of traversal inp_next() will return NULL * and write NULL to its context. After end of traversal an iterator can be * reused. * * List traversals have the following features/constraints: * - New entries won't be seen, as they are always added to the head of a list. * - Removed entries won't stop traversal as long as they are not added to * a different list. This is violated by in_pcbrehash(). */ #define II_LIST_FIRST(ipi, hash) \ (((hash) == INP_ALL_LIST) ? \ CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) #define II_LIST_NEXT(inp, hash) \ (((hash) == INP_ALL_LIST) ? \ CK_LIST_NEXT((inp), inp_list) : \ CK_LIST_NEXT((inp), inp_hash)) #define II_LOCK_ASSERT(inp, lock) \ rw_assert(&(inp)->inp_lock, \ (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) struct inpcb * inp_next(struct inpcb_iterator *ii) { const struct inpcbinfo *ipi = ii->ipi; inp_match_t *match = ii->match; void *ctx = ii->ctx; inp_lookup_t lock = ii->lock; int hash = ii->hash; struct inpcb *inp; if (ii->inp == NULL) { /* First call. */ smr_enter(ipi->ipi_smr); /* This is unrolled CK_LIST_FOREACH(). */ for (inp = II_LIST_FIRST(ipi, hash); inp != NULL; inp = II_LIST_NEXT(inp, hash)) { if (match != NULL && (match)(inp, ctx) == false) continue; if (__predict_true(inp_smr_lock(inp, lock))) break; else { smr_enter(ipi->ipi_smr); MPASS(inp != II_LIST_FIRST(ipi, hash)); inp = II_LIST_FIRST(ipi, hash); if (inp == NULL) break; } } if (inp == NULL) smr_exit(ipi->ipi_smr); else ii->inp = inp; return (inp); } /* Not a first call. */ smr_enter(ipi->ipi_smr); restart: inp = ii->inp; II_LOCK_ASSERT(inp, lock); next: inp = II_LIST_NEXT(inp, hash); if (inp == NULL) { smr_exit(ipi->ipi_smr); goto found; } if (match != NULL && (match)(inp, ctx) == false) goto next; if (__predict_true(inp_trylock(inp, lock))) { if (__predict_false(inp->inp_flags & INP_FREED)) { /* * Entries are never inserted in middle of a list, thus * as long as we are in SMR, we can continue traversal. * Jump to 'restart' should yield in the same result, * but could produce unnecessary looping. Could this * looping be unbound? */ inp_unlock(inp, lock); goto next; } else { smr_exit(ipi->ipi_smr); goto found; } } /* * Can't obtain lock immediately, thus going hard. Once we exit the * SMR section we can no longer jump to 'next', and our only stable * anchoring point is ii->inp, which we keep locked for this case, so * we jump to 'restart'. */ if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { smr_exit(ipi->ipi_smr); inp_lock(inp, lock); if (__predict_false(in_pcbrele(inp, lock))) { smr_enter(ipi->ipi_smr); goto restart; } /* * See comment in inp_smr_lock(). */ if (__predict_false(inp->inp_flags & INP_FREED)) { inp_unlock(inp, lock); smr_enter(ipi->ipi_smr); goto restart; } } else goto next; found: inp_unlock(ii->inp, lock); ii->inp = inp; return (ii->inp); } /* * in_pcbref() bumps the reference count on an inpcb in order to maintain * stability of an inpcb pointer despite the inpcb lock being released or * SMR section exited. * * To free a reference later in_pcbrele_(r|w)locked() must be performed. */ void in_pcbref(struct inpcb *inp) { u_int old __diagused; old = refcount_acquire(&inp->inp_refcount); KASSERT(old > 0, ("%s: refcount 0", __func__)); } /* * Drop a refcount on an inpcb elevated using in_pcbref(), potentially * freeing the pcb, if the reference was very last. */ bool in_pcbrele_rlocked(struct inpcb *inp) { INP_RLOCK_ASSERT(inp); if (refcount_release(&inp->inp_refcount) == 0) return (false); MPASS(inp->inp_flags & INP_FREED); MPASS(inp->inp_socket == NULL); MPASS(inp->inp_in_hpts == 0); INP_RUNLOCK(inp); uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); return (true); } bool in_pcbrele_wlocked(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); if (refcount_release(&inp->inp_refcount) == 0) return (false); MPASS(inp->inp_flags & INP_FREED); MPASS(inp->inp_socket == NULL); MPASS(inp->inp_in_hpts == 0); INP_WUNLOCK(inp); uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); return (true); } /* * Unconditionally schedule an inpcb to be freed by decrementing its * reference count, which should occur only after the inpcb has been detached * from its socket. If another thread holds a temporary reference (acquired * using in_pcbref()) then the free is deferred until that reference is * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. * Almost all work, including removal from global lists, is done in this * context, where the pcbinfo lock is held. */ void in_pcbfree(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; #ifdef INET struct ip_moptions *imo; #endif #ifdef INET6 struct ip6_moptions *im6o; #endif INP_WLOCK_ASSERT(inp); KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); KASSERT((inp->inp_flags & INP_FREED) == 0, ("%s: called twice for pcb %p", __func__, inp)); inp->inp_flags |= INP_FREED; INP_INFO_WLOCK(pcbinfo); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; pcbinfo->ipi_count--; CK_LIST_REMOVE(inp, inp_list); INP_INFO_WUNLOCK(pcbinfo); if (inp->inp_flags & INP_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; INP_HASH_WLOCK(pcbinfo); /* XXX: Only do if SO_REUSEPORT_LB set? */ in_pcbremlbgrouphash(inp); CK_LIST_REMOVE(inp, inp_hash); CK_LIST_REMOVE(inp, inp_portlist); if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { CK_LIST_REMOVE(phd, phd_hash); uma_zfree_smr(pcbinfo->ipi_portzone, phd); } INP_HASH_WUNLOCK(pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; } RO_INVALIDATE_CACHE(&inp->inp_route); #ifdef MAC mac_inpcb_destroy(inp); #endif #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (inp->inp_sp != NULL) ipsec_delete_pcbpolicy(inp); #endif #ifdef INET if (inp->inp_options) (void)m_free(inp->inp_options); imo = inp->inp_moptions; #endif #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) { ip6_freepcbopts(inp->in6p_outputopts); im6o = inp->in6p_moptions; } else im6o = NULL; #endif if (__predict_false(in_pcbrele_wlocked(inp) == false)) { INP_WUNLOCK(inp); } #ifdef INET6 ip6_freemoptions(im6o); #endif #ifdef INET inp_freemoptions(imo); #endif /* Destruction is finalized in inpcb_dtor(). */ } static void inpcb_dtor(void *mem, int size, void *arg) { struct inpcb *inp = mem; crfree(inp->inp_cred); #ifdef INVARIANTS inp->inp_cred = NULL; #endif } /* * Different protocols initialize their inpcbs differently - giving * different name to the lock. But they all are disposed the same. */ static void inpcb_fini(void *mem, int size) { struct inpcb *inp = mem; INP_LOCK_DESTROY(inp); } /* * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and * port reservation, and preventing it from being returned by inpcb lookups. * * It is used by TCP to mark an inpcb as unused and avoid future packet * delivery or event notification when a socket remains open but TCP has * closed. This might occur as a result of a shutdown()-initiated TCP close * or a RST on the wire, and allows the port binding to be reused while still * maintaining the invariant that so_pcb always points to a valid inpcb until * in_pcbdetach(). * * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by * in_pcbnotifyall() and in_pcbpurgeif0()? */ void in_pcbdrop(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); #ifdef INVARIANTS if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) MPASS(inp->inp_refcount > 1); #endif /* * XXXRW: Possibly we should protect the setting of INP_DROPPED with * the hash lock...? */ inp->inp_flags |= INP_DROPPED; if (inp->inp_flags & INP_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; INP_HASH_WLOCK(inp->inp_pcbinfo); in_pcbremlbgrouphash(inp); CK_LIST_REMOVE(inp, inp_hash); CK_LIST_REMOVE(inp, inp_portlist); if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { CK_LIST_REMOVE(phd, phd_hash); uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); } INP_HASH_WUNLOCK(inp->inp_pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; } } #ifdef INET /* * Common routines to return the socket addresses associated with inpcbs. */ struct sockaddr * in_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in *sin; sin = malloc(sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = *addr_p; sin->sin_port = port; return (struct sockaddr *)sin; } int in_getsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_lport; addr = inp->inp_laddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } int in_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_fport; addr = inp->inp_faddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, struct inpcb *(*notify)(struct inpcb *, int)) { struct inpcb *inp, *inp_temp; INP_INFO_WLOCK(pcbinfo); CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { INP_WLOCK(inp); #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) { INP_WUNLOCK(inp); continue; } #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) { INP_WUNLOCK(inp); continue; } if ((*notify)(inp, errno)) INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } static bool inp_v4_multi_match(const struct inpcb *inp, void *v __unused) { if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) return (true); else return (false); } void in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, inp_v4_multi_match, NULL); struct inpcb *inp; struct in_multi *inm; struct in_mfilter *imf; struct ip_moptions *imo; IN_MULTI_LOCK_ASSERT(); while ((inp = inp_next(&inpi)) != NULL) { INP_WLOCK_ASSERT(inp); imo = inp->inp_moptions; /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. * * XXX This can all be deferred to an epoch_call */ restart: IP_MFILTER_FOREACH(imf, &imo->imo_head) { if ((inm = imf->imf_inm) == NULL) continue; if (inm->inm_ifp != ifp) continue; ip_mfilter_remove(&imo->imo_head, imf); in_leavegroup_locked(inm, NULL); ip_mfilter_free(imf); goto restart; } } } /* * Lookup a PCB based on the local address and port. Caller must hold the * hash lock. No inpcb locks or references are acquired. */ #define INP_LOOKUP_MAPPED_PCB_COST 3 struct inpcb * in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, u_short lport, int lookupflags, struct ucred *cred) { struct inpcb *inp; #ifdef INET6 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; #else int matchwild = 3; #endif int wildcard; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, pcbinfo->ipi_hashmask)]; CK_LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found? */ if (cred == NULL || prison_equal_ip4(cred->cr_prison, inp->inp_cred->cr_prison)) return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; CK_LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if (cred != NULL && !prison_equal_ip4(inp->inp_cred->cr_prison, cred->cr_prison)) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; /* * We never select the PCB that has * INP_IPV6 flag and is bound to :: if * we have another PCB which is bound * to 0.0.0.0. If a PCB has the * INP_IPV6 flag, then we set its cost * higher than IPv4 only PCBs. * * Note that the case only happens * when a socket is bound to ::, under * the condition that the use of the * mapped address is allowed. */ if ((inp->inp_vflag & INP_IPV6) != 0) wildcard += INP_LOOKUP_MAPPED_PCB_COST; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } } return (match); } } #undef INP_LOOKUP_MAPPED_PCB_COST static struct inpcb * in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, uint16_t fport, int lookupflags, int numa_domain) { struct inpcb *local_wild, *numa_wild; const struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; uint32_t idx; INP_HASH_LOCK_ASSERT(pcbinfo); hdr = &pcbinfo->ipi_lbgrouphashbase[ INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; /* * Order of socket selection: * 1. non-wild. * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). * * NOTE: * - Load balanced group does not contain jailed sockets * - Load balanced group does not contain IPv4 mapped INET6 wild sockets */ local_wild = NULL; numa_wild = NULL; CK_LIST_FOREACH(grp, hdr, il_list) { #ifdef INET6 if (!(grp->il_vflag & INP_IPV4)) continue; #endif if (grp->il_lport != lport) continue; idx = INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % grp->il_inpcnt; if (grp->il_laddr.s_addr == laddr->s_addr) { if (numa_domain == M_NODOM || grp->il_numa_domain == numa_domain) { return (grp->il_inp[idx]); } else { numa_wild = grp->il_inp[idx]; } } if (grp->il_laddr.s_addr == INADDR_ANY && (lookupflags & INPLOOKUP_WILDCARD) != 0 && (local_wild == NULL || numa_domain == M_NODOM || grp->il_numa_domain == numa_domain)) { local_wild = grp->il_inp[idx]; } } if (numa_wild != NULL) return (numa_wild); return (local_wild); } /* * Lookup PCB in hash list, using pcbinfo tables. This variation assumes * that the caller has either locked the hash list, which usually happens * for bind(2) operations, or is in SMR section, which happens when sorting * out incoming packets. */ static struct inpcb * in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp, uint8_t numa_domain) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); /* * First look for an exact match. */ tmpinp = NULL; head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, pcbinfo->ipi_hashmask)]; CK_LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP4)) return (inp); if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) return (tmpinp); /* * Then look in lb group (for wildcard match). */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, fport, lookupflags, numa_domain); if (inp != NULL) return (inp); } /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, pcbinfo->ipi_hashmask)]; CK_LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4_locked( inp->inp_cred->cr_prison, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) return (inp); else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ if (jail_wild != NULL) return (jail_wild); if (local_exact != NULL) return (local_exact); if (local_wild != NULL) return (local_wild); #ifdef INET6 if (local_wild_mapped != NULL) return (local_wild_mapped); #endif } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ return (NULL); } /* * Lookup PCB in hash list, using pcbinfo tables. This variation locks the * hash list lock, and will return the inpcb locked (i.e., requires * INPLOOKUP_LOCKPCB). */ static struct inpcb * in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp, uint8_t numa_domain) { struct inpcb *inp; smr_enter(pcbinfo->ipi_smr); inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); if (inp != NULL) { if (__predict_false(inp_smr_lock(inp, (lookupflags & INPLOOKUP_LOCKMASK)) == false)) inp = NULL; } else smr_exit(pcbinfo->ipi_smr); return (inp); } /* * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf * from which a pre-calculated hash value may be extracted. */ struct inpcb * in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) { KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp, M_NODOM)); } struct inpcb * in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp, struct mbuf *m) { KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp, m->m_pkthdr.numa_domain)); } #endif /* INET */ /* * Insert PCB onto various hash lists. */ int in_pcbinshash(struct inpcb *inp) { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; int so_options; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, ("in_pcbinshash: INP_INHASHLIST")); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; else #endif pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; pcbporthash = &pcbinfo->ipi_porthashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; /* * Add entry to load balance group. * Only do this if SO_REUSEPORT_LB is set. */ so_options = inp_so_options(inp); if (so_options & SO_REUSEPORT_LB) { int ret = in_pcbinslbgrouphash(inp, M_NODOM); if (ret) { /* pcb lb group malloc fail (ret=ENOBUFS). */ return (ret); } } /* * Go through port list and look for a head for this lport. */ CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) break; } /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); if (phd == NULL) { return (ENOBUFS); /* XXX */ } phd->phd_port = inp->inp_lport; CK_LIST_INIT(&phd->phd_pcblist); CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); inp->inp_flags |= INP_INHASHLIST; return (0); } /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. * * XXXGL: a race between this function and SMR-protected hash iterator * will lead to iterator traversing a possibly wrong hash list. However, * this race should have been here since change from rwlock to epoch. */ void in_pcbrehash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *head; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT(inp->inp_flags & INP_INHASHLIST, ("in_pcbrehash: !INP_INHASHLIST")); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; else #endif head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; CK_LIST_REMOVE(inp, inp_hash); CK_LIST_INSERT_HEAD(head, inp, inp_hash); } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { RO_INVALIDATE_CACHE(&inp->inp_route); return; } /* * A set label operation has occurred at the socket layer, propagate the * label change into the in_pcb for the socket. */ void in_pcbsosetlabel(struct socket *so) { #ifdef MAC struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); INP_WLOCK(inp); SOCK_LOCK(so); mac_inpcb_sosetlabel(so, inp); SOCK_UNLOCK(so); INP_WUNLOCK(inp); #endif } /* * ipport_tick runs once per second, determining if random port allocation * should be continued. If more than ipport_randomcps ports have been * allocated in the last second, then we return to sequential port * allocation. We return to random allocation only once we drop below * ipport_randomcps for at least ipport_randomtime seconds. */ static void ipport_tick(void *xtp) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ if (V_ipport_tcpallocs - V_ipport_tcplastcount <= V_ipport_randomcps) { if (V_ipport_stoprandom > 0) V_ipport_stoprandom--; } else V_ipport_stoprandom = V_ipport_randomtime; V_ipport_tcplastcount = V_ipport_tcpallocs; CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); } static void ip_fini(void *xtp) { callout_stop(&ipport_tick_callout); } /* * The ipport_callout should start running at about the time we attach the * inet or inet6 domains. */ static void ipport_tick_init(const void *unused __unused) { /* Start ipport_tick. */ callout_init(&ipport_tick_callout, 1); callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, SHUTDOWN_PRI_DEFAULT); } SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, ipport_tick_init, NULL); void inp_wlock(struct inpcb *inp) { INP_WLOCK(inp); } void inp_wunlock(struct inpcb *inp) { INP_WUNLOCK(inp); } void inp_rlock(struct inpcb *inp) { INP_RLOCK(inp); } void inp_runlock(struct inpcb *inp) { INP_RUNLOCK(inp); } #ifdef INVARIANT_SUPPORT void inp_lock_assert(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); } void inp_unlock_assert(struct inpcb *inp) { INP_UNLOCK_ASSERT(inp); } #endif void inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) { struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, INPLOOKUP_WLOCKPCB); struct inpcb *inp; while ((inp = inp_next(&inpi)) != NULL) func(inp, arg); } struct socket * inp_inpcbtosocket(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return (inp->inp_socket); } struct tcpcb * inp_inpcbtotcpcb(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return ((struct tcpcb *)inp->inp_ppcb); } int inp_ip_tos_get(const struct inpcb *inp) { return (inp->inp_ip_tos); } void inp_ip_tos_set(struct inpcb *inp, int val) { inp->inp_ip_tos = val; } void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, uint32_t *faddr, uint16_t *fp) { INP_LOCK_ASSERT(inp); *laddr = inp->inp_laddr.s_addr; *faddr = inp->inp_faddr.s_addr; *lp = inp->inp_lport; *fp = inp->inp_fport; } struct inpcb * so_sotoinpcb(struct socket *so) { return (sotoinpcb(so)); } struct tcpcb * so_sototcpcb(struct socket *so) { return (sototcpcb(so)); } /* * Create an external-format (``xinpcb'') structure using the information in * the kernel-format in_pcb structure pointed to by inp. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) { bzero(xi, sizeof(*xi)); xi->xi_len = sizeof(struct xinpcb); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi->xi_socket); bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); xi->inp_gencnt = inp->inp_gencnt; xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; xi->inp_flow = inp->inp_flow; xi->inp_flowid = inp->inp_flowid; xi->inp_flowtype = inp->inp_flowtype; xi->inp_flags = inp->inp_flags; xi->inp_flags2 = inp->inp_flags2; xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; xi->in6p_cksum = inp->in6p_cksum; xi->in6p_hops = inp->in6p_hops; xi->inp_ip_tos = inp->inp_ip_tos; xi->inp_vflag = inp->inp_vflag; xi->inp_ip_ttl = inp->inp_ip_ttl; xi->inp_ip_p = inp->inp_ip_p; xi->inp_ip_minttl = inp->inp_ip_minttl; } int sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, int (*ctloutput_set)(struct inpcb *, struct sockopt *)) { struct sockopt sopt; struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB); struct inpcb *inp; struct sockopt_parameters *params; struct socket *so; int error; char buf[1024]; if (req->oldptr != NULL || req->oldlen != 0) return (EINVAL); if (req->newptr == NULL) return (EPERM); if (req->newlen > sizeof(buf)) return (ENOMEM); error = SYSCTL_IN(req, buf, req->newlen); if (error != 0) return (error); if (req->newlen < sizeof(struct sockopt_parameters)) return (EINVAL); params = (struct sockopt_parameters *)buf; sopt.sopt_level = params->sop_level; sopt.sopt_name = params->sop_optname; sopt.sopt_dir = SOPT_SET; sopt.sopt_val = params->sop_optval; sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); sopt.sopt_td = NULL; #ifdef INET6 if (params->sop_inc.inc_flags & INC_ISIPV6) { if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) params->sop_inc.inc6_laddr.s6_addr16[1] = htons(params->sop_inc.inc6_zoneid & 0xffff); if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) params->sop_inc.inc6_faddr.s6_addr16[1] = htons(params->sop_inc.inc6_zoneid & 0xffff); } #endif if (params->sop_inc.inc_lport != htons(0)) { if (params->sop_inc.inc_fport == htons(0)) inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, pcbinfo->ipi_hashmask); else #ifdef INET6 if (params->sop_inc.inc_flags & INC_ISIPV6) inpi.hash = INP6_PCBHASH( ¶ms->sop_inc.inc6_faddr, params->sop_inc.inc_lport, params->sop_inc.inc_fport, pcbinfo->ipi_hashmask); else #endif inpi.hash = INP_PCBHASH( ¶ms->sop_inc.inc_faddr, params->sop_inc.inc_lport, params->sop_inc.inc_fport, pcbinfo->ipi_hashmask); } while ((inp = inp_next(&inpi)) != NULL) if (inp->inp_gencnt == params->sop_id) { if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); return (ECONNRESET); } so = inp->inp_socket; KASSERT(so != NULL, ("inp_socket == NULL")); soref(so); error = (*ctloutput_set)(inp, &sopt); sorele(so); break; } if (inp == NULL) error = ESRCH; return (error); } #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) { char faddr_str[48], laddr_str[48]; db_print_indent(indent); db_printf("%s at %p\n", name, inc); indent += 2; #ifdef INET6 if (inc->inc_flags & INC_ISIPV6) { /* IPv6. */ ip6_sprintf(laddr_str, &inc->inc6_laddr); ip6_sprintf(faddr_str, &inc->inc6_faddr); } else #endif { /* IPv4. */ inet_ntoa_r(inc->inc_laddr, laddr_str); inet_ntoa_r(inc->inc_faddr, faddr_str); } db_print_indent(indent); db_printf("inc_laddr %s inc_lport %u\n", laddr_str, ntohs(inc->inc_lport)); db_print_indent(indent); db_printf("inc_faddr %s inc_fport %u\n", faddr_str, ntohs(inc->inc_fport)); } static void db_print_inpflags(int inp_flags) { int comma; comma = 0; if (inp_flags & INP_RECVOPTS) { db_printf("%sINP_RECVOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVRETOPTS) { db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVDSTADDR) { db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ORIGDSTADDR) { db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HDRINCL) { db_printf("%sINP_HDRINCL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HIGHPORT) { db_printf("%sINP_HIGHPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_LOWPORT) { db_printf("%sINP_LOWPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ANONPORT) { db_printf("%sINP_ANONPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVIF) { db_printf("%sINP_RECVIF", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_MTUDISC) { db_printf("%sINP_MTUDISC", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTTL) { db_printf("%sINP_RECVTTL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DONTFRAG) { db_printf("%sINP_DONTFRAG", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTOS) { db_printf("%sINP_RECVTOS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_IPV6_V6ONLY) { db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_PKTINFO) { db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPLIMIT) { db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPOPTS) { db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_DSTOPTS) { db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDR) { db_printf("%sIN6P_RTHDR", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDRDSTOPTS) { db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_TCLASS) { db_printf("%sIN6P_TCLASS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_AUTOFLOWLABEL) { db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_TIMEWAIT) { db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ONESBCAST) { db_printf("%sINP_ONESBCAST", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DROPPED) { db_printf("%sINP_DROPPED", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_SOCKREF) { db_printf("%sINP_SOCKREF", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RFC2292) { db_printf("%sIN6P_RFC2292", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_MTU) { db_printf("IN6P_MTU%s", comma ? ", " : ""); comma = 1; } } static void db_print_inpvflag(u_char inp_vflag) { int comma; comma = 0; if (inp_vflag & INP_IPV4) { db_printf("%sINP_IPV4", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6) { db_printf("%sINP_IPV6", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6PROTO) { db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); comma = 1; } } static void db_print_inpcb(struct inpcb *inp, const char *name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", name, inp); indent += 2; db_print_indent(indent); db_printf("inp_flow: 0x%x\n", inp->inp_flow); db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); db_print_indent(indent); db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); db_print_indent(indent); db_printf("inp_label: %p inp_flags: 0x%x (", inp->inp_label, inp->inp_flags); db_print_inpflags(inp->inp_flags); db_printf(")\n"); db_print_indent(indent); db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, inp->inp_vflag); db_print_inpvflag(inp->inp_vflag); db_printf(")\n"); db_print_indent(indent); db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); db_print_indent(indent); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { db_printf("in6p_options: %p in6p_outputopts: %p " "in6p_moptions: %p\n", inp->in6p_options, inp->in6p_outputopts, inp->in6p_moptions); db_printf("in6p_icmp6filt: %p in6p_cksum %d " "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, inp->in6p_hops); } else #endif { db_printf("inp_ip_tos: %d inp_ip_options: %p " "inp_ip_moptions: %p\n", inp->inp_ip_tos, inp->inp_options, inp->inp_moptions); } db_print_indent(indent); db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, (uintmax_t)inp->inp_gencnt); } DB_SHOW_COMMAND(inpcb, db_show_inpcb) { struct inpcb *inp; if (!have_addr) { db_printf("usage: show inpcb \n"); return; } inp = (struct inpcb *)addr; db_print_inpcb(inp, "inpcb", 0); } #endif /* DDB */ #ifdef RATELIMIT /* * Modify TX rate limit based on the existing "inp->inp_snd_tag", * if any. */ int in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) { union if_snd_tag_modify_params params = { .rate_limit.max_rate = max_pacing_rate, .rate_limit.flags = M_NOWAIT, }; struct m_snd_tag *mst; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); if (mst->sw->snd_tag_modify == NULL) { error = EOPNOTSUPP; } else { error = mst->sw->snd_tag_modify(mst, ¶ms); } return (error); } /* * Query existing TX rate limit based on the existing * "inp->inp_snd_tag", if any. */ int in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) { union if_snd_tag_query_params params = { }; struct m_snd_tag *mst; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); if (mst->sw->snd_tag_query == NULL) { error = EOPNOTSUPP; } else { error = mst->sw->snd_tag_query(mst, ¶ms); if (error == 0 && p_max_pacing_rate != NULL) *p_max_pacing_rate = params.rate_limit.max_rate; } return (error); } /* * Query existing TX queue level based on the existing * "inp->inp_snd_tag", if any. */ int in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) { union if_snd_tag_query_params params = { }; struct m_snd_tag *mst; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); if (mst->sw->snd_tag_query == NULL) return (EOPNOTSUPP); error = mst->sw->snd_tag_query(mst, ¶ms); if (error == 0 && p_txqueue_level != NULL) *p_txqueue_level = params.rate_limit.queue_level; return (error); } /* * Allocate a new TX rate limit send tag from the network interface * given by the "ifp" argument and save it in "inp->inp_snd_tag": */ int in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) { union if_snd_tag_alloc_params params = { .rate_limit.hdr.type = (max_pacing_rate == -1U) ? IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, .rate_limit.hdr.flowid = flowid, .rate_limit.hdr.flowtype = flowtype, .rate_limit.hdr.numa_domain = inp->inp_numa_domain, .rate_limit.max_rate = max_pacing_rate, .rate_limit.flags = M_NOWAIT, }; int error; INP_WLOCK_ASSERT(inp); /* * If there is already a send tag, or the INP is being torn * down, allocating a new send tag is not allowed. Else send * tags may leak. */ if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0) return (EINVAL); error = m_snd_tag_alloc(ifp, ¶ms, st); #ifdef INET if (error == 0) { counter_u64_add(rate_limit_set_ok, 1); counter_u64_add(rate_limit_active, 1); } else if (error != EOPNOTSUPP) counter_u64_add(rate_limit_alloc_fail, 1); #endif return (error); } void in_pcbdetach_tag(struct m_snd_tag *mst) { m_snd_tag_rele(mst); #ifdef INET counter_u64_add(rate_limit_active, -1); #endif } /* * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", * if any: */ void in_pcbdetach_txrtlmt(struct inpcb *inp) { struct m_snd_tag *mst; INP_WLOCK_ASSERT(inp); mst = inp->inp_snd_tag; inp->inp_snd_tag = NULL; if (mst == NULL) return; m_snd_tag_rele(mst); #ifdef INET counter_u64_add(rate_limit_active, -1); #endif } int in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) { int error; /* * If the existing send tag is for the wrong interface due to * a route change, first drop the existing tag. Set the * CHANGED flag so that we will keep trying to allocate a new * tag if we fail to allocate one this time. */ if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { in_pcbdetach_txrtlmt(inp); inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; } /* * NOTE: When attaching to a network interface a reference is * made to ensure the network interface doesn't go away until * all ratelimit connections are gone. The network interface * pointers compared below represent valid network interfaces, * except when comparing towards NULL. */ if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { error = 0; } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { if (inp->inp_snd_tag != NULL) in_pcbdetach_txrtlmt(inp); error = 0; } else if (inp->inp_snd_tag == NULL) { /* * In order to utilize packet pacing with RSS, we need * to wait until there is a valid RSS hash before we * can proceed: */ if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { error = EAGAIN; } else { error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); } } else { error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); } if (error == 0 || error == EOPNOTSUPP) inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; return (error); } /* * This function should be called when the INP_RATE_LIMIT_CHANGED flag * is set in the fast path and will attach/detach/modify the TX rate * limit send tag based on the socket's so_max_pacing_rate value. */ void in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) { struct socket *socket; uint32_t max_pacing_rate; bool did_upgrade; if (inp == NULL) return; socket = inp->inp_socket; if (socket == NULL) return; if (!INP_WLOCKED(inp)) { /* * NOTE: If the write locking fails, we need to bail * out and use the non-ratelimited ring for the * transmit until there is a new chance to get the * write lock. */ if (!INP_TRY_UPGRADE(inp)) return; did_upgrade = 1; } else { did_upgrade = 0; } /* * NOTE: The so_max_pacing_rate value is read unlocked, * because atomic updates are not required since the variable * is checked at every mbuf we send. It is assumed that the * variable read itself will be atomic. */ max_pacing_rate = socket->so_max_pacing_rate; in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); if (did_upgrade) INP_DOWNGRADE(inp); } /* * Track route changes for TX rate limiting. */ void in_pcboutput_eagain(struct inpcb *inp) { bool did_upgrade; if (inp == NULL) return; if (inp->inp_snd_tag == NULL) return; if (!INP_WLOCKED(inp)) { /* * NOTE: If the write locking fails, we need to bail * out and use the non-ratelimited ring for the * transmit until there is a new chance to get the * write lock. */ if (!INP_TRY_UPGRADE(inp)) return; did_upgrade = 1; } else { did_upgrade = 0; } /* detach rate limiting */ in_pcbdetach_txrtlmt(inp); /* make sure new mbuf send tag allocation is made */ inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; if (did_upgrade) INP_DOWNGRADE(inp); } #ifdef INET static void rl_init(void *st) { rate_limit_new = counter_u64_alloc(M_WAITOK); rate_limit_chg = counter_u64_alloc(M_WAITOK); rate_limit_active = counter_u64_alloc(M_WAITOK); rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); rate_limit_set_ok = counter_u64_alloc(M_WAITOK); } SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); #endif #endif /* RATELIMIT */