// $FreeBSD$ // // Copyright (c) 2000, Intel Corporation // All rights reserved. // // Contributed 2/15/2000 by Marius Cornea, John Harrison, Cristina Iordache, // Ted Kubaska, Bob Norin, and Shane Story of the Computational Software Lab, // Intel Corporation. // // WARRANTY DISCLAIMER // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at // http://developer.intel.com/opensource. // #include .section .text ENTRY(__divdf3, 0) { .mfi // a is in f8 // b is in f9 // predicate registers used: p6 // floating-point registers used: f6, f7, f8, f9, f10, f11 // load a, the first argument, in f6 nop.m 0 mov f6=f8 nop.i 0 } { .mfi // load b, the second argument, in f7 nop.m 0 mov f7=f9 nop.i 0;; } { .mfi // BEGIN DOUBLE PRECISION LATENCY-OPTIMIZED DIVIDE ALGORITHM nop.m 0 // Step (1) // y0 = 1 / b in f8 frcpa.s0 f8,p6=f6,f7 nop.i 0;; } { .mfi nop.m 0 // Step (2) // q0 = a * y0 in f9 (p6) fma.s1 f9=f6,f8,f0 nop.i 0 } { .mfi nop.m 0 // Step (3) // e0 = 1 - b * y0 in f10 (p6) fnma.s1 f10=f7,f8,f1 nop.i 0;; } { .mfi nop.m 0 // Step (4) // q1 = q0 + e0 * q0 in f9 (p6) fma.s1 f9=f10,f9,f9 nop.i 0 } { .mfi nop.m 0 // Step (5) // e1 = e0 * e0 in f11 (p6) fma.s1 f11=f10,f10,f0 nop.i 0 } { .mfi nop.m 0 // Step (6) // y1 = y0 + e0 * y0 in f8 (p6) fma.s1 f8=f10,f8,f8 nop.i 0;; } { .mfi nop.m 0 // Step (7) // q2 = q1 + e1 * q1 in f9 (p6) fma.s1 f9=f11,f9,f9 nop.i 0 } { .mfi nop.m 0 // Step (8) // e2 = e1 * e1 in f10 (p6) fma.s1 f10=f11,f11,f0 nop.i 0 } { .mfi nop.m 0 // Step (9) // y2 = y1 + e1 * y1 in f8 (p6) fma.s1 f8=f11,f8,f8 nop.i 0;; } { .mfi nop.m 0 // Step (10) // q3 = q2 + e2 * q2 in f9 (p6) fma.d.s1 f9=f10,f9,f9 nop.i 0;; } { .mfi nop.m 0 // Step (11) // y3 = y2 + e2 * y2 in f8 (p6) fma.s1 f8=f10,f8,f8 nop.i 0;; } { .mfi nop.m 0 // Step (12) // r0 = a - b * q3 in f6 (p6) fnma.d.s1 f6=f7,f9,f6 nop.i 0;; } { .mfi nop.m 0 // Step (13) // q4 = q3 + r0 * y3 in f8 (p6) fma.d.s0 f8=f6,f8,f9 nop.i 0;; // END DOUBLE PRECISION LATENCY-OPTIMIZED DIVIDE ALGORITHM } { .mib nop.m 0 nop.i 0 // return br.ret.sptk b0;; } END(__divdf3)