/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2014 by Chunwei Chen. All rights reserved. * Copyright (c) 2016 by Delphix. All rights reserved. */ /* * ARC buffer data (ABD). * * ABDs are an abstract data structure for the ARC which can use two * different ways of storing the underlying data: * * (a) Linear buffer. In this case, all the data in the ABD is stored in one * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). * * +-------------------+ * | ABD (linear) | * | abd_flags = ... | * | abd_size = ... | +--------------------------------+ * | abd_buf ------------->| raw buffer of size abd_size | * +-------------------+ +--------------------------------+ * no abd_chunks * * (b) Scattered buffer. In this case, the data in the ABD is split into * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers * to the chunks recorded in an array at the end of the ABD structure. * * +-------------------+ * | ABD (scattered) | * | abd_flags = ... | * | abd_size = ... | * | abd_offset = 0 | +-----------+ * | abd_chunks[0] ----------------------------->| chunk 0 | * | abd_chunks[1] ---------------------+ +-----------+ * | ... | | +-----------+ * | abd_chunks[N-1] ---------+ +------->| chunk 1 | * +-------------------+ | +-----------+ * | ... * | +-----------+ * +----------------->| chunk N-1 | * +-----------+ * * Linear buffers act exactly like normal buffers and are always mapped into the * kernel's virtual memory space, while scattered ABD data chunks are allocated * as physical pages and then mapped in only while they are actually being * accessed through one of the abd_* library functions. Using scattered ABDs * provides several benefits: * * (1) They avoid use of kmem_*, preventing performance problems where running * kmem_reap on very large memory systems never finishes and causes * constant TLB shootdowns. * * (2) Fragmentation is less of an issue since when we are at the limit of * allocatable space, we won't have to search around for a long free * hole in the VA space for large ARC allocations. Each chunk is mapped in * individually, so even if we weren't using segkpm (see next point) we * wouldn't need to worry about finding a contiguous address range. * * (3) Use of segkpm will avoid the need for map / unmap / TLB shootdown costs * on each ABD access. (If segkpm isn't available then we use all linear * ABDs to avoid this penalty.) See seg_kpm.c for more details. * * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to * B_FALSE. However, it is not possible to use scattered ABDs if segkpm is not * available, which is the case on all 32-bit systems and any 64-bit systems * where kpm_enable is turned off. * * In addition to directly allocating a linear or scattered ABD, it is also * possible to create an ABD by requesting the "sub-ABD" starting at an offset * within an existing ABD. In linear buffers this is simple (set abd_buf of * the new ABD to the starting point within the original raw buffer), but * scattered ABDs are a little more complex. The new ABD makes a copy of the * relevant abd_chunks pointers (but not the underlying data). However, to * provide arbitrary rather than only chunk-aligned starting offsets, it also * tracks an abd_offset field which represents the starting point of the data * within the first chunk in abd_chunks. For both linear and scattered ABDs, * creating an offset ABD marks the original ABD as the offset's parent, and the * original ABD's abd_children refcount is incremented. This data allows us to * ensure the root ABD isn't deleted before its children. * * Most consumers should never need to know what type of ABD they're using -- * the ABD public API ensures that it's possible to transparently switch from * using a linear ABD to a scattered one when doing so would be beneficial. * * If you need to use the data within an ABD directly, if you know it's linear * (because you allocated it) you can use abd_to_buf() to access the underlying * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions * which will allocate a raw buffer if necessary. Use the abd_return_buf* * functions to return any raw buffers that are no longer necessary when you're * done using them. * * There are a variety of ABD APIs that implement basic buffer operations: * compare, copy, read, write, and fill with zeroes. If you need a custom * function which progressively accesses the whole ABD, use the abd_iterate_* * functions. */ #include #include #include #include #include #ifdef _KERNEL #include #include #else #define MAX_ORDER 1 #endif typedef struct abd_stats { kstat_named_t abdstat_struct_size; kstat_named_t abdstat_linear_cnt; kstat_named_t abdstat_linear_data_size; kstat_named_t abdstat_scatter_cnt; kstat_named_t abdstat_scatter_data_size; kstat_named_t abdstat_scatter_chunk_waste; kstat_named_t abdstat_scatter_orders[MAX_ORDER]; kstat_named_t abdstat_scatter_page_multi_chunk; kstat_named_t abdstat_scatter_page_multi_zone; kstat_named_t abdstat_scatter_page_alloc_retry; kstat_named_t abdstat_scatter_sg_table_retry; } abd_stats_t; static abd_stats_t abd_stats = { /* Amount of memory occupied by all of the abd_t struct allocations */ { "struct_size", KSTAT_DATA_UINT64 }, /* * The number of linear ABDs which are currently allocated, excluding * ABDs which don't own their data (for instance the ones which were * allocated through abd_get_offset() and abd_get_from_buf()). If an * ABD takes ownership of its buf then it will become tracked. */ { "linear_cnt", KSTAT_DATA_UINT64 }, /* Amount of data stored in all linear ABDs tracked by linear_cnt */ { "linear_data_size", KSTAT_DATA_UINT64 }, /* * The number of scatter ABDs which are currently allocated, excluding * ABDs which don't own their data (for instance the ones which were * allocated through abd_get_offset()). */ { "scatter_cnt", KSTAT_DATA_UINT64 }, /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ { "scatter_data_size", KSTAT_DATA_UINT64 }, /* * The amount of space wasted at the end of the last chunk across all * scatter ABDs tracked by scatter_cnt. */ { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, /* * The number of compound allocations of a given order. These * allocations are spread over all currently allocated ABDs, and * act as a measure of memory fragmentation. */ { { "scatter_order_N", KSTAT_DATA_UINT64 } }, /* * The number of scatter ABDs which contain multiple chunks. * ABDs are preferentially allocated from the minimum number of * contiguous multi-page chunks, a single chunk is optimal. */ { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 }, /* * The number of scatter ABDs which are split across memory zones. * ABDs are preferentially allocated using pages from a single zone. */ { "scatter_page_multi_zone", KSTAT_DATA_UINT64 }, /* * The total number of retries encountered when attempting to * allocate the pages to populate the scatter ABD. */ { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 }, /* * The total number of retries encountered when attempting to * allocate the sg table for an ABD. */ { "scatter_sg_table_retry", KSTAT_DATA_UINT64 }, }; #define ABDSTAT(stat) (abd_stats.stat.value.ui64) #define ABDSTAT_INCR(stat, val) \ atomic_add_64(&abd_stats.stat.value.ui64, (val)) #define ABDSTAT_BUMP(stat) ABDSTAT_INCR(stat, 1) #define ABDSTAT_BUMPDOWN(stat) ABDSTAT_INCR(stat, -1) #define ABD_SCATTER(abd) (abd->abd_u.abd_scatter) #define ABD_BUF(abd) (abd->abd_u.abd_linear.abd_buf) #define abd_for_each_sg(abd, sg, n, i) \ for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i) /* see block comment above for description */ int zfs_abd_scatter_enabled = B_TRUE; unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1; static kmem_cache_t *abd_cache = NULL; static kstat_t *abd_ksp; static inline size_t abd_chunkcnt_for_bytes(size_t size) { return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE); } #ifdef _KERNEL #ifndef CONFIG_HIGHMEM #ifndef __GFP_RECLAIM #define __GFP_RECLAIM __GFP_WAIT #endif static unsigned long abd_alloc_chunk(int nid, gfp_t gfp, unsigned int order) { struct page *page; page = alloc_pages_node(nid, gfp, order); if (!page) return (0); return ((unsigned long) page_address(page)); } /* * The goal is to minimize fragmentation by preferentially populating ABDs * with higher order compound pages from a single zone. Allocation size is * progressively decreased until it can be satisfied without performing * reclaim or compaction. When necessary this function will degenerate to * allocating individual pages and allowing reclaim to satisfy allocations. */ static void abd_alloc_pages(abd_t *abd, size_t size) { struct list_head pages; struct sg_table table; struct scatterlist *sg; struct page *page, *tmp_page = NULL; gfp_t gfp = __GFP_NOWARN | GFP_NOIO; gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM; int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1); int nr_pages = abd_chunkcnt_for_bytes(size); int chunks = 0, zones = 0; size_t remaining_size; int nid = NUMA_NO_NODE; int alloc_pages = 0; int order; INIT_LIST_HEAD(&pages); while (alloc_pages < nr_pages) { unsigned long paddr; unsigned chunk_pages; order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order); chunk_pages = (1U << order); paddr = abd_alloc_chunk(nid, order ? gfp_comp : gfp, order); if (paddr == 0) { if (order == 0) { ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); schedule_timeout_interruptible(1); } else { max_order = MAX(0, order - 1); } continue; } page = virt_to_page(paddr); list_add_tail(&page->lru, &pages); if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid)) zones++; nid = page_to_nid(page); ABDSTAT_BUMP(abdstat_scatter_orders[order]); chunks++; alloc_pages += chunk_pages; } ASSERT3S(alloc_pages, ==, nr_pages); while (sg_alloc_table(&table, chunks, gfp)) { ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); schedule_timeout_interruptible(1); } sg = table.sgl; remaining_size = size; list_for_each_entry_safe(page, tmp_page, &pages, lru) { size_t sg_size = MIN(PAGESIZE << compound_order(page), remaining_size); sg_set_page(sg, page, sg_size, 0); remaining_size -= sg_size; sg = sg_next(sg); list_del(&page->lru); } if (chunks > 1) { ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; if (zones) { ABDSTAT_BUMP(abdstat_scatter_page_multi_zone); abd->abd_flags |= ABD_FLAG_MULTI_ZONE; } } ABD_SCATTER(abd).abd_sgl = table.sgl; ABD_SCATTER(abd).abd_nents = table.nents; } #else /* * Allocate N individual pages to construct a scatter ABD. This function * makes no attempt to request contiguous pages and requires the minimal * number of kernel interfaces. It's designed for maximum compatibility. */ static void abd_alloc_pages(abd_t *abd, size_t size) { struct scatterlist *sg = NULL; struct sg_table table; struct page *page; gfp_t gfp = __GFP_NOWARN | GFP_NOIO; int nr_pages = abd_chunkcnt_for_bytes(size); int i = 0; while (sg_alloc_table(&table, nr_pages, gfp)) { ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); schedule_timeout_interruptible(1); } ASSERT3U(table.nents, ==, nr_pages); ABD_SCATTER(abd).abd_sgl = table.sgl; ABD_SCATTER(abd).abd_nents = nr_pages; abd_for_each_sg(abd, sg, nr_pages, i) { while ((page = __page_cache_alloc(gfp)) == NULL) { ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry); schedule_timeout_interruptible(1); } ABDSTAT_BUMP(abdstat_scatter_orders[0]); sg_set_page(sg, page, PAGESIZE, 0); } if (nr_pages > 1) { ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); abd->abd_flags |= ABD_FLAG_MULTI_CHUNK; } } #endif /* !CONFIG_HIGHMEM */ static void abd_free_pages(abd_t *abd) { struct scatterlist *sg = NULL; struct sg_table table; struct page *page; int nr_pages = ABD_SCATTER(abd).abd_nents; int order, i = 0; if (abd->abd_flags & ABD_FLAG_MULTI_ZONE) ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone); if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK) ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); abd_for_each_sg(abd, sg, nr_pages, i) { page = sg_page(sg); order = compound_order(page); __free_pages(page, order); ASSERT3U(sg->length, <=, PAGE_SIZE << order); ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]); } table.sgl = ABD_SCATTER(abd).abd_sgl; table.nents = table.orig_nents = nr_pages; sg_free_table(&table); } #else /* _KERNEL */ #ifndef PAGE_SHIFT #define PAGE_SHIFT (highbit64(PAGESIZE)-1) #endif struct page; #define kpm_enable 1 #define abd_alloc_chunk(o) \ ((struct page *)umem_alloc_aligned(PAGESIZE << (o), 64, KM_SLEEP)) #define abd_free_chunk(chunk, o) umem_free(chunk, PAGESIZE << (o)) #define zfs_kmap_atomic(chunk, km) ((void *)chunk) #define zfs_kunmap_atomic(addr, km) do { (void)(addr); } while (0) #define local_irq_save(flags) do { (void)(flags); } while (0) #define local_irq_restore(flags) do { (void)(flags); } while (0) #define nth_page(pg, i) \ ((struct page *)((void *)(pg) + (i) * PAGESIZE)) struct scatterlist { struct page *page; int length; int end; }; static void sg_init_table(struct scatterlist *sg, int nr) { memset(sg, 0, nr * sizeof (struct scatterlist)); sg[nr - 1].end = 1; } #define for_each_sg(sgl, sg, nr, i) \ for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg)) static inline void sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len, unsigned int offset) { /* currently we don't use offset */ ASSERT(offset == 0); sg->page = page; sg->length = len; } static inline struct page * sg_page(struct scatterlist *sg) { return (sg->page); } static inline struct scatterlist * sg_next(struct scatterlist *sg) { if (sg->end) return (NULL); return (sg + 1); } static void abd_alloc_pages(abd_t *abd, size_t size) { unsigned nr_pages = abd_chunkcnt_for_bytes(size); struct scatterlist *sg; int i; ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages * sizeof (struct scatterlist), KM_SLEEP); sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages); abd_for_each_sg(abd, sg, nr_pages, i) { struct page *p = abd_alloc_chunk(0); sg_set_page(sg, p, PAGESIZE, 0); } ABD_SCATTER(abd).abd_nents = nr_pages; } static void abd_free_pages(abd_t *abd) { int i, n = ABD_SCATTER(abd).abd_nents; struct scatterlist *sg; int j; abd_for_each_sg(abd, sg, n, i) { for (j = 0; j < sg->length; j += PAGESIZE) { struct page *p = nth_page(sg_page(sg), j>>PAGE_SHIFT); abd_free_chunk(p, 0); } } vmem_free(ABD_SCATTER(abd).abd_sgl, n * sizeof (struct scatterlist)); } #endif /* _KERNEL */ void abd_init(void) { int i; abd_cache = kmem_cache_create("abd_t", sizeof (abd_t), 0, NULL, NULL, NULL, NULL, NULL, 0); abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (abd_ksp != NULL) { abd_ksp->ks_data = &abd_stats; kstat_install(abd_ksp); for (i = 0; i < MAX_ORDER; i++) { snprintf(abd_stats.abdstat_scatter_orders[i].name, KSTAT_STRLEN, "scatter_order_%d", i); abd_stats.abdstat_scatter_orders[i].data_type = KSTAT_DATA_UINT64; } } } void abd_fini(void) { if (abd_ksp != NULL) { kstat_delete(abd_ksp); abd_ksp = NULL; } if (abd_cache) { kmem_cache_destroy(abd_cache); abd_cache = NULL; } } static inline void abd_verify(abd_t *abd) { ASSERT3U(abd->abd_size, >, 0); ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE | ABD_FLAG_MULTI_CHUNK)); IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); if (abd_is_linear(abd)) { ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL); } else { size_t n; int i = 0; struct scatterlist *sg = NULL; ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0); ASSERT3U(ABD_SCATTER(abd).abd_offset, <, ABD_SCATTER(abd).abd_sgl->length); n = ABD_SCATTER(abd).abd_nents; abd_for_each_sg(abd, sg, n, i) { ASSERT3P(sg_page(sg), !=, NULL); } } } static inline abd_t * abd_alloc_struct(void) { abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); ASSERT3P(abd, !=, NULL); ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); return (abd); } static inline void abd_free_struct(abd_t *abd) { kmem_cache_free(abd_cache, abd); ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); } /* * Allocate an ABD, along with its own underlying data buffers. Use this if you * don't care whether the ABD is linear or not. */ abd_t * abd_alloc(size_t size, boolean_t is_metadata) { if (!zfs_abd_scatter_enabled || size <= PAGESIZE) return (abd_alloc_linear(size, is_metadata)); VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); abd_t *abd = abd_alloc_struct(); abd->abd_flags = ABD_FLAG_OWNER; abd_alloc_pages(abd, size); if (is_metadata) { abd->abd_flags |= ABD_FLAG_META; } abd->abd_size = size; abd->abd_parent = NULL; refcount_create(&abd->abd_children); abd->abd_u.abd_scatter.abd_offset = 0; ABDSTAT_BUMP(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, size); ABDSTAT_INCR(abdstat_scatter_chunk_waste, P2ROUNDUP(size, PAGESIZE) - size); return (abd); } static void abd_free_scatter(abd_t *abd) { abd_free_pages(abd); refcount_destroy(&abd->abd_children); ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); ABDSTAT_INCR(abdstat_scatter_chunk_waste, (int)abd->abd_size - (int)P2ROUNDUP(abd->abd_size, PAGESIZE)); abd_free_struct(abd); } /* * Allocate an ABD that must be linear, along with its own underlying data * buffer. Only use this when it would be very annoying to write your ABD * consumer with a scattered ABD. */ abd_t * abd_alloc_linear(size_t size, boolean_t is_metadata) { abd_t *abd = abd_alloc_struct(); VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER; if (is_metadata) { abd->abd_flags |= ABD_FLAG_META; } abd->abd_size = size; abd->abd_parent = NULL; refcount_create(&abd->abd_children); if (is_metadata) { abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size); } else { abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size); } ABDSTAT_BUMP(abdstat_linear_cnt); ABDSTAT_INCR(abdstat_linear_data_size, size); return (abd); } static void abd_free_linear(abd_t *abd) { if (abd->abd_flags & ABD_FLAG_META) { zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size); } else { zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size); } refcount_destroy(&abd->abd_children); ABDSTAT_BUMPDOWN(abdstat_linear_cnt); ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); abd_free_struct(abd); } /* * Free an ABD. Only use this on ABDs allocated with abd_alloc() or * abd_alloc_linear(). */ void abd_free(abd_t *abd) { abd_verify(abd); ASSERT3P(abd->abd_parent, ==, NULL); ASSERT(abd->abd_flags & ABD_FLAG_OWNER); if (abd_is_linear(abd)) abd_free_linear(abd); else abd_free_scatter(abd); } /* * Allocate an ABD of the same format (same metadata flag, same scatterize * setting) as another ABD. */ abd_t * abd_alloc_sametype(abd_t *sabd, size_t size) { boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; if (abd_is_linear(sabd)) { return (abd_alloc_linear(size, is_metadata)); } else { return (abd_alloc(size, is_metadata)); } } /* * If we're going to use this ABD for doing I/O using the block layer, the * consumer of the ABD data doesn't care if it's scattered or not, and we don't * plan to store this ABD in memory for a long period of time, we should * allocate the ABD type that requires the least data copying to do the I/O. * * On Illumos this is linear ABDs, however if ldi_strategy() can ever issue I/Os * using a scatter/gather list we should switch to that and replace this call * with vanilla abd_alloc(). * * On Linux the optimal thing to do would be to use abd_get_offset() and * construct a new ABD which shares the original pages thereby eliminating * the copy. But for the moment a new linear ABD is allocated until this * performance optimization can be implemented. */ abd_t * abd_alloc_for_io(size_t size, boolean_t is_metadata) { return (abd_alloc(size, is_metadata)); } /* * Allocate a new ABD to point to offset off of sabd. It shares the underlying * buffer data with sabd. Use abd_put() to free. sabd must not be freed while * any derived ABDs exist. */ static inline abd_t * abd_get_offset_impl(abd_t *sabd, size_t off, size_t size) { abd_t *abd; abd_verify(sabd); ASSERT3U(off, <=, sabd->abd_size); if (abd_is_linear(sabd)) { abd = abd_alloc_struct(); /* * Even if this buf is filesystem metadata, we only track that * if we own the underlying data buffer, which is not true in * this case. Therefore, we don't ever use ABD_FLAG_META here. */ abd->abd_flags = ABD_FLAG_LINEAR; abd->abd_u.abd_linear.abd_buf = (char *)sabd->abd_u.abd_linear.abd_buf + off; } else { int i = 0; struct scatterlist *sg = NULL; size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off; abd = abd_alloc_struct(); /* * Even if this buf is filesystem metadata, we only track that * if we own the underlying data buffer, which is not true in * this case. Therefore, we don't ever use ABD_FLAG_META here. */ abd->abd_flags = 0; abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) { if (new_offset < sg->length) break; new_offset -= sg->length; } ABD_SCATTER(abd).abd_sgl = sg; ABD_SCATTER(abd).abd_offset = new_offset; ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i; } abd->abd_size = size; abd->abd_parent = sabd; refcount_create(&abd->abd_children); (void) refcount_add_many(&sabd->abd_children, abd->abd_size, abd); return (abd); } abd_t * abd_get_offset(abd_t *sabd, size_t off) { size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0; VERIFY3U(size, >, 0); return (abd_get_offset_impl(sabd, off, size)); } abd_t * abd_get_offset_size(abd_t *sabd, size_t off, size_t size) { ASSERT3U(off + size, <=, sabd->abd_size); return (abd_get_offset_impl(sabd, off, size)); } /* * Allocate a linear ABD structure for buf. You must free this with abd_put() * since the resulting ABD doesn't own its own buffer. */ abd_t * abd_get_from_buf(void *buf, size_t size) { abd_t *abd = abd_alloc_struct(); VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); /* * Even if this buf is filesystem metadata, we only track that if we * own the underlying data buffer, which is not true in this case. * Therefore, we don't ever use ABD_FLAG_META here. */ abd->abd_flags = ABD_FLAG_LINEAR; abd->abd_size = size; abd->abd_parent = NULL; refcount_create(&abd->abd_children); abd->abd_u.abd_linear.abd_buf = buf; return (abd); } /* * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not * free the underlying scatterlist or buffer. */ void abd_put(abd_t *abd) { abd_verify(abd); ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); if (abd->abd_parent != NULL) { (void) refcount_remove_many(&abd->abd_parent->abd_children, abd->abd_size, abd); } refcount_destroy(&abd->abd_children); abd_free_struct(abd); } /* * Get the raw buffer associated with a linear ABD. */ void * abd_to_buf(abd_t *abd) { ASSERT(abd_is_linear(abd)); abd_verify(abd); return (abd->abd_u.abd_linear.abd_buf); } /* * Borrow a raw buffer from an ABD without copying the contents of the ABD * into the buffer. If the ABD is scattered, this will allocate a raw buffer * whose contents are undefined. To copy over the existing data in the ABD, use * abd_borrow_buf_copy() instead. */ void * abd_borrow_buf(abd_t *abd, size_t n) { void *buf; abd_verify(abd); ASSERT3U(abd->abd_size, >=, n); if (abd_is_linear(abd)) { buf = abd_to_buf(abd); } else { buf = zio_buf_alloc(n); } (void) refcount_add_many(&abd->abd_children, n, buf); return (buf); } void * abd_borrow_buf_copy(abd_t *abd, size_t n) { void *buf = abd_borrow_buf(abd, n); if (!abd_is_linear(abd)) { abd_copy_to_buf(buf, abd, n); } return (buf); } /* * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will * not change the contents of the ABD and will ASSERT that you didn't modify * the buffer since it was borrowed. If you want any changes you made to buf to * be copied back to abd, use abd_return_buf_copy() instead. */ void abd_return_buf(abd_t *abd, void *buf, size_t n) { abd_verify(abd); ASSERT3U(abd->abd_size, >=, n); if (abd_is_linear(abd)) { ASSERT3P(buf, ==, abd_to_buf(abd)); } else { ASSERT0(abd_cmp_buf(abd, buf, n)); zio_buf_free(buf, n); } (void) refcount_remove_many(&abd->abd_children, n, buf); } void abd_return_buf_copy(abd_t *abd, void *buf, size_t n) { if (!abd_is_linear(abd)) { abd_copy_from_buf(abd, buf, n); } abd_return_buf(abd, buf, n); } /* * Give this ABD ownership of the buffer that it's storing. Can only be used on * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated * with abd_alloc_linear() which subsequently released ownership of their buf * with abd_release_ownership_of_buf(). */ void abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) { ASSERT(abd_is_linear(abd)); ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); abd_verify(abd); abd->abd_flags |= ABD_FLAG_OWNER; if (is_metadata) { abd->abd_flags |= ABD_FLAG_META; } ABDSTAT_BUMP(abdstat_linear_cnt); ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); } void abd_release_ownership_of_buf(abd_t *abd) { ASSERT(abd_is_linear(abd)); ASSERT(abd->abd_flags & ABD_FLAG_OWNER); abd_verify(abd); abd->abd_flags &= ~ABD_FLAG_OWNER; /* Disable this flag since we no longer own the data buffer */ abd->abd_flags &= ~ABD_FLAG_META; ABDSTAT_BUMPDOWN(abdstat_linear_cnt); ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); } #ifndef HAVE_1ARG_KMAP_ATOMIC #define NR_KM_TYPE (6) #ifdef _KERNEL int km_table[NR_KM_TYPE] = { KM_USER0, KM_USER1, KM_BIO_SRC_IRQ, KM_BIO_DST_IRQ, KM_PTE0, KM_PTE1, }; #endif #endif struct abd_iter { /* public interface */ void *iter_mapaddr; /* addr corresponding to iter_pos */ size_t iter_mapsize; /* length of data valid at mapaddr */ /* private */ abd_t *iter_abd; /* ABD being iterated through */ size_t iter_pos; size_t iter_offset; /* offset in current sg/abd_buf, */ /* abd_offset included */ struct scatterlist *iter_sg; /* current sg */ #ifndef HAVE_1ARG_KMAP_ATOMIC int iter_km; /* KM_* for kmap_atomic */ #endif }; /* * Initialize the abd_iter. */ static void abd_iter_init(struct abd_iter *aiter, abd_t *abd, int km_type) { abd_verify(abd); aiter->iter_abd = abd; aiter->iter_mapaddr = NULL; aiter->iter_mapsize = 0; aiter->iter_pos = 0; if (abd_is_linear(abd)) { aiter->iter_offset = 0; aiter->iter_sg = NULL; } else { aiter->iter_offset = ABD_SCATTER(abd).abd_offset; aiter->iter_sg = ABD_SCATTER(abd).abd_sgl; } #ifndef HAVE_1ARG_KMAP_ATOMIC ASSERT3U(km_type, <, NR_KM_TYPE); aiter->iter_km = km_type; #endif } /* * Advance the iterator by a certain amount. Cannot be called when a chunk is * in use. This can be safely called when the aiter has already exhausted, in * which case this does nothing. */ static void abd_iter_advance(struct abd_iter *aiter, size_t amount) { ASSERT3P(aiter->iter_mapaddr, ==, NULL); ASSERT0(aiter->iter_mapsize); /* There's nothing left to advance to, so do nothing */ if (aiter->iter_pos == aiter->iter_abd->abd_size) return; aiter->iter_pos += amount; aiter->iter_offset += amount; if (!abd_is_linear(aiter->iter_abd)) { while (aiter->iter_offset >= aiter->iter_sg->length) { aiter->iter_offset -= aiter->iter_sg->length; aiter->iter_sg = sg_next(aiter->iter_sg); if (aiter->iter_sg == NULL) { ASSERT0(aiter->iter_offset); break; } } } } /* * Map the current chunk into aiter. This can be safely called when the aiter * has already exhausted, in which case this does nothing. */ static void abd_iter_map(struct abd_iter *aiter) { void *paddr; size_t offset = 0; ASSERT3P(aiter->iter_mapaddr, ==, NULL); ASSERT0(aiter->iter_mapsize); /* There's nothing left to iterate over, so do nothing */ if (aiter->iter_pos == aiter->iter_abd->abd_size) return; if (abd_is_linear(aiter->iter_abd)) { ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset); offset = aiter->iter_offset; aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf; } else { offset = aiter->iter_offset; aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset, aiter->iter_abd->abd_size - aiter->iter_pos); paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg), km_table[aiter->iter_km]); } aiter->iter_mapaddr = (char *)paddr + offset; } /* * Unmap the current chunk from aiter. This can be safely called when the aiter * has already exhausted, in which case this does nothing. */ static void abd_iter_unmap(struct abd_iter *aiter) { /* There's nothing left to unmap, so do nothing */ if (aiter->iter_pos == aiter->iter_abd->abd_size) return; if (!abd_is_linear(aiter->iter_abd)) { /* LINTED E_FUNC_SET_NOT_USED */ zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset, km_table[aiter->iter_km]); } ASSERT3P(aiter->iter_mapaddr, !=, NULL); ASSERT3U(aiter->iter_mapsize, >, 0); aiter->iter_mapaddr = NULL; aiter->iter_mapsize = 0; } int abd_iterate_func(abd_t *abd, size_t off, size_t size, abd_iter_func_t *func, void *private) { int ret = 0; struct abd_iter aiter; abd_verify(abd); ASSERT3U(off + size, <=, abd->abd_size); abd_iter_init(&aiter, abd, 0); abd_iter_advance(&aiter, off); while (size > 0) { abd_iter_map(&aiter); size_t len = MIN(aiter.iter_mapsize, size); ASSERT3U(len, >, 0); ret = func(aiter.iter_mapaddr, len, private); abd_iter_unmap(&aiter); if (ret != 0) break; size -= len; abd_iter_advance(&aiter, len); } return (ret); } struct buf_arg { void *arg_buf; }; static int abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) { struct buf_arg *ba_ptr = private; (void) memcpy(ba_ptr->arg_buf, buf, size); ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; return (0); } /* * Copy abd to buf. (off is the offset in abd.) */ void abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) { struct buf_arg ba_ptr = { buf }; (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, &ba_ptr); } static int abd_cmp_buf_off_cb(void *buf, size_t size, void *private) { int ret; struct buf_arg *ba_ptr = private; ret = memcmp(buf, ba_ptr->arg_buf, size); ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; return (ret); } /* * Compare the contents of abd to buf. (off is the offset in abd.) */ int abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) { struct buf_arg ba_ptr = { (void *) buf }; return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); } static int abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) { struct buf_arg *ba_ptr = private; (void) memcpy(buf, ba_ptr->arg_buf, size); ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; return (0); } /* * Copy from buf to abd. (off is the offset in abd.) */ void abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) { struct buf_arg ba_ptr = { (void *) buf }; (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, &ba_ptr); } /*ARGSUSED*/ static int abd_zero_off_cb(void *buf, size_t size, void *private) { (void) memset(buf, 0, size); return (0); } /* * Zero out the abd from a particular offset to the end. */ void abd_zero_off(abd_t *abd, size_t off, size_t size) { (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); } /* * Iterate over two ABDs and call func incrementally on the two ABDs' data in * equal-sized chunks (passed to func as raw buffers). func could be called many * times during this iteration. */ int abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size, abd_iter_func2_t *func, void *private) { int ret = 0; struct abd_iter daiter, saiter; abd_verify(dabd); abd_verify(sabd); ASSERT3U(doff + size, <=, dabd->abd_size); ASSERT3U(soff + size, <=, sabd->abd_size); abd_iter_init(&daiter, dabd, 0); abd_iter_init(&saiter, sabd, 1); abd_iter_advance(&daiter, doff); abd_iter_advance(&saiter, soff); while (size > 0) { abd_iter_map(&daiter); abd_iter_map(&saiter); size_t dlen = MIN(daiter.iter_mapsize, size); size_t slen = MIN(saiter.iter_mapsize, size); size_t len = MIN(dlen, slen); ASSERT(dlen > 0 || slen > 0); ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, private); abd_iter_unmap(&saiter); abd_iter_unmap(&daiter); if (ret != 0) break; size -= len; abd_iter_advance(&daiter, len); abd_iter_advance(&saiter, len); } return (ret); } /*ARGSUSED*/ static int abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) { (void) memcpy(dbuf, sbuf, size); return (0); } /* * Copy from sabd to dabd starting from soff and doff. */ void abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) { (void) abd_iterate_func2(dabd, sabd, doff, soff, size, abd_copy_off_cb, NULL); } /*ARGSUSED*/ static int abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) { return (memcmp(bufa, bufb, size)); } /* * Compares the contents of two ABDs. */ int abd_cmp(abd_t *dabd, abd_t *sabd) { ASSERT3U(dabd->abd_size, ==, sabd->abd_size); return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size, abd_cmp_cb, NULL)); } /* * Iterate over code ABDs and a data ABD and call @func_raidz_gen. * * @cabds parity ABDs, must have equal size * @dabd data ABD. Can be NULL (in this case @dsize = 0) * @func_raidz_gen should be implemented so that its behaviour * is the same when taking linear and when taking scatter */ void abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, ssize_t csize, ssize_t dsize, const unsigned parity, void (*func_raidz_gen)(void **, const void *, size_t, size_t)) { int i; ssize_t len, dlen; struct abd_iter caiters[3]; struct abd_iter daiter = {0}; void *caddrs[3]; unsigned long flags; ASSERT3U(parity, <=, 3); for (i = 0; i < parity; i++) abd_iter_init(&caiters[i], cabds[i], i); if (dabd) abd_iter_init(&daiter, dabd, i); ASSERT3S(dsize, >=, 0); local_irq_save(flags); while (csize > 0) { len = csize; if (dabd && dsize > 0) abd_iter_map(&daiter); for (i = 0; i < parity; i++) { abd_iter_map(&caiters[i]); caddrs[i] = caiters[i].iter_mapaddr; } switch (parity) { case 3: len = MIN(caiters[2].iter_mapsize, len); case 2: len = MIN(caiters[1].iter_mapsize, len); case 1: len = MIN(caiters[0].iter_mapsize, len); } /* must be progressive */ ASSERT3S(len, >, 0); if (dabd && dsize > 0) { /* this needs precise iter.length */ len = MIN(daiter.iter_mapsize, len); dlen = len; } else dlen = 0; /* must be progressive */ ASSERT3S(len, >, 0); /* * The iterated function likely will not do well if each * segment except the last one is not multiple of 512 (raidz). */ ASSERT3U(((uint64_t)len & 511ULL), ==, 0); func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen); for (i = parity-1; i >= 0; i--) { abd_iter_unmap(&caiters[i]); abd_iter_advance(&caiters[i], len); } if (dabd && dsize > 0) { abd_iter_unmap(&daiter); abd_iter_advance(&daiter, dlen); dsize -= dlen; } csize -= len; ASSERT3S(dsize, >=, 0); ASSERT3S(csize, >=, 0); } local_irq_restore(flags); } /* * Iterate over code ABDs and data reconstruction target ABDs and call * @func_raidz_rec. Function maps at most 6 pages atomically. * * @cabds parity ABDs, must have equal size * @tabds rec target ABDs, at most 3 * @tsize size of data target columns * @func_raidz_rec expects syndrome data in target columns. Function * reconstructs data and overwrites target columns. */ void abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, ssize_t tsize, const unsigned parity, void (*func_raidz_rec)(void **t, const size_t tsize, void **c, const unsigned *mul), const unsigned *mul) { int i; ssize_t len; struct abd_iter citers[3]; struct abd_iter xiters[3]; void *caddrs[3], *xaddrs[3]; unsigned long flags; ASSERT3U(parity, <=, 3); for (i = 0; i < parity; i++) { abd_iter_init(&citers[i], cabds[i], 2*i); abd_iter_init(&xiters[i], tabds[i], 2*i+1); } local_irq_save(flags); while (tsize > 0) { for (i = 0; i < parity; i++) { abd_iter_map(&citers[i]); abd_iter_map(&xiters[i]); caddrs[i] = citers[i].iter_mapaddr; xaddrs[i] = xiters[i].iter_mapaddr; } len = tsize; switch (parity) { case 3: len = MIN(xiters[2].iter_mapsize, len); len = MIN(citers[2].iter_mapsize, len); case 2: len = MIN(xiters[1].iter_mapsize, len); len = MIN(citers[1].iter_mapsize, len); case 1: len = MIN(xiters[0].iter_mapsize, len); len = MIN(citers[0].iter_mapsize, len); } /* must be progressive */ ASSERT3S(len, >, 0); /* * The iterated function likely will not do well if each * segment except the last one is not multiple of 512 (raidz). */ ASSERT3U(((uint64_t)len & 511ULL), ==, 0); func_raidz_rec(xaddrs, len, caddrs, mul); for (i = parity-1; i >= 0; i--) { abd_iter_unmap(&xiters[i]); abd_iter_unmap(&citers[i]); abd_iter_advance(&xiters[i], len); abd_iter_advance(&citers[i], len); } tsize -= len; ASSERT3S(tsize, >=, 0); } local_irq_restore(flags); } #if defined(_KERNEL) /* * bio_nr_pages for ABD. * @off is the offset in @abd */ unsigned long abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) { unsigned long pos; if (abd_is_linear(abd)) pos = (unsigned long)abd_to_buf(abd) + off; else pos = abd->abd_u.abd_scatter.abd_offset + off; return ((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) - (pos >> PAGE_SHIFT); } /* * bio_map for scatter ABD. * @off is the offset in @abd * Remaining IO size is returned */ unsigned int abd_scatter_bio_map_off(struct bio *bio, abd_t *abd, unsigned int io_size, size_t off) { int i; struct abd_iter aiter; ASSERT(!abd_is_linear(abd)); ASSERT3U(io_size, <=, abd->abd_size - off); abd_iter_init(&aiter, abd, 0); abd_iter_advance(&aiter, off); for (i = 0; i < bio->bi_max_vecs; i++) { struct page *pg; size_t len, sgoff, pgoff; struct scatterlist *sg; if (io_size <= 0) break; sg = aiter.iter_sg; sgoff = aiter.iter_offset; pgoff = sgoff & (PAGESIZE - 1); len = MIN(io_size, PAGESIZE - pgoff); ASSERT(len > 0); pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT); if (bio_add_page(bio, pg, len, pgoff) != len) break; io_size -= len; abd_iter_advance(&aiter, len); } return (io_size); } /* Tunable Parameters */ module_param(zfs_abd_scatter_enabled, int, 0644); MODULE_PARM_DESC(zfs_abd_scatter_enabled, "Toggle whether ABD allocations must be linear."); /* CSTYLED */ module_param(zfs_abd_scatter_max_order, uint, 0644); MODULE_PARM_DESC(zfs_abd_scatter_max_order, "Maximum order allocation used for a scatter ABD."); #endif