/* * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. * * $FreeBSD$ */ /* * Virtual memory mapping module. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Virtual memory maps provide for the mapping, protection, * and sharing of virtual memory objects. In addition, * this module provides for an efficient virtual copy of * memory from one map to another. * * Synchronization is required prior to most operations. * * Maps consist of an ordered doubly-linked list of simple * entries; a single hint is used to speed up lookups. * * Since portions of maps are specified by start/end addresses, * which may not align with existing map entries, all * routines merely "clip" entries to these start/end values. * [That is, an entry is split into two, bordering at a * start or end value.] Note that these clippings may not * always be necessary (as the two resulting entries are then * not changed); however, the clipping is done for convenience. * * As mentioned above, virtual copy operations are performed * by copying VM object references from one map to * another, and then marking both regions as copy-on-write. */ /* * vm_map_startup: * * Initialize the vm_map module. Must be called before * any other vm_map routines. * * Map and entry structures are allocated from the general * purpose memory pool with some exceptions: * * - The kernel map and kmem submap are allocated statically. * - Kernel map entries are allocated out of a static pool. * * These restrictions are necessary since malloc() uses the * maps and requires map entries. */ static struct mtx map_sleep_mtx; static uma_zone_t mapentzone; static uma_zone_t kmapentzone; static uma_zone_t mapzone; static uma_zone_t vmspace_zone; static struct vm_object kmapentobj; static void vmspace_zinit(void *mem, int size); static void vmspace_zfini(void *mem, int size); static void vm_map_zinit(void *mem, int size); static void vm_map_zfini(void *mem, int size); static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max); #ifdef INVARIANTS static void vm_map_zdtor(void *mem, int size, void *arg); static void vmspace_zdtor(void *mem, int size, void *arg); #endif void vm_map_startup(void) { mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, #ifdef INVARIANTS vm_map_zdtor, #else NULL, #endif vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uma_prealloc(mapzone, MAX_KMAP); kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_MTXCLASS | UMA_ZONE_VM); uma_prealloc(kmapentzone, MAX_KMAPENT); mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_prealloc(mapentzone, MAX_MAPENT); } static void vmspace_zfini(void *mem, int size) { struct vmspace *vm; vm = (struct vmspace *)mem; vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); } static void vmspace_zinit(void *mem, int size) { struct vmspace *vm; vm = (struct vmspace *)mem; vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map)); } static void vm_map_zfini(void *mem, int size) { vm_map_t map; map = (vm_map_t)mem; mtx_destroy(&map->system_mtx); lockdestroy(&map->lock); } static void vm_map_zinit(void *mem, int size) { vm_map_t map; map = (vm_map_t)mem; map->nentries = 0; map->size = 0; map->infork = 0; mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); } #ifdef INVARIANTS static void vmspace_zdtor(void *mem, int size, void *arg) { struct vmspace *vm; vm = (struct vmspace *)mem; vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); } static void vm_map_zdtor(void *mem, int size, void *arg) { vm_map_t map; map = (vm_map_t)mem; KASSERT(map->nentries == 0, ("map %p nentries == %d on free.", map, map->nentries)); KASSERT(map->size == 0, ("map %p size == %lu on free.", map, (unsigned long)map->size)); KASSERT(map->infork == 0, ("map %p infork == %d on free.", map, map->infork)); } #endif /* INVARIANTS */ /* * Allocate a vmspace structure, including a vm_map and pmap, * and initialize those structures. The refcnt is set to 1. * The remaining fields must be initialized by the caller. */ struct vmspace * vmspace_alloc(min, max) vm_offset_t min, max; { struct vmspace *vm; GIANT_REQUIRED; vm = uma_zalloc(vmspace_zone, M_WAITOK); CTR1(KTR_VM, "vmspace_alloc: %p", vm); _vm_map_init(&vm->vm_map, min, max); pmap_pinit(vmspace_pmap(vm)); vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ vm->vm_refcnt = 1; vm->vm_shm = NULL; vm->vm_exitingcnt = 0; return (vm); } void vm_init2(void) { uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8); vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, #ifdef INVARIANTS vmspace_zdtor, #else NULL, #endif vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); pmap_init2(); } static __inline void vmspace_dofree(struct vmspace *vm) { CTR1(KTR_VM, "vmspace_free: %p", vm); /* * Make sure any SysV shm is freed, it might not have been in * exit1(). */ shmexit(vm); /* * Lock the map, to wait out all other references to it. * Delete all of the mappings and pages they hold, then call * the pmap module to reclaim anything left. */ vm_map_lock(&vm->vm_map); (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, vm->vm_map.max_offset); vm_map_unlock(&vm->vm_map); pmap_release(vmspace_pmap(vm)); uma_zfree(vmspace_zone, vm); } void vmspace_free(struct vmspace *vm) { GIANT_REQUIRED; if (vm->vm_refcnt == 0) panic("vmspace_free: attempt to free already freed vmspace"); if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0) vmspace_dofree(vm); } void vmspace_exitfree(struct proc *p) { struct vmspace *vm; GIANT_REQUIRED; vm = p->p_vmspace; p->p_vmspace = NULL; /* * cleanup by parent process wait()ing on exiting child. vm_refcnt * may not be 0 (e.g. fork() and child exits without exec()ing). * exitingcnt may increment above 0 and drop back down to zero * several times while vm_refcnt is held non-zero. vm_refcnt * may also increment above 0 and drop back down to zero several * times while vm_exitingcnt is held non-zero. * * The last wait on the exiting child's vmspace will clean up * the remainder of the vmspace. */ if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0) vmspace_dofree(vm); } /* * vmspace_swap_count() - count the approximate swap useage in pages for a * vmspace. * * The map must be locked. * * Swap useage is determined by taking the proportional swap used by * VM objects backing the VM map. To make up for fractional losses, * if the VM object has any swap use at all the associated map entries * count for at least 1 swap page. */ int vmspace_swap_count(struct vmspace *vmspace) { vm_map_t map = &vmspace->vm_map; vm_map_entry_t cur; int count = 0; for (cur = map->header.next; cur != &map->header; cur = cur->next) { vm_object_t object; if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && (object = cur->object.vm_object) != NULL && object->type == OBJT_SWAP ) { int n = (cur->end - cur->start) / PAGE_SIZE; if (object->un_pager.swp.swp_bcount) { count += object->un_pager.swp.swp_bcount * SWAP_META_PAGES * n / object->size + 1; } } } return (count); } void _vm_map_lock(vm_map_t map, const char *file, int line) { int error; if (map->system_map) _mtx_lock_flags(&map->system_mtx, 0, file, line); else { error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); KASSERT(error == 0, ("%s: failed to get lock", __func__)); } map->timestamp++; } void _vm_map_unlock(vm_map_t map, const char *file, int line) { if (map->system_map) _mtx_unlock_flags(&map->system_mtx, 0, file, line); else lockmgr(&map->lock, LK_RELEASE, NULL, curthread); } void _vm_map_lock_read(vm_map_t map, const char *file, int line) { int error; if (map->system_map) _mtx_lock_flags(&map->system_mtx, 0, file, line); else { error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); KASSERT(error == 0, ("%s: failed to get lock", __func__)); } } void _vm_map_unlock_read(vm_map_t map, const char *file, int line) { if (map->system_map) _mtx_unlock_flags(&map->system_mtx, 0, file, line); else lockmgr(&map->lock, LK_RELEASE, NULL, curthread); } int _vm_map_trylock(vm_map_t map, const char *file, int line) { int error; error = map->system_map ? !_mtx_trylock(&map->system_mtx, 0, file, line) : lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); if (error == 0) map->timestamp++; return (error == 0); } int _vm_map_trylock_read(vm_map_t map, const char *file, int line) { int error; error = map->system_map ? !_mtx_trylock(&map->system_mtx, 0, file, line) : lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); return (error == 0); } int _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) { if (map->system_map) { #ifdef INVARIANTS _mtx_assert(&map->system_mtx, MA_OWNED, file, line); #endif } else KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, ("%s: lock not held", __func__)); map->timestamp++; return (0); } void _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) { if (map->system_map) { #ifdef INVARIANTS _mtx_assert(&map->system_mtx, MA_OWNED, file, line); #endif } else KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, ("%s: lock not held", __func__)); } /* * vm_map_unlock_and_wait: */ int vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait) { mtx_lock(&map_sleep_mtx); vm_map_unlock(map); return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0)); } /* * vm_map_wakeup: */ void vm_map_wakeup(vm_map_t map) { /* * Acquire and release map_sleep_mtx to prevent a wakeup() * from being performed (and lost) between the vm_map_unlock() * and the msleep() in vm_map_unlock_and_wait(). */ mtx_lock(&map_sleep_mtx); mtx_unlock(&map_sleep_mtx); wakeup(&map->root); } long vmspace_resident_count(struct vmspace *vmspace) { return pmap_resident_count(vmspace_pmap(vmspace)); } /* * vm_map_create: * * Creates and returns a new empty VM map with * the given physical map structure, and having * the given lower and upper address bounds. */ vm_map_t vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) { vm_map_t result; result = uma_zalloc(mapzone, M_WAITOK); CTR1(KTR_VM, "vm_map_create: %p", result); _vm_map_init(result, min, max); result->pmap = pmap; return (result); } /* * Initialize an existing vm_map structure * such as that in the vmspace structure. * The pmap is set elsewhere. */ static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) { map->header.next = map->header.prev = &map->header; map->needs_wakeup = FALSE; map->system_map = 0; map->min_offset = min; map->max_offset = max; map->first_free = &map->header; map->root = NULL; map->timestamp = 0; } void vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) { _vm_map_init(map, min, max); mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); } /* * vm_map_entry_dispose: [ internal use only ] * * Inverse of vm_map_entry_create. */ static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) { uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); } /* * vm_map_entry_create: [ internal use only ] * * Allocates a VM map entry for insertion. * No entry fields are filled in. */ static vm_map_entry_t vm_map_entry_create(vm_map_t map) { vm_map_entry_t new_entry; if (map->system_map) new_entry = uma_zalloc(kmapentzone, M_NOWAIT); else new_entry = uma_zalloc(mapentzone, M_WAITOK); if (new_entry == NULL) panic("vm_map_entry_create: kernel resources exhausted"); return (new_entry); } /* * vm_map_entry_set_behavior: * * Set the expected access behavior, either normal, random, or * sequential. */ static __inline void vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) { entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | (behavior & MAP_ENTRY_BEHAV_MASK); } /* * vm_map_entry_splay: * * Implements Sleator and Tarjan's top-down splay algorithm. Returns * the vm_map_entry containing the given address. If, however, that * address is not found in the vm_map, returns a vm_map_entry that is * adjacent to the address, coming before or after it. */ static vm_map_entry_t vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root) { struct vm_map_entry dummy; vm_map_entry_t lefttreemax, righttreemin, y; if (root == NULL) return (root); lefttreemax = righttreemin = &dummy; for (;; root = y) { if (address < root->start) { if ((y = root->left) == NULL) break; if (address < y->start) { /* Rotate right. */ root->left = y->right; y->right = root; root = y; if ((y = root->left) == NULL) break; } /* Link into the new root's right tree. */ righttreemin->left = root; righttreemin = root; } else if (address >= root->end) { if ((y = root->right) == NULL) break; if (address >= y->end) { /* Rotate left. */ root->right = y->left; y->left = root; root = y; if ((y = root->right) == NULL) break; } /* Link into the new root's left tree. */ lefttreemax->right = root; lefttreemax = root; } else break; } /* Assemble the new root. */ lefttreemax->right = root->left; righttreemin->left = root->right; root->left = dummy.right; root->right = dummy.left; return (root); } /* * vm_map_entry_{un,}link: * * Insert/remove entries from maps. */ static void vm_map_entry_link(vm_map_t map, vm_map_entry_t after_where, vm_map_entry_t entry) { CTR4(KTR_VM, "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, map->nentries, entry, after_where); map->nentries++; entry->prev = after_where; entry->next = after_where->next; entry->next->prev = entry; after_where->next = entry; if (after_where != &map->header) { if (after_where != map->root) vm_map_entry_splay(after_where->start, map->root); entry->right = after_where->right; entry->left = after_where; after_where->right = NULL; } else { entry->right = map->root; entry->left = NULL; } map->root = entry; } static void vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry) { vm_map_entry_t next, prev, root; if (entry != map->root) vm_map_entry_splay(entry->start, map->root); if (entry->left == NULL) root = entry->right; else { root = vm_map_entry_splay(entry->start, entry->left); root->right = entry->right; } map->root = root; prev = entry->prev; next = entry->next; next->prev = prev; prev->next = next; map->nentries--; CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, map->nentries, entry); } /* * vm_map_lookup_entry: [ internal use only ] * * Finds the map entry containing (or * immediately preceding) the specified address * in the given map; the entry is returned * in the "entry" parameter. The boolean * result indicates whether the address is * actually contained in the map. */ boolean_t vm_map_lookup_entry( vm_map_t map, vm_offset_t address, vm_map_entry_t *entry) /* OUT */ { vm_map_entry_t cur; cur = vm_map_entry_splay(address, map->root); if (cur == NULL) *entry = &map->header; else { map->root = cur; if (address >= cur->start) { *entry = cur; if (cur->end > address) return (TRUE); } else *entry = cur->prev; } return (FALSE); } /* * vm_map_insert: * * Inserts the given whole VM object into the target * map at the specified address range. The object's * size should match that of the address range. * * Requires that the map be locked, and leaves it so. * * If object is non-NULL, ref count must be bumped by caller * prior to making call to account for the new entry. */ int vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) { vm_map_entry_t new_entry; vm_map_entry_t prev_entry; vm_map_entry_t temp_entry; vm_eflags_t protoeflags; /* * Check that the start and end points are not bogus. */ if ((start < map->min_offset) || (end > map->max_offset) || (start >= end)) return (KERN_INVALID_ADDRESS); /* * Find the entry prior to the proposed starting address; if it's part * of an existing entry, this range is bogus. */ if (vm_map_lookup_entry(map, start, &temp_entry)) return (KERN_NO_SPACE); prev_entry = temp_entry; /* * Assert that the next entry doesn't overlap the end point. */ if ((prev_entry->next != &map->header) && (prev_entry->next->start < end)) return (KERN_NO_SPACE); protoeflags = 0; if (cow & MAP_COPY_ON_WRITE) protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; if (cow & MAP_NOFAULT) { protoeflags |= MAP_ENTRY_NOFAULT; KASSERT(object == NULL, ("vm_map_insert: paradoxical MAP_NOFAULT request")); } if (cow & MAP_DISABLE_SYNCER) protoeflags |= MAP_ENTRY_NOSYNC; if (cow & MAP_DISABLE_COREDUMP) protoeflags |= MAP_ENTRY_NOCOREDUMP; if (object) { /* * When object is non-NULL, it could be shared with another * process. We have to set or clear OBJ_ONEMAPPING * appropriately. */ vm_object_lock(object); if ((object->ref_count > 1) || (object->shadow_count != 0)) { vm_object_clear_flag(object, OBJ_ONEMAPPING); } vm_object_unlock(object); } else if ((prev_entry != &map->header) && (prev_entry->eflags == protoeflags) && (prev_entry->end == start) && (prev_entry->wired_count == 0) && ((prev_entry->object.vm_object == NULL) || vm_object_coalesce(prev_entry->object.vm_object, OFF_TO_IDX(prev_entry->offset), (vm_size_t)(prev_entry->end - prev_entry->start), (vm_size_t)(end - prev_entry->end)))) { /* * We were able to extend the object. Determine if we * can extend the previous map entry to include the * new range as well. */ if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && (prev_entry->protection == prot) && (prev_entry->max_protection == max)) { map->size += (end - prev_entry->end); prev_entry->end = end; vm_map_simplify_entry(map, prev_entry); return (KERN_SUCCESS); } /* * If we can extend the object but cannot extend the * map entry, we have to create a new map entry. We * must bump the ref count on the extended object to * account for it. object may be NULL. */ object = prev_entry->object.vm_object; offset = prev_entry->offset + (prev_entry->end - prev_entry->start); vm_object_reference(object); } /* * NOTE: if conditionals fail, object can be NULL here. This occurs * in things like the buffer map where we manage kva but do not manage * backing objects. */ /* * Create a new entry */ new_entry = vm_map_entry_create(map); new_entry->start = start; new_entry->end = end; new_entry->eflags = protoeflags; new_entry->object.vm_object = object; new_entry->offset = offset; new_entry->avail_ssize = 0; new_entry->inheritance = VM_INHERIT_DEFAULT; new_entry->protection = prot; new_entry->max_protection = max; new_entry->wired_count = 0; /* * Insert the new entry into the list */ vm_map_entry_link(map, prev_entry, new_entry); map->size += new_entry->end - new_entry->start; /* * Update the free space hint */ if ((map->first_free == prev_entry) && (prev_entry->end >= new_entry->start)) { map->first_free = new_entry; } #if 0 /* * Temporarily removed to avoid MAP_STACK panic, due to * MAP_STACK being a huge hack. Will be added back in * when MAP_STACK (and the user stack mapping) is fixed. */ /* * It may be possible to simplify the entry */ vm_map_simplify_entry(map, new_entry); #endif if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { mtx_lock(&Giant); pmap_object_init_pt(map->pmap, start, object, OFF_TO_IDX(offset), end - start, cow & MAP_PREFAULT_PARTIAL); mtx_unlock(&Giant); } return (KERN_SUCCESS); } /* * Find sufficient space for `length' bytes in the given map, starting at * `start'. The map must be locked. Returns 0 on success, 1 on no space. */ int vm_map_findspace( vm_map_t map, vm_offset_t start, vm_size_t length, vm_offset_t *addr) { vm_map_entry_t entry, next; vm_offset_t end; if (start < map->min_offset) start = map->min_offset; if (start > map->max_offset) return (1); /* * Look for the first possible address; if there's already something * at this address, we have to start after it. */ if (start == map->min_offset) { if ((entry = map->first_free) != &map->header) start = entry->end; } else { vm_map_entry_t tmp; if (vm_map_lookup_entry(map, start, &tmp)) start = tmp->end; entry = tmp; } /* * Look through the rest of the map, trying to fit a new region in the * gap between existing regions, or after the very last region. */ for (;; start = (entry = next)->end) { /* * Find the end of the proposed new region. Be sure we didn't * go beyond the end of the map, or wrap around the address; * if so, we lose. Otherwise, if this is the last entry, or * if the proposed new region fits before the next entry, we * win. */ end = start + length; if (end > map->max_offset || end < start) return (1); next = entry->next; if (next == &map->header || next->start >= end) break; } *addr = start; if (map == kernel_map) { vm_offset_t ksize; if ((ksize = round_page(start + length)) > kernel_vm_end) { pmap_growkernel(ksize); } } return (0); } /* * vm_map_find finds an unallocated region in the target address * map with the given length. The search is defined to be * first-fit from the specified address; the region found is * returned in the same parameter. * * If object is non-NULL, ref count must be bumped by caller * prior to making call to account for the new entry. */ int vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, /* IN/OUT */ vm_size_t length, boolean_t find_space, vm_prot_t prot, vm_prot_t max, int cow) { vm_offset_t start; int result, s = 0; start = *addr; if (map == kmem_map) s = splvm(); vm_map_lock(map); if (find_space) { if (vm_map_findspace(map, start, length, addr)) { vm_map_unlock(map); if (map == kmem_map) splx(s); return (KERN_NO_SPACE); } start = *addr; } result = vm_map_insert(map, object, offset, start, start + length, prot, max, cow); vm_map_unlock(map); if (map == kmem_map) splx(s); return (result); } /* * vm_map_simplify_entry: * * Simplify the given map entry by merging with either neighbor. This * routine also has the ability to merge with both neighbors. * * The map must be locked. * * This routine guarentees that the passed entry remains valid (though * possibly extended). When merging, this routine may delete one or * both neighbors. */ void vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) { vm_map_entry_t next, prev; vm_size_t prevsize, esize; if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) return; prev = entry->prev; if (prev != &map->header) { prevsize = prev->end - prev->start; if ( (prev->end == entry->start) && (prev->object.vm_object == entry->object.vm_object) && (!prev->object.vm_object || (prev->offset + prevsize == entry->offset)) && (prev->eflags == entry->eflags) && (prev->protection == entry->protection) && (prev->max_protection == entry->max_protection) && (prev->inheritance == entry->inheritance) && (prev->wired_count == entry->wired_count)) { if (map->first_free == prev) map->first_free = entry; vm_map_entry_unlink(map, prev); entry->start = prev->start; entry->offset = prev->offset; if (prev->object.vm_object) vm_object_deallocate(prev->object.vm_object); vm_map_entry_dispose(map, prev); } } next = entry->next; if (next != &map->header) { esize = entry->end - entry->start; if ((entry->end == next->start) && (next->object.vm_object == entry->object.vm_object) && (!entry->object.vm_object || (entry->offset + esize == next->offset)) && (next->eflags == entry->eflags) && (next->protection == entry->protection) && (next->max_protection == entry->max_protection) && (next->inheritance == entry->inheritance) && (next->wired_count == entry->wired_count)) { if (map->first_free == next) map->first_free = entry; vm_map_entry_unlink(map, next); entry->end = next->end; if (next->object.vm_object) vm_object_deallocate(next->object.vm_object); vm_map_entry_dispose(map, next); } } } /* * vm_map_clip_start: [ internal use only ] * * Asserts that the given entry begins at or after * the specified address; if necessary, * it splits the entry into two. */ #define vm_map_clip_start(map, entry, startaddr) \ { \ if (startaddr > entry->start) \ _vm_map_clip_start(map, entry, startaddr); \ } /* * This routine is called only when it is known that * the entry must be split. */ static void _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) { vm_map_entry_t new_entry; /* * Split off the front portion -- note that we must insert the new * entry BEFORE this one, so that this entry has the specified * starting address. */ vm_map_simplify_entry(map, entry); /* * If there is no object backing this entry, we might as well create * one now. If we defer it, an object can get created after the map * is clipped, and individual objects will be created for the split-up * map. This is a bit of a hack, but is also about the best place to * put this improvement. */ if (entry->object.vm_object == NULL && !map->system_map) { vm_object_t object; object = vm_object_allocate(OBJT_DEFAULT, atop(entry->end - entry->start)); entry->object.vm_object = object; entry->offset = 0; } new_entry = vm_map_entry_create(map); *new_entry = *entry; new_entry->end = start; entry->offset += (start - entry->start); entry->start = start; vm_map_entry_link(map, entry->prev, new_entry); if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { vm_object_reference(new_entry->object.vm_object); } } /* * vm_map_clip_end: [ internal use only ] * * Asserts that the given entry ends at or before * the specified address; if necessary, * it splits the entry into two. */ #define vm_map_clip_end(map, entry, endaddr) \ { \ if ((endaddr) < (entry->end)) \ _vm_map_clip_end((map), (entry), (endaddr)); \ } /* * This routine is called only when it is known that * the entry must be split. */ static void _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) { vm_map_entry_t new_entry; /* * If there is no object backing this entry, we might as well create * one now. If we defer it, an object can get created after the map * is clipped, and individual objects will be created for the split-up * map. This is a bit of a hack, but is also about the best place to * put this improvement. */ if (entry->object.vm_object == NULL && !map->system_map) { vm_object_t object; object = vm_object_allocate(OBJT_DEFAULT, atop(entry->end - entry->start)); entry->object.vm_object = object; entry->offset = 0; } /* * Create a new entry and insert it AFTER the specified entry */ new_entry = vm_map_entry_create(map); *new_entry = *entry; new_entry->start = entry->end = end; new_entry->offset += (end - entry->start); vm_map_entry_link(map, entry, new_entry); if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { vm_object_reference(new_entry->object.vm_object); } } /* * VM_MAP_RANGE_CHECK: [ internal use only ] * * Asserts that the starting and ending region * addresses fall within the valid range of the map. */ #define VM_MAP_RANGE_CHECK(map, start, end) \ { \ if (start < vm_map_min(map)) \ start = vm_map_min(map); \ if (end > vm_map_max(map)) \ end = vm_map_max(map); \ if (start > end) \ start = end; \ } /* * vm_map_submap: [ kernel use only ] * * Mark the given range as handled by a subordinate map. * * This range must have been created with vm_map_find, * and no other operations may have been performed on this * range prior to calling vm_map_submap. * * Only a limited number of operations can be performed * within this rage after calling vm_map_submap: * vm_fault * [Don't try vm_map_copy!] * * To remove a submapping, one must first remove the * range from the superior map, and then destroy the * submap (if desired). [Better yet, don't try it.] */ int vm_map_submap( vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) { vm_map_entry_t entry; int result = KERN_INVALID_ARGUMENT; vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (vm_map_lookup_entry(map, start, &entry)) { vm_map_clip_start(map, entry, start); } else entry = entry->next; vm_map_clip_end(map, entry, end); if ((entry->start == start) && (entry->end == end) && ((entry->eflags & MAP_ENTRY_COW) == 0) && (entry->object.vm_object == NULL)) { entry->object.sub_map = submap; entry->eflags |= MAP_ENTRY_IS_SUB_MAP; result = KERN_SUCCESS; } vm_map_unlock(map); return (result); } /* * vm_map_protect: * * Sets the protection of the specified address * region in the target map. If "set_max" is * specified, the maximum protection is to be set; * otherwise, only the current protection is affected. */ int vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_prot_t new_prot, boolean_t set_max) { vm_map_entry_t current; vm_map_entry_t entry; vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (vm_map_lookup_entry(map, start, &entry)) { vm_map_clip_start(map, entry, start); } else { entry = entry->next; } /* * Make a first pass to check for protection violations. */ current = entry; while ((current != &map->header) && (current->start < end)) { if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { vm_map_unlock(map); return (KERN_INVALID_ARGUMENT); } if ((new_prot & current->max_protection) != new_prot) { vm_map_unlock(map); return (KERN_PROTECTION_FAILURE); } current = current->next; } /* * Go back and fix up protections. [Note that clipping is not * necessary the second time.] */ current = entry; while ((current != &map->header) && (current->start < end)) { vm_prot_t old_prot; vm_map_clip_end(map, current, end); old_prot = current->protection; if (set_max) current->protection = (current->max_protection = new_prot) & old_prot; else current->protection = new_prot; /* * Update physical map if necessary. Worry about copy-on-write * here -- CHECK THIS XXX */ if (current->protection != old_prot) { mtx_lock(&Giant); vm_page_lock_queues(); #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ VM_PROT_ALL) pmap_protect(map->pmap, current->start, current->end, current->protection & MASK(current)); #undef MASK vm_page_unlock_queues(); mtx_unlock(&Giant); } vm_map_simplify_entry(map, current); current = current->next; } vm_map_unlock(map); return (KERN_SUCCESS); } /* * vm_map_madvise: * * This routine traverses a processes map handling the madvise * system call. Advisories are classified as either those effecting * the vm_map_entry structure, or those effecting the underlying * objects. */ int vm_map_madvise( vm_map_t map, vm_offset_t start, vm_offset_t end, int behav) { vm_map_entry_t current, entry; int modify_map = 0; /* * Some madvise calls directly modify the vm_map_entry, in which case * we need to use an exclusive lock on the map and we need to perform * various clipping operations. Otherwise we only need a read-lock * on the map. */ switch(behav) { case MADV_NORMAL: case MADV_SEQUENTIAL: case MADV_RANDOM: case MADV_NOSYNC: case MADV_AUTOSYNC: case MADV_NOCORE: case MADV_CORE: modify_map = 1; vm_map_lock(map); break; case MADV_WILLNEED: case MADV_DONTNEED: case MADV_FREE: vm_map_lock_read(map); break; default: return (KERN_INVALID_ARGUMENT); } /* * Locate starting entry and clip if necessary. */ VM_MAP_RANGE_CHECK(map, start, end); if (vm_map_lookup_entry(map, start, &entry)) { if (modify_map) vm_map_clip_start(map, entry, start); } else { entry = entry->next; } if (modify_map) { /* * madvise behaviors that are implemented in the vm_map_entry. * * We clip the vm_map_entry so that behavioral changes are * limited to the specified address range. */ for (current = entry; (current != &map->header) && (current->start < end); current = current->next ) { if (current->eflags & MAP_ENTRY_IS_SUB_MAP) continue; vm_map_clip_end(map, current, end); switch (behav) { case MADV_NORMAL: vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); break; case MADV_SEQUENTIAL: vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); break; case MADV_RANDOM: vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); break; case MADV_NOSYNC: current->eflags |= MAP_ENTRY_NOSYNC; break; case MADV_AUTOSYNC: current->eflags &= ~MAP_ENTRY_NOSYNC; break; case MADV_NOCORE: current->eflags |= MAP_ENTRY_NOCOREDUMP; break; case MADV_CORE: current->eflags &= ~MAP_ENTRY_NOCOREDUMP; break; default: break; } vm_map_simplify_entry(map, current); } vm_map_unlock(map); } else { vm_pindex_t pindex; int count; /* * madvise behaviors that are implemented in the underlying * vm_object. * * Since we don't clip the vm_map_entry, we have to clip * the vm_object pindex and count. */ for (current = entry; (current != &map->header) && (current->start < end); current = current->next ) { vm_offset_t useStart; if (current->eflags & MAP_ENTRY_IS_SUB_MAP) continue; pindex = OFF_TO_IDX(current->offset); count = atop(current->end - current->start); useStart = current->start; if (current->start < start) { pindex += atop(start - current->start); count -= atop(start - current->start); useStart = start; } if (current->end > end) count -= atop(current->end - end); if (count <= 0) continue; vm_object_madvise(current->object.vm_object, pindex, count, behav); if (behav == MADV_WILLNEED) { mtx_lock(&Giant); pmap_object_init_pt( map->pmap, useStart, current->object.vm_object, pindex, (count << PAGE_SHIFT), MAP_PREFAULT_MADVISE ); mtx_unlock(&Giant); } } vm_map_unlock_read(map); } return (0); } /* * vm_map_inherit: * * Sets the inheritance of the specified address * range in the target map. Inheritance * affects how the map will be shared with * child maps at the time of vm_map_fork. */ int vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_inherit_t new_inheritance) { vm_map_entry_t entry; vm_map_entry_t temp_entry; switch (new_inheritance) { case VM_INHERIT_NONE: case VM_INHERIT_COPY: case VM_INHERIT_SHARE: break; default: return (KERN_INVALID_ARGUMENT); } vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (vm_map_lookup_entry(map, start, &temp_entry)) { entry = temp_entry; vm_map_clip_start(map, entry, start); } else entry = temp_entry->next; while ((entry != &map->header) && (entry->start < end)) { vm_map_clip_end(map, entry, end); entry->inheritance = new_inheritance; vm_map_simplify_entry(map, entry); entry = entry->next; } vm_map_unlock(map); return (KERN_SUCCESS); } /* * vm_map_unwire: * * Implements both kernel and user unwiring. */ int vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t user_unwire) { vm_map_entry_t entry, first_entry, tmp_entry; vm_offset_t saved_start; unsigned int last_timestamp; int rv; boolean_t need_wakeup, result; vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (!vm_map_lookup_entry(map, start, &first_entry)) { vm_map_unlock(map); return (KERN_INVALID_ADDRESS); } last_timestamp = map->timestamp; entry = first_entry; while (entry != &map->header && entry->start < end) { if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { /* * We have not yet clipped the entry. */ saved_start = (start >= entry->start) ? start : entry->start; entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; if (vm_map_unlock_and_wait(map, user_unwire)) { /* * Allow interruption of user unwiring? */ } vm_map_lock(map); if (last_timestamp+1 != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. * Specifically, the entry may have been * clipped, merged, or deleted. */ if (!vm_map_lookup_entry(map, saved_start, &tmp_entry)) { if (saved_start == start) { /* * First_entry has been deleted. */ vm_map_unlock(map); return (KERN_INVALID_ADDRESS); } end = saved_start; rv = KERN_INVALID_ADDRESS; goto done; } if (entry == first_entry) first_entry = tmp_entry; else first_entry = NULL; entry = tmp_entry; } last_timestamp = map->timestamp; continue; } vm_map_clip_start(map, entry, start); vm_map_clip_end(map, entry, end); /* * Mark the entry in case the map lock is released. (See * above.) */ entry->eflags |= MAP_ENTRY_IN_TRANSITION; /* * Check the map for holes in the specified region. */ if (entry->end < end && (entry->next == &map->header || entry->next->start > entry->end)) { end = entry->end; rv = KERN_INVALID_ADDRESS; goto done; } /* * Require that the entry is wired. */ if (entry->wired_count == 0 || (user_unwire && (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) { end = entry->end; rv = KERN_INVALID_ARGUMENT; goto done; } entry = entry->next; } rv = KERN_SUCCESS; done: need_wakeup = FALSE; if (first_entry == NULL) { result = vm_map_lookup_entry(map, start, &first_entry); KASSERT(result, ("vm_map_unwire: lookup failed")); } entry = first_entry; while (entry != &map->header && entry->start < end) { if (rv == KERN_SUCCESS) { if (user_unwire) entry->eflags &= ~MAP_ENTRY_USER_WIRED; entry->wired_count--; if (entry->wired_count == 0) { /* * Retain the map lock. */ vm_fault_unwire(map, entry->start, entry->end); } } KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("vm_map_unwire: in-transition flag missing")); entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; need_wakeup = TRUE; } vm_map_simplify_entry(map, entry); entry = entry->next; } vm_map_unlock(map); if (need_wakeup) vm_map_wakeup(map); return (rv); } /* * vm_map_wire: * * Implements both kernel and user wiring. */ int vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t user_wire) { vm_map_entry_t entry, first_entry, tmp_entry; vm_offset_t saved_end, saved_start; unsigned int last_timestamp; int rv; boolean_t need_wakeup, result; vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (!vm_map_lookup_entry(map, start, &first_entry)) { vm_map_unlock(map); return (KERN_INVALID_ADDRESS); } last_timestamp = map->timestamp; entry = first_entry; while (entry != &map->header && entry->start < end) { if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { /* * We have not yet clipped the entry. */ saved_start = (start >= entry->start) ? start : entry->start; entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; if (vm_map_unlock_and_wait(map, user_wire)) { /* * Allow interruption of user wiring? */ } vm_map_lock(map); if (last_timestamp + 1 != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. * Specifically, the entry may have been * clipped, merged, or deleted. */ if (!vm_map_lookup_entry(map, saved_start, &tmp_entry)) { if (saved_start == start) { /* * first_entry has been deleted. */ vm_map_unlock(map); return (KERN_INVALID_ADDRESS); } end = saved_start; rv = KERN_INVALID_ADDRESS; goto done; } if (entry == first_entry) first_entry = tmp_entry; else first_entry = NULL; entry = tmp_entry; } last_timestamp = map->timestamp; continue; } vm_map_clip_start(map, entry, start); vm_map_clip_end(map, entry, end); /* * Mark the entry in case the map lock is released. (See * above.) */ entry->eflags |= MAP_ENTRY_IN_TRANSITION; /* * */ if (entry->wired_count == 0) { entry->wired_count++; saved_start = entry->start; saved_end = entry->end; /* * Release the map lock, relying on the in-transition * mark. */ vm_map_unlock(map); rv = vm_fault_wire(map, saved_start, saved_end, user_wire); vm_map_lock(map); if (last_timestamp + 1 != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. The entry * may have been clipped, but NOT merged or * deleted. */ result = vm_map_lookup_entry(map, saved_start, &tmp_entry); KASSERT(result, ("vm_map_wire: lookup failed")); if (entry == first_entry) first_entry = tmp_entry; else first_entry = NULL; entry = tmp_entry; while (entry->end < saved_end) { if (rv != KERN_SUCCESS) { KASSERT(entry->wired_count == 1, ("vm_map_wire: bad count")); entry->wired_count = -1; } entry = entry->next; } } last_timestamp = map->timestamp; if (rv != KERN_SUCCESS) { KASSERT(entry->wired_count == 1, ("vm_map_wire: bad count")); /* * Assign an out-of-range value to represent * the failure to wire this entry. */ entry->wired_count = -1; end = entry->end; goto done; } } else if (!user_wire || (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { entry->wired_count++; } /* * Check the map for holes in the specified region. */ if (entry->end < end && (entry->next == &map->header || entry->next->start > entry->end)) { end = entry->end; rv = KERN_INVALID_ADDRESS; goto done; } entry = entry->next; } rv = KERN_SUCCESS; done: need_wakeup = FALSE; if (first_entry == NULL) { result = vm_map_lookup_entry(map, start, &first_entry); KASSERT(result, ("vm_map_wire: lookup failed")); } entry = first_entry; while (entry != &map->header && entry->start < end) { if (rv == KERN_SUCCESS) { if (user_wire) entry->eflags |= MAP_ENTRY_USER_WIRED; } else if (entry->wired_count == -1) { /* * Wiring failed on this entry. Thus, unwiring is * unnecessary. */ entry->wired_count = 0; } else { if (!user_wire || (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) entry->wired_count--; if (entry->wired_count == 0) { /* * Retain the map lock. */ vm_fault_unwire(map, entry->start, entry->end); } } KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("vm_map_wire: in-transition flag missing")); entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; need_wakeup = TRUE; } vm_map_simplify_entry(map, entry); entry = entry->next; } vm_map_unlock(map); if (need_wakeup) vm_map_wakeup(map); return (rv); } /* * vm_map_clean * * Push any dirty cached pages in the address range to their pager. * If syncio is TRUE, dirty pages are written synchronously. * If invalidate is TRUE, any cached pages are freed as well. * * Returns an error if any part of the specified range is not mapped. */ int vm_map_clean( vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio, boolean_t invalidate) { vm_map_entry_t current; vm_map_entry_t entry; vm_size_t size; vm_object_t object; vm_ooffset_t offset; GIANT_REQUIRED; vm_map_lock_read(map); VM_MAP_RANGE_CHECK(map, start, end); if (!vm_map_lookup_entry(map, start, &entry)) { vm_map_unlock_read(map); return (KERN_INVALID_ADDRESS); } /* * Make a first pass to check for holes. */ for (current = entry; current->start < end; current = current->next) { if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { vm_map_unlock_read(map); return (KERN_INVALID_ARGUMENT); } if (end > current->end && (current->next == &map->header || current->end != current->next->start)) { vm_map_unlock_read(map); return (KERN_INVALID_ADDRESS); } } if (invalidate) { vm_page_lock_queues(); pmap_remove(map->pmap, start, end); vm_page_unlock_queues(); } /* * Make a second pass, cleaning/uncaching pages from the indicated * objects as we go. */ for (current = entry; current->start < end; current = current->next) { offset = current->offset + (start - current->start); size = (end <= current->end ? end : current->end) - start; if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { vm_map_t smap; vm_map_entry_t tentry; vm_size_t tsize; smap = current->object.sub_map; vm_map_lock_read(smap); (void) vm_map_lookup_entry(smap, offset, &tentry); tsize = tentry->end - offset; if (tsize < size) size = tsize; object = tentry->object.vm_object; offset = tentry->offset + (offset - tentry->start); vm_map_unlock_read(smap); } else { object = current->object.vm_object; } /* * Note that there is absolutely no sense in writing out * anonymous objects, so we track down the vnode object * to write out. * We invalidate (remove) all pages from the address space * anyway, for semantic correctness. * * note: certain anonymous maps, such as MAP_NOSYNC maps, * may start out with a NULL object. */ while (object && object->backing_object) { object = object->backing_object; offset += object->backing_object_offset; if (object->size < OFF_TO_IDX(offset + size)) size = IDX_TO_OFF(object->size) - offset; } if (object && (object->type == OBJT_VNODE) && (current->protection & VM_PROT_WRITE)) { /* * Flush pages if writing is allowed, invalidate them * if invalidation requested. Pages undergoing I/O * will be ignored by vm_object_page_remove(). * * We cannot lock the vnode and then wait for paging * to complete without deadlocking against vm_fault. * Instead we simply call vm_object_page_remove() and * allow it to block internally on a page-by-page * basis when it encounters pages undergoing async * I/O. */ int flags; vm_object_reference(object); vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread); flags = (syncio || invalidate) ? OBJPC_SYNC : 0; flags |= invalidate ? OBJPC_INVAL : 0; vm_object_page_clean(object, OFF_TO_IDX(offset), OFF_TO_IDX(offset + size + PAGE_MASK), flags); VOP_UNLOCK(object->handle, 0, curthread); vm_object_deallocate(object); } if (object && invalidate && ((object->type == OBJT_VNODE) || (object->type == OBJT_DEVICE))) { vm_object_reference(object); vm_object_lock(object); vm_object_page_remove(object, OFF_TO_IDX(offset), OFF_TO_IDX(offset + size + PAGE_MASK), FALSE); vm_object_unlock(object); vm_object_deallocate(object); } start += size; } vm_map_unlock_read(map); return (KERN_SUCCESS); } /* * vm_map_entry_unwire: [ internal use only ] * * Make the region specified by this entry pageable. * * The map in question should be locked. * [This is the reason for this routine's existence.] */ static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) { vm_fault_unwire(map, entry->start, entry->end); entry->wired_count = 0; } /* * vm_map_entry_delete: [ internal use only ] * * Deallocate the given entry from the target map. */ static void vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) { vm_map_entry_unlink(map, entry); map->size -= entry->end - entry->start; if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { vm_object_deallocate(entry->object.vm_object); } vm_map_entry_dispose(map, entry); } /* * vm_map_delete: [ internal use only ] * * Deallocates the given address range from the target * map. */ int vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) { vm_object_t object; vm_map_entry_t entry; vm_map_entry_t first_entry; /* * Find the start of the region, and clip it */ if (!vm_map_lookup_entry(map, start, &first_entry)) entry = first_entry->next; else { entry = first_entry; vm_map_clip_start(map, entry, start); } /* * Save the free space hint */ if (entry == &map->header) { map->first_free = &map->header; } else if (map->first_free->start >= start) { map->first_free = entry->prev; } /* * Step through all entries in this region */ while ((entry != &map->header) && (entry->start < end)) { vm_map_entry_t next; vm_offset_t s, e; vm_pindex_t offidxstart, offidxend, count; /* * Wait for wiring or unwiring of an entry to complete. */ if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) { unsigned int last_timestamp; vm_offset_t saved_start; vm_map_entry_t tmp_entry; saved_start = entry->start; entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; last_timestamp = map->timestamp; (void) vm_map_unlock_and_wait(map, FALSE); vm_map_lock(map); if (last_timestamp + 1 != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. * Specifically, the entry may have been * clipped, merged, or deleted. */ if (!vm_map_lookup_entry(map, saved_start, &tmp_entry)) entry = tmp_entry->next; else { entry = tmp_entry; vm_map_clip_start(map, entry, saved_start); } } continue; } vm_map_clip_end(map, entry, end); s = entry->start; e = entry->end; next = entry->next; offidxstart = OFF_TO_IDX(entry->offset); count = OFF_TO_IDX(e - s); object = entry->object.vm_object; /* * Unwire before removing addresses from the pmap; otherwise, * unwiring will put the entries back in the pmap. */ if (entry->wired_count != 0) { vm_map_entry_unwire(map, entry); } offidxend = offidxstart + count; if ((object == kernel_object) || (object == kmem_object)) { vm_object_lock(object); vm_object_page_remove(object, offidxstart, offidxend, FALSE); vm_object_unlock(object); } else { vm_object_lock(object); vm_page_lock_queues(); pmap_remove(map->pmap, s, e); vm_page_unlock_queues(); if (object != NULL && object->ref_count != 1 && (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { vm_object_collapse(object); vm_object_page_remove(object, offidxstart, offidxend, FALSE); if (object->type == OBJT_SWAP) { swap_pager_freespace(object, offidxstart, count); } if (offidxend >= object->size && offidxstart < object->size) { object->size = offidxstart; } } vm_object_unlock(object); } /* * Delete the entry (which may delete the object) only after * removing all pmap entries pointing to its pages. * (Otherwise, its page frames may be reallocated, and any * modify bits will be set in the wrong object!) */ vm_map_entry_delete(map, entry); entry = next; } return (KERN_SUCCESS); } /* * vm_map_remove: * * Remove the given address range from the target map. * This is the exported form of vm_map_delete. */ int vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) { int result, s = 0; if (map == kmem_map) s = splvm(); vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); result = vm_map_delete(map, start, end); vm_map_unlock(map); if (map == kmem_map) splx(s); return (result); } /* * vm_map_check_protection: * * Assert that the target map allows the specified privilege on the * entire address region given. The entire region must be allocated. * * WARNING! This code does not and should not check whether the * contents of the region is accessible. For example a smaller file * might be mapped into a larger address space. * * NOTE! This code is also called by munmap(). */ boolean_t vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_prot_t protection) { vm_map_entry_t entry; vm_map_entry_t tmp_entry; vm_map_lock_read(map); if (!vm_map_lookup_entry(map, start, &tmp_entry)) { vm_map_unlock_read(map); return (FALSE); } entry = tmp_entry; while (start < end) { if (entry == &map->header) { vm_map_unlock_read(map); return (FALSE); } /* * No holes allowed! */ if (start < entry->start) { vm_map_unlock_read(map); return (FALSE); } /* * Check protection associated with entry. */ if ((entry->protection & protection) != protection) { vm_map_unlock_read(map); return (FALSE); } /* go to next entry */ start = entry->end; entry = entry->next; } vm_map_unlock_read(map); return (TRUE); } /* * vm_map_copy_entry: * * Copies the contents of the source entry to the destination * entry. The entries *must* be aligned properly. */ static void vm_map_copy_entry( vm_map_t src_map, vm_map_t dst_map, vm_map_entry_t src_entry, vm_map_entry_t dst_entry) { vm_object_t src_object; if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) return; if (src_entry->wired_count == 0) { /* * If the source entry is marked needs_copy, it is already * write-protected. */ if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { vm_page_lock_queues(); pmap_protect(src_map->pmap, src_entry->start, src_entry->end, src_entry->protection & ~VM_PROT_WRITE); vm_page_unlock_queues(); } /* * Make a copy of the object. */ if ((src_object = src_entry->object.vm_object) != NULL) { if ((src_object->handle == NULL) && (src_object->type == OBJT_DEFAULT || src_object->type == OBJT_SWAP)) { vm_object_collapse(src_object); if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { vm_object_split(src_entry); src_object = src_entry->object.vm_object; } } vm_object_reference(src_object); vm_object_lock(src_object); vm_object_clear_flag(src_object, OBJ_ONEMAPPING); vm_object_unlock(src_object); dst_entry->object.vm_object = src_object; src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); dst_entry->offset = src_entry->offset; } else { dst_entry->object.vm_object = NULL; dst_entry->offset = 0; } pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, dst_entry->end - dst_entry->start, src_entry->start); } else { /* * Of course, wired down pages can't be set copy-on-write. * Cause wired pages to be copied into the new map by * simulating faults (the new pages are pageable) */ vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); } } /* * vmspace_fork: * Create a new process vmspace structure and vm_map * based on those of an existing process. The new map * is based on the old map, according to the inheritance * values on the regions in that map. * * The source map must not be locked. */ struct vmspace * vmspace_fork(struct vmspace *vm1) { struct vmspace *vm2; vm_map_t old_map = &vm1->vm_map; vm_map_t new_map; vm_map_entry_t old_entry; vm_map_entry_t new_entry; vm_object_t object; GIANT_REQUIRED; vm_map_lock(old_map); old_map->infork = 1; vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy); new_map = &vm2->vm_map; /* XXX */ new_map->timestamp = 1; old_entry = old_map->header.next; while (old_entry != &old_map->header) { if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) panic("vm_map_fork: encountered a submap"); switch (old_entry->inheritance) { case VM_INHERIT_NONE: break; case VM_INHERIT_SHARE: /* * Clone the entry, creating the shared object if necessary. */ object = old_entry->object.vm_object; if (object == NULL) { object = vm_object_allocate(OBJT_DEFAULT, atop(old_entry->end - old_entry->start)); old_entry->object.vm_object = object; old_entry->offset = (vm_offset_t) 0; } /* * Add the reference before calling vm_object_shadow * to insure that a shadow object is created. */ vm_object_reference(object); if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { vm_object_shadow(&old_entry->object.vm_object, &old_entry->offset, atop(old_entry->end - old_entry->start)); old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; /* Transfer the second reference too. */ vm_object_reference( old_entry->object.vm_object); vm_object_deallocate(object); object = old_entry->object.vm_object; } vm_object_lock(object); vm_object_clear_flag(object, OBJ_ONEMAPPING); vm_object_unlock(object); /* * Clone the entry, referencing the shared object. */ new_entry = vm_map_entry_create(new_map); *new_entry = *old_entry; new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; new_entry->wired_count = 0; /* * Insert the entry into the new map -- we know we're * inserting at the end of the new map. */ vm_map_entry_link(new_map, new_map->header.prev, new_entry); /* * Update the physical map */ pmap_copy(new_map->pmap, old_map->pmap, new_entry->start, (old_entry->end - old_entry->start), old_entry->start); break; case VM_INHERIT_COPY: /* * Clone the entry and link into the map. */ new_entry = vm_map_entry_create(new_map); *new_entry = *old_entry; new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; new_entry->wired_count = 0; new_entry->object.vm_object = NULL; vm_map_entry_link(new_map, new_map->header.prev, new_entry); vm_map_copy_entry(old_map, new_map, old_entry, new_entry); break; } old_entry = old_entry->next; } new_map->size = old_map->size; old_map->infork = 0; vm_map_unlock(old_map); return (vm2); } int vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, vm_prot_t prot, vm_prot_t max, int cow) { vm_map_entry_t prev_entry; vm_map_entry_t new_stack_entry; vm_size_t init_ssize; int rv; if (addrbos < vm_map_min(map)) return (KERN_NO_SPACE); if (max_ssize < sgrowsiz) init_ssize = max_ssize; else init_ssize = sgrowsiz; vm_map_lock(map); /* If addr is already mapped, no go */ if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { vm_map_unlock(map); return (KERN_NO_SPACE); } /* If we would blow our VMEM resource limit, no go */ if (map->size + init_ssize > curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { vm_map_unlock(map); return (KERN_NO_SPACE); } /* If we can't accomodate max_ssize in the current mapping, * no go. However, we need to be aware that subsequent user * mappings might map into the space we have reserved for * stack, and currently this space is not protected. * * Hopefully we will at least detect this condition * when we try to grow the stack. */ if ((prev_entry->next != &map->header) && (prev_entry->next->start < addrbos + max_ssize)) { vm_map_unlock(map); return (KERN_NO_SPACE); } /* We initially map a stack of only init_ssize. We will * grow as needed later. Since this is to be a grow * down stack, we map at the top of the range. * * Note: we would normally expect prot and max to be * VM_PROT_ALL, and cow to be 0. Possibly we should * eliminate these as input parameters, and just * pass these values here in the insert call. */ rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, addrbos + max_ssize, prot, max, cow); /* Now set the avail_ssize amount */ if (rv == KERN_SUCCESS){ if (prev_entry != &map->header) vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); new_stack_entry = prev_entry->next; if (new_stack_entry->end != addrbos + max_ssize || new_stack_entry->start != addrbos + max_ssize - init_ssize) panic ("Bad entry start/end for new stack entry"); else new_stack_entry->avail_ssize = max_ssize - init_ssize; } vm_map_unlock(map); return (rv); } /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the * desired address is already mapped, or if we successfully grow * the stack. Also returns KERN_SUCCESS if addr is outside the * stack range (this is strange, but preserves compatibility with * the grow function in vm_machdep.c). */ int vm_map_growstack (struct proc *p, vm_offset_t addr) { vm_map_entry_t prev_entry; vm_map_entry_t stack_entry; vm_map_entry_t new_stack_entry; struct vmspace *vm = p->p_vmspace; vm_map_t map = &vm->vm_map; vm_offset_t end; int grow_amount; int rv; int is_procstack; GIANT_REQUIRED; Retry: vm_map_lock_read(map); /* If addr is already in the entry range, no need to grow.*/ if (vm_map_lookup_entry(map, addr, &prev_entry)) { vm_map_unlock_read(map); return (KERN_SUCCESS); } if ((stack_entry = prev_entry->next) == &map->header) { vm_map_unlock_read(map); return (KERN_SUCCESS); } if (prev_entry == &map->header) end = stack_entry->start - stack_entry->avail_ssize; else end = prev_entry->end; /* This next test mimics the old grow function in vm_machdep.c. * It really doesn't quite make sense, but we do it anyway * for compatibility. * * If not growable stack, return success. This signals the * caller to proceed as he would normally with normal vm. */ if (stack_entry->avail_ssize < 1 || addr >= stack_entry->start || addr < stack_entry->start - stack_entry->avail_ssize) { vm_map_unlock_read(map); return (KERN_SUCCESS); } /* Find the minimum grow amount */ grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); if (grow_amount > stack_entry->avail_ssize) { vm_map_unlock_read(map); return (KERN_NO_SPACE); } /* If there is no longer enough space between the entries * nogo, and adjust the available space. Note: this * should only happen if the user has mapped into the * stack area after the stack was created, and is * probably an error. * * This also effectively destroys any guard page the user * might have intended by limiting the stack size. */ if (grow_amount > stack_entry->start - end) { if (vm_map_lock_upgrade(map)) goto Retry; stack_entry->avail_ssize = stack_entry->start - end; vm_map_unlock(map); return (KERN_NO_SPACE); } is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; /* If this is the main process stack, see if we're over the * stack limit. */ if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > p->p_rlimit[RLIMIT_STACK].rlim_cur)) { vm_map_unlock_read(map); return (KERN_NO_SPACE); } /* Round up the grow amount modulo SGROWSIZ */ grow_amount = roundup (grow_amount, sgrowsiz); if (grow_amount > stack_entry->avail_ssize) { grow_amount = stack_entry->avail_ssize; } if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > p->p_rlimit[RLIMIT_STACK].rlim_cur)) { grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - ctob(vm->vm_ssize); } /* If we would blow our VMEM resource limit, no go */ if (map->size + grow_amount > curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { vm_map_unlock_read(map); return (KERN_NO_SPACE); } if (vm_map_lock_upgrade(map)) goto Retry; /* Get the preliminary new entry start value */ addr = stack_entry->start - grow_amount; /* If this puts us into the previous entry, cut back our growth * to the available space. Also, see the note above. */ if (addr < end) { stack_entry->avail_ssize = stack_entry->start - end; addr = end; } rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); /* Adjust the available stack space by the amount we grew. */ if (rv == KERN_SUCCESS) { if (prev_entry != &map->header) vm_map_clip_end(map, prev_entry, addr); new_stack_entry = prev_entry->next; if (new_stack_entry->end != stack_entry->start || new_stack_entry->start != addr) panic ("Bad stack grow start/end in new stack entry"); else { new_stack_entry->avail_ssize = stack_entry->avail_ssize - (new_stack_entry->end - new_stack_entry->start); if (is_procstack) vm->vm_ssize += btoc(new_stack_entry->end - new_stack_entry->start); } } vm_map_unlock(map); return (rv); } /* * Unshare the specified VM space for exec. If other processes are * mapped to it, then create a new one. The new vmspace is null. */ void vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) { struct vmspace *oldvmspace = p->p_vmspace; struct vmspace *newvmspace; GIANT_REQUIRED; newvmspace = vmspace_alloc(minuser, maxuser); bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); /* * This code is written like this for prototype purposes. The * goal is to avoid running down the vmspace here, but let the * other process's that are still using the vmspace to finally * run it down. Even though there is little or no chance of blocking * here, it is a good idea to keep this form for future mods. */ p->p_vmspace = newvmspace; pmap_pinit2(vmspace_pmap(newvmspace)); vmspace_free(oldvmspace); if (p == curthread->td_proc) /* XXXKSE ? */ pmap_activate(curthread); } /* * Unshare the specified VM space for forcing COW. This * is called by rfork, for the (RFMEM|RFPROC) == 0 case. */ void vmspace_unshare(struct proc *p) { struct vmspace *oldvmspace = p->p_vmspace; struct vmspace *newvmspace; GIANT_REQUIRED; if (oldvmspace->vm_refcnt == 1) return; newvmspace = vmspace_fork(oldvmspace); p->p_vmspace = newvmspace; pmap_pinit2(vmspace_pmap(newvmspace)); vmspace_free(oldvmspace); if (p == curthread->td_proc) /* XXXKSE ? */ pmap_activate(curthread); } /* * vm_map_lookup: * * Finds the VM object, offset, and * protection for a given virtual address in the * specified map, assuming a page fault of the * type specified. * * Leaves the map in question locked for read; return * values are guaranteed until a vm_map_lookup_done * call is performed. Note that the map argument * is in/out; the returned map must be used in * the call to vm_map_lookup_done. * * A handle (out_entry) is returned for use in * vm_map_lookup_done, to make that fast. * * If a lookup is requested with "write protection" * specified, the map may be changed to perform virtual * copying operations, although the data referenced will * remain the same. */ int vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ vm_offset_t vaddr, vm_prot_t fault_typea, vm_map_entry_t *out_entry, /* OUT */ vm_object_t *object, /* OUT */ vm_pindex_t *pindex, /* OUT */ vm_prot_t *out_prot, /* OUT */ boolean_t *wired) /* OUT */ { vm_map_entry_t entry; vm_map_t map = *var_map; vm_prot_t prot; vm_prot_t fault_type = fault_typea; RetryLookup:; /* * Lookup the faulting address. */ vm_map_lock_read(map); #define RETURN(why) \ { \ vm_map_unlock_read(map); \ return (why); \ } /* * If the map has an interesting hint, try it before calling full * blown lookup routine. */ entry = map->root; *out_entry = entry; if (entry == NULL || (vaddr < entry->start) || (vaddr >= entry->end)) { /* * Entry was either not a valid hint, or the vaddr was not * contained in the entry, so do a full lookup. */ if (!vm_map_lookup_entry(map, vaddr, out_entry)) RETURN(KERN_INVALID_ADDRESS); entry = *out_entry; } /* * Handle submaps. */ if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { vm_map_t old_map = map; *var_map = map = entry->object.sub_map; vm_map_unlock_read(old_map); goto RetryLookup; } /* * Check whether this task is allowed to have this page. * Note the special case for MAP_ENTRY_COW * pages with an override. This is to implement a forced * COW for debuggers. */ if (fault_type & VM_PROT_OVERRIDE_WRITE) prot = entry->max_protection; else prot = entry->protection; fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); if ((fault_type & prot) != fault_type) { RETURN(KERN_PROTECTION_FAILURE); } if ((entry->eflags & MAP_ENTRY_USER_WIRED) && (entry->eflags & MAP_ENTRY_COW) && (fault_type & VM_PROT_WRITE) && (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { RETURN(KERN_PROTECTION_FAILURE); } /* * If this page is not pageable, we have to get it for all possible * accesses. */ *wired = (entry->wired_count != 0); if (*wired) prot = fault_type = entry->protection; /* * If the entry was copy-on-write, we either ... */ if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { /* * If we want to write the page, we may as well handle that * now since we've got the map locked. * * If we don't need to write the page, we just demote the * permissions allowed. */ if (fault_type & VM_PROT_WRITE) { /* * Make a new object, and place it in the object * chain. Note that no new references have appeared * -- one just moved from the map to the new * object. */ if (vm_map_lock_upgrade(map)) goto RetryLookup; vm_object_shadow( &entry->object.vm_object, &entry->offset, atop(entry->end - entry->start)); entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; vm_map_lock_downgrade(map); } else { /* * We're attempting to read a copy-on-write page -- * don't allow writes. */ prot &= ~VM_PROT_WRITE; } } /* * Create an object if necessary. */ if (entry->object.vm_object == NULL && !map->system_map) { if (vm_map_lock_upgrade(map)) goto RetryLookup; entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, atop(entry->end - entry->start)); entry->offset = 0; vm_map_lock_downgrade(map); } /* * Return the object/offset from this entry. If the entry was * copy-on-write or empty, it has been fixed up. */ *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); *object = entry->object.vm_object; /* * Return whether this is the only map sharing this data. */ *out_prot = prot; return (KERN_SUCCESS); #undef RETURN } /* * vm_map_lookup_done: * * Releases locks acquired by a vm_map_lookup * (according to the handle returned by that lookup). */ void vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) { /* * Unlock the main-level map */ vm_map_unlock_read(map); } #include "opt_ddb.h" #ifdef DDB #include #include /* * vm_map_print: [ debug ] */ DB_SHOW_COMMAND(map, vm_map_print) { static int nlines; /* XXX convert args. */ vm_map_t map = (vm_map_t)addr; boolean_t full = have_addr; vm_map_entry_t entry; db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", (void *)map, (void *)map->pmap, map->nentries, map->timestamp); nlines++; if (!full && db_indent) return; db_indent += 2; for (entry = map->header.next; entry != &map->header; entry = entry->next) { db_iprintf("map entry %p: start=%p, end=%p\n", (void *)entry, (void *)entry->start, (void *)entry->end); nlines++; { static char *inheritance_name[4] = {"share", "copy", "none", "donate_copy"}; db_iprintf(" prot=%x/%x/%s", entry->protection, entry->max_protection, inheritance_name[(int)(unsigned char)entry->inheritance]); if (entry->wired_count != 0) db_printf(", wired"); } if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { db_printf(", share=%p, offset=0x%jx\n", (void *)entry->object.sub_map, (uintmax_t)entry->offset); nlines++; if ((entry->prev == &map->header) || (entry->prev->object.sub_map != entry->object.sub_map)) { db_indent += 2; vm_map_print((db_expr_t)(intptr_t) entry->object.sub_map, full, 0, (char *)0); db_indent -= 2; } } else { db_printf(", object=%p, offset=0x%jx", (void *)entry->object.vm_object, (uintmax_t)entry->offset); if (entry->eflags & MAP_ENTRY_COW) db_printf(", copy (%s)", (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); db_printf("\n"); nlines++; if ((entry->prev == &map->header) || (entry->prev->object.vm_object != entry->object.vm_object)) { db_indent += 2; vm_object_print((db_expr_t)(intptr_t) entry->object.vm_object, full, 0, (char *)0); nlines += 4; db_indent -= 2; } } } db_indent -= 2; if (db_indent == 0) nlines = 0; } DB_SHOW_COMMAND(procvm, procvm) { struct proc *p; if (have_addr) { p = (struct proc *) addr; } else { p = curproc; } db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, (void *)vmspace_pmap(p->p_vmspace)); vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); } #endif /* DDB */