freebsd-dev/sys/dev/ath/ath_hal/ar5416/ar5416_interrupts.c
Adrian Chadd 62f62f4f4a Various interrupt handling and RX interrupt mitigation fixes.
* The AR_ISR_RAC interrupt processing method has a subtle bug in all
  the MAC revisions (including pre-11n NICs) until AR9300v2.
  If you're unlucky, the clear phase clears an update to one of the
  secondary registers, which includes TX status.

  This shows up as a "watchdog timeout" if you're doing very low levels
  of TX traffic. If you're doing a lot of non-11n TX traffic, you'll
  end up receiving a TX interrupt from some later traffic anyway.

  But when TX'ing 11n aggregation session traffic (which -HEAD isn't yet
  doing), you may find that you're only able to TX one frame (due to
  BAW restrictions) and this may end up hitting this race condition.

  The only solution is to not use RAC and instead use AR_ISR and the
  AR_ISR_Sx registers. The bit in AR_ISR which represents the secondary
  registers are not cleared; only the AR_ISR_Sx bits are. This way
  any updates which occur between the read and subsequent write will
  stay asserted and (correctly) trigger a subsequent interrupt.

  I've tested this on the AR5416, AR9160, AR9280. I will soon test
  the AR9285 and AR9287.

* The AR_ISR TX and RX bits (and all others!) are set regardless of
  whether the contents of the AR_IMR register. So if RX mitigation is
  enabled, RXOK is going to be set in AR_ISR and it would normally set
  HAL_INT_RX.

  Fix the code to not set HAL_INT_RX when RXOK is set and RX mitigation
  is compiled in. That way the RX path isn't prematurely called.

  I would see:

  * An interrupt would come in (eg a beacon, or TX completion) where
    RXOK was set but RXINTM/RXMINT wasn't;
  * ath_rx_proc() be called - completing RX frames;
  * RXINTM/RXMINT would then fire;
  * ath_rx_proc() would then be called again but find no frames in the
    queue.

  This fixes the RX mitigation behaviour to not overly call ath_rx_proc().

* Start to flesh out more correct timer interrupt handling - it isn't
  kite/merlin specific. It's actually based on whether autosleep support
  is enabled or not.

This is sourced from my 11n TX branch and has been tested for a few weeks.

Finally, the interrupt handling change should likely be implemented
for AR5210, AR5211 and AR5212.
2011-10-02 14:08:56 +00:00

350 lines
9.7 KiB
C

/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
/*
* Checks to see if an interrupt is pending on our NIC
*
* Returns: TRUE if an interrupt is pending
* FALSE if not
*/
HAL_BOOL
ar5416IsInterruptPending(struct ath_hal *ah)
{
uint32_t isr;
if (AR_SREV_HOWL(ah))
return AH_TRUE;
/*
* Some platforms trigger our ISR before applying power to
* the card, so make sure the INTPEND is really 1, not 0xffffffff.
*/
isr = OS_REG_READ(ah, AR_INTR_ASYNC_CAUSE);
if (isr != AR_INTR_SPURIOUS && (isr & AR_INTR_MAC_IRQ) != 0)
return AH_TRUE;
isr = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (isr != AR_INTR_SPURIOUS && (isr & AR_INTR_SYNC_DEFAULT))
return AH_TRUE;
return AH_FALSE;
}
/*
* Reads the Interrupt Status Register value from the NIC, thus deasserting
* the interrupt line, and returns both the masked and unmasked mapped ISR
* values. The value returned is mapped to abstract the hw-specific bit
* locations in the Interrupt Status Register.
*
* (*masked) is cleared on initial call.
*
* Returns: A hardware-abstracted bitmap of all non-masked-out
* interrupts pending, as well as an unmasked value
*/
HAL_BOOL
ar5416GetPendingInterrupts(struct ath_hal *ah, HAL_INT *masked)
{
uint32_t isr, isr0, isr1, sync_cause = 0;
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
/*
* Verify there's a mac interrupt and the RTC is on.
*/
if (AR_SREV_HOWL(ah)) {
*masked = 0;
isr = OS_REG_READ(ah, AR_ISR);
} else {
if ((OS_REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
(OS_REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
isr = OS_REG_READ(ah, AR_ISR);
else
isr = 0;
sync_cause = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
sync_cause &= AR_INTR_SYNC_DEFAULT;
*masked = 0;
if (isr == 0 && sync_cause == 0)
return AH_FALSE;
}
if (isr != 0) {
struct ath_hal_5212 *ahp = AH5212(ah);
uint32_t mask2;
mask2 = 0;
if (isr & AR_ISR_BCNMISC) {
uint32_t isr2 = OS_REG_READ(ah, AR_ISR_S2);
if (isr2 & AR_ISR_S2_TIM)
mask2 |= HAL_INT_TIM;
if (isr2 & AR_ISR_S2_DTIM)
mask2 |= HAL_INT_DTIM;
if (isr2 & AR_ISR_S2_DTIMSYNC)
mask2 |= HAL_INT_DTIMSYNC;
if (isr2 & (AR_ISR_S2_CABEND ))
mask2 |= HAL_INT_CABEND;
if (isr2 & AR_ISR_S2_GTT)
mask2 |= HAL_INT_GTT;
if (isr2 & AR_ISR_S2_CST)
mask2 |= HAL_INT_CST;
if (isr2 & AR_ISR_S2_TSFOOR)
mask2 |= HAL_INT_TSFOOR;
/*
* Don't mask out AR_BCNMISC; instead mask
* out what causes it.
*/
OS_REG_WRITE(ah, AR_ISR_S2, isr2);
isr &= ~AR_ISR_BCNMISC;
}
if (isr == 0xffffffff) {
*masked = 0;
return AH_FALSE;
}
*masked = isr & HAL_INT_COMMON;
if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
*masked |= HAL_INT_RX;
if (isr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
*masked |= HAL_INT_TX;
/*
* When doing RX interrupt mitigation, the RXOK bit is set
* in AR_ISR even if the relevant bit in AR_IMR is clear.
* Since this interrupt may be due to another source, don't
* just automatically set HAL_INT_RX if it's set, otherwise
* we could prematurely service the RX queue.
*
* In some cases, the driver can even handle all the RX
* frames just before the mitigation interrupt fires.
* The subsequent RX processing trip will then end up
* processing 0 frames.
*/
#ifdef AH_AR5416_INTERRUPT_MITIGATION
if (isr & AR_ISR_RXERR)
*masked |= HAL_INT_RX;
#else
if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
*masked |= HAL_INT_RX;
#endif
if (isr & (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
AR_ISR_TXEOL)) {
*masked |= HAL_INT_TX;
isr0 = OS_REG_READ(ah, AR_ISR_S0);
OS_REG_WRITE(ah, AR_ISR_S0, isr0);
isr1 = OS_REG_READ(ah, AR_ISR_S1);
OS_REG_WRITE(ah, AR_ISR_S1, isr1);
/*
* Don't clear the primary ISR TX bits, clear
* what causes them (S0/S1.)
*/
isr &= ~(AR_ISR_TXOK | AR_ISR_TXDESC |
AR_ISR_TXERR | AR_ISR_TXEOL);
ahp->ah_intrTxqs |= MS(isr0, AR_ISR_S0_QCU_TXOK);
ahp->ah_intrTxqs |= MS(isr0, AR_ISR_S0_QCU_TXDESC);
ahp->ah_intrTxqs |= MS(isr1, AR_ISR_S1_QCU_TXERR);
ahp->ah_intrTxqs |= MS(isr1, AR_ISR_S1_QCU_TXEOL);
}
if ((isr & AR_ISR_GENTMR) || (! pCap->halAutoSleepSupport)) {
uint32_t isr5;
isr5 = OS_REG_READ(ah, AR_ISR_S5);
OS_REG_WRITE(ah, AR_ISR_S5, isr5);
isr &= ~AR_ISR_GENTMR;
if (! pCap->halAutoSleepSupport)
if (isr5 & AR_ISR_S5_TIM_TIMER)
*masked |= HAL_INT_TIM_TIMER;
}
*masked |= mask2;
}
/*
* Since we're not using AR_ISR_RAC, clear the status bits
* for handled interrupts here. For bits whose interrupt
* source is a secondary register, those bits should've been
* masked out - instead of those bits being written back,
* their source (ie, the secondary status registers) should
* be cleared. That way there are no race conditions with
* new triggers coming in whilst they've been read/cleared.
*/
OS_REG_WRITE(ah, AR_ISR, isr);
/* Flush previous write */
OS_REG_READ(ah, AR_ISR);
if (AR_SREV_HOWL(ah))
return AH_TRUE;
if (sync_cause != 0) {
if (sync_cause & (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) {
*masked |= HAL_INT_FATAL;
}
if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RADM CPL timeout\n",
__func__);
OS_REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
OS_REG_WRITE(ah, AR_RC, 0);
*masked |= HAL_INT_FATAL;
}
/*
* On fatal errors collect ISR state for debugging.
*/
if (*masked & HAL_INT_FATAL) {
AH_PRIVATE(ah)->ah_fatalState[0] = isr;
AH_PRIVATE(ah)->ah_fatalState[1] = sync_cause;
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: fatal error, ISR_RAC 0x%x SYNC_CAUSE 0x%x\n",
__func__, isr, sync_cause);
}
OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
/* NB: flush write */
(void) OS_REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
}
return AH_TRUE;
}
/*
* Atomically enables NIC interrupts. Interrupts are passed in
* via the enumerated bitmask in ints.
*/
HAL_INT
ar5416SetInterrupts(struct ath_hal *ah, HAL_INT ints)
{
struct ath_hal_5212 *ahp = AH5212(ah);
uint32_t omask = ahp->ah_maskReg;
uint32_t mask, mask2;
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: 0x%x => 0x%x\n",
__func__, omask, ints);
if (omask & HAL_INT_GLOBAL) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: disable IER\n", __func__);
OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
(void) OS_REG_READ(ah, AR_IER);
if (! AR_SREV_HOWL(ah)) {
OS_REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
(void) OS_REG_READ(ah, AR_INTR_ASYNC_ENABLE);
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
(void) OS_REG_READ(ah, AR_INTR_SYNC_ENABLE);
}
}
mask = ints & HAL_INT_COMMON;
mask2 = 0;
#ifdef AH_AR5416_INTERRUPT_MITIGATION
/*
* Overwrite default mask if Interrupt mitigation
* is specified for AR5416
*/
if (ints & HAL_INT_RX)
mask |= AR_IMR_RXERR | AR_IMR_RXMINTR | AR_IMR_RXINTM;
#else
if (ints & HAL_INT_RX)
mask |= AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXDESC;
#endif
if (ints & HAL_INT_TX) {
if (ahp->ah_txOkInterruptMask)
mask |= AR_IMR_TXOK;
if (ahp->ah_txErrInterruptMask)
mask |= AR_IMR_TXERR;
if (ahp->ah_txDescInterruptMask)
mask |= AR_IMR_TXDESC;
if (ahp->ah_txEolInterruptMask)
mask |= AR_IMR_TXEOL;
}
if (ints & (HAL_INT_BMISC)) {
mask |= AR_IMR_BCNMISC;
if (ints & HAL_INT_TIM)
mask2 |= AR_IMR_S2_TIM;
if (ints & HAL_INT_DTIM)
mask2 |= AR_IMR_S2_DTIM;
if (ints & HAL_INT_DTIMSYNC)
mask2 |= AR_IMR_S2_DTIMSYNC;
if (ints & HAL_INT_CABEND)
mask2 |= (AR_IMR_S2_CABEND );
if (ints & HAL_INT_CST)
mask2 |= AR_IMR_S2_CST;
if (ints & HAL_INT_TSFOOR)
mask2 |= AR_IMR_S2_TSFOOR;
}
if (ints & (HAL_INT_GTT | HAL_INT_CST)) {
mask |= AR_IMR_BCNMISC;
if (ints & HAL_INT_GTT)
mask2 |= AR_IMR_S2_GTT;
if (ints & HAL_INT_CST)
mask2 |= AR_IMR_S2_CST;
}
/* Write the new IMR and store off our SW copy. */
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: new IMR 0x%x\n", __func__, mask);
OS_REG_WRITE(ah, AR_IMR, mask);
mask = OS_REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
AR_IMR_S2_DTIM |
AR_IMR_S2_DTIMSYNC |
AR_IMR_S2_CABEND |
AR_IMR_S2_CABTO |
AR_IMR_S2_TSFOOR |
AR_IMR_S2_GTT |
AR_IMR_S2_CST);
OS_REG_WRITE(ah, AR_IMR_S2, mask | mask2);
ahp->ah_maskReg = ints;
/* Re-enable interrupts if they were enabled before. */
if (ints & HAL_INT_GLOBAL) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: enable IER\n", __func__);
OS_REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
if (! AR_SREV_HOWL(ah)) {
mask = AR_INTR_MAC_IRQ;
if (ints & HAL_INT_GPIO)
mask |= SM(AH5416(ah)->ah_gpioMask,
AR_INTR_ASYNC_MASK_GPIO);
OS_REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, mask);
OS_REG_WRITE(ah, AR_INTR_ASYNC_MASK, mask);
mask = AR_INTR_SYNC_DEFAULT;
if (ints & HAL_INT_GPIO)
mask |= SM(AH5416(ah)->ah_gpioMask,
AR_INTR_SYNC_MASK_GPIO);
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, mask);
OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, mask);
}
}
return omask;
}