/* $NetBSD: uhci.c,v 1.24 1999/02/20 23:26:16 augustss Exp $ */ /* $FreeBSD$ */ /* * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (augustss@carlstedt.se) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * USB Universal Host Controller driver. * Handles PIIX3 and PIIX4. * * Data sheets: ftp://download.intel.com/design/intarch/datashts/29055002.pdf * ftp://download.intel.com/design/intarch/datashts/29056201.pdf * UHCI spec: http://www.intel.com/design/usb/uhci11d.pdf * USB spec: http://www.usb.org/cgi-usb/mailmerge.cgi/home/usb/docs/developers/ cgiform.tpl */ #include #include #include #include #if defined(__NetBSD__) #include #elif defined(__FreeBSD__) #include #include #endif #include #include #include #if defined(__FreeBSD__) #include #endif #include #include #include #include #include #include #include #include #if defined(__FreeBSD__) #include #define delay(d) DELAY(d) #endif #ifdef UHCI_DEBUG #define DPRINTF(x) if (uhcidebug) logprintf x #define DPRINTFN(n,x) if (uhcidebug>(n)) logprintf x int uhcidebug = 1; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define MS_TO_TICKS(ms) ((ms) * hz / 1000) struct uhci_pipe { struct usbd_pipe pipe; uhci_intr_info_t *iinfo; int newtoggle; /* Info needed for different pipe kinds. */ union { /* Control pipe */ struct { uhci_soft_qh_t *sqh; usb_dma_t reqdma; usb_dma_t datadma; uhci_soft_td_t *setup, *stat; u_int length; } ctl; /* Interrupt pipe */ struct { usb_dma_t datadma; int npoll; uhci_soft_qh_t **qhs; } intr; /* Bulk pipe */ struct { uhci_soft_qh_t *sqh; usb_dma_t datadma; u_int length; int isread; } bulk; /* Iso pipe */ struct iso { u_int bufsize; u_int nbuf; usb_dma_t *bufs; uhci_soft_td_t **stds; } iso; } u; }; /* * The uhci_intr_info free list can be global since they contain * no dma specific data. The other free lists do. */ LIST_HEAD(, uhci_intr_info) uhci_ii_free; void uhci_busreset __P((uhci_softc_t *)); usbd_status uhci_run __P((uhci_softc_t *, int run)); uhci_soft_td_t *uhci_alloc_std __P((uhci_softc_t *)); void uhci_free_std __P((uhci_softc_t *, uhci_soft_td_t *)); uhci_soft_qh_t *uhci_alloc_sqh __P((uhci_softc_t *)); void uhci_free_sqh __P((uhci_softc_t *, uhci_soft_qh_t *)); uhci_intr_info_t *uhci_alloc_intr_info __P((uhci_softc_t *)); void uhci_free_intr_info __P((uhci_intr_info_t *ii)); #if 0 void uhci_enter_ctl_q __P((uhci_softc_t *, uhci_soft_qh_t *, uhci_intr_info_t *)); void uhci_exit_ctl_q __P((uhci_softc_t *, uhci_soft_qh_t *)); #endif void uhci_free_std_chain __P((uhci_softc_t *, uhci_soft_td_t *, uhci_soft_td_t *)); usbd_status uhci_alloc_std_chain __P((struct uhci_pipe *, uhci_softc_t *, int, int, int, usb_dma_t *, uhci_soft_td_t **, uhci_soft_td_t **)); void uhci_timo __P((void *)); void uhci_waitintr __P((uhci_softc_t *, usbd_request_handle)); void uhci_check_intr __P((uhci_softc_t *, uhci_intr_info_t *)); void uhci_ii_done __P((uhci_intr_info_t *, int)); void uhci_timeout __P((void *)); void uhci_wakeup_ctrl __P((void *, int, int, void *, int)); void uhci_lock_frames __P((uhci_softc_t *)); void uhci_unlock_frames __P((uhci_softc_t *)); void uhci_add_ctrl __P((uhci_softc_t *, uhci_soft_qh_t *)); void uhci_add_bulk __P((uhci_softc_t *, uhci_soft_qh_t *)); void uhci_remove_ctrl __P((uhci_softc_t *, uhci_soft_qh_t *)); void uhci_remove_bulk __P((uhci_softc_t *, uhci_soft_qh_t *)); int uhci_str __P((usb_string_descriptor_t *, int, char *)); void uhci_wakeup_cb __P((usbd_request_handle reqh)); usbd_status uhci_device_ctrl_transfer __P((usbd_request_handle)); usbd_status uhci_device_ctrl_start __P((usbd_request_handle)); void uhci_device_ctrl_abort __P((usbd_request_handle)); void uhci_device_ctrl_close __P((usbd_pipe_handle)); usbd_status uhci_device_intr_transfer __P((usbd_request_handle)); usbd_status uhci_device_intr_start __P((usbd_request_handle)); void uhci_device_intr_abort __P((usbd_request_handle)); void uhci_device_intr_close __P((usbd_pipe_handle)); usbd_status uhci_device_bulk_transfer __P((usbd_request_handle)); usbd_status uhci_device_bulk_start __P((usbd_request_handle)); void uhci_device_bulk_abort __P((usbd_request_handle)); void uhci_device_bulk_close __P((usbd_pipe_handle)); usbd_status uhci_device_isoc_transfer __P((usbd_request_handle)); usbd_status uhci_device_isoc_start __P((usbd_request_handle)); void uhci_device_isoc_abort __P((usbd_request_handle)); void uhci_device_isoc_close __P((usbd_pipe_handle)); usbd_status uhci_device_isoc_setbuf __P((usbd_pipe_handle, u_int, u_int)); usbd_status uhci_root_ctrl_transfer __P((usbd_request_handle)); usbd_status uhci_root_ctrl_start __P((usbd_request_handle)); void uhci_root_ctrl_abort __P((usbd_request_handle)); void uhci_root_ctrl_close __P((usbd_pipe_handle)); usbd_status uhci_root_intr_transfer __P((usbd_request_handle)); usbd_status uhci_root_intr_start __P((usbd_request_handle)); void uhci_root_intr_abort __P((usbd_request_handle)); void uhci_root_intr_close __P((usbd_pipe_handle)); usbd_status uhci_open __P((usbd_pipe_handle)); void uhci_poll __P((struct usbd_bus *)); usbd_status uhci_device_request __P((usbd_request_handle reqh)); void uhci_ctrl_done __P((uhci_intr_info_t *ii)); void uhci_bulk_done __P((uhci_intr_info_t *ii)); void uhci_add_intr __P((uhci_softc_t *, int, uhci_soft_qh_t *)); void uhci_remove_intr __P((uhci_softc_t *, int, uhci_soft_qh_t *)); usbd_status uhci_device_setintr __P((uhci_softc_t *sc, struct uhci_pipe *pipe, int ival)); void uhci_intr_done __P((uhci_intr_info_t *ii)); void uhci_isoc_done __P((uhci_intr_info_t *ii)); #ifdef UHCI_DEBUG static void uhci_dumpregs __P((uhci_softc_t *)); void uhci_dump_tds __P((uhci_soft_td_t *)); void uhci_dump_qh __P((uhci_soft_qh_t *)); void uhci_dump __P((void)); void uhci_dump_td __P((uhci_soft_td_t *)); #endif #if defined(__NetBSD__) #define UWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)) #define UWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)) #define UREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r)) #define UREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r)) #elif defined(__FreeBSD__) #define UWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)) #define UWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)) #define UREAD1(sc, r) bus_space_read_1((sc)->iot, (sc)->ioh, (r)) #define UREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r)) #define UREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r)) #endif #define UHCICMD(sc, cmd) UWRITE2(sc, UHCI_CMD, cmd) #define UHCISTS(sc) UREAD2(sc, UHCI_STS) #define UHCI_RESET_TIMEOUT 100 /* reset timeout */ #define UHCI_CURFRAME(sc) (UREAD2(sc, UHCI_FRNUM) & UHCI_FRNUM_MASK) #define UHCI_INTR_ENDPT 1 struct usbd_methods uhci_root_ctrl_methods = { uhci_root_ctrl_transfer, uhci_root_ctrl_start, uhci_root_ctrl_abort, uhci_root_ctrl_close, 0, }; struct usbd_methods uhci_root_intr_methods = { uhci_root_intr_transfer, uhci_root_intr_start, uhci_root_intr_abort, uhci_root_intr_close, 0, }; struct usbd_methods uhci_device_ctrl_methods = { uhci_device_ctrl_transfer, uhci_device_ctrl_start, uhci_device_ctrl_abort, uhci_device_ctrl_close, 0, }; struct usbd_methods uhci_device_intr_methods = { uhci_device_intr_transfer, uhci_device_intr_start, uhci_device_intr_abort, uhci_device_intr_close, 0, }; struct usbd_methods uhci_device_bulk_methods = { uhci_device_bulk_transfer, uhci_device_bulk_start, uhci_device_bulk_abort, uhci_device_bulk_close, 0, }; struct usbd_methods uhci_device_isoc_methods = { uhci_device_isoc_transfer, uhci_device_isoc_start, uhci_device_isoc_abort, uhci_device_isoc_close, uhci_device_isoc_setbuf, }; void uhci_busreset(sc) uhci_softc_t *sc; { UHCICMD(sc, UHCI_CMD_GRESET); /* global reset */ usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); /* wait a little */ UHCICMD(sc, 0); /* do nothing */ } usbd_status uhci_init(sc) uhci_softc_t *sc; { usbd_status r; int i, j; uhci_soft_qh_t *csqh, *bsqh, *sqh; uhci_soft_td_t *std; usb_dma_t dma; static int uhci_global_init_done = 0; DPRINTFN(1,("uhci_init: start\n")); if (!uhci_global_init_done) { uhci_global_init_done = 1; LIST_INIT(&uhci_ii_free); } uhci_run(sc, 0); /* stop the controller */ #if defined(__NetBSD__) UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */ #endif uhci_busreset(sc); /* Allocate and initialize real frame array. */ r = usb_allocmem(sc->sc_dmatag, UHCI_FRAMELIST_COUNT * sizeof(uhci_physaddr_t), UHCI_FRAMELIST_ALIGN, &dma); if (r != USBD_NORMAL_COMPLETION) return (r); sc->sc_pframes = KERNADDR(&dma); UWRITE2(sc, UHCI_FRNUM, 0); /* set frame number to 0 */ UWRITE4(sc, UHCI_FLBASEADDR, DMAADDR(&dma)); /* set frame list */ /* Allocate the dummy QH where bulk traffic will be queued. */ bsqh = uhci_alloc_sqh(sc); if (!bsqh) return (USBD_NOMEM); bsqh->qh->qh_hlink = UHCI_PTR_T; /* end of QH chain */ bsqh->qh->qh_elink = UHCI_PTR_T; sc->sc_bulk_start = sc->sc_bulk_end = bsqh; /* Allocate the dummy QH where control traffic will be queued. */ csqh = uhci_alloc_sqh(sc); if (!csqh) return (USBD_NOMEM); csqh->qh->hlink = bsqh; csqh->qh->qh_hlink = bsqh->physaddr | UHCI_PTR_Q; csqh->qh->qh_elink = UHCI_PTR_T; sc->sc_ctl_start = sc->sc_ctl_end = csqh; /* * Make all (virtual) frame list pointers point to the interrupt * queue heads and the interrupt queue heads at the control * queue head and point the physical frame list to the virtual. */ for(i = 0; i < UHCI_VFRAMELIST_COUNT; i++) { std = uhci_alloc_std(sc); sqh = uhci_alloc_sqh(sc); if (!std || !sqh) return (USBD_NOMEM); std->td->link.sqh = sqh; std->td->td_link = sqh->physaddr | UHCI_PTR_Q; std->td->td_status = UHCI_TD_IOS; /* iso, inactive */ std->td->td_token = 0; std->td->td_buffer = 0; sqh->qh->hlink = csqh; sqh->qh->qh_hlink = csqh->physaddr | UHCI_PTR_Q; sqh->qh->elink = 0; sqh->qh->qh_elink = UHCI_PTR_T; sc->sc_vframes[i].htd = std; sc->sc_vframes[i].etd = std; sc->sc_vframes[i].hqh = sqh; sc->sc_vframes[i].eqh = sqh; for (j = i; j < UHCI_FRAMELIST_COUNT; j += UHCI_VFRAMELIST_COUNT) sc->sc_pframes[j] = std->physaddr; } LIST_INIT(&sc->sc_intrhead); /* Set up the bus struct. */ sc->sc_bus.open_pipe = uhci_open; sc->sc_bus.pipe_size = sizeof(struct uhci_pipe); sc->sc_bus.do_poll = uhci_poll; DPRINTFN(1,("uhci_init: enabling\n")); UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE | UHCI_INTR_RIE | UHCI_INTR_IOCE | UHCI_INTR_SPIE); /* enable interrupts */ return (uhci_run(sc, 1)); /* and here we go... */ } #ifdef UHCI_DEBUG static void uhci_dumpregs(sc) uhci_softc_t *sc; { printf("%s: regs: cmd=%04x, sts=%04x, intr=%04x, frnum=%04x, " "flbase=%08x, sof=%02x, portsc1=%04x, portsc2=%04x, ", USBDEVNAME(sc->sc_bus.bdev), UREAD2(sc, UHCI_CMD), UREAD2(sc, UHCI_STS), UREAD2(sc, UHCI_INTR), UREAD2(sc, UHCI_FRNUM), UREAD4(sc, UHCI_FLBASEADDR), UREAD1(sc, UHCI_SOF), UREAD2(sc, UHCI_PORTSC1), UREAD2(sc, UHCI_PORTSC2)); } int uhci_longtd = 1; void uhci_dump_td(p) uhci_soft_td_t *p; { printf("TD(%p) at %08lx link=0x%08lx st=0x%08lx tok=0x%08lx buf=0x%08lx\n", p, (long)p->physaddr, (long)p->td->td_link, (long)p->td->td_status, (long)p->td->td_token, (long)p->td->td_buffer); if (uhci_longtd) printf(" %b %b,errcnt=%d,actlen=%d pid=%02x,addr=%d,endpt=%d," "D=%d,maxlen=%d\n", (int)p->td->td_link, "\20\1T\2Q\3VF", (int)p->td->td_status, "\20\22BITSTUFF\23CRCTO\24NAK\25BABBLE\26DBUFFER\27" "STALLED\30ACTIVE\31IOC\32ISO\33LS\36SPD", UHCI_TD_GET_ERRCNT(p->td->td_status), UHCI_TD_GET_ACTLEN(p->td->td_status), UHCI_TD_GET_PID(p->td->td_token), UHCI_TD_GET_DEVADDR(p->td->td_token), UHCI_TD_GET_ENDPT(p->td->td_token), UHCI_TD_GET_DT(p->td->td_token), UHCI_TD_GET_MAXLEN(p->td->td_token)); } void uhci_dump_qh(p) uhci_soft_qh_t *p; { printf("QH(%p) at %08x: hlink=%08x elink=%08x\n", p, (int)p->physaddr, p->qh->qh_hlink, p->qh->qh_elink); } #if 0 void uhci_dump() { uhci_softc_t *sc = uhci; uhci_dumpregs(sc); printf("intrs=%d\n", sc->sc_intrs); printf("framelist[i].link = %08x\n", sc->sc_framelist[0].link); uhci_dump_qh(sc->sc_ctl_start->qh->hlink); } #endif void uhci_dump_tds(std) uhci_soft_td_t *std; { uhci_soft_td_t *p; for(p = std; p; p = p->td->link.std) uhci_dump_td(p); } #endif /* * This routine is executed periodically and simulates interrupts * from the root controller interrupt pipe for port status change. */ void uhci_timo(addr) void *addr; { usbd_request_handle reqh = addr; usbd_pipe_handle pipe = reqh->pipe; uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus; struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; int s; u_char *p; DPRINTFN(15, ("uhci_timo\n")); p = KERNADDR(&upipe->u.intr.datadma); p[0] = 0; if (UREAD2(sc, UHCI_PORTSC1) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC)) p[0] |= 1<<1; if (UREAD2(sc, UHCI_PORTSC2) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC)) p[0] |= 1<<2; s = splusb(); if (p[0] != 0) { reqh->actlen = 1; reqh->status = USBD_NORMAL_COMPLETION; reqh->xfercb(reqh); } if (reqh->pipe->intrreqh == reqh) { usb_timeout(uhci_timo, reqh, sc->sc_ival, reqh->timo_handle); } else { usb_freemem(sc->sc_dmatag, &upipe->u.intr.datadma); usb_start_next(reqh->pipe); } splx(s); } void uhci_lock_frames(sc) uhci_softc_t *sc; { int s = splusb(); while (sc->sc_vflock) { sc->sc_vflock |= UHCI_WANT_LOCK; tsleep(&sc->sc_vflock, PRIBIO, "uhcqhl", 0); } sc->sc_vflock = UHCI_HAS_LOCK; splx(s); } void uhci_unlock_frames(sc) uhci_softc_t *sc; { int s = splusb(); sc->sc_vflock &= ~UHCI_HAS_LOCK; if (sc->sc_vflock & UHCI_WANT_LOCK) wakeup(&sc->sc_vflock); splx(s); } /* * Allocate an interrupt information struct. A free list is kept * for fast allocation. */ uhci_intr_info_t * uhci_alloc_intr_info(sc) uhci_softc_t *sc; { uhci_intr_info_t *ii; ii = LIST_FIRST(&uhci_ii_free); if (ii) LIST_REMOVE(ii, list); else { ii = malloc(sizeof(uhci_intr_info_t), M_USBDEV, M_NOWAIT); } ii->sc = sc; #if defined(__FreeBSD__) callout_handle_init(&ii->timeout_handle); #endif return ii; } void uhci_free_intr_info(ii) uhci_intr_info_t *ii; { LIST_INSERT_HEAD(&uhci_ii_free, ii, list); /* and put on free list */ } /* Add control QH, called at splusb(). */ void uhci_add_ctrl(sc, sqh) uhci_softc_t *sc; uhci_soft_qh_t *sqh; { uhci_qh_t *eqh; DPRINTFN(10, ("uhci_add_ctrl: sqh=%p\n", sqh)); eqh = sc->sc_ctl_end->qh; sqh->qh->hlink = eqh->hlink; sqh->qh->qh_hlink = eqh->qh_hlink; eqh->hlink = sqh; eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q; sc->sc_ctl_end = sqh; } /* Remove control QH, called at splusb(). */ void uhci_remove_ctrl(sc, sqh) uhci_softc_t *sc; uhci_soft_qh_t *sqh; { uhci_soft_qh_t *pqh; DPRINTFN(10, ("uhci_remove_ctrl: sqh=%p\n", sqh)); for (pqh = sc->sc_ctl_start; pqh->qh->hlink != sqh; pqh=pqh->qh->hlink) #if defined(DIAGNOSTIC) || defined(UHCI_DEBUG) if (pqh->qh->qh_hlink & UHCI_PTR_T) { printf("uhci_remove_ctrl: QH not found\n"); return; } #else ; #endif pqh->qh->hlink = sqh->qh->hlink; pqh->qh->qh_hlink = sqh->qh->qh_hlink; if (sc->sc_ctl_end == sqh) sc->sc_ctl_end = pqh; } /* Add bulk QH, called at splusb(). */ void uhci_add_bulk(sc, sqh) uhci_softc_t *sc; uhci_soft_qh_t *sqh; { uhci_qh_t *eqh; DPRINTFN(10, ("uhci_add_bulk: sqh=%p\n", sqh)); eqh = sc->sc_bulk_end->qh; sqh->qh->hlink = eqh->hlink; sqh->qh->qh_hlink = eqh->qh_hlink; eqh->hlink = sqh; eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q; sc->sc_bulk_end = sqh; } /* Remove bulk QH, called at splusb(). */ void uhci_remove_bulk(sc, sqh) uhci_softc_t *sc; uhci_soft_qh_t *sqh; { uhci_soft_qh_t *pqh; DPRINTFN(10, ("uhci_remove_bulk: sqh=%p\n", sqh)); for (pqh = sc->sc_bulk_start; pqh->qh->hlink != sqh; pqh = pqh->qh->hlink) #if defined(DIAGNOSTIC) || defined(UHCI_DEBUG) if (pqh->qh->qh_hlink & UHCI_PTR_T) { printf("uhci_remove_bulk: QH not found\n"); return; } #else ; #endif pqh->qh->hlink = sqh->qh->hlink; pqh->qh->qh_hlink = sqh->qh->qh_hlink; if (sc->sc_bulk_end == sqh) sc->sc_bulk_end = pqh; } int uhci_intr(priv) void *priv; { uhci_softc_t *sc = priv; int status; int ack = 0; uhci_intr_info_t *ii; sc->sc_intrs++; #if defined(UHCI_DEBUG) if (uhcidebug > 9) { printf("%s: uhci_intr\n", USBDEVNAME(sc->sc_bus.bdev)); uhci_dumpregs(sc); } #endif status = UREAD2(sc, UHCI_STS); if (status & UHCI_STS_USBINT) ack |= UHCI_STS_USBINT; if (status & UHCI_STS_USBEI) ack |= UHCI_STS_USBEI; if (status & UHCI_STS_RD) { ack |= UHCI_STS_RD; printf("%s: resume detect\n", USBDEVNAME(sc->sc_bus.bdev)); } if (status & UHCI_STS_HSE) { ack |= UHCI_STS_HSE; printf("%s: Host Controller Process Error\n", USBDEVNAME(sc->sc_bus.bdev)); } if (status & UHCI_STS_HCPE) { ack |= UHCI_STS_HCPE; printf("%s: Host System Error\n", USBDEVNAME(sc->sc_bus.bdev)); } if (status & UHCI_STS_HCH) { /* no acknowledge needed */ printf("%s: controller halted\n", USBDEVNAME(sc->sc_bus.bdev)); } if (ack) /* acknowledge the ints */ UWRITE2(sc, UHCI_STS, ack); else /* nothing to acknowledge */ return 0; /* * Interrupts on UHCI really suck. When the host controller * interrupts because a transfer is completed there is no * way of knowing which transfer it was. You can scan down * the TDs and QHs of the previous frame to limit the search, * but that assumes that the interrupt was not delayed by more * than 1 ms, which may not always be true (e.g. after debug * output on a slow console). * We scan all interrupt descriptors to see if any have * completed. */ for (ii = LIST_FIRST(&sc->sc_intrhead); ii; ii = LIST_NEXT(ii, list)) uhci_check_intr(sc, ii); DPRINTFN(10, ("uhci_intr: exit\n")); return 1; } /* Check for an interrupt. */ void uhci_check_intr(sc, ii) uhci_softc_t *sc; uhci_intr_info_t *ii; { struct uhci_pipe *upipe; uhci_soft_td_t *std; u_int32_t status; DPRINTFN(15, ("uhci_check_intr: ii=%p\n", ii)); #ifdef DIAGNOSTIC if (!ii) { printf("uhci_check_intr: no ii? %p\n", ii); return; } if (!ii->stdend) { printf("uhci_check_intr: ii->stdend==0\n"); return; } #endif if (!ii->stdstart) return; /* If the last TD is still active we need to check whether there * is a an error somewhere in the middle, or whether there was a * short packet (SPD and not ACTIVE). */ if (ii->stdend->td->td_status & UHCI_TD_ACTIVE) { for (std = ii->stdstart; std != ii->stdend; std = std->td->link.std){ status = std->td->td_status; DPRINTF(("status=0x%04x\n", status)); if ((status & UHCI_TD_STALLED) || (status & (UHCI_TD_SPD | UHCI_TD_ACTIVE)) == UHCI_TD_SPD) goto done; } return; } done: usb_untimeout(uhci_timeout, ii, ii->timeout_handle); upipe = (struct uhci_pipe *)ii->reqh->pipe; upipe->pipe.endpoint->toggle = upipe->newtoggle; uhci_ii_done(ii, 0); } void uhci_ii_done(ii, timo) uhci_intr_info_t *ii; int timo; /* timeout that triggered function call? */ { usbd_request_handle reqh = ii->reqh; uhci_soft_td_t *std; int actlen = 0; /* accumulated actual length for queue */ int err = 0; /* error status of last inactive transfer */ DPRINTFN(10, ("uhci_ii_done: ii=%p ready %d\n", ii, timo)); #ifdef DIAGNOSTIC { /* avoid finishing a transfer more than once */ int s = splhigh(); if (ii->isdone) { splx(s); printf("uhci_ii_done: is done!\n"); return; } ii->isdone = 1; splx(s); } #endif /* The transfer is done; compute actual length and status */ /* XXX Is this correct for control xfers? */ for (std = ii->stdstart; std; std = std->td->link.std) { if (std->td->td_status & UHCI_TD_ACTIVE) break; /* error status of last TD for error handling below */ err = std->td->td_status & UHCI_TD_ERROR; if (UHCI_TD_GET_PID(std->td->td_token) != UHCI_TD_PID_SETUP) actlen += UHCI_TD_GET_ACTLEN(std->td->td_status); } DPRINTFN(10, ("uhci_ii_done: actlen=%d, err=0x%x\n", actlen, err)); if (err != 0) { DPRINTFN(-1+((err & ~UHCI_TD_STALLED) != 0), ("uhci_ii_done: error, addr=%d, endpt=0x%02x, " "err=0x%b\n", reqh->pipe->device->address, reqh->pipe->endpoint->edesc->bEndpointAddress, (int)err, "\20\22BITSTUFF\23CRCTO\24NAK\25BABBLE\26DBUFFER\27" "STALLED\30ACTIVE")); if (err & ~UHCI_TD_STALLED) { /* more then STALLED, like +BABBLE or +CRC/TIMEOUT */ reqh->status = USBD_IOERROR; /* more info XXX */ } else { reqh->status = USBD_STALLED; } } else { reqh->status = USBD_NORMAL_COMPLETION; } reqh->actlen = actlen; if (timo) { /* We got a timeout. Make sure transaction is not active. */ for (std = ii->stdstart; std != 0; std = std->td->link.std) std->td->td_status &= ~UHCI_TD_ACTIVE; /* XXX should we wait 1 ms */ reqh->status = USBD_TIMEOUT; } DPRINTFN(5, ("uhci_ii_done: calling handler ii=%p\n", ii)); /* select the proper type termination of the transfer * based on the transfer type for the queue */ switch (reqh->pipe->endpoint->edesc->bmAttributes & UE_XFERTYPE) { case UE_CONTROL: uhci_ctrl_done(ii); usb_start_next(reqh->pipe); break; case UE_ISOCHRONOUS: uhci_isoc_done(ii); usb_start_next(reqh->pipe); break; case UE_BULK: uhci_bulk_done(ii); usb_start_next(reqh->pipe); break; case UE_INTERRUPT: uhci_intr_done(ii); break; } /* And finally execute callback. */ reqh->xfercb(reqh); } /* * Called when a request does not complete. */ void uhci_timeout(addr) void *addr; { uhci_intr_info_t *ii = addr; int s; DPRINTF(("uhci_timeout: ii=%p\n", ii)); s = splusb(); uhci_ii_done(ii, 1); splx(s); } /* * Wait here until controller claims to have an interrupt. * Then call uhci_intr and return. Use timeout to avoid waiting * too long. * Only used during boot when interrupts are not enabled yet. */ void uhci_waitintr(sc, reqh) uhci_softc_t *sc; usbd_request_handle reqh; { int timo = reqh->timeout; int usecs; uhci_intr_info_t *ii; DPRINTFN(15,("uhci_waitintr: timeout = %ds\n", timo)); reqh->status = USBD_IN_PROGRESS; for (usecs = timo * 1000000 / hz; usecs > 0; usecs -= 1000) { usb_delay_ms(&sc->sc_bus, 1); DPRINTFN(10,("uhci_waitintr: 0x%04x\n", UREAD2(sc, UHCI_STS))); if (UREAD2(sc, UHCI_STS) & UHCI_STS_USBINT) { uhci_intr(sc); if (reqh->status != USBD_IN_PROGRESS) return; } } /* Timeout */ DPRINTF(("uhci_waitintr: timeout\n")); for (ii = LIST_FIRST(&sc->sc_intrhead); ii && ii->reqh != reqh; ii = LIST_NEXT(ii, list)) ; if (ii) uhci_ii_done(ii, 1); else panic("uhci_waitintr: lost intr_info\n"); } void uhci_poll(bus) struct usbd_bus *bus; { uhci_softc_t *sc = (uhci_softc_t *)bus; if (UREAD2(sc, UHCI_STS) & UHCI_STS_USBINT) uhci_intr(sc); } #if 0 void uhci_reset(p) void *p; { uhci_softc_t *sc = p; int n; UHCICMD(sc, UHCI_CMD_HCRESET); /* The reset bit goes low when the controller is done. */ for (n = 0; n < UHCI_RESET_TIMEOUT && (UREAD2(sc, UHCI_CMD) & UHCI_CMD_HCRESET); n++) delay(100); if (n >= UHCI_RESET_TIMEOUT) printf("%s: controller did not reset\n", USBDEVNAME(sc->sc_bus.bdev)); } #endif usbd_status uhci_run(sc, run) uhci_softc_t *sc; int run; { int s, n, running; s = splusb(); running = ((UREAD2(sc, UHCI_STS) & UHCI_STS_HCH) == 0); if (run == running) { splx(s); return (USBD_NORMAL_COMPLETION); } UWRITE2(sc, UHCI_CMD, run ? UHCI_CMD_RS : 0); for(n = 0; n < 10; n++) { running = ((UREAD2(sc, UHCI_STS) & UHCI_STS_HCH) == 0); /* return when we've entered the state we want */ if (run == running) { splx(s); return (USBD_NORMAL_COMPLETION); } usb_delay_ms(&sc->sc_bus, 1); } splx(s); printf("%s: cannot %s\n", USBDEVNAME(sc->sc_bus.bdev), run ? "start" : "stop"); return (USBD_IOERROR); } /* * Memory management routines. * uhci_alloc_std allocates TDs * uhci_alloc_sqh allocates QHs * These two routines do their own free list management, * partly for speed, partly because allocating DMAable memory * has page size granularaity so much memory would be wasted if * only one TD/QH (32 bytes) was placed in each allocated chunk. */ uhci_soft_td_t * uhci_alloc_std(sc) uhci_softc_t *sc; { uhci_soft_td_t *std; usbd_status r; int i; usb_dma_t dma; if (!sc->sc_freetds) { DPRINTFN(2,("uhci_alloc_std: allocating chunk\n")); std = malloc(sizeof(uhci_soft_td_t) * UHCI_TD_CHUNK, M_USBDEV, M_NOWAIT); if (!std) return (0); r = usb_allocmem(sc->sc_dmatag, UHCI_TD_SIZE * UHCI_TD_CHUNK, UHCI_TD_ALIGN, &dma); if (r != USBD_NORMAL_COMPLETION) { free(std, M_USBDEV); return (0); } for(i = 0; i < UHCI_TD_CHUNK; i++, std++) { std->physaddr = DMAADDR(&dma) + i * UHCI_TD_SIZE; std->td = (uhci_td_t *) ((char *)KERNADDR(&dma) + i * UHCI_TD_SIZE); std->td->link.std = sc->sc_freetds; sc->sc_freetds = std; } } std = sc->sc_freetds; sc->sc_freetds = std->td->link.std; memset(std->td, 0, UHCI_TD_SIZE); return std; } void uhci_free_std(sc, std) uhci_softc_t *sc; uhci_soft_td_t *std; { #ifdef DIAGNOSTIC #define TD_IS_FREE 0x12345678 if (std->td->td_token == TD_IS_FREE) { printf("uhci_free_std: freeing free TD %p\n", std); return; } std->td->td_token = TD_IS_FREE; #endif std->td->link.std = sc->sc_freetds; sc->sc_freetds = std; } uhci_soft_qh_t * uhci_alloc_sqh(sc) uhci_softc_t *sc; { uhci_soft_qh_t *sqh; usbd_status r; int i, offs; usb_dma_t dma; if (!sc->sc_freeqhs) { DPRINTFN(2, ("uhci_alloc_sqh: allocating chunk\n")); sqh = malloc(sizeof(uhci_soft_qh_t) * UHCI_QH_CHUNK, M_USBDEV, M_NOWAIT); if (!sqh) return 0; r = usb_allocmem(sc->sc_dmatag, UHCI_QH_SIZE * UHCI_QH_CHUNK, UHCI_QH_ALIGN, &dma); if (r != USBD_NORMAL_COMPLETION) { free(sqh, M_USBDEV); return 0; } for(i = 0; i < UHCI_QH_CHUNK; i++, sqh++) { offs = i * UHCI_QH_SIZE; sqh->physaddr = DMAADDR(&dma) + offs; sqh->qh = (uhci_qh_t *) ((char *)KERNADDR(&dma) + offs); sqh->qh->hlink = sc->sc_freeqhs; sc->sc_freeqhs = sqh; } } sqh = sc->sc_freeqhs; sc->sc_freeqhs = sqh->qh->hlink; memset(sqh->qh, 0, UHCI_QH_SIZE); return (sqh); } void uhci_free_sqh(sc, sqh) uhci_softc_t *sc; uhci_soft_qh_t *sqh; { sqh->qh->hlink = sc->sc_freeqhs; sc->sc_freeqhs = sqh; } #if 0 /* * Enter a list of transfers onto a control queue. * Called at splusb() */ void uhci_enter_ctl_q(sc, sqh, ii) uhci_softc_t *sc; uhci_soft_qh_t *sqh; uhci_intr_info_t *ii; { DPRINTFN(5, ("uhci_enter_ctl_q: sqh=%p\n", sqh)); } #endif void uhci_free_std_chain(sc, std, stdend) uhci_softc_t *sc; uhci_soft_td_t *std; uhci_soft_td_t *stdend; { uhci_soft_td_t *p; for (; std != stdend; std = p) { p = std->td->link.std; uhci_free_std(sc, std); } } usbd_status uhci_alloc_std_chain(upipe, sc, len, rd, spd, dma, sp, ep) struct uhci_pipe *upipe; uhci_softc_t *sc; int len, rd, spd; usb_dma_t *dma; uhci_soft_td_t **sp, **ep; { uhci_soft_td_t *p, *lastp; uhci_physaddr_t lastlink; int i, ntd, l, tog, maxp; u_int32_t status; int addr = upipe->pipe.device->address; int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress; DPRINTFN(15, ("uhci_alloc_std_chain: addr=%d endpt=%d len=%d ls=%d " "spd=%d\n", addr, endpt, len, upipe->pipe.device->lowspeed, spd)); if (len == 0) { *sp = *ep = 0; DPRINTFN(-1,("uhci_alloc_std_chain: len=0\n")); return (USBD_NORMAL_COMPLETION); } maxp = UGETW(upipe->pipe.endpoint->edesc->wMaxPacketSize); if (maxp == 0) { printf("uhci_alloc_std_chain: maxp=0\n"); return (USBD_INVAL); } ntd = (len + maxp - 1) / maxp; tog = upipe->pipe.endpoint->toggle; if (ntd % 2 == 0) tog ^= 1; upipe->newtoggle = tog ^ 1; lastp = 0; lastlink = UHCI_PTR_T; ntd--; status = UHCI_TD_SET_ERRCNT(3) | UHCI_TD_ACTIVE; if (upipe->pipe.device->lowspeed) status |= UHCI_TD_LOWSPEED; if (spd) status |= UHCI_TD_SPD; for (i = ntd; i >= 0; i--) { p = uhci_alloc_std(sc); if (!p) { uhci_free_std_chain(sc, lastp, 0); return (USBD_NOMEM); } p->td->link.std = lastp; p->td->td_link = lastlink; lastp = p; lastlink = p->physaddr; p->td->td_status = status; if (i == ntd) { /* last TD */ l = len % maxp; if (l == 0) l = maxp; *ep = p; } else l = maxp; p->td->td_token = rd ? UHCI_TD_IN (l, endpt, addr, tog) : UHCI_TD_OUT(l, endpt, addr, tog); p->td->td_buffer = DMAADDR(dma) + i * maxp; tog ^= 1; } *sp = lastp; /*upipe->pipe.endpoint->toggle = tog;*/ DPRINTFN(10, ("uhci_alloc_std_chain: oldtog=%d newtog=%d\n", upipe->pipe.endpoint->toggle, upipe->newtoggle)); return (USBD_NORMAL_COMPLETION); } usbd_status uhci_device_bulk_transfer(reqh) usbd_request_handle reqh; { int s; usbd_status r; s = splusb(); r = usb_insert_transfer(reqh); splx(s); if (r != USBD_NORMAL_COMPLETION) return (r); else return (uhci_device_bulk_start(reqh)); } usbd_status uhci_device_bulk_start(reqh) usbd_request_handle reqh; { struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; uhci_intr_info_t *ii = upipe->iinfo; uhci_soft_td_t *xfer, *xferend; uhci_soft_qh_t *sqh; usb_dma_t *dmap; usbd_status r; int len, isread; int s; DPRINTFN(3, ("uhci_device_bulk_transfer: reqh=%p buf=%p len=%d " "flags=%d\n", reqh, reqh->buffer, reqh->length, reqh->flags)); if (reqh->isreq) panic("uhci_device_bulk_transfer: a request\n"); len = reqh->length; dmap = &upipe->u.bulk.datadma; isread = reqh->pipe->endpoint->edesc->bEndpointAddress & UE_IN; sqh = upipe->u.bulk.sqh; upipe->u.bulk.isread = isread; upipe->u.bulk.length = len; r = usb_allocmem(sc->sc_dmatag, len, 0, dmap); if (r != USBD_NORMAL_COMPLETION) goto ret1; r = uhci_alloc_std_chain(upipe, sc, len, isread, reqh->flags & USBD_SHORT_XFER_OK, dmap, &xfer, &xferend); if (r != USBD_NORMAL_COMPLETION) goto ret2; xferend->td->td_status |= UHCI_TD_IOC; if (!isread && len != 0) memcpy(KERNADDR(dmap), reqh->buffer, len); #ifdef UHCI_DEBUG if (uhcidebug > 10) { printf("uhci_device_bulk_transfer: xfer(1)\n"); uhci_dump_tds(xfer); } #endif /* Set up interrupt info. */ ii->reqh = reqh; ii->stdstart = xfer; ii->stdend = xferend; #if defined(__FreeBSD__) callout_handle_init(&ii->timeout_handle); #endif #ifdef DIAGNOSTIC ii->isdone = 0; #endif sqh->qh->elink = xfer; sqh->qh->qh_elink = xfer->physaddr; sqh->intr_info = ii; s = splusb(); uhci_add_bulk(sc, sqh); LIST_INSERT_HEAD(&sc->sc_intrhead, ii, list); if (reqh->timeout && !sc->sc_bus.use_polling) { usb_timeout(uhci_timeout, ii, MS_TO_TICKS(reqh->timeout), ii->timeout_handle); } splx(s); #ifdef UHCI_DEBUG if (uhcidebug > 10) { printf("uhci_device_bulk_transfer: xfer(2)\n"); uhci_dump_tds(xfer); } #endif return (USBD_IN_PROGRESS); ret2: if (len != 0) usb_freemem(sc->sc_dmatag, dmap); ret1: return (r); } /* Abort a device bulk request. */ void uhci_device_bulk_abort(reqh) usbd_request_handle reqh; { /* XXX inactivate */ usb_delay_ms(reqh->pipe->device->bus, 1);/* make sure it is done */ /* XXX call done */ } /* Close a device bulk pipe. */ void uhci_device_bulk_close(pipe) usbd_pipe_handle pipe; { struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; uhci_free_sqh(sc, upipe->u.bulk.sqh); uhci_free_intr_info(upipe->iinfo); /* XXX free other resources */ } usbd_status uhci_device_ctrl_transfer(reqh) usbd_request_handle reqh; { int s; usbd_status r; s = splusb(); r = usb_insert_transfer(reqh); splx(s); if (r != USBD_NORMAL_COMPLETION) return (r); else return (uhci_device_ctrl_start(reqh)); } usbd_status uhci_device_ctrl_start(reqh) usbd_request_handle reqh; { uhci_softc_t *sc = (uhci_softc_t *)reqh->pipe->device->bus; usbd_status r; if (!reqh->isreq) panic("uhci_device_ctrl_transfer: not a request\n"); r = uhci_device_request(reqh); if (r != USBD_NORMAL_COMPLETION) return (r); if (sc->sc_bus.use_polling) uhci_waitintr(sc, reqh); return (USBD_IN_PROGRESS); } usbd_status uhci_device_intr_transfer(reqh) usbd_request_handle reqh; { int s; usbd_status r; s = splusb(); r = usb_insert_transfer(reqh); splx(s); if (r != USBD_NORMAL_COMPLETION) return (r); else return (uhci_device_intr_start(reqh)); } usbd_status uhci_device_intr_start(reqh) usbd_request_handle reqh; { struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; uhci_intr_info_t *ii = upipe->iinfo; uhci_soft_td_t *xfer, *xferend; uhci_soft_qh_t *sqh; usb_dma_t *dmap; usbd_status r; int len, i; int s; DPRINTFN(3, ("uhci_device_intr_transfer: reqh=%p buf=%p len=%d " "flags=%d\n", reqh, reqh->buffer, reqh->length, reqh->flags)); if (reqh->isreq) panic("uhci_device_intr_transfer: a request\n"); len = reqh->length; dmap = &upipe->u.intr.datadma; if (len == 0) return (USBD_INVAL); /* XXX should it be? */ r = usb_allocmem(sc->sc_dmatag, len, 0, dmap); if (r != USBD_NORMAL_COMPLETION) goto ret1; r = uhci_alloc_std_chain(upipe, sc, len, 1, reqh->flags & USBD_SHORT_XFER_OK, dmap, &xfer, &xferend); if (r != USBD_NORMAL_COMPLETION) goto ret2; xferend->td->td_status |= UHCI_TD_IOC; #ifdef UHCI_DEBUG if (uhcidebug > 10) { printf("uhci_device_intr_transfer: xfer(1)\n"); uhci_dump_tds(xfer); uhci_dump_qh(upipe->u.intr.qhs[0]); } #endif s = splusb(); /* Set up interrupt info. */ ii->reqh = reqh; ii->stdstart = xfer; ii->stdend = xferend; #ifdef DIAGNOSTIC ii->isdone = 0; #endif DPRINTFN(10,("uhci_device_intr_transfer: qhs[0]=%p\n", upipe->u.intr.qhs[0])); for (i = 0; i < upipe->u.intr.npoll; i++) { sqh = upipe->u.intr.qhs[i]; sqh->qh->elink = xfer; sqh->qh->qh_elink = xfer->physaddr; } splx(s); #ifdef UHCI_DEBUG if (uhcidebug > 10) { printf("uhci_device_intr_transfer: xfer(2)\n"); uhci_dump_tds(xfer); uhci_dump_qh(upipe->u.intr.qhs[0]); } #endif return (USBD_IN_PROGRESS); ret2: if (len != 0) usb_freemem(sc->sc_dmatag, dmap); ret1: return (r); } /* Abort a device control request. */ void uhci_device_ctrl_abort(reqh) usbd_request_handle reqh; { /* XXX inactivate */ usb_delay_ms(reqh->pipe->device->bus, 1); /* make sure it is done */ /* XXX call done */ } /* Close a device control pipe. */ void uhci_device_ctrl_close(pipe) usbd_pipe_handle pipe; { struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; uhci_free_intr_info(upipe->iinfo); /* XXX free other resources */ } /* Abort a device interrupt request. */ void uhci_device_intr_abort(reqh) usbd_request_handle reqh; { struct uhci_pipe *upipe; DPRINTFN(1, ("uhci_device_intr_abort: reqh=%p\n", reqh)); /* XXX inactivate */ usb_delay_ms(reqh->pipe->device->bus, 2); /* make sure it is done */ if (reqh->pipe->intrreqh == reqh) { DPRINTF(("uhci_device_intr_abort: remove\n")); reqh->pipe->intrreqh = 0; upipe = (struct uhci_pipe *)reqh->pipe; uhci_intr_done(upipe->u.intr.qhs[0]->intr_info); } } /* Close a device interrupt pipe. */ void uhci_device_intr_close(pipe) usbd_pipe_handle pipe; { struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus; int i, s, npoll; upipe->iinfo->stdstart = 0; /* inactive */ /* Unlink descriptors from controller data structures. */ npoll = upipe->u.intr.npoll; uhci_lock_frames(sc); for (i = 0; i < npoll; i++) uhci_remove_intr(sc, upipe->u.intr.qhs[i]->pos, upipe->u.intr.qhs[i]); uhci_unlock_frames(sc); /* * We now have to wait for any activity on the physical * descriptors to stop. */ usb_delay_ms(&sc->sc_bus, 2); for(i = 0; i < npoll; i++) uhci_free_sqh(sc, upipe->u.intr.qhs[i]); free(upipe->u.intr.qhs, M_USB); s = splusb(); LIST_REMOVE(upipe->iinfo, list); /* remove from active list */ splx(s); uhci_free_intr_info(upipe->iinfo); /* XXX free other resources */ } usbd_status uhci_device_request(reqh) usbd_request_handle reqh; { struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; usb_device_request_t *req = &reqh->request; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; int addr = dev->address; int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress; uhci_intr_info_t *ii = upipe->iinfo; uhci_soft_td_t *setup, *xfer, *stat, *next, *xferend; uhci_soft_qh_t *sqh; usb_dma_t *dmap; int len; u_int32_t ls; usbd_status r; int isread; int s; DPRINTFN(3,("uhci_device_control type=0x%02x, request=0x%02x, " "wValue=0x%04x, wIndex=0x%04x len=%d, addr=%d, endpt=%d\n", req->bmRequestType, req->bRequest, UGETW(req->wValue), UGETW(req->wIndex), UGETW(req->wLength), addr, endpt)); ls = dev->lowspeed ? UHCI_TD_LOWSPEED : 0; isread = req->bmRequestType & UT_READ; len = UGETW(req->wLength); setup = upipe->u.ctl.setup; stat = upipe->u.ctl.stat; sqh = upipe->u.ctl.sqh; dmap = &upipe->u.ctl.datadma; /* Set up data transaction */ if (len != 0) { r = usb_allocmem(sc->sc_dmatag, len, 0, dmap); if (r != USBD_NORMAL_COMPLETION) goto ret1; upipe->pipe.endpoint->toggle = 1; r = uhci_alloc_std_chain(upipe, sc, len, isread, reqh->flags & USBD_SHORT_XFER_OK, dmap, &xfer, &xferend); if (r != USBD_NORMAL_COMPLETION) goto ret2; next = xfer; xferend->td->link.std = stat; xferend->td->td_link = stat->physaddr; } else { next = stat; } upipe->u.ctl.length = len; memcpy(KERNADDR(&upipe->u.ctl.reqdma), req, sizeof *req); if (!isread && len != 0) memcpy(KERNADDR(dmap), reqh->buffer, len); setup->td->link.std = next; setup->td->td_link = next->physaddr; setup->td->td_status = UHCI_TD_SET_ERRCNT(3) | ls | UHCI_TD_ACTIVE; setup->td->td_token = UHCI_TD_SETUP(sizeof *req, endpt, addr); setup->td->td_buffer = DMAADDR(&upipe->u.ctl.reqdma); stat->td->link.std = 0; stat->td->td_link = UHCI_PTR_T; stat->td->td_status = UHCI_TD_SET_ERRCNT(3) | ls | UHCI_TD_ACTIVE | UHCI_TD_IOC; stat->td->td_token = isread ? UHCI_TD_OUT(0, endpt, addr, 1) : UHCI_TD_IN (0, endpt, addr, 1); stat->td->td_buffer = 0; #ifdef UHCI_DEBUG if (uhcidebug > 20) { printf("uhci_device_request: setup\n"); uhci_dump_td(setup); printf("uhci_device_request: stat\n"); uhci_dump_td(stat); } #endif /* Set up interrupt info. */ ii->reqh = reqh; ii->stdstart = setup; ii->stdend = stat; #if defined(__FreeBSD__) callout_handle_init(&ii->timeout_handle); #endif #ifdef DIAGNOSTIC ii->isdone = 0; #endif sqh->qh->elink = setup; sqh->qh->qh_elink = setup->physaddr; sqh->intr_info = ii; s = splusb(); uhci_add_ctrl(sc, sqh); LIST_INSERT_HEAD(&sc->sc_intrhead, ii, list); #ifdef UHCI_DEBUG if (uhcidebug > 12) { uhci_soft_td_t *std; uhci_soft_qh_t *xqh; uhci_soft_qh_t *sxqh; int maxqh = 0; uhci_physaddr_t link; printf("uhci_enter_ctl_q: follow from [0]\n"); for (std = sc->sc_vframes[0].htd, link = 0; (link & UHCI_PTR_Q) == 0; std = std->td->link.std) { link = std->td->td_link; uhci_dump_td(std); } for (sxqh = xqh = (uhci_soft_qh_t *)std; xqh; xqh = (maxqh++ == 5 || xqh->qh->hlink==sxqh || xqh->qh->hlink==xqh ? NULL : xqh->qh->hlink)) { uhci_dump_qh(xqh); uhci_dump_qh(sxqh); } printf("Enqueued QH:\n"); uhci_dump_qh(sqh); uhci_dump_tds(sqh->qh->elink); } #endif if (reqh->timeout && !sc->sc_bus.use_polling) { usb_timeout(uhci_timeout, ii, MS_TO_TICKS(reqh->timeout), ii->timeout_handle); } splx(s); return (USBD_NORMAL_COMPLETION); ret2: if (len != 0) usb_freemem(sc->sc_dmatag, dmap); ret1: return (r); } usbd_status uhci_device_isoc_transfer(reqh) usbd_request_handle reqh; { struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; #ifdef UHCI_DEBUG usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; #endif DPRINTFN(1,("uhci_device_isoc_transfer: sc=%p\n", sc)); if (upipe->u.iso.bufsize == 0) return (USBD_INVAL); /* XXX copy data */ return (USBD_XXX); } usbd_status uhci_device_isoc_start(reqh) usbd_request_handle reqh; { return (USBD_XXX); } void uhci_device_isoc_abort(reqh) usbd_request_handle reqh; { /* XXX Can't abort a single request. */ } void uhci_device_isoc_close(pipe) usbd_pipe_handle pipe; { struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; struct iso *iso; int i; /* * Make sure all TDs are marked as inactive. * Wait for completion. * Unschedule. * Deallocate. */ iso = &upipe->u.iso; for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) iso->stds[i]->td->td_status &= ~UHCI_TD_ACTIVE; usb_delay_ms(&sc->sc_bus, 2); /* wait for completion */ uhci_lock_frames(sc); for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) { uhci_soft_td_t *std, *vstd; std = iso->stds[i]; for (vstd = sc->sc_vframes[i % UHCI_VFRAMELIST_COUNT].htd; vstd && vstd->td->link.std != std; vstd = vstd->td->link.std) ; if (!vstd) { /*panic*/ printf("uhci_device_isoc_close: %p not found\n", std); uhci_unlock_frames(sc); return; } vstd->td->link = std->td->link; vstd->td->td_link = std->td->td_link; uhci_free_std(sc, std); } uhci_unlock_frames(sc); for (i = 0; i < iso->nbuf; i++) usb_freemem(sc->sc_dmatag, &iso->bufs[i]); free(iso->stds, M_USB); free(iso->bufs, M_USB); /* XXX what else? */ } usbd_status uhci_device_isoc_setbuf(pipe, bufsize, nbuf) usbd_pipe_handle pipe; u_int bufsize; u_int nbuf; { struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; usbd_device_handle dev = upipe->pipe.device; uhci_softc_t *sc = (uhci_softc_t *)dev->bus; int addr = upipe->pipe.device->address; int endpt = upipe->pipe.endpoint->edesc->bEndpointAddress; int rd = upipe->pipe.endpoint->edesc->bEndpointAddress & UE_IN; struct iso *iso; int i; usbd_status r; /* * For simplicity the number of buffers must fit nicely in the frame * list. */ if (UHCI_VFRAMELIST_COUNT % nbuf != 0) return (USBD_INVAL); iso = &upipe->u.iso; iso->bufsize = bufsize; iso->nbuf = nbuf; /* Allocate memory for buffers. */ iso->bufs = malloc(nbuf * sizeof(usb_dma_t), M_USB, M_WAITOK); iso->stds = malloc(UHCI_VFRAMELIST_COUNT * sizeof (uhci_soft_td_t *), M_USB, M_WAITOK); for (i = 0; i < nbuf; i++) { r = usb_allocmem(sc->sc_dmatag, bufsize, 0, &iso->bufs[i]); if (r != USBD_NORMAL_COMPLETION) { nbuf = i; goto bad1; } } /* Allocate the TDs. */ for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) { iso->stds[i] = uhci_alloc_std(sc); if (iso->stds[i] == 0) goto bad2; } /* XXX check schedule */ /* XXX interrupts */ /* Insert TDs into schedule, all marked inactive. */ uhci_lock_frames(sc); for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) { uhci_soft_td_t *std, *vstd; std = iso->stds[i]; std->td->td_status = UHCI_TD_IOS; /* iso, inactive */ std->td->td_token = rd ? UHCI_TD_IN (0, endpt, addr, 0) : UHCI_TD_OUT(0, endpt, addr, 0); std->td->td_buffer = DMAADDR(&iso->bufs[i % nbuf]); vstd = sc->sc_vframes[i % UHCI_VFRAMELIST_COUNT].htd; std->td->link = vstd->td->link; std->td->td_link = vstd->td->td_link; vstd->td->link.std = std; vstd->td->td_link = std->physaddr; } uhci_unlock_frames(sc); return (USBD_NORMAL_COMPLETION); bad2: while (--i >= 0) uhci_free_std(sc, iso->stds[i]); bad1: for (i = 0; i < nbuf; i++) usb_freemem(sc->sc_dmatag, &iso->bufs[i]); free(iso->stds, M_USB); free(iso->bufs, M_USB); return (USBD_NOMEM); } void uhci_isoc_done(ii) uhci_intr_info_t *ii; { } void uhci_intr_done(ii) uhci_intr_info_t *ii; { uhci_softc_t *sc = ii->sc; usbd_request_handle reqh = ii->reqh; struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; usb_dma_t *dma; uhci_soft_qh_t *sqh; int i, npoll; DPRINTFN(5, ("uhci_intr_done: length=%d\n", reqh->actlen)); dma = &upipe->u.intr.datadma; memcpy(reqh->buffer, KERNADDR(dma), reqh->actlen); npoll = upipe->u.intr.npoll; for(i = 0; i < npoll; i++) { sqh = upipe->u.intr.qhs[i]; sqh->qh->elink = 0; sqh->qh->qh_elink = UHCI_PTR_T; } uhci_free_std_chain(sc, ii->stdstart, 0); /* XXX Wasteful. */ if (reqh->pipe->intrreqh == reqh) { uhci_soft_td_t *xfer, *xferend; /* This alloc cannot fail since we freed the chain above. */ uhci_alloc_std_chain(upipe, sc, reqh->length, 1, reqh->flags & USBD_SHORT_XFER_OK, dma, &xfer, &xferend); xferend->td->td_status |= UHCI_TD_IOC; #ifdef UHCI_DEBUG if (uhcidebug > 10) { printf("uhci_device_intr_done: xfer(1)\n"); uhci_dump_tds(xfer); uhci_dump_qh(upipe->u.intr.qhs[0]); } #endif ii->stdstart = xfer; ii->stdend = xferend; #ifdef DIAGNOSTIC ii->isdone = 0; #endif for (i = 0; i < npoll; i++) { sqh = upipe->u.intr.qhs[i]; sqh->qh->elink = xfer; sqh->qh->qh_elink = xfer->physaddr; } } else { usb_freemem(sc->sc_dmatag, dma); ii->stdstart = 0; /* mark as inactive */ usb_start_next(reqh->pipe); } } /* Deallocate request data structures */ void uhci_ctrl_done(ii) uhci_intr_info_t *ii; { uhci_softc_t *sc = ii->sc; usbd_request_handle reqh = ii->reqh; struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; u_int len = upipe->u.ctl.length; usb_dma_t *dma; uhci_td_t *htd = ii->stdstart->td; #ifdef DIAGNOSTIC if (!reqh->isreq) panic("uhci_ctrl_done: not a request\n"); #endif LIST_REMOVE(ii, list); /* remove from active list */ uhci_remove_ctrl(sc, upipe->u.ctl.sqh); if (len != 0) { dma = &upipe->u.ctl.datadma; if (reqh->request.bmRequestType & UT_READ) memcpy(reqh->buffer, KERNADDR(dma), len); uhci_free_std_chain(sc, htd->link.std, ii->stdend); usb_freemem(sc->sc_dmatag, dma); } DPRINTFN(5, ("uhci_ctrl_done: length=%d\n", reqh->actlen)); } /* Deallocate request data structures */ void uhci_bulk_done(ii) uhci_intr_info_t *ii; { uhci_softc_t *sc = ii->sc; usbd_request_handle reqh = ii->reqh; struct uhci_pipe *upipe = (struct uhci_pipe *)reqh->pipe; u_int len = upipe->u.bulk.length; usb_dma_t *dma; uhci_td_t *htd = ii->stdstart->td; LIST_REMOVE(ii, list); /* remove from active list */ uhci_remove_bulk(sc, upipe->u.bulk.sqh); if (len != 0) { dma = &upipe->u.bulk.datadma; if (upipe->u.bulk.isread && len != 0) memcpy(reqh->buffer, KERNADDR(dma), len); uhci_free_std_chain(sc, htd->link.std, 0); usb_freemem(sc->sc_dmatag, dma); } DPRINTFN(4, ("uhci_bulk_done: length=%d\n", reqh->actlen)); /* XXX compute new toggle */ } /* Add interrupt QH, called with vflock. */ void uhci_add_intr(sc, n, sqh) uhci_softc_t *sc; int n; uhci_soft_qh_t *sqh; { struct uhci_vframe *vf = &sc->sc_vframes[n]; uhci_qh_t *eqh; DPRINTFN(4, ("uhci_add_intr: n=%d sqh=%p\n", n, sqh)); eqh = vf->eqh->qh; sqh->qh->hlink = eqh->hlink; sqh->qh->qh_hlink = eqh->qh_hlink; eqh->hlink = sqh; eqh->qh_hlink = sqh->physaddr | UHCI_PTR_Q; vf->eqh = sqh; vf->bandwidth++; } /* Remove interrupt QH, called with vflock. */ void uhci_remove_intr(sc, n, sqh) uhci_softc_t *sc; int n; uhci_soft_qh_t *sqh; { struct uhci_vframe *vf = &sc->sc_vframes[n]; uhci_soft_qh_t *pqh; DPRINTFN(4, ("uhci_remove_intr: n=%d sqh=%p\n", n, sqh)); for (pqh = vf->hqh; pqh->qh->hlink != sqh; pqh = pqh->qh->hlink) #if defined(DIAGNOSTIC) || defined(UHCI_DEBUG) if (pqh->qh->qh_hlink & UHCI_PTR_T) { printf("uhci_remove_intr: QH not found\n"); return; } #else ; #endif pqh->qh->hlink = sqh->qh->hlink; pqh->qh->qh_hlink = sqh->qh->qh_hlink; if (vf->eqh == sqh) vf->eqh = pqh; vf->bandwidth--; } usbd_status uhci_device_setintr(sc, upipe, ival) uhci_softc_t *sc; struct uhci_pipe *upipe; int ival; { uhci_soft_qh_t *sqh; int i, npoll, s; u_int bestbw, bw, bestoffs, offs; DPRINTFN(2, ("uhci_setintr: pipe=%p\n", upipe)); if (ival == 0) { printf("uhci_setintr: 0 interval\n"); return (USBD_INVAL); } if (ival > UHCI_VFRAMELIST_COUNT) ival = UHCI_VFRAMELIST_COUNT; npoll = (UHCI_VFRAMELIST_COUNT + ival - 1) / ival; DPRINTFN(2, ("uhci_setintr: ival=%d npoll=%d\n", ival, npoll)); upipe->u.intr.npoll = npoll; upipe->u.intr.qhs = malloc(npoll * sizeof(uhci_soft_qh_t *), M_USB, M_WAITOK); /* * Figure out which offset in the schedule that has most * bandwidth left over. */ #define MOD(i) ((i) & (UHCI_VFRAMELIST_COUNT-1)) for (bestoffs = offs = 0, bestbw = ~0; offs < ival; offs++) { for (bw = i = 0; i < npoll; i++) bw += sc->sc_vframes[MOD(i * ival + offs)].bandwidth; if (bw < bestbw) { bestbw = bw; bestoffs = offs; } } DPRINTFN(1, ("uhci_setintr: bw=%d offs=%d\n", bestbw, bestoffs)); upipe->iinfo->stdstart = 0; for(i = 0; i < npoll; i++) { upipe->u.intr.qhs[i] = sqh = uhci_alloc_sqh(sc); sqh->qh->elink = 0; sqh->qh->qh_elink = UHCI_PTR_T; sqh->pos = MOD(i * ival + bestoffs); sqh->intr_info = upipe->iinfo; } #undef MOD s = splusb(); LIST_INSERT_HEAD(&sc->sc_intrhead, upipe->iinfo, list); splx(s); uhci_lock_frames(sc); /* Enter QHs into the controller data structures. */ for(i = 0; i < npoll; i++) uhci_add_intr(sc, upipe->u.intr.qhs[i]->pos, upipe->u.intr.qhs[i]); uhci_unlock_frames(sc); DPRINTFN(5, ("uhci_setintr: returns %p\n", upipe)); return (USBD_NORMAL_COMPLETION); } /* Open a new pipe. */ usbd_status uhci_open(pipe) usbd_pipe_handle pipe; { uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus; struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc; usbd_status r; DPRINTFN(1, ("uhci_open: pipe=%p, addr=%d, endpt=%d (%d)\n", pipe, pipe->device->address, ed->bEndpointAddress, sc->sc_addr)); if (pipe->device->address == sc->sc_addr) { switch (ed->bEndpointAddress) { case USB_CONTROL_ENDPOINT: pipe->methods = &uhci_root_ctrl_methods; break; case UE_IN | UHCI_INTR_ENDPT: pipe->methods = &uhci_root_intr_methods; break; default: return (USBD_INVAL); } } else { upipe->iinfo = uhci_alloc_intr_info(sc); if (upipe->iinfo == 0) return (USBD_NOMEM); switch (ed->bmAttributes & UE_XFERTYPE) { case UE_CONTROL: pipe->methods = &uhci_device_ctrl_methods; upipe->u.ctl.sqh = uhci_alloc_sqh(sc); if (upipe->u.ctl.sqh == 0) goto bad; upipe->u.ctl.setup = uhci_alloc_std(sc); if (upipe->u.ctl.setup == 0) { uhci_free_sqh(sc, upipe->u.ctl.sqh); goto bad; } upipe->u.ctl.stat = uhci_alloc_std(sc); if (upipe->u.ctl.stat == 0) { uhci_free_sqh(sc, upipe->u.ctl.sqh); uhci_free_std(sc, upipe->u.ctl.setup); goto bad; } r = usb_allocmem(sc->sc_dmatag, sizeof(usb_device_request_t), 0, &upipe->u.ctl.reqdma); if (r != USBD_NORMAL_COMPLETION) { uhci_free_sqh(sc, upipe->u.ctl.sqh); uhci_free_std(sc, upipe->u.ctl.setup); uhci_free_std(sc, upipe->u.ctl.stat); goto bad; } break; case UE_INTERRUPT: pipe->methods = &uhci_device_intr_methods; return (uhci_device_setintr(sc, upipe, ed->bInterval)); case UE_ISOCHRONOUS: pipe->methods = &uhci_device_isoc_methods; upipe->u.iso.nbuf = 0; return (USBD_NORMAL_COMPLETION); case UE_BULK: pipe->methods = &uhci_device_bulk_methods; upipe->u.bulk.sqh = uhci_alloc_sqh(sc); if (upipe->u.bulk.sqh == 0) goto bad; break; } } return (USBD_NORMAL_COMPLETION); bad: uhci_free_intr_info(upipe->iinfo); return (USBD_NOMEM); } /* * Data structures and routines to emulate the root hub. */ usb_device_descriptor_t uhci_devd = { USB_DEVICE_DESCRIPTOR_SIZE, UDESC_DEVICE, /* type */ {0x00, 0x01}, /* USB version */ UCLASS_HUB, /* class */ USUBCLASS_HUB, /* subclass */ 0, /* protocol */ 64, /* max packet */ {0},{0},{0x00,0x01}, /* device id */ 1,2,0, /* string indicies */ 1 /* # of configurations */ }; usb_config_descriptor_t uhci_confd = { USB_CONFIG_DESCRIPTOR_SIZE, UDESC_CONFIG, {USB_CONFIG_DESCRIPTOR_SIZE + USB_INTERFACE_DESCRIPTOR_SIZE + USB_ENDPOINT_DESCRIPTOR_SIZE}, 1, 1, 0, UC_SELF_POWERED, 0 /* max power */ }; usb_interface_descriptor_t uhci_ifcd = { USB_INTERFACE_DESCRIPTOR_SIZE, UDESC_INTERFACE, 0, 0, 1, UCLASS_HUB, USUBCLASS_HUB, 0, 0 }; usb_endpoint_descriptor_t uhci_endpd = { USB_ENDPOINT_DESCRIPTOR_SIZE, UDESC_ENDPOINT, UE_IN | UHCI_INTR_ENDPT, UE_INTERRUPT, {8}, 255 }; usb_hub_descriptor_t uhci_hubd_piix = { USB_HUB_DESCRIPTOR_SIZE, UDESC_HUB, 2, { UHD_PWR_NO_SWITCH | UHD_OC_INDIVIDUAL, 0 }, 50, /* power on to power good */ 0, { 0x00 }, /* both ports are removable */ }; int uhci_str(p, l, s) usb_string_descriptor_t *p; int l; char *s; { int i; if (l == 0) return (0); p->bLength = 2 * strlen(s) + 2; if (l == 1) return (1); p->bDescriptorType = UDESC_STRING; l -= 2; for (i = 0; s[i] && l > 1; i++, l -= 2) USETW2(p->bString[i], 0, s[i]); return (2*i+2); } /* * Simulate a hardware hub by handling all the necessary requests. */ usbd_status uhci_root_ctrl_transfer(reqh) usbd_request_handle reqh; { int s; usbd_status r; s = splusb(); r = usb_insert_transfer(reqh); splx(s); if (r != USBD_NORMAL_COMPLETION) return (r); else return (uhci_root_ctrl_start(reqh)); } usbd_status uhci_root_ctrl_start(reqh) usbd_request_handle reqh; { uhci_softc_t *sc = (uhci_softc_t *)reqh->pipe->device->bus; usb_device_request_t *req; void *buf; int port, x; int len, value, index, status, change, l, totlen = 0; usb_port_status_t ps; usbd_status r; if (!reqh->isreq) panic("uhci_root_ctrl_transfer: not a request\n"); req = &reqh->request; buf = reqh->buffer; DPRINTFN(10,("uhci_root_ctrl_control type=0x%02x request=%02x\n", req->bmRequestType, req->bRequest)); len = UGETW(req->wLength); value = UGETW(req->wValue); index = UGETW(req->wIndex); #define C(x,y) ((x) | ((y) << 8)) switch(C(req->bRequest, req->bmRequestType)) { case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE): case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE): case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT): /* * DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops * for the integrated root hub. */ break; case C(UR_GET_CONFIG, UT_READ_DEVICE): if (len > 0) { *(u_int8_t *)buf = sc->sc_conf; totlen = 1; } break; case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE): DPRINTFN(2,("uhci_root_ctrl_control wValue=0x%04x\n", value)); switch(value >> 8) { case UDESC_DEVICE: if ((value & 0xff) != 0) { r = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE); memcpy(buf, &uhci_devd, l); break; case UDESC_CONFIG: if ((value & 0xff) != 0) { r = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE); memcpy(buf, &uhci_confd, l); buf = (char *)buf + l; len -= l; l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE); totlen += l; memcpy(buf, &uhci_ifcd, l); buf = (char *)buf + l; len -= l; l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE); totlen += l; memcpy(buf, &uhci_endpd, l); break; case UDESC_STRING: if (len == 0) break; *(u_int8_t *)buf = 0; totlen = 1; switch (value & 0xff) { case 1: /* Vendor */ totlen = uhci_str(buf, len, sc->sc_vendor); break; case 2: /* Product */ totlen = uhci_str(buf, len, "UHCI root hub"); break; } break; default: r = USBD_IOERROR; goto ret; } break; case C(UR_GET_INTERFACE, UT_READ_INTERFACE): if (len > 0) { *(u_int8_t *)buf = 0; totlen = 1; } break; case C(UR_GET_STATUS, UT_READ_DEVICE): if (len > 1) { USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED); totlen = 2; } break; case C(UR_GET_STATUS, UT_READ_INTERFACE): case C(UR_GET_STATUS, UT_READ_ENDPOINT): if (len > 1) { USETW(((usb_status_t *)buf)->wStatus, 0); totlen = 2; } break; case C(UR_SET_ADDRESS, UT_WRITE_DEVICE): if (value >= USB_MAX_DEVICES) { r = USBD_IOERROR; goto ret; } sc->sc_addr = value; break; case C(UR_SET_CONFIG, UT_WRITE_DEVICE): if (value != 0 && value != 1) { r = USBD_IOERROR; goto ret; } sc->sc_conf = value; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_DEVICE): case C(UR_SET_FEATURE, UT_WRITE_INTERFACE): case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT): r = USBD_IOERROR; goto ret; case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE): break; case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT): break; /* Hub requests */ case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): DPRINTFN(3, ("uhci_root_ctrl_control: UR_CLEAR_PORT_FEATURE " "port=%d feature=%d\n", index, value)); if (index == 1) port = UHCI_PORTSC1; else if (index == 2) port = UHCI_PORTSC2; else { r = USBD_IOERROR; goto ret; } switch(value) { case UHF_PORT_ENABLE: x = UREAD2(sc, port); UWRITE2(sc, port, x & ~UHCI_PORTSC_PE); break; case UHF_PORT_SUSPEND: x = UREAD2(sc, port); UWRITE2(sc, port, x & ~UHCI_PORTSC_SUSP); break; case UHF_PORT_RESET: x = UREAD2(sc, port); UWRITE2(sc, port, x & ~UHCI_PORTSC_PR); break; case UHF_C_PORT_CONNECTION: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_CSC); break; case UHF_C_PORT_ENABLE: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_POEDC); break; case UHF_C_PORT_OVER_CURRENT: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_OCIC); break; case UHF_C_PORT_RESET: sc->sc_isreset = 0; r = USBD_NORMAL_COMPLETION; goto ret; case UHF_PORT_CONNECTION: case UHF_PORT_OVER_CURRENT: case UHF_PORT_POWER: case UHF_PORT_LOW_SPEED: case UHF_C_PORT_SUSPEND: default: r = USBD_IOERROR; goto ret; } break; case C(UR_GET_BUS_STATE, UT_READ_CLASS_OTHER): if (index == 1) port = UHCI_PORTSC1; else if (index == 2) port = UHCI_PORTSC2; else { r = USBD_IOERROR; goto ret; } if (len > 0) { *(u_int8_t *)buf = (UREAD2(sc, port) & UHCI_PORTSC_LS) >> UHCI_PORTSC_LS_SHIFT; totlen = 1; } break; case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE): if (value != 0) { r = USBD_IOERROR; goto ret; } l = min(len, USB_HUB_DESCRIPTOR_SIZE); totlen = l; memcpy(buf, &uhci_hubd_piix, l); break; case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE): if (len != 4) { r = USBD_IOERROR; goto ret; } memset(buf, 0, len); totlen = len; break; case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): if (index == 1) port = UHCI_PORTSC1; else if (index == 2) port = UHCI_PORTSC2; else { r = USBD_IOERROR; goto ret; } if (len != 4) { r = USBD_IOERROR; goto ret; } x = UREAD2(sc, port); status = change = 0; if (x & UHCI_PORTSC_CCS ) status |= UPS_CURRENT_CONNECT_STATUS; if (x & UHCI_PORTSC_CSC ) change |= UPS_C_CONNECT_STATUS; if (x & UHCI_PORTSC_PE ) status |= UPS_PORT_ENABLED; if (x & UHCI_PORTSC_POEDC) change |= UPS_C_PORT_ENABLED; if (x & UHCI_PORTSC_OCI ) status |= UPS_OVERCURRENT_INDICATOR; if (x & UHCI_PORTSC_OCIC ) change |= UPS_C_OVERCURRENT_INDICATOR; if (x & UHCI_PORTSC_SUSP ) status |= UPS_SUSPEND; if (x & UHCI_PORTSC_LSDA ) status |= UPS_LOW_SPEED; status |= UPS_PORT_POWER; if (sc->sc_isreset) change |= UPS_C_PORT_RESET; USETW(ps.wPortStatus, status); USETW(ps.wPortChange, change); l = min(len, sizeof ps); memcpy(buf, &ps, l); totlen = l; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE): r = USBD_IOERROR; goto ret; case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): if (index == 1) port = UHCI_PORTSC1; else if (index == 2) port = UHCI_PORTSC2; else { r = USBD_IOERROR; goto ret; } switch(value) { case UHF_PORT_ENABLE: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_PE); break; case UHF_PORT_SUSPEND: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_SUSP); break; case UHF_PORT_RESET: x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_PR); usb_delay_ms(&sc->sc_bus, 10); UWRITE2(sc, port, x & ~UHCI_PORTSC_PR); delay(100); x = UREAD2(sc, port); UWRITE2(sc, port, x | UHCI_PORTSC_PE); delay(100); DPRINTFN(3,("uhci port %d reset, status = 0x%04x\n", index, UREAD2(sc, port))); sc->sc_isreset = 1; break; case UHF_C_PORT_CONNECTION: case UHF_C_PORT_ENABLE: case UHF_C_PORT_OVER_CURRENT: case UHF_PORT_CONNECTION: case UHF_PORT_OVER_CURRENT: case UHF_PORT_POWER: case UHF_PORT_LOW_SPEED: case UHF_C_PORT_SUSPEND: case UHF_C_PORT_RESET: default: r = USBD_IOERROR; goto ret; } break; default: r = USBD_IOERROR; goto ret; } reqh->actlen = totlen; r = USBD_NORMAL_COMPLETION; ret: reqh->status = r; reqh->xfercb(reqh); usb_start_next(reqh->pipe); return (USBD_IN_PROGRESS); } /* Abort a root control request. */ void uhci_root_ctrl_abort(reqh) usbd_request_handle reqh; { /* Nothing to do, all transfers are syncronous. */ } /* Close the root pipe. */ void uhci_root_ctrl_close(pipe) usbd_pipe_handle pipe; { usb_untimeout(uhci_timo, pipe->intrreqh, pipe->intrreqh->timo_handle); DPRINTF(("uhci_root_ctrl_close\n")); } /* Abort a root interrupt request. */ void uhci_root_intr_abort(reqh) usbd_request_handle reqh; { usb_untimeout(uhci_timo, reqh, reqh->timo_handle); } usbd_status uhci_root_intr_transfer(reqh) usbd_request_handle reqh; { int s; usbd_status r; s = splusb(); r = usb_insert_transfer(reqh); splx(s); if (r != USBD_NORMAL_COMPLETION) return (r); else return (uhci_root_intr_start(reqh)); } /* Start a transfer on the root interrupt pipe */ usbd_status uhci_root_intr_start(reqh) usbd_request_handle reqh; { usbd_pipe_handle pipe = reqh->pipe; uhci_softc_t *sc = (uhci_softc_t *)pipe->device->bus; struct uhci_pipe *upipe = (struct uhci_pipe *)pipe; usb_dma_t *dmap; usbd_status r; int len; DPRINTFN(3, ("uhci_root_intr_transfer: reqh=%p buf=%p len=%d " "flags=%d\n", reqh, reqh->buffer, reqh->length, reqh->flags)); len = reqh->length; dmap = &upipe->u.intr.datadma; if (len == 0) return (USBD_INVAL); /* XXX should it be? */ r = usb_allocmem(sc->sc_dmatag, len, 0, dmap); if (r != USBD_NORMAL_COMPLETION) return (r); sc->sc_ival = MS_TO_TICKS(reqh->pipe->endpoint->edesc->bInterval); usb_timeout(uhci_timo, reqh, sc->sc_ival, reqh->timo_handle); return (USBD_IN_PROGRESS); } /* Close the root interrupt pipe. */ void uhci_root_intr_close(pipe) usbd_pipe_handle pipe; { usb_untimeout(uhci_timo, pipe->intrreqh, pipe->intrreqh->timo_handle); DPRINTF(("uhci_root_intr_close\n")); }