/* Memory allocator `malloc'. Copyright 1990, 1991, 1992, 1993 Free Software Foundation Written May 1989 by Mike Haertel. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. The author may be reached (Email) at the address mike@ai.mit.edu, or (US mail) as Mike Haertel c/o Free Software Foundation. */ #ifndef _MALLOC_INTERNAL #define _MALLOC_INTERNAL #include #endif /* How to really get more memory. */ __ptr_t (*__morecore) __P ((ptrdiff_t __size)) = __default_morecore; /* Debugging hook for `malloc'. */ __ptr_t (*__malloc_hook) __P ((size_t __size)); /* Pointer to the base of the first block. */ char *_heapbase; /* Block information table. Allocated with align/__free (not malloc/free). */ malloc_info *_heapinfo; /* Number of info entries. */ static size_t heapsize; /* Search index in the info table. */ size_t _heapindex; /* Limit of valid info table indices. */ size_t _heaplimit; /* Free lists for each fragment size. */ struct list _fraghead[BLOCKLOG]; /* Instrumentation. */ size_t _chunks_used; size_t _bytes_used; size_t _chunks_free; size_t _bytes_free; /* Are you experienced? */ int __malloc_initialized; void (*__after_morecore_hook) __P ((void)); /* Aligned allocation. */ static __ptr_t align __P ((size_t)); static __ptr_t align (size) size_t size; { __ptr_t result; unsigned long int adj; result = (*__morecore) (size); adj = (unsigned long int) ((unsigned long int) ((char *) result - (char *) NULL)) % BLOCKSIZE; if (adj != 0) { adj = BLOCKSIZE - adj; (void) (*__morecore) (adj); result = (char *) result + adj; } if (__after_morecore_hook) (*__after_morecore_hook) (); return result; } /* Set everything up and remember that we have. */ static int initialize __P ((void)); static int initialize () { heapsize = HEAP / BLOCKSIZE; _heapinfo = (malloc_info *) align (heapsize * sizeof (malloc_info)); if (_heapinfo == NULL) return 0; memset (_heapinfo, 0, heapsize * sizeof (malloc_info)); _heapinfo[0].free.size = 0; _heapinfo[0].free.next = _heapinfo[0].free.prev = 0; _heapindex = 0; _heapbase = (char *) _heapinfo; __malloc_initialized = 1; return 1; } /* Get neatly aligned memory, initializing or growing the heap info table as necessary. */ static __ptr_t morecore __P ((size_t)); static __ptr_t morecore (size) size_t size; { __ptr_t result; malloc_info *newinfo, *oldinfo; size_t newsize; result = align (size); if (result == NULL) return NULL; /* Check if we need to grow the info table. */ if ((size_t) BLOCK ((char *) result + size) > heapsize) { newsize = heapsize; while ((size_t) BLOCK ((char *) result + size) > newsize) newsize *= 2; newinfo = (malloc_info *) align (newsize * sizeof (malloc_info)); if (newinfo == NULL) { (*__morecore) (-size); return NULL; } memset (newinfo, 0, newsize * sizeof (malloc_info)); memcpy (newinfo, _heapinfo, heapsize * sizeof (malloc_info)); oldinfo = _heapinfo; newinfo[BLOCK (oldinfo)].busy.type = 0; newinfo[BLOCK (oldinfo)].busy.info.size = BLOCKIFY (heapsize * sizeof (malloc_info)); _heapinfo = newinfo; _free_internal (oldinfo); heapsize = newsize; } _heaplimit = BLOCK ((char *) result + size); return result; } /* Allocate memory from the heap. */ __ptr_t malloc (size) size_t size; { __ptr_t result; size_t block, blocks, lastblocks, start; register size_t i; struct list *next; /* ANSI C allows `malloc (0)' to either return NULL, or to return a valid address you can realloc and free (though not dereference). It turns out that some extant code (sunrpc, at least Ultrix's version) expects `malloc (0)' to return non-NULL and breaks otherwise. Be compatible. */ #if 0 if (size == 0) return NULL; #endif if (__malloc_hook != NULL) return (*__malloc_hook) (size); if (!__malloc_initialized) if (!initialize ()) return NULL; if (size < sizeof (struct list)) size = sizeof (struct list); /* Determine the allocation policy based on the request size. */ if (size <= BLOCKSIZE / 2) { /* Small allocation to receive a fragment of a block. Determine the logarithm to base two of the fragment size. */ register size_t log = 1; --size; while ((size /= 2) != 0) ++log; /* Look in the fragment lists for a free fragment of the desired size. */ next = _fraghead[log].next; if (next != NULL) { /* There are free fragments of this size. Pop a fragment out of the fragment list and return it. Update the block's nfree and first counters. */ result = (__ptr_t) next; next->prev->next = next->next; if (next->next != NULL) next->next->prev = next->prev; block = BLOCK (result); if (--_heapinfo[block].busy.info.frag.nfree != 0) _heapinfo[block].busy.info.frag.first = (unsigned long int) ((unsigned long int) ((char *) next->next - (char *) NULL) % BLOCKSIZE) >> log; /* Update the statistics. */ ++_chunks_used; _bytes_used += 1 << log; --_chunks_free; _bytes_free -= 1 << log; } else { /* No free fragments of the desired size, so get a new block and break it into fragments, returning the first. */ result = malloc (BLOCKSIZE); if (result == NULL) return NULL; /* Link all fragments but the first into the free list. */ for (i = 1; i < (size_t) (BLOCKSIZE >> log); ++i) { next = (struct list *) ((char *) result + (i << log)); next->next = _fraghead[log].next; next->prev = &_fraghead[log]; next->prev->next = next; if (next->next != NULL) next->next->prev = next; } /* Initialize the nfree and first counters for this block. */ block = BLOCK (result); _heapinfo[block].busy.type = log; _heapinfo[block].busy.info.frag.nfree = i - 1; _heapinfo[block].busy.info.frag.first = i - 1; _chunks_free += (BLOCKSIZE >> log) - 1; _bytes_free += BLOCKSIZE - (1 << log); _bytes_used -= BLOCKSIZE - (1 << log); } } else { /* Large allocation to receive one or more blocks. Search the free list in a circle starting at the last place visited. If we loop completely around without finding a large enough space we will have to get more memory from the system. */ blocks = BLOCKIFY (size); start = block = _heapindex; while (_heapinfo[block].free.size < blocks) { block = _heapinfo[block].free.next; if (block == start) { /* Need to get more from the system. Check to see if the new core will be contiguous with the final free block; if so we don't need to get as much. */ block = _heapinfo[0].free.prev; lastblocks = _heapinfo[block].free.size; if (_heaplimit != 0 && block + lastblocks == _heaplimit && (*__morecore) (0) == ADDRESS (block + lastblocks) && (morecore ((blocks - lastblocks) * BLOCKSIZE)) != NULL) { _heapinfo[block].free.size = blocks; _bytes_free += (blocks - lastblocks) * BLOCKSIZE; continue; } result = morecore (blocks * BLOCKSIZE); if (result == NULL) return NULL; block = BLOCK (result); _heapinfo[block].busy.type = 0; _heapinfo[block].busy.info.size = blocks; ++_chunks_used; _bytes_used += blocks * BLOCKSIZE; return result; } } /* At this point we have found a suitable free list entry. Figure out how to remove what we need from the list. */ result = ADDRESS (block); if (_heapinfo[block].free.size > blocks) { /* The block we found has a bit left over, so relink the tail end back into the free list. */ _heapinfo[block + blocks].free.size = _heapinfo[block].free.size - blocks; _heapinfo[block + blocks].free.next = _heapinfo[block].free.next; _heapinfo[block + blocks].free.prev = _heapinfo[block].free.prev; _heapinfo[_heapinfo[block].free.prev].free.next = _heapinfo[_heapinfo[block].free.next].free.prev = _heapindex = block + blocks; } else { /* The block exactly matches our requirements, so just remove it from the list. */ _heapinfo[_heapinfo[block].free.next].free.prev = _heapinfo[block].free.prev; _heapinfo[_heapinfo[block].free.prev].free.next = _heapindex = _heapinfo[block].free.next; --_chunks_free; } _heapinfo[block].busy.type = 0; _heapinfo[block].busy.info.size = blocks; ++_chunks_used; _bytes_used += blocks * BLOCKSIZE; _bytes_free -= blocks * BLOCKSIZE; } return result; } #define min(A, B) ((A) < (B) ? (A) : (B)) /* Debugging hook for realloc. */ __ptr_t (*__realloc_hook) __P ((__ptr_t __ptr, size_t __size)); /* Resize the given region to the new size, returning a pointer to the (possibly moved) region. This is optimized for speed; some benchmarks seem to indicate that greater compactness is achieved by unconditionally allocating and copying to a new region. This module has incestuous knowledge of the internals of both free and malloc. */ __ptr_t realloc (ptr, size) __ptr_t ptr; size_t size; { __ptr_t result; int type; size_t block, blocks, oldlimit; if (size == 0) { free (ptr); return malloc (0); } else if (ptr == NULL) return malloc (size); if (__realloc_hook != NULL) return (*__realloc_hook) (ptr, size); block = BLOCK (ptr); type = _heapinfo[block].busy.type; switch (type) { case 0: /* Maybe reallocate a large block to a small fragment. */ if (size <= BLOCKSIZE / 2) { result = malloc (size); if (result != NULL) { memcpy (result, ptr, size); free (ptr); return result; } } /* The new size is a large allocation as well; see if we can hold it in place. */ blocks = BLOCKIFY (size); if (blocks < _heapinfo[block].busy.info.size) { /* The new size is smaller; return excess memory to the free list. */ _heapinfo[block + blocks].busy.type = 0; _heapinfo[block + blocks].busy.info.size = _heapinfo[block].busy.info.size - blocks; _heapinfo[block].busy.info.size = blocks; free (ADDRESS (block + blocks)); result = ptr; } else if (blocks == _heapinfo[block].busy.info.size) /* No size change necessary. */ result = ptr; else { /* Won't fit, so allocate a new region that will. Free the old region first in case there is sufficient adjacent free space to grow without moving. */ blocks = _heapinfo[block].busy.info.size; /* Prevent free from actually returning memory to the system. */ oldlimit = _heaplimit; _heaplimit = 0; free (ptr); _heaplimit = oldlimit; result = malloc (size); if (result == NULL) { /* Now we're really in trouble. We have to unfree the thing we just freed. Unfortunately it might have been coalesced with its neighbors. */ if (_heapindex == block) (void) malloc (blocks * BLOCKSIZE); else { __ptr_t previous = malloc ((block - _heapindex) * BLOCKSIZE); (void) malloc (blocks * BLOCKSIZE); free (previous); } return NULL; } if (ptr != result) memmove (result, ptr, blocks * BLOCKSIZE); } break; default: /* Old size is a fragment; type is logarithm to base two of the fragment size. */ if (size > (size_t) (1 << (type - 1)) && size <= (size_t) (1 << type)) /* The new size is the same kind of fragment. */ result = ptr; else { /* The new size is different; allocate a new space, and copy the lesser of the new size and the old. */ result = malloc (size); if (result == NULL) return NULL; memcpy (result, ptr, min (size, (size_t) 1 << type)); free (ptr); } break; } return result; } /* Debugging hook for free. */ void (*__free_hook) __P ((__ptr_t __ptr)); /* List of blocks allocated by memalign. */ struct alignlist *_aligned_blocks = NULL; /* Return memory to the heap. Like `free' but don't call a __free_hook if there is one. */ void _free_internal (ptr) __ptr_t ptr; { int type; size_t block, blocks; register size_t i; struct list *prev, *next; block = BLOCK (ptr); type = _heapinfo[block].busy.type; switch (type) { case 0: /* Get as many statistics as early as we can. */ --_chunks_used; _bytes_used -= _heapinfo[block].busy.info.size * BLOCKSIZE; _bytes_free += _heapinfo[block].busy.info.size * BLOCKSIZE; /* Find the free cluster previous to this one in the free list. Start searching at the last block referenced; this may benefit programs with locality of allocation. */ i = _heapindex; if (i > block) while (i > block) i = _heapinfo[i].free.prev; else { do i = _heapinfo[i].free.next; while (i > 0 && i < block); i = _heapinfo[i].free.prev; } /* Determine how to link this block into the free list. */ if (block == i + _heapinfo[i].free.size) { /* Coalesce this block with its predecessor. */ _heapinfo[i].free.size += _heapinfo[block].busy.info.size; block = i; } else { /* Really link this block back into the free list. */ _heapinfo[block].free.size = _heapinfo[block].busy.info.size; _heapinfo[block].free.next = _heapinfo[i].free.next; _heapinfo[block].free.prev = i; _heapinfo[i].free.next = block; _heapinfo[_heapinfo[block].free.next].free.prev = block; ++_chunks_free; } /* Now that the block is linked in, see if we can coalesce it with its successor (by deleting its successor from the list and adding in its size). */ if (block + _heapinfo[block].free.size == _heapinfo[block].free.next) { _heapinfo[block].free.size += _heapinfo[_heapinfo[block].free.next].free.size; _heapinfo[block].free.next = _heapinfo[_heapinfo[block].free.next].free.next; _heapinfo[_heapinfo[block].free.next].free.prev = block; --_chunks_free; } /* Now see if we can return stuff to the system. */ blocks = _heapinfo[block].free.size; if (blocks >= FINAL_FREE_BLOCKS && block + blocks == _heaplimit && (*__morecore) (0) == ADDRESS (block + blocks)) { register size_t bytes = blocks * BLOCKSIZE; _heaplimit -= blocks; (*__morecore) (-bytes); _heapinfo[_heapinfo[block].free.prev].free.next = _heapinfo[block].free.next; _heapinfo[_heapinfo[block].free.next].free.prev = _heapinfo[block].free.prev; block = _heapinfo[block].free.prev; --_chunks_free; _bytes_free -= bytes; } /* Set the next search to begin at this block. */ _heapindex = block; break; default: /* Do some of the statistics. */ --_chunks_used; _bytes_used -= 1 << type; ++_chunks_free; _bytes_free += 1 << type; /* Get the address of the first free fragment in this block. */ prev = (struct list *) ((char *) ADDRESS (block) + (_heapinfo[block].busy.info.frag.first << type)); if (_heapinfo[block].busy.info.frag.nfree == (BLOCKSIZE >> type) - 1) { /* If all fragments of this block are free, remove them from the fragment list and free the whole block. */ next = prev; for (i = 1; i < (size_t) (BLOCKSIZE >> type); ++i) next = next->next; prev->prev->next = next; if (next != NULL) next->prev = prev->prev; _heapinfo[block].busy.type = 0; _heapinfo[block].busy.info.size = 1; /* Keep the statistics accurate. */ ++_chunks_used; _bytes_used += BLOCKSIZE; _chunks_free -= BLOCKSIZE >> type; _bytes_free -= BLOCKSIZE; free (ADDRESS (block)); } else if (_heapinfo[block].busy.info.frag.nfree != 0) { /* If some fragments of this block are free, link this fragment into the fragment list after the first free fragment of this block. */ next = (struct list *) ptr; next->next = prev->next; next->prev = prev; prev->next = next; if (next->next != NULL) next->next->prev = next; ++_heapinfo[block].busy.info.frag.nfree; } else { /* No fragments of this block are free, so link this fragment into the fragment list and announce that it is the first free fragment of this block. */ prev = (struct list *) ptr; _heapinfo[block].busy.info.frag.nfree = 1; _heapinfo[block].busy.info.frag.first = (unsigned long int) ((unsigned long int) ((char *) ptr - (char *) NULL) % BLOCKSIZE >> type); prev->next = _fraghead[type].next; prev->prev = &_fraghead[type]; prev->prev->next = prev; if (prev->next != NULL) prev->next->prev = prev; } break; } } /* Return memory to the heap. */ void free (ptr) __ptr_t ptr; { register struct alignlist *l; if (ptr == NULL) return; for (l = _aligned_blocks; l != NULL; l = l->next) if (l->aligned == ptr) { l->aligned = NULL; /* Mark the slot in the list as free. */ ptr = l->exact; break; } if (__free_hook != NULL) (*__free_hook) (ptr); else _free_internal (ptr); }