/* $NetBSD: rf_dagffrd.c,v 1.4 2000/01/07 03:40:58 oster Exp $ */ #include __FBSDID("$FreeBSD$"); /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * rf_dagffrd.c * * code for creating fault-free read DAGs * */ #include #include #include #include #include #include #include #include #include /****************************************************************************** * * General comments on DAG creation: * * All DAGs in this file use roll-away error recovery. Each DAG has a single * commit node, usually called "Cmt." If an error occurs before the Cmt node * is reached, the execution engine will halt forward execution and work * backward through the graph, executing the undo functions. Assuming that * each node in the graph prior to the Cmt node are undoable and atomic - or - * does not make changes to permanent state, the graph will fail atomically. * If an error occurs after the Cmt node executes, the engine will roll-forward * through the graph, blindly executing nodes until it reaches the end. * If a graph reaches the end, it is assumed to have completed successfully. * * A graph has only 1 Cmt node. * */ /****************************************************************************** * * The following wrappers map the standard DAG creation interface to the * DAG creation routines. Additionally, these wrappers enable experimentation * with new DAG structures by providing an extra level of indirection, allowing * the DAG creation routines to be replaced at this single point. */ void rf_CreateFaultFreeReadDAG( RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList) { rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList, RF_IO_TYPE_READ); } /****************************************************************************** * * DAG creation code begins here */ /****************************************************************************** * * creates a DAG to perform a nonredundant read or write of data within one * stripe. * For reads, this DAG is as follows: * * /---- read ----\ * Header -- Block ---- read ---- Commit -- Terminate * \---- read ----/ * * For writes, this DAG is as follows: * * /---- write ----\ * Header -- Commit ---- write ---- Block -- Terminate * \---- write ----/ * * There is one disk node per stripe unit accessed, and all disk nodes are in * parallel. * * Tricky point here: The first disk node (read or write) is created * normally. Subsequent disk nodes are created by copying the first one, * and modifying a few params. The "succedents" and "antecedents" fields are * _not_ re-created in each node, but rather left pointing to the same array * that was malloc'd when the first node was created. Thus, it's essential * that when this DAG is freed, the succedents and antecedents fields be freed * in ONLY ONE of the read nodes. This does not apply to the "params" field * because it is recreated for each READ node. * * Note that normal-priority accesses do not need to be tagged with their * parity stripe ID, because they will never be promoted. Hence, I've * commented-out the code to do this, and marked it with UNNEEDED. * *****************************************************************************/ void rf_CreateNonredundantDAG( RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, RF_IoType_t type) { RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode; RF_PhysDiskAddr_t *pda = asmap->physInfo; int (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *); int i, n, totalNumNodes; char *name; n = asmap->numStripeUnitsAccessed; dag_h->creator = "NonredundantDAG"; RF_ASSERT(RF_IO_IS_R_OR_W(type)); switch (type) { case RF_IO_TYPE_READ: doFunc = rf_DiskReadFunc; undoFunc = rf_DiskReadUndoFunc; name = "R "; if (rf_dagDebug) printf("[Creating non-redundant read DAG]\n"); break; case RF_IO_TYPE_WRITE: doFunc = rf_DiskWriteFunc; undoFunc = rf_DiskWriteUndoFunc; name = "W "; if (rf_dagDebug) printf("[Creating non-redundant write DAG]\n"); break; default: RF_PANIC(); } /* * For reads, the dag can not commit until the block node is reached. * for writes, the dag commits immediately. */ dag_h->numCommitNodes = 1; dag_h->numCommits = 0; dag_h->numSuccedents = 1; /* * Node count: * 1 block node * n data reads (or writes) * 1 commit node * 1 terminator node */ RF_ASSERT(n > 0); totalNumNodes = n + 3; RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; diskNodes = &nodes[i]; i += n; blockNode = &nodes[i]; i += 1; commitNode = &nodes[i]; i += 1; termNode = &nodes[i]; i += 1; RF_ASSERT(i == totalNumNodes); /* initialize nodes */ switch (type) { case RF_IO_TYPE_READ: rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList); rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList); rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); break; case RF_IO_TYPE_WRITE: rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList); rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, n, 1, 0, 0, dag_h, "Cmt", allocList); rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, n, 0, 0, dag_h, "Trm", allocList); break; default: RF_PANIC(); } for (i = 0; i < n; i++) { RF_ASSERT(pda != NULL); rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); diskNodes[i].params[0].p = pda; diskNodes[i].params[1].p = pda->bufPtr; /* parity stripe id is not necessary */ diskNodes[i].params[2].v = 0; diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0); pda = pda->next; } /* * Connect nodes. */ /* connect hdr to block node */ RF_ASSERT(blockNode->numAntecedents == 0); dag_h->succedents[0] = blockNode; if (type == RF_IO_TYPE_READ) { /* connecting a nonredundant read DAG */ RF_ASSERT(blockNode->numSuccedents == n); RF_ASSERT(commitNode->numAntecedents == n); for (i = 0; i < n; i++) { /* connect block node to each read node */ RF_ASSERT(diskNodes[i].numAntecedents == 1); blockNode->succedents[i] = &diskNodes[i]; diskNodes[i].antecedents[0] = blockNode; diskNodes[i].antType[0] = rf_control; /* connect each read node to the commit node */ RF_ASSERT(diskNodes[i].numSuccedents == 1); diskNodes[i].succedents[0] = commitNode; commitNode->antecedents[i] = &diskNodes[i]; commitNode->antType[i] = rf_control; } /* connect the commit node to the term node */ RF_ASSERT(commitNode->numSuccedents == 1); RF_ASSERT(termNode->numAntecedents == 1); RF_ASSERT(termNode->numSuccedents == 0); commitNode->succedents[0] = termNode; termNode->antecedents[0] = commitNode; termNode->antType[0] = rf_control; } else { /* connecting a nonredundant write DAG */ /* connect the block node to the commit node */ RF_ASSERT(blockNode->numSuccedents == 1); RF_ASSERT(commitNode->numAntecedents == 1); blockNode->succedents[0] = commitNode; commitNode->antecedents[0] = blockNode; commitNode->antType[0] = rf_control; RF_ASSERT(commitNode->numSuccedents == n); RF_ASSERT(termNode->numAntecedents == n); RF_ASSERT(termNode->numSuccedents == 0); for (i = 0; i < n; i++) { /* connect the commit node to each write node */ RF_ASSERT(diskNodes[i].numAntecedents == 1); commitNode->succedents[i] = &diskNodes[i]; diskNodes[i].antecedents[0] = commitNode; diskNodes[i].antType[0] = rf_control; /* connect each write node to the term node */ RF_ASSERT(diskNodes[i].numSuccedents == 1); diskNodes[i].succedents[0] = termNode; termNode->antecedents[i] = &diskNodes[i]; termNode->antType[i] = rf_control; } } } /****************************************************************************** * Create a fault-free read DAG for RAID level 1 * * Hdr -> Nil -> Rmir -> Cmt -> Trm * * The "Rmir" node schedules a read from the disk in the mirror pair with the * shortest disk queue. the proper queue is selected at Rmir execution. this * deferred mapping is unlike other archs in RAIDframe which generally fix * mapping at DAG creation time. * * Parameters: raidPtr - description of the physical array * asmap - logical & physical addresses for this access * bp - buffer ptr (for holding read data) * flags - general flags (e.g. disk locking) * allocList - list of memory allocated in DAG creation *****************************************************************************/ static void CreateMirrorReadDAG( RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList, int (*readfunc) (RF_DagNode_t * node)) { RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode; RF_PhysDiskAddr_t *data_pda = asmap->physInfo; RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo; int i, n, totalNumNodes; n = asmap->numStripeUnitsAccessed; dag_h->creator = "RaidOneReadDAG"; if (rf_dagDebug) { printf("[Creating RAID level 1 read DAG]\n"); } /* * This dag can not commit until the commit node is reached * errors prior to the commit point imply the dag has failed. */ dag_h->numCommitNodes = 1; dag_h->numCommits = 0; dag_h->numSuccedents = 1; /* * Node count: * n data reads * 1 block node * 1 commit node * 1 terminator node */ RF_ASSERT(n > 0); totalNumNodes = n + 3; RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList); i = 0; readNodes = &nodes[i]; i += n; blockNode = &nodes[i]; i += 1; commitNode = &nodes[i]; i += 1; termNode = &nodes[i]; i += 1; RF_ASSERT(i == totalNumNodes); /* initialize nodes */ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList); rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList); rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList); for (i = 0; i < n; i++) { RF_ASSERT(data_pda != NULL); RF_ASSERT(parity_pda != NULL); rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc, rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h, "Rmir", allocList); readNodes[i].params[0].p = data_pda; readNodes[i].params[1].p = data_pda->bufPtr; /* parity stripe id is not necessary */ readNodes[i].params[2].p = 0; readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0); readNodes[i].params[4].p = parity_pda; data_pda = data_pda->next; parity_pda = parity_pda->next; } /* * Connect nodes */ /* connect hdr to block node */ RF_ASSERT(blockNode->numAntecedents == 0); dag_h->succedents[0] = blockNode; /* connect block node to read nodes */ RF_ASSERT(blockNode->numSuccedents == n); for (i = 0; i < n; i++) { RF_ASSERT(readNodes[i].numAntecedents == 1); blockNode->succedents[i] = &readNodes[i]; readNodes[i].antecedents[0] = blockNode; readNodes[i].antType[0] = rf_control; } /* connect read nodes to commit node */ RF_ASSERT(commitNode->numAntecedents == n); for (i = 0; i < n; i++) { RF_ASSERT(readNodes[i].numSuccedents == 1); readNodes[i].succedents[0] = commitNode; commitNode->antecedents[i] = &readNodes[i]; commitNode->antType[i] = rf_control; } /* connect commit node to term node */ RF_ASSERT(commitNode->numSuccedents == 1); RF_ASSERT(termNode->numAntecedents == 1); RF_ASSERT(termNode->numSuccedents == 0); commitNode->succedents[0] = termNode; termNode->antecedents[0] = commitNode; termNode->antType[0] = rf_control; } void rf_CreateMirrorIdleReadDAG( RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList) { CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, rf_DiskReadMirrorIdleFunc); } void rf_CreateMirrorPartitionReadDAG( RF_Raid_t * raidPtr, RF_AccessStripeMap_t * asmap, RF_DagHeader_t * dag_h, void *bp, RF_RaidAccessFlags_t flags, RF_AllocListElem_t * allocList) { CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList, rf_DiskReadMirrorPartitionFunc); }