/* * ---------------------------------------------------------------------------- * "THE BEER-WARE LICENSE" (Revision 42): * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * ---------------------------------------------------------------------------- * * $Id: loran.c,v 1.9 1998/10/22 05:58:39 bde Exp $ * * This device-driver helps the userland controlprogram for a LORAN-C * receiver avoid monopolizing the CPU. * * This is clearly a candidate for the "most weird hardware support in * FreeBSD" prize. At this time only two copies of the receiver are * known to exist in the entire world. * * Details can be found at: * ftp://ftp.eecis.udel.edu/pub/ntp/loran.tar.Z * */ #ifdef KERNEL #include #include #include #include #include #include #include #include #endif /* KERNEL */ struct datapoint { void *ident; int index; u_int64_t scheduled; u_int delay; u_int code; u_int gri; u_int agc; u_int phase; u_int width; u_int par; u_int isig; u_int qsig; u_int ssig; u_int64_t epoch; struct timespec actual; TAILQ_ENTRY(datapoint) list; double ival; double qval; double sval; double mval; u_char status; u_int vco; int count; int remain; }; /* * Mode register (PAR) hardware definitions */ #define INTEG 0x03 /* integrator mask */ #define INTEG_1000us 0 #define INTEG_264us 1 #define INTEG_36us 2 #define INTEG_SHORT 3 #define GATE 0x0C /* gate source mask */ #define GATE_OPEN 0x0 #define GATE_GRI 0x4 #define GATE_PCI 0x8 #define GATE_STB 0xc #define MSB 0x10 /* load dac high-order bits */ #define IEN 0x20 /* enable interrupt bit */ #define EN5 0x40 /* enable counter 5 bit */ #define ENG 0x80 /* enable gri bit */ #define VCO 2048 /* initial vco dac (0 V)*/ #ifdef KERNEL #define PORT 0x0300 /* controller port address */ #define PGUARD 990 /* program guard time (cycle) (990!) */ #define GRI 800 /* pulse-group gate (cycle) */ /* * Analog/digital converter (ADC) hardware definitions */ #define ADC PORT+2 /* adc buffer (r)/address (w) */ #define ADCGO PORT+3 /* adc status (r)/adc start (w) */ #define ADC_START 0x01 /* converter start bit (w) */ #define ADC_BUSY 0x01 /* converter busy bit (r) */ #define ADC_DONE 0x80 /* converter done bit (r) */ #define ADC_I 0 /* i channel (phase) */ #define ADC_Q 1 /* q channel (amplitude) */ #define ADC_S 2 /* s channel (agc) */ /* * Digital/analog converter (DAC) hardware definitions * Note: output voltage increases with value programmed; the buffer * is loaded in two 8-bit bytes, the lsb 8 bits with the MSB bit off in * the PAR register, the msb 4 bits with the MSB on. */ #define DACA PORT+4 /* vco (dac a) buffer (w) */ #define DACB PORT+5 /* agc (dac b) buffer (w) */ #define LOAD_DAC(dac, val) if (0) { } else { \ par &= ~MSB; outb(PAR, par); outb((dac), (val) & 0xff); \ par |= MSB; outb(PAR, par); outb((dac), ((val) >> 8) & 0xff); \ } /* * Pulse-code generator (CODE) hardware definitions * Note: bits are shifted out from the lsb first */ #define CODE PORT+6 /* pulse-code buffer (w) */ #define MPCA 0xCA /* LORAN-C master pulse code group a */ #define MPCB 0x9F /* LORAN-C master pulse code group b */ #define SPCA 0xF9 /* LORAN-C slave pulse code group a */ #define SPCB 0xAC /* LORAN-C slave pulse code group b */ /* * Mode register (PAR) hardware definitions */ #define PAR PORT+7 /* parameter buffer (w) */ #define TGC PORT+0 /* stc control port (r/w) */ #define TGD PORT+1 /* stc data port (r/w) */ /* * Timing generator (STC) hardware commands */ /* argument sssss = counter numbers 5-1 */ #define TG_LOADDP 0x00 /* load data pointer */ /* argument ee = element (all groups except ggg = 000 or 111) */ #define MODEREG 0x00 /* mode register */ #define LOADREG 0x08 /* load register */ #define HOLDREG 0x10 /* hold register */ #define HOLDINC 0x18 /* hold register (hold cycle increm) */ /* argument ee = element (group ggg = 111) */ #define ALARM1 0x07 /* alarm register 1 */ #define ALARM2 0x0F /* alarm register 2 */ #define MASTER 0x17 /* master mode register */ #define STATUS 0x1F /* status register */ #define ARM 0x20 /* arm counters */ #define LOAD 0x40 /* load counters */ #define TG_LOADARM 0x60 /* load and arm counters */ #define DISSAVE 0x80 /* disarm and save counters */ #define TG_SAVE 0xA0 /* save counters */ #define DISARM 0xC0 /* disarm counters */ /* argument nnn = counter number */ #define SETTOG 0xE8 /* set toggle output HIGH for counter */ #define CLRTOG 0xE0 /* set toggle output LOW for counter */ #define STEP 0xF0 /* step counter */ /* argument eeggg, where ee = element, ggg - counter group */ /* no arguments */ #define ENABDPS 0xE0 /* enable data pointer sequencing */ #define ENABFOUT 0xE6 /* enable fout */ #define ENAB8 0xE7 /* enable 8-bit data bus */ #define DSABDPS 0xE8 /* disable data pointer sequencing */ #define ENAB16 0xEF /* enable 16-bit data bus */ #define DSABFOUT 0xEE /* disable fout */ #define ENABPFW 0xF8 /* enable prefetch for write */ #define DSABPFW 0xF9 /* disable prefetch for write */ #define TG_RESET 0xFF /* master reset */ #define LOAD_9513(index, val) if (0) {} else { \ outb(TGC, TG_LOADDP + (index)); \ outb(TGD, (val) & 0xff); \ outb(TGD, ((val) >> 8) & 0xff); \ } #define NENV 40 /* size of envelope filter */ #define CLOCK 50 /* clock period (clock) */ #define CYCLE 10 /* carrier period (us) */ #define PCX (NENV * CLOCK) /* envelope gate (clock) */ #define STROBE 50 /* strobe gate (clock) */ /**********************************************************************/ static TAILQ_HEAD(qhead, datapoint) qdone, qready; static struct datapoint dummy; static u_int64_t ticker; static u_char par; static struct datapoint *this, *next; static MALLOC_DEFINE(M_LORAN, "Loran", "Loran datapoints"); static int loranerror; static char lorantext[80]; static u_int vco_is; static u_int vco_should; static int lorantc_magic; /**********************************************************************/ static int loranprobe (struct isa_device *dvp); extern void init_tgc (void); static int loranattach (struct isa_device *isdp); static void loranenqueue (struct datapoint *); static d_open_t loranopen; static d_close_t loranclose; static d_read_t loranread; static d_write_t loranwrite; static ointhand2_t loranintr; extern struct timecounter loran_timecounter[]; /**********************************************************************/ int loranprobe(struct isa_device *dvp) { /* We need to be a "fast-intr" */ dvp->id_ri_flags |= RI_FAST; dvp->id_iobase = PORT; return (8); } u_short tg_init[] = { /* stc initialization vector */ 0x0562, 12, 13, /* counter 1 (p0) */ 0x0262, PGUARD, GRI, /* counter 2 (gri) */ 0x8562, PCX, 5000 - PCX, /* counter 3 (pcx) */ 0xc562, 0, STROBE, /* counter 4 (stb) */ 0x052a, 0, 0 /* counter 5 (out) */ }; void init_tgc(void) { int i; /* Initialize the 9513A */ outb(TGC, TG_RESET); outb(TGC, LOAD+0x1f); /* reset STC chip */ LOAD_9513(MASTER, 0x8af0); outb(TGC, TG_LOADDP+1); tg_init[4] = 7499 - GRI; for (i = 0; i < 5*3; i++) { outb(TGD, tg_init[i]); outb(TGD, tg_init[i] >> 8); } outb(TGC, TG_LOADARM+0x1f); /* let the good times roll */ } int loranattach(struct isa_device *isdp) { int i; isdp->id_ointr = loranintr; /* We need to be a "fast-intr" */ isdp->id_ri_flags |= RI_FAST; printf("loran0: LORAN-C Receiver\n"); vco_is = VCO; LOAD_DAC(DACA, VCO); init_tgc(); init_timecounter(&loran_timecounter); TAILQ_INIT(&qdone); TAILQ_INIT(&qready); dummy.agc = 4095; dummy.code = 0xac; dummy.delay = PGUARD - GRI; dummy.gri = PGUARD; dummy.phase = 50; dummy.width = 50; TAILQ_INSERT_HEAD(&qready, &dummy, list); this = &dummy; next = &dummy; inb(ADC); /* Flush any old result */ outb(ADC, ADC_S); par = ENG|IEN; outb(PAR, par); return (1); } static int loranopen (dev_t dev, int flags, int fmt, struct proc *p) { u_long ef; struct datapoint *this; while (!TAILQ_EMPTY(&qdone)) { ef = read_eflags(); disable_intr(); this = TAILQ_FIRST(&qdone); TAILQ_REMOVE(&qdone, this, list); write_eflags(ef); FREE(this, M_LORAN); } init_tgc(); loranerror = 0; return(0); } static int loranclose(dev_t dev, int flags, int fmt, struct proc *p) { /* * Lower ENG */ return(0); } static int loranread(dev_t dev, struct uio * uio, int ioflag) { u_long ef; struct datapoint *this; int err, c; if (loranerror) { printf("Loran0: %s", lorantext); return(EIO); } if (TAILQ_EMPTY(&qdone)) tsleep ((caddr_t)&qdone, PZERO + 8 |PCATCH, "loranrd", hz*2); if (TAILQ_EMPTY(&qdone)) return(0); this = TAILQ_FIRST(&qdone); ef = read_eflags(); disable_intr(); TAILQ_REMOVE(&qdone, this, list); write_eflags(ef); c = imin(uio->uio_resid, (int)sizeof *this); err = uiomove((caddr_t)this, c, uio); FREE(this, M_LORAN); return(err); } static void loranenqueue(struct datapoint *this) { struct datapoint *p, *q; u_long ef; u_int64_t x; if (this->scheduled < ticker) { x = (ticker - this->scheduled) / (2 * this->gri); this->scheduled += x * 2 * this->gri; } ef = read_eflags(); disable_intr(); p = TAILQ_FIRST(&qready); while (1) { while (this->scheduled < p->scheduled + PGUARD) this->scheduled += 2 * this->gri; q = TAILQ_NEXT(p, list); if (!q) { this->delay = this->scheduled - p->scheduled - GRI; TAILQ_INSERT_TAIL(&qready, this, list); break; } if (this->scheduled + PGUARD < q->scheduled) { this->delay = this->scheduled - p->scheduled - GRI; TAILQ_INSERT_BEFORE(q, this, list); q->delay = q->scheduled - this->scheduled - GRI; break; } p = q; } write_eflags(ef); } static int loranwrite(dev_t dev, struct uio * uio, int ioflag) { int err = 0, c; struct datapoint *this; MALLOC(this, struct datapoint *, sizeof *this, M_LORAN, M_WAITOK); c = imin(uio->uio_resid, (int)sizeof *this); err = uiomove((caddr_t)this, c, uio); if (!err && this->gri == 0) err = EINVAL; if (!err) { loranenqueue(this); vco_should = this->vco; } else { FREE(this, M_LORAN); } return(err); } static void loranintr(int unit) { u_long ef; int status = 0, count = 0, i; ef = read_eflags(); disable_intr(); if (this != &dummy) { outb(TGC, DSABDPS); outb(TGC, TG_LOADDP + 0x12); /* hold counter #2 */ this->remain = -1; i = 2; for (i = 0; i < 2; i++) { count = this->remain; do { outb(TGC, TG_SAVE + 0x12); this->remain = inb(TGD) & 0xff; this->remain |= inb(TGD) << 8; } while (count == this->remain); } lorantc_magic = 1; nanotime(&this->actual); lorantc_magic = 0; outb(TGC, TG_LOADDP + 0x0a); this->count = inb(TGD); this->count |= inb(TGD) << 8; LOAD_9513(0x12, GRI) } this->ssig = inb(ADC); par &= ~(ENG | IEN); outb(PAR, par); outb(ADC, ADC_I); outb(ADCGO, ADC_START); while (!(inb(ADCGO) & ADC_DONE)) continue; this->isig = inb(ADC); outb(ADC, ADC_Q); outb(ADCGO, ADC_START); while (!(inb(ADCGO) & ADC_DONE)) continue; this->qsig = inb(ADC); outb(ADC, ADC_S); this->epoch = ticker; if (this != &dummy) { TAILQ_INSERT_TAIL(&qdone, this, list); wakeup((caddr_t)&qdone); } if (next != &dummy || TAILQ_NEXT(next, list)) TAILQ_REMOVE(&qready, next, list); this = next; ticker += GRI; ticker += this->delay; next = TAILQ_FIRST(&qready); if (!next) { next = &dummy; TAILQ_INSERT_HEAD(&qready, next, list); } else if (next->delay + GRI > PGUARD * 2) { next->delay -= PGUARD; next = &dummy; TAILQ_INSERT_HEAD(&qready, next, list); } if (next == &dummy) next->scheduled = ticker + GRI + next->delay; /* load this->params */ par &= ~(INTEG|GATE); par |= this->par & (INTEG|GATE); LOAD_DAC(DACB, this->agc); outb(CODE, this->code); LOAD_9513(0x0a, next->delay); /* * We need to load this from the opposite register * due to some * weirdness which you can read about in in the 9513 manual on * page 1-26 under "LOAD" */ LOAD_9513(0x0c, this->phase); LOAD_9513(0x14, this->phase); outb(TGC, TG_LOADARM + 0x08); LOAD_9513(0x14, this->width); if (vco_is != vco_should) { LOAD_DAC(DACA, vco_should); vco_is = vco_should; } this->status = inb(TGC); #if 1 /* Check if we overran */ status = this->status & 0x1c; if (status) { outb(TGC, TG_SAVE + 2); /* save counter #2 */ outb(TGC, TG_LOADDP + 0x12); /* hold counter #2 */ count = inb(TGD); count |= inb(TGD) << 8; LOAD_9513(0x12, GRI) } #endif par |= ENG | IEN; outb(PAR, par); if (status) { sprintf(lorantext, "Missed: %02x %d %d this:%p next:%p (dummy=%p)\n", status, count, next->delay, this, next, &dummy); loranerror = 1; } if (next->delay < PGUARD - GRI) { sprintf(lorantext, "Bogus: %02x %d %d\n", status, count, next->delay); loranerror = 1; } write_eflags(ef); } /**********************************************************************/ static unsigned loran_get_timecount(struct timecounter *tc) { unsigned count; u_long ef; u_int high, low; ef = read_eflags(); disable_intr(); if (!lorantc_magic) outb(TGC, TG_SAVE + 0x10); /* save counter #5 */ outb(TGC, TG_LOADDP +0x15); /* hold counter #5 */ count = inb(TGD); count |= inb(TGD) << 8; write_eflags(ef); return (count); } static struct timecounter loran_timecounter = { loran_get_timecount, /* get_timecount */ 0, /* no pps_poll */ 0xffff, /* counter_mask */ 5000000, /* frequency */ "loran" /* name */ }; SYSCTL_OPAQUE(_debug, OID_AUTO, loran_timecounter, CTLFLAG_RD, loran_timecounter, sizeof(loran_timecounter), "S,timecounter", ""); /**********************************************************************/ struct isa_driver lorandriver = { loranprobe, loranattach, "loran" }; #define CDEV_MAJOR 94 static struct cdevsw loran_cdevsw = { loranopen, loranclose, loranread, loranwrite, noioctl, nullstop, nullreset, nodevtotty, seltrue, nommap, nostrat, "loran", NULL, -1 }; static loran_devsw_installed = 0; static void loran_drvinit(void *unused) { dev_t dev; if(!loran_devsw_installed) { dev = makedev(CDEV_MAJOR, 0); cdevsw_add(&dev,&loran_cdevsw, NULL); loran_devsw_installed = 1; } } SYSINIT(lorandev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,loran_drvinit,NULL) #endif /* KERNEL */