freebsd-dev/sys/gnu/i386/isa/sound/awe_wave.c

4575 lines
121 KiB
C

/*
* sound/awe_wave.c
*
* The low level driver for the AWE32/Sound Blaster 32 wave table synth.
* version 0.4.2c; Oct. 7, 1997
*
* Copyright (C) 1996,1997 Takashi Iwai
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stddef.h>
#ifdef __FreeBSD__
# include <gnu/i386/isa/sound/awe_config.h>
#else
# include "awe_config.h"
#endif
/*----------------------------------------------------------------*/
#ifdef CONFIG_AWE32_SYNTH
#ifdef __FreeBSD__
# include <gnu/i386/isa/sound/awe_hw.h>
# include <gnu/i386/isa/sound/awe_version.h>
# include <gnu/i386/isa/sound/awe_voice.h>
#else
# include "awe_hw.h"
# include "awe_version.h"
# include <linux/awe_voice.h>
#endif
#ifdef AWE_HAS_GUS_COMPATIBILITY
/* include finetune table */
#ifdef __FreeBSD__
# ifdef AWE_OBSOLETE_VOXWARE
# define SEQUENCER_C
# endif
# include <i386/isa/sound/tuning.h>
#else
# ifdef AWE_OBSOLETE_VOXWARE
# include "tuning.h"
# else
# include "../tuning.h"
# endif
#endif
#ifdef linux
# include <linux/ultrasound.h>
#elif defined(__FreeBSD__)
# include <machine/ultrasound.h>
#endif
#endif /* AWE_HAS_GUS_COMPATIBILITY */
/*----------------------------------------------------------------
* debug message
*----------------------------------------------------------------*/
static int debug_mode = 0;
#ifdef AWE_DEBUG_ON
#define DEBUG(LVL,XXX) {if (debug_mode > LVL) { XXX; }}
#define ERRMSG(XXX) {if (debug_mode) { XXX; }}
#define FATALERR(XXX) XXX
#else
#define DEBUG(LVL,XXX) /**/
#define ERRMSG(XXX) XXX
#define FATALERR(XXX) XXX
#endif
/*----------------------------------------------------------------
* bank and voice record
*----------------------------------------------------------------*/
/* soundfont record */
typedef struct _sf_list {
unsigned short sf_id;
unsigned short type;
int num_info; /* current info table index */
int num_sample; /* current sample table index */
int mem_ptr; /* current word byte pointer */
int infos;
int samples;
/*char name[AWE_PATCH_NAME_LEN];*/
} sf_list;
/* bank record */
typedef struct _awe_voice_list {
int next; /* linked list with same sf_id */
unsigned char bank, instr; /* preset number information */
char type, disabled; /* type=normal/mapped, disabled=boolean */
awe_voice_info v; /* voice information */
int next_instr; /* preset table list */
int next_bank; /* preset table list */
} awe_voice_list;
/* voice list type */
#define V_ST_NORMAL 0
#define V_ST_MAPPED 1
typedef struct _awe_sample_list {
int next; /* linked list with same sf_id */
awe_sample_info v; /* sample information */
} awe_sample_list;
/* sample and information table */
static int current_sf_id = 0;
static int locked_sf_id = 0;
static int max_sfs;
static sf_list *sflists = NULL;
#define awe_free_mem_ptr() (current_sf_id <= 0 ? 0 : sflists[current_sf_id-1].mem_ptr)
#define awe_free_info() (current_sf_id <= 0 ? 0 : sflists[current_sf_id-1].num_info)
#define awe_free_sample() (current_sf_id <= 0 ? 0 : sflists[current_sf_id-1].num_sample)
static int max_samples;
static awe_sample_list *samples = NULL;
static int max_infos;
static awe_voice_list *infos = NULL;
#define AWE_MAX_PRESETS 256
#define AWE_DEFAULT_PRESET 0
#define AWE_DEFAULT_BANK 0
#define AWE_DEFAULT_DRUM 0
#define AWE_DRUM_BANK 128
#define MAX_LAYERS AWE_MAX_VOICES
/* preset table index */
static int preset_table[AWE_MAX_PRESETS];
/*----------------------------------------------------------------
* voice table
*----------------------------------------------------------------*/
/* effects table */
typedef struct FX_Rec { /* channel effects */
unsigned char flags[AWE_FX_END];
short val[AWE_FX_END];
} FX_Rec;
/* channel parameters */
typedef struct _awe_chan_info {
int channel; /* channel number */
int bank; /* current tone bank */
int instr; /* current program */
int bender; /* midi pitchbend (-8192 - 8192) */
int bender_range; /* midi bender range (x100) */
int panning; /* panning (0-127) */
int main_vol; /* channel volume (0-127) */
int expression_vol; /* midi expression (0-127) */
int chan_press; /* channel pressure */
int vrec; /* instrument list */
int def_vrec; /* default instrument list */
int sustained; /* sustain status in MIDI */
FX_Rec fx; /* effects */
FX_Rec fx_layer[MAX_LAYERS]; /* layer effects */
} awe_chan_info;
/* voice parameters */
typedef struct _voice_info {
int state;
#define AWE_ST_OFF (1<<0) /* no sound */
#define AWE_ST_ON (1<<1) /* playing */
#define AWE_ST_STANDBY (1<<2) /* stand by for playing */
#define AWE_ST_SUSTAINED (1<<3) /* sustained */
#define AWE_ST_MARK (1<<4) /* marked for allocation */
#define AWE_ST_DRAM (1<<5) /* DRAM read/write */
#define AWE_ST_FM (1<<6) /* reserved for FM */
#define AWE_ST_RELEASED (1<<7) /* released */
int ch; /* midi channel */
int key; /* internal key for search */
int layer; /* layer number (for channel mode only) */
int time; /* allocated time */
awe_chan_info *cinfo; /* channel info */
int note; /* midi key (0-127) */
int velocity; /* midi velocity (0-127) */
int sostenuto; /* sostenuto on/off */
awe_voice_info *sample; /* assigned voice */
/* EMU8000 parameters */
int apitch; /* pitch parameter */
int avol; /* volume parameter */
int apan; /* panning parameter */
} voice_info;
/* voice information */
static voice_info *voices;
#define IS_NO_SOUND(v) (voices[v].state & (AWE_ST_OFF|AWE_ST_RELEASED|AWE_ST_STANDBY|AWE_ST_SUSTAINED))
#define IS_NO_EFFECT(v) (voices[v].state != AWE_ST_ON)
#define IS_PLAYING(v) (voices[v].state & (AWE_ST_ON|AWE_ST_SUSTAINED|AWE_ST_RELEASED))
#define IS_EMPTY(v) (voices[v].state & (AWE_ST_OFF|AWE_ST_MARK|AWE_ST_DRAM|AWE_ST_FM))
/* MIDI channel effects information (for hw control) */
static awe_chan_info *channels;
/*----------------------------------------------------------------
* global variables
*----------------------------------------------------------------*/
#ifndef AWE_DEFAULT_BASE_ADDR
#define AWE_DEFAULT_BASE_ADDR 0 /* autodetect */
#endif
#ifndef AWE_DEFAULT_MEM_SIZE
#define AWE_DEFAULT_MEM_SIZE 0 /* autodetect */
#endif
/* awe32 base address (overwritten at initialization) */
static int awe_base = AWE_DEFAULT_BASE_ADDR;
/* memory byte size */
static int awe_mem_size = AWE_DEFAULT_MEM_SIZE;
/* DRAM start offset */
static int awe_mem_start = AWE_DRAM_OFFSET;
/* maximum channels for playing */
static int awe_max_voices = AWE_MAX_VOICES;
static int patch_opened = 0; /* sample already loaded? */
static int reverb_mode = 4; /* reverb mode */
static int chorus_mode = 2; /* chorus mode */
static short init_atten = AWE_DEFAULT_ATTENUATION; /* 12dB below */
static int awe_present = FALSE; /* awe device present? */
static int awe_busy = FALSE; /* awe device opened? */
#define DEFAULT_DRUM_FLAGS ((1 << 9) | (1 << 25))
#define IS_DRUM_CHANNEL(c) (drum_flags & (1 << (c)))
#define DRUM_CHANNEL_ON(c) (drum_flags |= (1 << (c)))
#define DRUM_CHANNEL_OFF(c) (drum_flags &= ~(1 << (c)))
static unsigned int drum_flags = DEFAULT_DRUM_FLAGS; /* channel flags */
static int playing_mode = AWE_PLAY_INDIRECT;
#define SINGLE_LAYER_MODE() (playing_mode == AWE_PLAY_INDIRECT || playing_mode == AWE_PLAY_DIRECT)
#define MULTI_LAYER_MODE() (playing_mode == AWE_PLAY_MULTI || playing_mode == AWE_PLAY_MULTI2)
static int current_alloc_time = 0; /* voice allocation index for channel mode */
static struct MiscModeDef {
int value;
int init_each_time;
} misc_modes_default[AWE_MD_END] = {
{0,0}, {0,0}, /* <-- not used */
{AWE_VERSION_NUMBER, FALSE},
{TRUE, TRUE}, /* exclusive */
{TRUE, TRUE}, /* realpan */
{AWE_DEFAULT_BANK, TRUE}, /* gusbank */
{FALSE, TRUE}, /* keep effect */
{AWE_DEFAULT_ATTENUATION, FALSE}, /* zero_atten */
{FALSE, TRUE}, /* chn_prior */
{AWE_DEFAULT_MOD_SENSE, TRUE}, /* modwheel sense */
{AWE_DEFAULT_PRESET, TRUE}, /* def_preset */
{AWE_DEFAULT_BANK, TRUE}, /* def_bank */
{AWE_DEFAULT_DRUM, TRUE}, /* def_drum */
{FALSE, TRUE}, /* toggle_drum_bank */
};
static int misc_modes[AWE_MD_END];
static int awe_bass_level = 5;
static int awe_treble_level = 9;
static struct synth_info awe_info = {
"AWE32 Synth", /* name */
0, /* device */
SYNTH_TYPE_SAMPLE, /* synth_type */
SAMPLE_TYPE_AWE32, /* synth_subtype */
0, /* perc_mode (obsolete) */
AWE_MAX_VOICES, /* nr_voices */
0, /* nr_drums (obsolete) */
AWE_MAX_INFOS /* instr_bank_size */
};
static struct voice_alloc_info *voice_alloc; /* set at initialization */
/*----------------------------------------------------------------
* function prototypes
*----------------------------------------------------------------*/
#if defined(linux) && !defined(AWE_OBSOLETE_VOXWARE)
static int awe_check_port(void);
static void awe_request_region(void);
static void awe_release_region(void);
#endif
static void awe_reset_samples(void);
/* emu8000 chip i/o access */
static void awe_poke(unsigned short cmd, unsigned short port, unsigned short data);
static void awe_poke_dw(unsigned short cmd, unsigned short port, unsigned int data);
static unsigned short awe_peek(unsigned short cmd, unsigned short port);
static unsigned int awe_peek_dw(unsigned short cmd, unsigned short port);
static void awe_wait(unsigned short delay);
/* initialize emu8000 chip */
static void awe_initialize(void);
/* set voice parameters */
static void awe_init_misc_modes(int init_all);
static void awe_init_voice_info(awe_voice_info *vp);
static void awe_init_voice_parm(awe_voice_parm *pp);
#ifdef AWE_HAS_GUS_COMPATIBILITY
static int freq_to_note(int freq);
static int calc_rate_offset(int Hz);
/*static int calc_parm_delay(int msec);*/
static int calc_parm_hold(int msec);
static int calc_parm_attack(int msec);
static int calc_parm_decay(int msec);
static int calc_parm_search(int msec, short *table);
#endif
/* turn on/off note */
static void awe_note_on(int voice);
static void awe_note_off(int voice);
static void awe_terminate(int voice);
static void awe_exclusive_off(int voice);
static void awe_note_off_all(int do_sustain);
/* calculate voice parameters */
typedef void (*fx_affect_func)(int voice, int forced);
static void awe_set_pitch(int voice, int forced);
static void awe_set_voice_pitch(int voice, int forced);
static void awe_set_volume(int voice, int forced);
static void awe_set_voice_vol(int voice, int forced);
static void awe_set_pan(int voice, int forced);
static void awe_fx_fmmod(int voice, int forced);
static void awe_fx_tremfrq(int voice, int forced);
static void awe_fx_fm2frq2(int voice, int forced);
static void awe_fx_filterQ(int voice, int forced);
static void awe_calc_pitch(int voice);
#ifdef AWE_HAS_GUS_COMPATIBILITY
static void awe_calc_pitch_from_freq(int voice, int freq);
#endif
static void awe_calc_volume(int voice);
static void awe_voice_init(int voice, int init_all);
static void awe_channel_init(int ch, int init_all);
static void awe_fx_init(int ch);
/* sequencer interface */
static int awe_open(int dev, int mode);
static void awe_close(int dev);
static int awe_ioctl(int dev, unsigned int cmd, caddr_t arg);
static int awe_kill_note(int dev, int voice, int note, int velocity);
static int awe_start_note(int dev, int v, int note_num, int volume);
static int awe_set_instr(int dev, int voice, int instr_no);
static int awe_set_instr_2(int dev, int voice, int instr_no);
static void awe_reset(int dev);
static void awe_hw_control(int dev, unsigned char *event);
static int awe_load_patch(int dev, int format, const char *addr,
int offs, int count, int pmgr_flag);
static void awe_aftertouch(int dev, int voice, int pressure);
static void awe_controller(int dev, int voice, int ctrl_num, int value);
static void awe_panning(int dev, int voice, int value);
static void awe_volume_method(int dev, int mode);
#ifndef AWE_NO_PATCHMGR
static int awe_patchmgr(int dev, struct patmgr_info *rec);
#endif
static void awe_bender(int dev, int voice, int value);
static int awe_alloc(int dev, int chn, int note, struct voice_alloc_info *alloc);
static void awe_setup_voice(int dev, int voice, int chn);
/* hardware controls */
#ifdef AWE_HAS_GUS_COMPATIBILITY
static void awe_hw_gus_control(int dev, int cmd, unsigned char *event);
#endif
static void awe_hw_awe_control(int dev, int cmd, unsigned char *event);
static void awe_voice_change(int voice, fx_affect_func func);
static void awe_sostenuto_on(int voice, int forced);
static void awe_sustain_off(int voice, int forced);
static void awe_terminate_and_init(int voice, int forced);
/* voice search */
static int awe_search_instr(int bank, int preset);
static int awe_search_multi_voices(int rec, int note, int velocity, awe_voice_info **vlist);
static void awe_alloc_multi_voices(int ch, int note, int velocity, int key);
static void awe_alloc_one_voice(int voice, int note, int velocity);
static int awe_clear_voice(void);
/* load / remove patches */
static int awe_open_patch(awe_patch_info *patch, const char *addr, int count);
static int awe_close_patch(awe_patch_info *patch, const char *addr, int count);
static int awe_unload_patch(awe_patch_info *patch, const char *addr, int count);
static int awe_load_info(awe_patch_info *patch, const char *addr, int count);
static int awe_load_data(awe_patch_info *patch, const char *addr, int count);
static int awe_replace_data(awe_patch_info *patch, const char *addr, int count);
static int awe_load_map(awe_patch_info *patch, const char *addr, int count);
#ifdef AWE_HAS_GUS_COMPATIBILITY
static int awe_load_guspatch(const char *addr, int offs, int size, int pmgr_flag);
#endif
static int check_patch_opened(int type, char *name);
static int awe_write_wave_data(const char *addr, int offset, awe_sample_info *sp, int channels);
static void add_sf_info(int rec);
static void add_sf_sample(int rec);
static void purge_old_list(int rec, int next);
static void add_info_list(int rec);
static void awe_remove_samples(int sf_id);
static void rebuild_preset_list(void);
static short awe_set_sample(awe_voice_info *vp);
/* lowlevel functions */
static void awe_init_audio(void);
static void awe_init_dma(void);
static void awe_init_array(void);
static void awe_send_array(unsigned short *data);
static void awe_tweak_voice(int voice);
static void awe_tweak(void);
static void awe_init_fm(void);
static int awe_open_dram_for_write(int offset, int channels);
static void awe_open_dram_for_check(void);
static void awe_close_dram(void);
static void awe_write_dram(unsigned short c);
static int awe_detect_base(int addr);
static int awe_detect(void);
static int awe_check_dram(void);
static int awe_load_chorus_fx(awe_patch_info *patch, const char *addr, int count);
static void awe_set_chorus_mode(int mode);
static int awe_load_reverb_fx(awe_patch_info *patch, const char *addr, int count);
static void awe_set_reverb_mode(int mode);
static void awe_equalizer(int bass, int treble);
#ifdef CONFIG_AWE32_MIXER
static int awe_mixer_ioctl(int dev, unsigned int cmd, caddr_t arg);
#endif
/* define macros for compatibility */
#ifdef __FreeBSD__
# include <gnu/i386/isa/sound/awe_compat.h>
#else
# include "awe_compat.h"
#endif
/*----------------------------------------------------------------
* synth operation table
*----------------------------------------------------------------*/
static struct synth_operations awe_operations =
{
#ifdef AWE_OSS38
"EMU8K",
#endif
&awe_info,
0,
SYNTH_TYPE_SAMPLE,
SAMPLE_TYPE_AWE32,
awe_open,
awe_close,
awe_ioctl,
awe_kill_note,
awe_start_note,
awe_set_instr_2,
awe_reset,
awe_hw_control,
awe_load_patch,
awe_aftertouch,
awe_controller,
awe_panning,
awe_volume_method,
#ifndef AWE_NO_PATCHMGR
awe_patchmgr,
#endif
awe_bender,
awe_alloc,
awe_setup_voice
};
#ifdef CONFIG_AWE32_MIXER
static struct mixer_operations awe_mixer_operations = {
#ifndef __FreeBSD__
"AWE32",
#endif
"AWE32 Equalizer",
awe_mixer_ioctl,
};
#endif
/*================================================================
* attach / unload interface
*================================================================*/
#ifdef AWE_OBSOLETE_VOXWARE
#define ATTACH_DECL static
#else
#define ATTACH_DECL /**/
#endif
#if defined(__FreeBSD__) && !defined(AWE_OBSOLETE_VOXWARE)
# define ATTACH_RET
void attach_awe(struct address_info *hw_config)
#else
# define ATTACH_RET ret
ATTACH_DECL
int attach_awe(void)
#endif
{
int ret = 0;
/* check presence of AWE32 card */
if (! awe_detect()) {
printk("AWE32: not detected\n");
return ATTACH_RET;
}
/* check AWE32 ports are available */
if (awe_check_port()) {
printk("AWE32: I/O area already used.\n");
return ATTACH_RET;
}
/* set buffers to NULL */
voices = NULL;
channels = NULL;
sflists = NULL;
samples = NULL;
infos = NULL;
/* voice & channel info */
voices = (voice_info*)my_malloc(AWE_MAX_VOICES * sizeof(voice_info));
channels = (awe_chan_info*)my_malloc(AWE_MAX_CHANNELS * sizeof(awe_chan_info));
if (voices == NULL || channels == NULL) {
my_free(voices);
my_free(channels);
printk("AWE32: can't allocate sample tables\n");
return ATTACH_RET;
}
/* allocate sample tables */
INIT_TABLE(sflists, max_sfs, AWE_MAX_SF_LISTS, sf_list);
INIT_TABLE(samples, max_samples, AWE_MAX_SAMPLES, awe_sample_list);
INIT_TABLE(infos, max_infos, AWE_MAX_INFOS, awe_voice_list);
if (num_synths >= MAX_SYNTH_DEV)
printk("AWE32 Error: too many synthesizers\n");
else {
voice_alloc = &awe_operations.alloc;
voice_alloc->max_voice = awe_max_voices;
synth_devs[num_synths++] = &awe_operations;
}
#ifdef CONFIG_AWE32_MIXER
if (num_mixers < MAX_MIXER_DEV) {
mixer_devs[num_mixers++] = &awe_mixer_operations;
}
#endif
/* reserve I/O ports for awedrv */
awe_request_region();
/* clear all samples */
awe_reset_samples();
/* intialize AWE32 hardware */
awe_initialize();
sprintf(awe_info.name, "AWE32-%s (RAM%dk)",
AWEDRV_VERSION, awe_mem_size/1024);
#ifdef __FreeBSD__
printk("awe0: <SoundBlaster EMU8000 MIDI (RAM%dk)>", awe_mem_size/1024);
#elif defined(AWE_DEBUG_ON)
printk("%s\n", awe_info.name);
#endif
/* set default values */
awe_init_misc_modes(TRUE);
/* set reverb & chorus modes */
awe_set_reverb_mode(reverb_mode);
awe_set_chorus_mode(chorus_mode);
awe_present = TRUE;
ret = 1;
return ATTACH_RET;
}
#ifdef AWE_DYNAMIC_BUFFER
static void free_tables(void)
{
my_free(sflists);
sflists = NULL; max_sfs = 0;
my_free(samples);
samples = NULL; max_samples = 0;
my_free(infos);
infos = NULL; max_infos = 0;
}
#else
#define free_buffers() /**/
#endif
#ifdef linux
ATTACH_DECL
void unload_awe(void)
{
if (awe_present) {
awe_reset_samples();
awe_release_region();
my_free(voices);
my_free(channels);
free_tables();
awe_present = FALSE;
}
}
#endif
/*----------------------------------------------------------------
* old type interface
*----------------------------------------------------------------*/
#ifdef AWE_OBSOLETE_VOXWARE
#ifdef __FreeBSD__
long attach_awe_obsolete(long mem_start, struct address_info *hw_config)
#else
int attach_awe_obsolete(int mem_start, struct address_info *hw_config)
#endif
{
my_malloc_init(mem_start);
if (! attach_awe())
return 0;
return my_malloc_memptr();
}
int probe_awe_obsolete(struct address_info *hw_config)
{
return 1;
/*return awe_detect();*/
}
#else
#if defined(__FreeBSD__ )
int probe_awe(struct address_info *hw_config)
{
return 1;
}
#endif
#endif /* AWE_OBSOLETE_VOXWARE */
/*================================================================
* clear sample tables
*================================================================*/
static void
awe_reset_samples(void)
{
int i;
/* free all bank tables */
for (i = 0; i < AWE_MAX_PRESETS; i++)
preset_table[i] = -1;
free_tables();
current_sf_id = 0;
locked_sf_id = 0;
patch_opened = 0;
}
/*================================================================
* EMU register access
*================================================================*/
/* select a given AWE32 pointer */
static int awe_cur_cmd = -1;
#define awe_set_cmd(cmd) \
if (awe_cur_cmd != cmd) { OUTW(cmd, awe_base + 0x802); awe_cur_cmd = cmd; }
#define awe_port(port) (awe_base - 0x620 + port)
/* write 16bit data */
INLINE static void
awe_poke(unsigned short cmd, unsigned short port, unsigned short data)
{
awe_set_cmd(cmd);
OUTW(data, awe_port(port));
}
/* write 32bit data */
INLINE static void
awe_poke_dw(unsigned short cmd, unsigned short port, unsigned int data)
{
awe_set_cmd(cmd);
OUTW(data, awe_port(port)); /* write lower 16 bits */
OUTW(data >> 16, awe_port(port)+2); /* write higher 16 bits */
}
/* read 16bit data */
INLINE static unsigned short
awe_peek(unsigned short cmd, unsigned short port)
{
unsigned short k;
awe_set_cmd(cmd);
k = inw(awe_port(port));
return k;
}
/* read 32bit data */
INLINE static unsigned int
awe_peek_dw(unsigned short cmd, unsigned short port)
{
unsigned int k1, k2;
awe_set_cmd(cmd);
k1 = inw(awe_port(port));
k2 = inw(awe_port(port)+2);
k1 |= k2 << 16;
return k1;
}
/* wait delay number of AWE32 44100Hz clocks */
static void
awe_wait(unsigned short delay)
{
unsigned short clock, target;
unsigned short port = awe_port(AWE_WC_Port);
int counter;
/* sample counter */
awe_set_cmd(AWE_WC_Cmd);
clock = (unsigned short)inw(port);
target = clock + delay;
counter = 0;
if (target < clock) {
for (; (unsigned short)inw(port) > target; counter++)
if (counter > 65536)
break;
}
for (; (unsigned short)inw(port) < target; counter++)
if (counter > 65536)
break;
}
/* write a word data */
INLINE static void
awe_write_dram(unsigned short c)
{
awe_poke(AWE_SMLD, c);
}
#if defined(linux) && !defined(AWE_OBSOLETE_VOXWARE)
/*================================================================
* port check / request
* 0x620-622, 0xA20-A22, 0xE20-E22
*================================================================*/
static int
awe_check_port(void)
{
return (check_region(awe_port(Data0), 4) ||
check_region(awe_port(Data1), 4) ||
check_region(awe_port(Data3), 4));
}
static void
awe_request_region(void)
{
request_region(awe_port(Data0), 4, "sound driver (AWE32)");
request_region(awe_port(Data1), 4, "sound driver (AWE32)");
request_region(awe_port(Data3), 4, "sound driver (AWE32)");
}
static void
awe_release_region(void)
{
release_region(awe_port(Data0), 4);
release_region(awe_port(Data1), 4);
release_region(awe_port(Data3), 4);
}
#endif /* !AWE_OBSOLETE_VOXWARE */
/*================================================================
* AWE32 initialization
*================================================================*/
static void
awe_initialize(void)
{
DEBUG(0,printk("AWE32: initializing..\n"));
/* initialize hardware configuration */
awe_poke(AWE_HWCF1, 0x0059);
awe_poke(AWE_HWCF2, 0x0020);
/* disable audio; this seems to reduce a clicking noise a bit.. */
awe_poke(AWE_HWCF3, 0);
/* initialize audio channels */
awe_init_audio();
/* initialize DMA */
awe_init_dma();
/* initialize init array */
awe_init_array();
/* check DRAM memory size */
awe_mem_size = awe_check_dram();
/* initialize the FM section of the AWE32 */
awe_init_fm();
/* set up voice envelopes */
awe_tweak();
/* enable audio */
awe_poke(AWE_HWCF3, 0x0004);
/* set equalizer */
awe_equalizer(5, 9);
}
/*================================================================
* AWE32 voice parameters
*================================================================*/
/* initialize voice_info record */
static void
awe_init_voice_info(awe_voice_info *vp)
{
vp->sf_id = 0; /* normal mode */
vp->sample = 0;
vp->rate_offset = 0;
vp->start = 0;
vp->end = 0;
vp->loopstart = 0;
vp->loopend = 0;
vp->mode = 0;
vp->root = 60;
vp->tune = 0;
vp->low = 0;
vp->high = 127;
vp->vellow = 0;
vp->velhigh = 127;
vp->fixkey = -1;
vp->fixvel = -1;
vp->fixpan = -1;
vp->pan = -1;
vp->exclusiveClass = 0;
vp->amplitude = 127;
vp->attenuation = 0;
vp->scaleTuning = 100;
awe_init_voice_parm(&vp->parm);
}
/* initialize voice_parm record:
* Env1/2: delay=0, attack=0, hold=0, sustain=0, decay=0, release=0.
* Vibrato and Tremolo effects are zero.
* Cutoff is maximum.
* Chorus and Reverb effects are zero.
*/
static void
awe_init_voice_parm(awe_voice_parm *pp)
{
pp->moddelay = 0x8000;
pp->modatkhld = 0x7f7f;
pp->moddcysus = 0x7f7f;
pp->modrelease = 0x807f;
pp->modkeyhold = 0;
pp->modkeydecay = 0;
pp->voldelay = 0x8000;
pp->volatkhld = 0x7f7f;
pp->voldcysus = 0x7f7f;
pp->volrelease = 0x807f;
pp->volkeyhold = 0;
pp->volkeydecay = 0;
pp->lfo1delay = 0x8000;
pp->lfo2delay = 0x8000;
pp->pefe = 0;
pp->fmmod = 0;
pp->tremfrq = 0;
pp->fm2frq2 = 0;
pp->cutoff = 0xff;
pp->filterQ = 0;
pp->chorus = 0;
pp->reverb = 0;
}
#ifdef AWE_HAS_GUS_COMPATIBILITY
/* convert frequency mHz to abstract cents (= midi key * 100) */
static int
freq_to_note(int mHz)
{
/* abscents = log(mHz/8176) / log(2) * 1200 */
unsigned int max_val = (unsigned int)0xffffffff / 10000;
int i, times;
unsigned int base;
unsigned int freq;
int note, tune;
if (mHz == 0)
return 0;
if (mHz < 0)
return 12799; /* maximum */
freq = mHz;
note = 0;
for (base = 8176 * 2; freq >= base; base *= 2) {
note += 12;
if (note >= 128) /* over maximum */
return 12799;
}
base /= 2;
/* to avoid overflow... */
times = 10000;
while (freq > max_val) {
max_val *= 10;
times /= 10;
base /= 10;
}
freq = freq * times / base;
for (i = 0; i < 12; i++) {
if (freq < semitone_tuning[i+1])
break;
note++;
}
tune = 0;
freq = freq * 10000 / semitone_tuning[i];
for (i = 0; i < 100; i++) {
if (freq < cent_tuning[i+1])
break;
tune++;
}
return note * 100 + tune;
}
/* convert Hz to AWE32 rate offset:
* sample pitch offset for the specified sample rate
* rate=44100 is no offset, each 4096 is 1 octave (twice).
* eg, when rate is 22050, this offset becomes -4096.
*/
static int
calc_rate_offset(int Hz)
{
/* offset = log(Hz / 44100) / log(2) * 4096 */
int freq, base, i;
/* maybe smaller than max (44100Hz) */
if (Hz <= 0 || Hz >= 44100) return 0;
base = 0;
for (freq = Hz * 2; freq < 44100; freq *= 2)
base++;
base *= 1200;
freq = 44100 * 10000 / (freq/2);
for (i = 0; i < 12; i++) {
if (freq < semitone_tuning[i+1])
break;
base += 100;
}
freq = freq * 10000 / semitone_tuning[i];
for (i = 0; i < 100; i++) {
if (freq < cent_tuning[i+1])
break;
base++;
}
return -base * 4096 / 1200;
}
/*----------------------------------------------------------------
* convert envelope time parameter to AWE32 raw parameter
*----------------------------------------------------------------*/
/* attack & decay/release time table (msec) */
static short attack_time_tbl[128] = {
32767, 11878, 5939, 3959, 2969, 2375, 1979, 1696, 1484, 1319, 1187, 1079, 989, 913, 848, 791, 742,
698, 659, 625, 593, 565, 539, 516, 494, 475, 456, 439, 424, 409, 395, 383, 371,
359, 344, 330, 316, 302, 290, 277, 266, 255, 244, 233, 224, 214, 205, 196, 188,
180, 173, 165, 158, 152, 145, 139, 133, 127, 122, 117, 112, 107, 103, 98, 94,
90, 86, 83, 79, 76, 73, 69, 67, 64, 61, 58, 56, 54, 51, 49, 47,
45, 43, 41, 39, 38, 36, 35, 33, 32, 30, 29, 28, 27, 25, 24, 23,
22, 21, 20, 20, 19, 18, 17, 16, 16, 15, 14, 14, 13, 13, 12, 11,
11, 10, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 0,
};
static short decay_time_tbl[128] = {
32767, 32766, 4589, 4400, 4219, 4045, 3879, 3719, 3566, 3419, 3279, 3144, 3014, 2890, 2771, 2657,
2548, 2443, 2343, 2246, 2154, 2065, 1980, 1899, 1820, 1746, 1674, 1605, 1539, 1475, 1415, 1356,
1301, 1247, 1196, 1146, 1099, 1054, 1011, 969, 929, 891, 854, 819, 785, 753, 722, 692,
664, 636, 610, 585, 561, 538, 516, 494, 474, 455, 436, 418, 401, 384, 368, 353,
339, 325, 311, 298, 286, 274, 263, 252, 242, 232, 222, 213, 204, 196, 188, 180,
173, 166, 159, 152, 146, 140, 134, 129, 123, 118, 113, 109, 104, 100, 96, 92,
88, 84, 81, 77, 74, 71, 68, 65, 63, 60, 58, 55, 53, 51, 49, 47,
45, 43, 41, 39, 38, 36, 35, 33, 32, 30, 29, 28, 27, 26, 25, 24,
};
/*
static int
calc_parm_delay(int msec)
{
return (0x8000 - msec * 1000 / 725);
}
*/
/* delay time = 0x8000 - msec/92 */
static int
calc_parm_hold(int msec)
{
int val = (0x7f * 92 - msec) / 92;
if (val < 1) val = 1;
if (val > 127) val = 127;
return val;
}
/* attack time: search from time table */
static int
calc_parm_attack(int msec)
{
return calc_parm_search(msec, attack_time_tbl);
}
/* decay/release time: search from time table */
static int
calc_parm_decay(int msec)
{
return calc_parm_search(msec, decay_time_tbl);
}
/* search an index for specified time from given time table */
static int
calc_parm_search(int msec, short *table)
{
int left = 1, right = 127, mid;
while (left < right) {
mid = (left + right) / 2;
if (msec < (int)table[mid])
left = mid + 1;
else
right = mid;
}
return left;
}
#endif /* AWE_HAS_GUS_COMPATIBILITY */
/*================================================================
* effects table
*================================================================*/
/* set an effect value */
#define FX_FLAG_OFF 0
#define FX_FLAG_SET 1
#define FX_FLAG_ADD 2
#define FX_SET(rec,type,value) \
((rec)->flags[type] = FX_FLAG_SET, (rec)->val[type] = (value))
#define FX_ADD(rec,type,value) \
((rec)->flags[type] = FX_FLAG_ADD, (rec)->val[type] = (value))
#define FX_UNSET(rec,type) \
((rec)->flags[type] = FX_FLAG_OFF, (rec)->val[type] = 0)
/* check the effect value is set */
#define FX_ON(rec,type) ((rec)->flags[type])
#define PARM_BYTE 0
#define PARM_WORD 1
static struct PARM_DEFS {
int type; /* byte or word */
int low, high; /* value range */
fx_affect_func realtime; /* realtime paramater change */
} parm_defs[] = {
{PARM_WORD, 0, 0x8000, NULL}, /* env1 delay */
{PARM_BYTE, 1, 0x7f, NULL}, /* env1 attack */
{PARM_BYTE, 0, 0x7e, NULL}, /* env1 hold */
{PARM_BYTE, 1, 0x7f, NULL}, /* env1 decay */
{PARM_BYTE, 1, 0x7f, NULL}, /* env1 release */
{PARM_BYTE, 0, 0x7f, NULL}, /* env1 sustain */
{PARM_BYTE, 0, 0xff, NULL}, /* env1 pitch */
{PARM_BYTE, 0, 0xff, NULL}, /* env1 cutoff */
{PARM_WORD, 0, 0x8000, NULL}, /* env2 delay */
{PARM_BYTE, 1, 0x7f, NULL}, /* env2 attack */
{PARM_BYTE, 0, 0x7e, NULL}, /* env2 hold */
{PARM_BYTE, 1, 0x7f, NULL}, /* env2 decay */
{PARM_BYTE, 1, 0x7f, NULL}, /* env2 release */
{PARM_BYTE, 0, 0x7f, NULL}, /* env2 sustain */
{PARM_WORD, 0, 0x8000, NULL}, /* lfo1 delay */
{PARM_BYTE, 0, 0xff, awe_fx_tremfrq}, /* lfo1 freq */
{PARM_BYTE, 0, 0x7f, awe_fx_tremfrq}, /* lfo1 volume (positive only)*/
{PARM_BYTE, 0, 0x7f, awe_fx_fmmod}, /* lfo1 pitch (positive only)*/
{PARM_BYTE, 0, 0xff, awe_fx_fmmod}, /* lfo1 cutoff (positive only)*/
{PARM_WORD, 0, 0x8000, NULL}, /* lfo2 delay */
{PARM_BYTE, 0, 0xff, awe_fx_fm2frq2}, /* lfo2 freq */
{PARM_BYTE, 0, 0x7f, awe_fx_fm2frq2}, /* lfo2 pitch (positive only)*/
{PARM_WORD, 0, 0xffff, awe_set_voice_pitch}, /* initial pitch */
{PARM_BYTE, 0, 0xff, NULL}, /* chorus */
{PARM_BYTE, 0, 0xff, NULL}, /* reverb */
{PARM_BYTE, 0, 0xff, awe_set_volume}, /* initial cutoff */
{PARM_BYTE, 0, 15, awe_fx_filterQ}, /* initial resonance */
{PARM_WORD, 0, 0xffff, NULL}, /* sample start */
{PARM_WORD, 0, 0xffff, NULL}, /* loop start */
{PARM_WORD, 0, 0xffff, NULL}, /* loop end */
{PARM_WORD, 0, 0xffff, NULL}, /* coarse sample start */
{PARM_WORD, 0, 0xffff, NULL}, /* coarse loop start */
{PARM_WORD, 0, 0xffff, NULL}, /* coarse loop end */
{PARM_BYTE, 0, 0xff, awe_set_volume}, /* initial attenuation */
};
static unsigned char
FX_BYTE(FX_Rec *rec, FX_Rec *lay, int type, unsigned char value)
{
int effect = 0;
int on = 0;
if (lay && (on = FX_ON(lay, type)) != 0)
effect = lay->val[type];
if (!on && (on = FX_ON(rec, type)) != 0)
effect = rec->val[type];
if (on == FX_FLAG_ADD)
effect += (int)value;
if (on) {
if (effect < parm_defs[type].low)
effect = parm_defs[type].low;
else if (effect > parm_defs[type].high)
effect = parm_defs[type].high;
return (unsigned char)effect;
}
return value;
}
/* get word effect value */
static unsigned short
FX_WORD(FX_Rec *rec, FX_Rec *lay, int type, unsigned short value)
{
int effect = 0;
int on = 0;
if (lay && (on = FX_ON(lay, type)) != 0)
effect = lay->val[type];
if (!on && (on = FX_ON(rec, type)) != 0)
effect = rec->val[type];
if (on == FX_FLAG_ADD)
effect += (int)value;
if (on) {
if (effect < parm_defs[type].low)
effect = parm_defs[type].low;
else if (effect > parm_defs[type].high)
effect = parm_defs[type].high;
return (unsigned short)effect;
}
return value;
}
/* get word (upper=type1/lower=type2) effect value */
static unsigned short
FX_COMB(FX_Rec *rec, FX_Rec *lay, int type1, int type2, unsigned short value)
{
unsigned short tmp;
tmp = FX_BYTE(rec, lay, type1, (unsigned char)(value >> 8));
tmp <<= 8;
tmp |= FX_BYTE(rec, lay, type2, (unsigned char)(value & 0xff));
return tmp;
}
/* address offset */
static int
FX_OFFSET(FX_Rec *rec, FX_Rec *lay, int lo, int hi, int mode)
{
int addr = 0;
if (lay && FX_ON(lay, hi))
addr = (short)lay->val[hi];
else if (FX_ON(rec, hi))
addr = (short)rec->val[hi];
addr = addr << 15;
if (lay && FX_ON(lay, lo))
addr += (short)lay->val[lo];
else if (FX_ON(rec, lo))
addr += (short)rec->val[lo];
if (!(mode & AWE_SAMPLE_8BITS))
addr /= 2;
return addr;
}
/*================================================================
* turn on/off sample
*================================================================*/
static void
awe_note_on(int voice)
{
unsigned int temp;
int addr;
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
/* A voice sample must assigned before calling */
if ((vp = voices[voice].sample) == NULL || vp->index < 0)
return;
/* channel to be silent and idle */
awe_poke(AWE_DCYSUSV(voice), 0x0080);
awe_poke(AWE_VTFT(voice), 0);
awe_poke(AWE_CVCF(voice), 0);
awe_poke(AWE_PTRX(voice), 0);
awe_poke(AWE_CPF(voice), 0);
/* modulation & volume envelope */
awe_poke(AWE_ENVVAL(voice),
FX_WORD(fx, fx_lay, AWE_FX_ENV1_DELAY, vp->parm.moddelay));
awe_poke(AWE_ATKHLD(voice),
FX_COMB(fx, fx_lay, AWE_FX_ENV1_HOLD, AWE_FX_ENV1_ATTACK,
vp->parm.modatkhld));
awe_poke(AWE_DCYSUS(voice),
FX_COMB(fx, fx_lay, AWE_FX_ENV1_SUSTAIN, AWE_FX_ENV1_DECAY,
vp->parm.moddcysus));
awe_poke(AWE_ENVVOL(voice),
FX_WORD(fx, fx_lay, AWE_FX_ENV2_DELAY, vp->parm.voldelay));
awe_poke(AWE_ATKHLDV(voice),
FX_COMB(fx, fx_lay, AWE_FX_ENV2_HOLD, AWE_FX_ENV2_ATTACK,
vp->parm.volatkhld));
/* decay/sustain parameter for volume envelope must be set at last */
/* pitch offset */
awe_set_pitch(voice, TRUE);
/* cutoff and volume */
awe_set_volume(voice, TRUE);
/* modulation envelope heights */
awe_poke(AWE_PEFE(voice),
FX_COMB(fx, fx_lay, AWE_FX_ENV1_PITCH, AWE_FX_ENV1_CUTOFF,
vp->parm.pefe));
/* lfo1/2 delay */
awe_poke(AWE_LFO1VAL(voice),
FX_WORD(fx, fx_lay, AWE_FX_LFO1_DELAY, vp->parm.lfo1delay));
awe_poke(AWE_LFO2VAL(voice),
FX_WORD(fx, fx_lay, AWE_FX_LFO2_DELAY, vp->parm.lfo2delay));
/* lfo1 pitch & cutoff shift */
awe_fx_fmmod(voice, TRUE);
/* lfo1 volume & freq */
awe_fx_tremfrq(voice, TRUE);
/* lfo2 pitch & freq */
awe_fx_fm2frq2(voice, TRUE);
/* pan & loop start */
awe_set_pan(voice, TRUE);
/* chorus & loop end (chorus 8bit, MSB) */
addr = vp->loopend - 1;
addr += FX_OFFSET(fx, fx_lay, AWE_FX_LOOP_END,
AWE_FX_COARSE_LOOP_END, vp->mode);
temp = FX_BYTE(fx, fx_lay, AWE_FX_CHORUS, vp->parm.chorus);
temp = (temp <<24) | (unsigned int)addr;
awe_poke_dw(AWE_CSL(voice), temp);
DEBUG(4,printk("AWE32: [-- loopend=%x/%x]\n", vp->loopend, addr));
/* Q & current address (Q 4bit value, MSB) */
addr = vp->start - 1;
addr += FX_OFFSET(fx, fx_lay, AWE_FX_SAMPLE_START,
AWE_FX_COARSE_SAMPLE_START, vp->mode);
temp = FX_BYTE(fx, fx_lay, AWE_FX_FILTERQ, vp->parm.filterQ);
temp = (temp<<28) | (unsigned int)addr;
awe_poke_dw(AWE_CCCA(voice), temp);
DEBUG(4,printk("AWE32: [-- startaddr=%x/%x]\n", vp->start, addr));
/* reset volume */
awe_poke_dw(AWE_VTFT(voice), 0x0000FFFF);
awe_poke_dw(AWE_CVCF(voice), 0x0000FFFF);
/* turn on envelope */
awe_poke(AWE_DCYSUSV(voice),
FX_COMB(fx, fx_lay, AWE_FX_ENV2_SUSTAIN, AWE_FX_ENV2_DECAY,
vp->parm.voldcysus));
/* set reverb */
temp = FX_BYTE(fx, fx_lay, AWE_FX_REVERB, vp->parm.reverb);
temp = (awe_peek_dw(AWE_PTRX(voice)) & 0xffff0000) | (temp<<8);
awe_poke_dw(AWE_PTRX(voice), temp);
awe_poke_dw(AWE_CPF(voice), 0x40000000);
voices[voice].state = AWE_ST_ON;
/* clear voice position for the next note on this channel */
if (SINGLE_LAYER_MODE()) {
FX_UNSET(fx, AWE_FX_SAMPLE_START);
FX_UNSET(fx, AWE_FX_COARSE_SAMPLE_START);
}
}
/* turn off the voice */
static void
awe_note_off(int voice)
{
awe_voice_info *vp;
unsigned short tmp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if ((vp = voices[voice].sample) == NULL) {
voices[voice].state = AWE_ST_OFF;
return;
}
tmp = 0x8000 | FX_BYTE(fx, fx_lay, AWE_FX_ENV1_RELEASE,
(unsigned char)vp->parm.modrelease);
awe_poke(AWE_DCYSUS(voice), tmp);
tmp = 0x8000 | FX_BYTE(fx, fx_lay, AWE_FX_ENV2_RELEASE,
(unsigned char)vp->parm.volrelease);
awe_poke(AWE_DCYSUSV(voice), tmp);
voices[voice].state = AWE_ST_RELEASED;
}
/* force to terminate the voice (no releasing echo) */
static void
awe_terminate(int voice)
{
awe_poke(AWE_DCYSUSV(voice), 0x807F);
awe_tweak_voice(voice);
voices[voice].state = AWE_ST_OFF;
}
/* turn off other voices with the same exclusive class (for drums) */
static void
awe_exclusive_off(int voice)
{
int i, exclass;
if (voices[voice].sample == NULL)
return;
if ((exclass = voices[voice].sample->exclusiveClass) == 0)
return; /* not exclusive */
/* turn off voices with the same class */
for (i = 0; i < awe_max_voices; i++) {
if (i != voice && IS_PLAYING(i) &&
voices[i].sample && voices[i].ch == voices[voice].ch &&
voices[i].sample->exclusiveClass == exclass) {
DEBUG(4,printk("AWE32: [exoff(%d)]\n", i));
awe_terminate(i);
awe_voice_init(i, TRUE);
}
}
}
/*================================================================
* change the parameters of an audible voice
*================================================================*/
/* change pitch */
static void
awe_set_pitch(int voice, int forced)
{
if (IS_NO_EFFECT(voice) && !forced) return;
awe_poke(AWE_IP(voice), voices[voice].apitch);
DEBUG(3,printk("AWE32: [-- pitch=%x]\n", voices[voice].apitch));
}
/* calculate & change pitch */
static void
awe_set_voice_pitch(int voice, int forced)
{
awe_calc_pitch(voice);
awe_set_pitch(voice, forced);
}
/* change volume & cutoff */
static void
awe_set_volume(int voice, int forced)
{
awe_voice_info *vp;
unsigned short tmp2;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (!IS_PLAYING(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index < 0)
return;
tmp2 = FX_BYTE(fx, fx_lay, AWE_FX_CUTOFF, vp->parm.cutoff);
tmp2 = (tmp2 << 8);
tmp2 |= FX_BYTE(fx, fx_lay, AWE_FX_ATTEN,
(unsigned char)voices[voice].avol);
awe_poke(AWE_IFATN(voice), tmp2);
}
/* calculate & change volume */
static void
awe_set_voice_vol(int voice, int forced)
{
if (IS_EMPTY(voice))
return;
awe_calc_volume(voice);
awe_set_volume(voice, forced);
}
/* change pan; this could make a click noise.. */
static void
awe_set_pan(int voice, int forced)
{
unsigned int temp;
int addr;
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (IS_NO_EFFECT(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index < 0)
return;
/* pan & loop start (pan 8bit, MSB, 0:right, 0xff:left) */
if (vp->fixpan > 0) /* 0-127 */
temp = 255 - (int)vp->fixpan * 2;
else {
int pos = 0;
if (vp->pan >= 0) /* 0-127 */
pos = (int)vp->pan * 2 - 128;
pos += voices[voice].cinfo->panning; /* -128 - 127 */
pos = 127 - pos;
if (pos < 0)
temp = 0;
else if (pos > 255)
temp = 255;
else
temp = pos;
}
if (forced || temp != voices[voice].apan) {
addr = vp->loopstart - 1;
addr += FX_OFFSET(fx, fx_lay, AWE_FX_LOOP_START,
AWE_FX_COARSE_LOOP_START, vp->mode);
temp = (temp<<24) | (unsigned int)addr;
awe_poke_dw(AWE_PSST(voice), temp);
voices[voice].apan = temp;
DEBUG(4,printk("AWE32: [-- loopstart=%x/%x]\n", vp->loopstart, addr));
}
}
/* effects change during playing */
static void
awe_fx_fmmod(int voice, int forced)
{
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (IS_NO_EFFECT(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index < 0)
return;
awe_poke(AWE_FMMOD(voice),
FX_COMB(fx, fx_lay, AWE_FX_LFO1_PITCH, AWE_FX_LFO1_CUTOFF,
vp->parm.fmmod));
}
/* set tremolo (lfo1) volume & frequency */
static void
awe_fx_tremfrq(int voice, int forced)
{
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (IS_NO_EFFECT(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index < 0)
return;
awe_poke(AWE_TREMFRQ(voice),
FX_COMB(fx, fx_lay, AWE_FX_LFO1_VOLUME, AWE_FX_LFO1_FREQ,
vp->parm.tremfrq));
}
/* set lfo2 pitch & frequency */
static void
awe_fx_fm2frq2(int voice, int forced)
{
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (IS_NO_EFFECT(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index < 0)
return;
awe_poke(AWE_FM2FRQ2(voice),
FX_COMB(fx, fx_lay, AWE_FX_LFO2_PITCH, AWE_FX_LFO2_FREQ,
vp->parm.fm2frq2));
}
/* Q & current address (Q 4bit value, MSB) */
static void
awe_fx_filterQ(int voice, int forced)
{
unsigned int addr;
awe_voice_info *vp;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
if (IS_NO_EFFECT(voice) && !forced) return;
if ((vp = voices[voice].sample) == NULL || vp->index < 0)
return;
addr = awe_peek_dw(AWE_CCCA(voice)) & 0xffffff;
addr |= (FX_BYTE(fx, fx_lay, AWE_FX_FILTERQ, vp->parm.filterQ) << 28);
awe_poke_dw(AWE_CCCA(voice), addr);
}
/*================================================================
* calculate pitch offset
*----------------------------------------------------------------
* 0xE000 is no pitch offset at 44100Hz sample.
* Every 4096 is one octave.
*================================================================*/
static void
awe_calc_pitch(int voice)
{
voice_info *vp = &voices[voice];
awe_voice_info *ap;
awe_chan_info *cp = voices[voice].cinfo;
int offset;
/* search voice information */
if ((ap = vp->sample) == NULL)
return;
if (ap->index < 0) {
DEBUG(3,printk("AWE32: set sample (%d)\n", ap->sample));
if (awe_set_sample(ap) < 0)
return;
}
/* calculate offset */
if (ap->fixkey >= 0) {
DEBUG(3,printk("AWE32: p-> fixkey(%d) tune(%d)\n", ap->fixkey, ap->tune));
offset = (ap->fixkey - ap->root) * 4096 / 12;
} else {
DEBUG(3,printk("AWE32: p(%d)-> root(%d) tune(%d)\n", vp->note, ap->root, ap->tune));
offset = (vp->note - ap->root) * 4096 / 12;
DEBUG(4,printk("AWE32: p-> ofs=%d\n", offset));
}
offset = (offset * ap->scaleTuning) / 100;
DEBUG(4,printk("AWE32: p-> scale* ofs=%d\n", offset));
offset += ap->tune * 4096 / 1200;
DEBUG(4,printk("AWE32: p-> tune+ ofs=%d\n", offset));
if (cp->bender != 0) {
DEBUG(3,printk("AWE32: p-> bend(%d) %d\n", voice, cp->bender));
/* (819200: 1 semitone) ==> (4096: 12 semitones) */
offset += cp->bender * cp->bender_range / 2400;
}
/* add initial pitch correction */
if (FX_ON(&cp->fx_layer[vp->layer], AWE_FX_INIT_PITCH))
offset += cp->fx_layer[vp->layer].val[AWE_FX_INIT_PITCH];
else if (FX_ON(&cp->fx, AWE_FX_INIT_PITCH))
offset += cp->fx.val[AWE_FX_INIT_PITCH];
/* 0xe000: root pitch */
vp->apitch = 0xe000 + ap->rate_offset + offset;
DEBUG(4,printk("AWE32: p-> sum aofs=%x, rate_ofs=%d\n", vp->apitch, ap->rate_offset));
if (vp->apitch > 0xffff)
vp->apitch = 0xffff;
if (vp->apitch < 0)
vp->apitch = 0;
}
#ifdef AWE_HAS_GUS_COMPATIBILITY
/* calculate MIDI key and semitone from the specified frequency */
static void
awe_calc_pitch_from_freq(int voice, int freq)
{
voice_info *vp = &voices[voice];
awe_voice_info *ap;
FX_Rec *fx = &voices[voice].cinfo->fx;
FX_Rec *fx_lay = NULL;
int offset;
int note;
if (voices[voice].layer < MAX_LAYERS)
fx_lay = &voices[voice].cinfo->fx_layer[voices[voice].layer];
/* search voice information */
if ((ap = vp->sample) == NULL)
return;
if (ap->index < 0) {
DEBUG(3,printk("AWE32: set sample (%d)\n", ap->sample));
if (awe_set_sample(ap) < 0)
return;
}
note = freq_to_note(freq);
offset = (note - ap->root * 100 + ap->tune) * 4096 / 1200;
offset = (offset * ap->scaleTuning) / 100;
if (fx_lay && FX_ON(fx_lay, AWE_FX_INIT_PITCH))
offset += fx_lay->val[AWE_FX_INIT_PITCH];
else if (FX_ON(fx, AWE_FX_INIT_PITCH))
offset += fx->val[AWE_FX_INIT_PITCH];
vp->apitch = 0xe000 + ap->rate_offset + offset;
if (vp->apitch > 0xffff)
vp->apitch = 0xffff;
if (vp->apitch < 0)
vp->apitch = 0;
}
#endif /* AWE_HAS_GUS_COMPATIBILITY */
/*================================================================
* calculate volume attenuation
*----------------------------------------------------------------
* Voice volume is controlled by volume attenuation parameter.
* So volume becomes maximum when avol is 0 (no attenuation), and
* minimum when 255 (-96dB or silence).
*================================================================*/
static int vol_table[128] = {
255,111,95,86,79,74,70,66,63,61,58,56,54,52,50,49,
47,46,45,43,42,41,40,39,38,37,36,35,34,34,33,32,
31,31,30,29,29,28,27,27,26,26,25,24,24,23,23,22,
22,21,21,21,20,20,19,19,18,18,18,17,17,16,16,16,
15,15,15,14,14,14,13,13,13,12,12,12,11,11,11,10,
10,10,10,9,9,9,8,8,8,8,7,7,7,7,6,6,
6,6,5,5,5,5,5,4,4,4,4,3,3,3,3,3,
2,2,2,2,2,1,1,1,1,1,0,0,0,0,0,0,
};
static void
awe_calc_volume(int voice)
{
voice_info *vp = &voices[voice];
awe_voice_info *ap;
awe_chan_info *cp = voices[voice].cinfo;
int vol;
/* search voice information */
if ((ap = vp->sample) == NULL)
return;
ap = vp->sample;
if (ap->index < 0) {
DEBUG(3,printk("AWE32: set sample (%d)\n", ap->sample));
if (awe_set_sample(ap) < 0)
return;
}
/* 0 - 127 */
vol = (vp->velocity * cp->main_vol * cp->expression_vol) / (127*127);
vol = vol * ap->amplitude / 127;
if (vol < 0) vol = 0;
if (vol > 127) vol = 127;
/* calc to attenuation */
vol = vol_table[vol];
vol = vol + (int)ap->attenuation + init_atten;
if (vol > 255) vol = 255;
vp->avol = vol;
DEBUG(3,printk("AWE32: [-- voice(%d) vol=%x]\n", voice, vol));
}
/* set sostenuto on */
static void awe_sostenuto_on(int voice, int forced)
{
if (IS_NO_EFFECT(voice) && !forced) return;
voices[voice].sostenuto = 127;
}
/* drop sustain */
static void awe_sustain_off(int voice, int forced)
{
if (voices[voice].state == AWE_ST_SUSTAINED) {
awe_note_off(voice);
awe_fx_init(voices[voice].ch);
awe_voice_init(voice, FALSE);
}
}
/* terminate and initialize voice */
static void awe_terminate_and_init(int voice, int forced)
{
awe_terminate(voice);
awe_fx_init(voices[voice].ch);
awe_voice_init(voice, TRUE);
}
/*================================================================
* synth operation routines
*================================================================*/
#define AWE_VOICE_KEY(v) (0x8000 | (v))
#define AWE_CHAN_KEY(c,n) (((c) << 8) | ((n) + 1))
#define KEY_CHAN_MATCH(key,c) (((key) >> 8) == (c))
/* initialize the voice */
static void
awe_voice_init(int voice, int init_all)
{
voice_info *vp = &voices[voice];
/* reset voice search key */
if (playing_mode == AWE_PLAY_DIRECT)
vp->key = AWE_VOICE_KEY(voice);
else
vp->key = 0;
/* clear voice mapping */
voice_alloc->map[voice] = 0;
/* touch the timing flag */
vp->time = current_alloc_time;
/* initialize other parameters if necessary */
if (init_all) {
vp->note = -1;
vp->velocity = 0;
vp->sostenuto = 0;
vp->sample = NULL;
vp->cinfo = &channels[voice];
vp->ch = voice;
vp->state = AWE_ST_OFF;
/* emu8000 parameters */
vp->apitch = 0;
vp->avol = 255;
vp->apan = -1;
}
}
/* clear effects */
static void awe_fx_init(int ch)
{
if (SINGLE_LAYER_MODE() && !misc_modes[AWE_MD_KEEP_EFFECT]) {
BZERO(&channels[ch].fx, sizeof(channels[ch].fx));
BZERO(&channels[ch].fx_layer, sizeof(&channels[ch].fx_layer));
}
}
/* initialize channel info */
static void awe_channel_init(int ch, int init_all)
{
awe_chan_info *cp = &channels[ch];
cp->channel = ch;
if (init_all) {
cp->panning = 0; /* zero center */
cp->bender_range = 200; /* sense * 100 */
cp->main_vol = 127;
if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(ch)) {
cp->instr = misc_modes[AWE_MD_DEF_DRUM];
cp->bank = AWE_DRUM_BANK;
} else {
cp->instr = misc_modes[AWE_MD_DEF_PRESET];
cp->bank = misc_modes[AWE_MD_DEF_BANK];
}
cp->vrec = -1;
cp->def_vrec = -1;
}
cp->bender = 0; /* zero tune skew */
cp->expression_vol = 127;
cp->chan_press = 0;
cp->sustained = 0;
if (! misc_modes[AWE_MD_KEEP_EFFECT]) {
BZERO(&cp->fx, sizeof(cp->fx));
BZERO(&cp->fx_layer, sizeof(cp->fx_layer));
}
}
/* change the voice parameters; voice = channel */
static void awe_voice_change(int voice, fx_affect_func func)
{
int i;
switch (playing_mode) {
case AWE_PLAY_DIRECT:
func(voice, FALSE);
break;
case AWE_PLAY_INDIRECT:
for (i = 0; i < awe_max_voices; i++)
if (voices[i].key == AWE_VOICE_KEY(voice))
func(i, FALSE);
break;
default:
for (i = 0; i < awe_max_voices; i++)
if (KEY_CHAN_MATCH(voices[i].key, voice))
func(i, FALSE);
break;
}
}
/*----------------------------------------------------------------
* device open / close
*----------------------------------------------------------------*/
/* open device:
* reset status of all voices, and clear sample position flag
*/
static int
awe_open(int dev, int mode)
{
if (awe_busy)
return RET_ERROR(EBUSY);
awe_busy = TRUE;
/* set default mode */
awe_init_misc_modes(FALSE);
init_atten = misc_modes[AWE_MD_ZERO_ATTEN];
drum_flags = DEFAULT_DRUM_FLAGS;
playing_mode = AWE_PLAY_INDIRECT;
/* reset voices & channels */
awe_reset(dev);
patch_opened = 0;
return 0;
}
/* close device:
* reset all voices again (terminate sounds)
*/
static void
awe_close(int dev)
{
awe_reset(dev);
awe_busy = FALSE;
}
/* set miscellaneous mode parameters
*/
static void
awe_init_misc_modes(int init_all)
{
int i;
for (i = 0; i < AWE_MD_END; i++) {
if (init_all || misc_modes_default[i].init_each_time)
misc_modes[i] = misc_modes_default[i].value;
}
}
/* sequencer I/O control:
*/
static int
awe_ioctl(int dev, unsigned int cmd, caddr_t arg)
{
switch (cmd) {
case SNDCTL_SYNTH_INFO:
if (playing_mode == AWE_PLAY_DIRECT)
awe_info.nr_voices = awe_max_voices;
else
awe_info.nr_voices = AWE_MAX_CHANNELS;
IOCTL_TO_USER((char*)arg, 0, &awe_info, sizeof(awe_info));
return 0;
break;
case SNDCTL_SEQ_RESETSAMPLES:
awe_reset_samples();
awe_reset(dev);
return 0;
break;
case SNDCTL_SEQ_PERCMODE:
/* what's this? */
return 0;
break;
case SNDCTL_SYNTH_MEMAVL:
return awe_mem_size - awe_free_mem_ptr() * 2;
default:
printk("AWE32: unsupported ioctl %d\n", cmd);
return RET_ERROR(EINVAL);
}
}
static int voice_in_range(int voice)
{
if (playing_mode == AWE_PLAY_DIRECT) {
if (voice < 0 || voice >= awe_max_voices)
return FALSE;
} else {
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return FALSE;
}
return TRUE;
}
static void release_voice(int voice, int do_sustain)
{
if (IS_NO_SOUND(voice))
return;
if (do_sustain && (voices[voice].cinfo->sustained == 127 ||
voices[voice].sostenuto == 127))
voices[voice].state = AWE_ST_SUSTAINED;
else {
awe_note_off(voice);
awe_fx_init(voices[voice].ch);
awe_voice_init(voice, FALSE);
}
}
/* release all notes */
static void awe_note_off_all(int do_sustain)
{
int i;
for (i = 0; i < awe_max_voices; i++)
release_voice(i, do_sustain);
}
/* kill a voice:
* not terminate, just release the voice.
*/
static int
awe_kill_note(int dev, int voice, int note, int velocity)
{
int i, v2, key;
DEBUG(2,printk("AWE32: [off(%d) nt=%d vl=%d]\n", voice, note, velocity));
if (! voice_in_range(voice))
return RET_ERROR(EINVAL);
switch (playing_mode) {
case AWE_PLAY_DIRECT:
case AWE_PLAY_INDIRECT:
key = AWE_VOICE_KEY(voice);
break;
case AWE_PLAY_MULTI2:
v2 = voice_alloc->map[voice] >> 8;
voice_alloc->map[voice] = 0;
voice = v2;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return RET_ERROR(EINVAL);
/* continue to below */
default:
key = AWE_CHAN_KEY(voice, note);
break;
}
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].key == key)
release_voice(i, TRUE);
}
return 0;
}
static void start_or_volume_change(int voice, int velocity)
{
voices[voice].velocity = velocity;
awe_calc_volume(voice);
if (voices[voice].state == AWE_ST_STANDBY)
awe_note_on(voice);
else if (voices[voice].state == AWE_ST_ON)
awe_set_volume(voice, FALSE);
}
static void set_and_start_voice(int voice, int state)
{
/* calculate pitch & volume parameters */
voices[voice].state = state;
awe_calc_pitch(voice);
awe_calc_volume(voice);
if (state == AWE_ST_ON)
awe_note_on(voice);
}
/* start a voice:
* if note is 255, identical with aftertouch function.
* Otherwise, start a voice with specified not and volume.
*/
static int
awe_start_note(int dev, int voice, int note, int velocity)
{
int i, key, state, volonly;
DEBUG(2,printk("AWE32: [on(%d) nt=%d vl=%d]\n", voice, note, velocity));
if (! voice_in_range(voice))
return RET_ERROR(EINVAL);
if (velocity == 0)
state = AWE_ST_STANDBY; /* stand by for playing */
else
state = AWE_ST_ON; /* really play */
volonly = FALSE;
switch (playing_mode) {
case AWE_PLAY_DIRECT:
case AWE_PLAY_INDIRECT:
key = AWE_VOICE_KEY(voice);
if (note == 255)
volonly = TRUE;
break;
case AWE_PLAY_MULTI2:
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return RET_ERROR(EINVAL);
/* continue to below */
default:
if (note >= 128) { /* key volume mode */
note -= 128;
volonly = TRUE;
}
key = AWE_CHAN_KEY(voice, note);
break;
}
/* dynamic volume change */
if (volonly) {
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].key == key)
start_or_volume_change(i, velocity);
}
return 0;
}
/* if the same note still playing, stop it */
for (i = 0; i < awe_max_voices; i++)
if (voices[i].key == key) {
if (voices[i].state == AWE_ST_ON) {
awe_note_off(i);
awe_voice_init(i, FALSE);
} else if (voices[i].state == AWE_ST_STANDBY)
awe_voice_init(i, TRUE);
}
/* allocate voices */
if (playing_mode == AWE_PLAY_DIRECT)
awe_alloc_one_voice(voice, note, velocity);
else
awe_alloc_multi_voices(voice, note, velocity, key);
/* turn off other voices exlusively (for drums) */
for (i = 0; i < awe_max_voices; i++)
if (voices[i].key == key)
awe_exclusive_off(i);
/* set up pitch and volume parameters */
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].key == key && voices[i].state == AWE_ST_OFF)
set_and_start_voice(i, state);
}
return 0;
}
/* search instrument from preset table with the specified bank */
static int
awe_search_instr(int bank, int preset)
{
int i;
for (i = preset_table[preset]; i >= 0; i = infos[i].next_bank) {
if (infos[i].bank == bank)
return i;
}
return -1;
}
/* assign the instrument to a voice */
static int
awe_set_instr_2(int dev, int voice, int instr_no)
{
if (playing_mode == AWE_PLAY_MULTI2) {
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return RET_ERROR(EINVAL);
}
return awe_set_instr(dev, voice, instr_no);
}
/* assign the instrument to a channel; voice is the channel number */
static int
awe_set_instr(int dev, int voice, int instr_no)
{
awe_chan_info *cinfo;
int def_bank;
if (! voice_in_range(voice))
return RET_ERROR(EINVAL);
if (instr_no < 0 || instr_no >= AWE_MAX_PRESETS)
return RET_ERROR(EINVAL);
cinfo = &channels[voice];
if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(voice))
def_bank = AWE_DRUM_BANK; /* always search drumset */
else
def_bank = cinfo->bank;
cinfo->vrec = -1;
cinfo->def_vrec = -1;
cinfo->vrec = awe_search_instr(def_bank, instr_no);
if (def_bank == AWE_DRUM_BANK) /* search default drumset */
cinfo->def_vrec = awe_search_instr(def_bank, misc_modes[AWE_MD_DEF_DRUM]);
else /* search default preset */
cinfo->def_vrec = awe_search_instr(misc_modes[AWE_MD_DEF_BANK], instr_no);
if (cinfo->vrec < 0 && cinfo->def_vrec < 0) {
DEBUG(1,printk("AWE32 Warning: can't find instrument %d\n", instr_no));
}
cinfo->instr = instr_no;
return 0;
}
/* reset all voices; terminate sounds and initialize parameters */
static void
awe_reset(int dev)
{
int i;
current_alloc_time = 0;
/* don't turn off voice 31 and 32. they are used also for FM voices */
for (i = 0; i < awe_max_voices; i++) {
awe_terminate(i);
awe_voice_init(i, TRUE);
}
for (i = 0; i < AWE_MAX_CHANNELS; i++)
awe_channel_init(i, TRUE);
for (i = 0; i < 16; i++) {
awe_operations.chn_info[i].controllers[CTL_MAIN_VOLUME] = 127;
awe_operations.chn_info[i].controllers[CTL_EXPRESSION] = 127;
}
awe_init_fm();
awe_tweak();
}
/* hardware specific control:
* GUS specific and AWE32 specific controls are available.
*/
static void
awe_hw_control(int dev, unsigned char *event)
{
int cmd = event[2];
if (cmd & _AWE_MODE_FLAG)
awe_hw_awe_control(dev, cmd & _AWE_MODE_VALUE_MASK, event);
#ifdef AWE_HAS_GUS_COMPATIBILITY
else
awe_hw_gus_control(dev, cmd & _AWE_MODE_VALUE_MASK, event);
#endif
}
#ifdef AWE_HAS_GUS_COMPATIBILITY
/* GUS compatible controls */
static void
awe_hw_gus_control(int dev, int cmd, unsigned char *event)
{
int voice, i, key;
unsigned short p1;
short p2;
int plong;
if (MULTI_LAYER_MODE())
return;
if (cmd == _GUS_NUMVOICES)
return;
voice = event[3];
if (! voice_in_range(voice))
return;
p1 = *(unsigned short *) &event[4];
p2 = *(short *) &event[6];
plong = *(int*) &event[4];
switch (cmd) {
case _GUS_VOICESAMPLE:
awe_set_instr(dev, voice, p1);
return;
case _GUS_VOICEBALA:
/* 0 to 15 --> -128 to 127 */
awe_panning(dev, voice, ((int)p1 << 4) - 128);
return;
case _GUS_VOICEVOL:
case _GUS_VOICEVOL2:
/* not supported yet */
return;
case _GUS_RAMPRANGE:
case _GUS_RAMPRATE:
case _GUS_RAMPMODE:
case _GUS_RAMPON:
case _GUS_RAMPOFF:
/* volume ramping not supported */
return;
case _GUS_VOLUME_SCALE:
return;
case _GUS_VOICE_POS:
FX_SET(&channels[voice].fx, AWE_FX_SAMPLE_START,
(short)(plong & 0x7fff));
FX_SET(&channels[voice].fx, AWE_FX_COARSE_SAMPLE_START,
(plong >> 15) & 0xffff);
return;
}
key = AWE_VOICE_KEY(voice);
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].key == key) {
switch (cmd) {
case _GUS_VOICEON:
awe_note_on(i);
break;
case _GUS_VOICEOFF:
awe_terminate(i);
awe_fx_init(voices[i].ch);
awe_voice_init(i, TRUE);
break;
case _GUS_VOICEFADE:
awe_note_off(i);
awe_fx_init(voices[i].ch);
awe_voice_init(i, FALSE);
break;
case _GUS_VOICEFREQ:
awe_calc_pitch_from_freq(i, plong);
break;
}
}
}
}
#endif
/* AWE32 specific controls */
static void
awe_hw_awe_control(int dev, int cmd, unsigned char *event)
{
int voice;
unsigned short p1;
short p2;
awe_chan_info *cinfo;
FX_Rec *fx;
int i;
voice = event[3];
if (! voice_in_range(voice))
return;
if (playing_mode == AWE_PLAY_MULTI2) {
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return;
}
p1 = *(unsigned short *) &event[4];
p2 = *(short *) &event[6];
cinfo = &channels[voice];
switch (cmd) {
case _AWE_DEBUG_MODE:
debug_mode = p1;
printk("AWE32: debug mode = %d\n", debug_mode);
break;
case _AWE_REVERB_MODE:
awe_set_reverb_mode(p1);
break;
case _AWE_CHORUS_MODE:
awe_set_chorus_mode(p1);
break;
case _AWE_REMOVE_LAST_SAMPLES:
DEBUG(0,printk("AWE32: remove last samples\n"));
if (locked_sf_id > 0)
awe_remove_samples(locked_sf_id);
break;
case _AWE_INITIALIZE_CHIP:
awe_initialize();
break;
case _AWE_SEND_EFFECT:
fx = &cinfo->fx;
i = FX_FLAG_SET;
if (p1 >= 0x100) {
int layer = (p1 >> 8);
if (layer >= 0 && layer < MAX_LAYERS)
fx = &cinfo->fx_layer[layer];
p1 &= 0xff;
}
if (p1 & 0x40) i = FX_FLAG_OFF;
if (p1 & 0x80) i = FX_FLAG_ADD;
p1 &= 0x3f;
if (p1 < AWE_FX_END) {
DEBUG(0,printk("AWE32: effects (%d) %d %d\n", voice, p1, p2));
if (i == FX_FLAG_SET)
FX_SET(fx, p1, p2);
else if (i == FX_FLAG_ADD)
FX_ADD(fx, p1, p2);
else
FX_UNSET(fx, p1);
if (i != FX_FLAG_OFF && parm_defs[p1].realtime) {
DEBUG(0,printk("AWE32: fx_realtime (%d)\n", voice));
awe_voice_change(voice, parm_defs[p1].realtime);
}
}
break;
case _AWE_RESET_CHANNEL:
awe_channel_init(voice, !p1);
break;
case _AWE_TERMINATE_ALL:
awe_reset(0);
break;
case _AWE_TERMINATE_CHANNEL:
awe_voice_change(voice, awe_terminate_and_init);
break;
case _AWE_RELEASE_ALL:
awe_note_off_all(FALSE);
break;
case _AWE_NOTEOFF_ALL:
awe_note_off_all(TRUE);
break;
case _AWE_INITIAL_VOLUME:
DEBUG(0,printk("AWE32: init attenuation %d\n", p1));
if (p2 == 0) /* absolute value */
init_atten = (short)p1;
else /* relative value */
init_atten = misc_modes[AWE_MD_ZERO_ATTEN] + (short)p1;
if (init_atten < 0) init_atten = 0;
for (i = 0; i < awe_max_voices; i++)
awe_set_voice_vol(i, TRUE);
break;
case _AWE_CHN_PRESSURE:
cinfo->chan_press = p1;
p1 = p1 * misc_modes[AWE_MD_MOD_SENSE] / 1200;
FX_ADD(&cinfo->fx, AWE_FX_LFO1_PITCH, p1);
awe_voice_change(voice, awe_fx_fmmod);
FX_ADD(&cinfo->fx, AWE_FX_LFO2_PITCH, p1);
awe_voice_change(voice, awe_fx_fm2frq2);
break;
case _AWE_CHANNEL_MODE:
DEBUG(0,printk("AWE32: channel mode = %d\n", p1));
playing_mode = p1;
awe_reset(0);
break;
case _AWE_DRUM_CHANNELS:
DEBUG(0,printk("AWE32: drum flags = %x\n", p1));
drum_flags = *(unsigned int*)&event[4];
break;
case _AWE_MISC_MODE:
DEBUG(0,printk("AWE32: misc mode = %d %d\n", p1, p2));
if (p1 > AWE_MD_VERSION && p1 < AWE_MD_END)
misc_modes[p1] = p2;
break;
case _AWE_EQUALIZER:
awe_equalizer((int)p1, (int)p2);
break;
default:
DEBUG(0,printk("AWE32: hw control cmd=%d voice=%d\n", cmd, voice));
break;
}
}
/* voice pressure change */
static void
awe_aftertouch(int dev, int voice, int pressure)
{
int note;
DEBUG(2,printk("AWE32: [after(%d) %d]\n", voice, pressure));
if (! voice_in_range(voice))
return;
switch (playing_mode) {
case AWE_PLAY_DIRECT:
case AWE_PLAY_INDIRECT:
awe_start_note(dev, voice, 255, pressure);
break;
case AWE_PLAY_MULTI2:
note = (voice_alloc->map[voice] & 0xff) - 1;
awe_start_note(dev, voice, note + 0x80, pressure);
break;
}
}
/* voice control change */
static void
awe_controller(int dev, int voice, int ctrl_num, int value)
{
int i;
awe_chan_info *cinfo;
if (! voice_in_range(voice))
return;
if (playing_mode == AWE_PLAY_MULTI2) {
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return;
}
cinfo = &channels[voice];
switch (ctrl_num) {
case CTL_BANK_SELECT: /* MIDI control #0 */
DEBUG(2,printk("AWE32: [bank(%d) %d]\n", voice, value));
if (MULTI_LAYER_MODE() && IS_DRUM_CHANNEL(voice) &&
!misc_modes[AWE_MD_TOGGLE_DRUM_BANK])
break;
cinfo->bank = value;
if (cinfo->bank == AWE_DRUM_BANK)
DRUM_CHANNEL_ON(cinfo->channel);
else
DRUM_CHANNEL_OFF(cinfo->channel);
awe_set_instr(dev, voice, cinfo->instr);
break;
case CTL_MODWHEEL: /* MIDI control #1 */
DEBUG(2,printk("AWE32: [modwheel(%d) %d]\n", voice, value));
i = value * misc_modes[AWE_MD_MOD_SENSE] / 1200;
FX_ADD(&cinfo->fx, AWE_FX_LFO1_PITCH, i);
awe_voice_change(voice, awe_fx_fmmod);
FX_ADD(&cinfo->fx, AWE_FX_LFO2_PITCH, i);
awe_voice_change(voice, awe_fx_fm2frq2);
break;
case CTRL_PITCH_BENDER: /* SEQ1 V2 contorl */
DEBUG(2,printk("AWE32: [bend(%d) %d]\n", voice, value));
/* zero centered */
cinfo->bender = value;
awe_voice_change(voice, awe_set_voice_pitch);
break;
case CTRL_PITCH_BENDER_RANGE: /* SEQ1 V2 control */
DEBUG(2,printk("AWE32: [range(%d) %d]\n", voice, value));
/* value = sense x 100 */
cinfo->bender_range = value;
/* no audible pitch change yet.. */
break;
case CTL_EXPRESSION: /* MIDI control #11 */
if (SINGLE_LAYER_MODE())
value /= 128;
case CTRL_EXPRESSION: /* SEQ1 V2 control */
DEBUG(2,printk("AWE32: [expr(%d) %d]\n", voice, value));
/* 0 - 127 */
cinfo->expression_vol = value;
awe_voice_change(voice, awe_set_voice_vol);
break;
case CTL_PAN: /* MIDI control #10 */
DEBUG(2,printk("AWE32: [pan(%d) %d]\n", voice, value));
/* (0-127) -> signed 8bit */
cinfo->panning = value * 2 - 128;
if (misc_modes[AWE_MD_REALTIME_PAN])
awe_voice_change(voice, awe_set_pan);
break;
case CTL_MAIN_VOLUME: /* MIDI control #7 */
if (SINGLE_LAYER_MODE())
value = (value * 100) / 16383;
case CTRL_MAIN_VOLUME: /* SEQ1 V2 control */
DEBUG(2,printk("AWE32: [mainvol(%d) %d]\n", voice, value));
/* 0 - 127 */
cinfo->main_vol = value;
awe_voice_change(voice, awe_set_voice_vol);
break;
case CTL_EXT_EFF_DEPTH: /* reverb effects: 0-127 */
DEBUG(2,printk("AWE32: [reverb(%d) %d]\n", voice, value));
FX_SET(&cinfo->fx, AWE_FX_REVERB, value * 2);
break;
case CTL_CHORUS_DEPTH: /* chorus effects: 0-127 */
DEBUG(2,printk("AWE32: [chorus(%d) %d]\n", voice, value));
FX_SET(&cinfo->fx, AWE_FX_CHORUS, value * 2);
break;
#ifdef AWE_ACCEPT_ALL_SOUNDS_CONTROLL
case 120: /* all sounds off */
awe_note_off_all(FALSE);
break;
case 123: /* all notes off */
awe_note_off_all(TRUE);
break;
#endif
case CTL_SUSTAIN: /* MIDI control #64 */
cinfo->sustained = value;
if (value != 127)
awe_voice_change(voice, awe_sustain_off);
break;
case CTL_SOSTENUTO: /* MIDI control #66 */
if (value == 127)
awe_voice_change(voice, awe_sostenuto_on);
else
awe_voice_change(voice, awe_sustain_off);
break;
default:
DEBUG(0,printk("AWE32: [control(%d) ctrl=%d val=%d]\n",
voice, ctrl_num, value));
break;
}
}
/* voice pan change (value = -128 - 127) */
static void
awe_panning(int dev, int voice, int value)
{
awe_chan_info *cinfo;
if (! voice_in_range(voice))
return;
if (playing_mode == AWE_PLAY_MULTI2) {
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return;
}
cinfo = &channels[voice];
cinfo->panning = value;
DEBUG(2,printk("AWE32: [pan(%d) %d]\n", voice, cinfo->panning));
if (misc_modes[AWE_MD_REALTIME_PAN])
awe_voice_change(voice, awe_set_pan);
}
/* volume mode change */
static void
awe_volume_method(int dev, int mode)
{
/* not impremented */
DEBUG(0,printk("AWE32: [volmethod mode=%d]\n", mode));
}
#ifndef AWE_NO_PATCHMGR
/* patch manager */
static int
awe_patchmgr(int dev, struct patmgr_info *rec)
{
printk("AWE32 Warning: patch manager control not supported\n");
return 0;
}
#endif
/* pitch wheel change: 0-16384 */
static void
awe_bender(int dev, int voice, int value)
{
awe_chan_info *cinfo;
if (! voice_in_range(voice))
return;
if (playing_mode == AWE_PLAY_MULTI2) {
voice = voice_alloc->map[voice] >> 8;
if (voice < 0 || voice >= AWE_MAX_CHANNELS)
return;
}
/* convert to zero centered value */
cinfo = &channels[voice];
cinfo->bender = value - 8192;
DEBUG(2,printk("AWE32: [bend(%d) %d]\n", voice, cinfo->bender));
awe_voice_change(voice, awe_set_voice_pitch);
}
/*----------------------------------------------------------------
* load a sound patch:
* three types of patches are accepted: AWE, GUS, and SYSEX.
*----------------------------------------------------------------*/
static int
awe_load_patch(int dev, int format, const char *addr,
int offs, int count, int pmgr_flag)
{
awe_patch_info patch;
int rc = 0;
#ifdef AWE_HAS_GUS_COMPATIBILITY
if (format == GUS_PATCH) {
return awe_load_guspatch(addr, offs, count, pmgr_flag);
} else
#endif
if (format == SYSEX_PATCH) {
/* no system exclusive message supported yet */
return 0;
} else if (format != AWE_PATCH) {
printk("AWE32 Error: Invalid patch format (key) 0x%x\n", format);
return RET_ERROR(EINVAL);
}
if (count < AWE_PATCH_INFO_SIZE) {
printk("AWE32 Error: Patch header too short\n");
return RET_ERROR(EINVAL);
}
COPY_FROM_USER(((char*)&patch) + offs, addr, offs,
AWE_PATCH_INFO_SIZE - offs);
count -= AWE_PATCH_INFO_SIZE;
if (count < patch.len) {
printk("AWE32: sample: Patch record too short (%d<%d)\n",
count, patch.len);
return RET_ERROR(EINVAL);
}
switch (patch.type) {
case AWE_LOAD_INFO:
rc = awe_load_info(&patch, addr, count);
break;
case AWE_LOAD_DATA:
rc = awe_load_data(&patch, addr, count);
break;
case AWE_OPEN_PATCH:
rc = awe_open_patch(&patch, addr, count);
break;
case AWE_CLOSE_PATCH:
rc = awe_close_patch(&patch, addr, count);
break;
case AWE_UNLOAD_PATCH:
rc = awe_unload_patch(&patch, addr, count);
break;
case AWE_REPLACE_DATA:
rc = awe_replace_data(&patch, addr, count);
break;
case AWE_MAP_PRESET:
rc = awe_load_map(&patch, addr, count);
break;
case AWE_LOAD_CHORUS_FX:
rc = awe_load_chorus_fx(&patch, addr, count);
break;
case AWE_LOAD_REVERB_FX:
rc = awe_load_reverb_fx(&patch, addr, count);
break;
default:
printk("AWE32 Error: unknown patch format type %d\n",
patch.type);
rc = RET_ERROR(EINVAL);
}
return rc;
}
/* create an sflist record */
static int
awe_create_sf(int type, char *name)
{
sf_list *rec;
/* terminate sounds */
awe_reset(0);
if (current_sf_id >= max_sfs) {
int newsize = max_sfs + AWE_MAX_SF_LISTS;
sf_list *newlist = my_realloc(sflists, sizeof(sf_list)*max_sfs,
sizeof(sf_list)*newsize);
if (newlist == NULL)
return 1;
sflists = newlist;
max_sfs = newsize;
}
rec = &sflists[current_sf_id];
rec->sf_id = current_sf_id + 1;
rec->type = type;
if (current_sf_id == 0 || (type & AWE_PAT_LOCKED) != 0)
locked_sf_id = current_sf_id + 1;
/*
if (name)
MEMCPY(rec->name, name, AWE_PATCH_NAME_LEN);
else
BZERO(rec->name, AWE_PATCH_NAME_LEN);
*/
rec->num_info = awe_free_info();
rec->num_sample = awe_free_sample();
rec->mem_ptr = awe_free_mem_ptr();
rec->infos = -1;
rec->samples = -1;
current_sf_id++;
return 0;
}
/* open patch; create sf list and set opened flag */
static int
awe_open_patch(awe_patch_info *patch, const char *addr, int count)
{
awe_open_parm parm;
COPY_FROM_USER(&parm, addr, AWE_PATCH_INFO_SIZE, sizeof(parm));
if (awe_create_sf(parm.type, parm.name)) {
printk("AWE32: can't open: failed to alloc new list\n");
return RET_ERROR(ENOSPC);
}
patch_opened = TRUE;
return current_sf_id;
}
/* check if the patch is already opened */
static int
check_patch_opened(int type, char *name)
{
if (! patch_opened) {
if (awe_create_sf(type, name)) {
printk("AWE32: failed to alloc new list\n");
return RET_ERROR(ENOSPC);
}
patch_opened = TRUE;
return current_sf_id;
}
return current_sf_id;
}
/* close the patch; if no voice is loaded, remove the patch */
static int
awe_close_patch(awe_patch_info *patch, const char *addr, int count)
{
if (patch_opened && current_sf_id > 0) {
/* if no voice is loaded, release the current patch */
if (sflists[current_sf_id-1].infos == -1)
awe_remove_samples(current_sf_id - 1);
}
patch_opened = 0;
return 0;
}
/* remove the latest patch */
static int
awe_unload_patch(awe_patch_info *patch, const char *addr, int count)
{
if (current_sf_id > 0)
awe_remove_samples(current_sf_id - 1);
return 0;
}
/* allocate voice info list records */
static int alloc_new_info(int nvoices)
{
int newsize, free_info;
awe_voice_list *newlist;
free_info = awe_free_info();
if (free_info + nvoices >= max_infos) {
do {
newsize = max_infos + AWE_MAX_INFOS;
} while (free_info + nvoices >= newsize);
newlist = my_realloc(infos, sizeof(awe_voice_list)*max_infos,
sizeof(awe_voice_list)*newsize);
if (newlist == NULL) {
printk("AWE32: can't alloc info table\n");
return RET_ERROR(ENOSPC);
}
infos = newlist;
max_infos = newsize;
}
return 0;
}
/* allocate sample info list records */
static int alloc_new_sample(void)
{
int newsize, free_sample;
awe_sample_list *newlist;
free_sample = awe_free_sample();
if (free_sample >= max_samples) {
newsize = max_samples + AWE_MAX_SAMPLES;
newlist = my_realloc(samples,
sizeof(awe_sample_list)*max_samples,
sizeof(awe_sample_list)*newsize);
if (newlist == NULL) {
printk("AWE32: can't alloc sample table\n");
return RET_ERROR(ENOSPC);
}
samples = newlist;
max_samples = newsize;
}
return 0;
}
/* load voice map */
static int
awe_load_map(awe_patch_info *patch, const char *addr, int count)
{
awe_voice_map map;
awe_voice_list *rec;
int free_info;
if (check_patch_opened(AWE_PAT_TYPE_MAP, NULL) < 0)
return RET_ERROR(ENOSPC);
if (alloc_new_info(1) < 0)
return RET_ERROR(ENOSPC);
COPY_FROM_USER(&map, addr, AWE_PATCH_INFO_SIZE, sizeof(map));
free_info = awe_free_info();
rec = &infos[free_info];
rec->bank = map.map_bank;
rec->instr = map.map_instr;
rec->type = V_ST_MAPPED;
rec->disabled = FALSE;
awe_init_voice_info(&rec->v);
if (map.map_key >= 0) {
rec->v.low = map.map_key;
rec->v.high = map.map_key;
}
rec->v.start = map.src_instr;
rec->v.end = map.src_bank;
rec->v.fixkey = map.src_key;
rec->v.sf_id = current_sf_id;
add_info_list(free_info);
add_sf_info(free_info);
return 0;
}
/* load voice information data */
static int
awe_load_info(awe_patch_info *patch, const char *addr, int count)
{
int offset;
awe_voice_rec_hdr hdr;
int i;
int total_size;
if (count < AWE_VOICE_REC_SIZE) {
printk("AWE32 Error: invalid patch info length\n");
return RET_ERROR(EINVAL);
}
offset = AWE_PATCH_INFO_SIZE;
COPY_FROM_USER((char*)&hdr, addr, offset, AWE_VOICE_REC_SIZE);
offset += AWE_VOICE_REC_SIZE;
if (hdr.nvoices <= 0 || hdr.nvoices >= 100) {
printk("AWE32 Error: Illegal voice number %d\n", hdr.nvoices);
return RET_ERROR(EINVAL);
}
total_size = AWE_VOICE_REC_SIZE + AWE_VOICE_INFO_SIZE * hdr.nvoices;
if (count < total_size) {
printk("AWE32 Error: patch length(%d) is smaller than nvoices(%d)\n",
count, hdr.nvoices);
return RET_ERROR(EINVAL);
}
if (check_patch_opened(AWE_PAT_TYPE_MISC, NULL) < 0)
return RET_ERROR(ENOSPC);
#if 0 /* it looks like not so useful.. */
/* check if the same preset already exists in the info list */
for (i = sflists[current_sf_id-1].infos; i >= 0; i = infos[i].next) {
if (infos[i].disabled) continue;
if (infos[i].bank == hdr.bank && infos[i].instr == hdr.instr) {
/* in exclusive mode, do skip loading this */
if (hdr.write_mode == AWE_WR_EXCLUSIVE)
return 0;
/* in replace mode, disable the old data */
else if (hdr.write_mode == AWE_WR_REPLACE)
infos[i].disabled = TRUE;
}
}
if (hdr.write_mode == AWE_WR_REPLACE)
rebuild_preset_list();
#endif
if (alloc_new_info(hdr.nvoices) < 0)
return RET_ERROR(ENOSPC);
for (i = 0; i < hdr.nvoices; i++) {
int rec = awe_free_info();
infos[rec].bank = hdr.bank;
infos[rec].instr = hdr.instr;
infos[rec].type = V_ST_NORMAL;
infos[rec].disabled = FALSE;
/* copy awe_voice_info parameters */
COPY_FROM_USER(&infos[rec].v, addr, offset, AWE_VOICE_INFO_SIZE);
offset += AWE_VOICE_INFO_SIZE;
infos[rec].v.sf_id = current_sf_id;
if (infos[rec].v.mode & AWE_MODE_INIT_PARM)
awe_init_voice_parm(&infos[rec].v.parm);
awe_set_sample(&infos[rec].v);
add_info_list(rec);
add_sf_info(rec);
}
return 0;
}
/* load wave sample data */
static int
awe_load_data(awe_patch_info *patch, const char *addr, int count)
{
int offset, size;
int rc, free_sample;
awe_sample_info *rec;
if (check_patch_opened(AWE_PAT_TYPE_MISC, NULL) < 0)
return RET_ERROR(ENOSPC);
if (alloc_new_sample() < 0)
return RET_ERROR(ENOSPC);
free_sample = awe_free_sample();
rec = &samples[free_sample].v;
size = (count - AWE_SAMPLE_INFO_SIZE) / 2;
offset = AWE_PATCH_INFO_SIZE;
COPY_FROM_USER(rec, addr, offset, AWE_SAMPLE_INFO_SIZE);
offset += AWE_SAMPLE_INFO_SIZE;
if (size != rec->size) {
printk("AWE32: load: sample size differed (%d != %d)\n",
rec->size, size);
return RET_ERROR(EINVAL);
}
if (rec->size > 0)
if ((rc = awe_write_wave_data(addr, offset, rec, -1)) != 0)
return rc;
rec->sf_id = current_sf_id;
add_sf_sample(free_sample);
return 0;
}
/* replace wave sample data */
static int
awe_replace_data(awe_patch_info *patch, const char *addr, int count)
{
int offset;
int size;
int rc, i;
int channels;
awe_sample_info cursmp;
int save_mem_ptr;
if (! patch_opened) {
printk("AWE32: replace: patch not opened\n");
return RET_ERROR(EINVAL);
}
size = (count - AWE_SAMPLE_INFO_SIZE) / 2;
offset = AWE_PATCH_INFO_SIZE;
COPY_FROM_USER(&cursmp, addr, offset, AWE_SAMPLE_INFO_SIZE);
offset += AWE_SAMPLE_INFO_SIZE;
if (cursmp.size == 0 || size != cursmp.size) {
printk("AWE32: replace: illegal sample size (%d!=%d)\n",
cursmp.size, size);
return RET_ERROR(EINVAL);
}
channels = patch->optarg;
if (channels <= 0 || channels > AWE_NORMAL_VOICES) {
printk("AWE32: replace: illegal channels %d\n", channels);
return RET_ERROR(EINVAL);
}
for (i = sflists[current_sf_id-1].samples;
i >= 0; i = samples[i].next) {
if (samples[i].v.sample == cursmp.sample)
break;
}
if (i < 0) {
printk("AWE32: replace: cannot find existing sample data %d\n",
cursmp.sample);
return RET_ERROR(EINVAL);
}
if (samples[i].v.size != cursmp.size) {
printk("AWE32: replace: exiting size differed (%d!=%d)\n",
samples[i].v.size, cursmp.size);
return RET_ERROR(EINVAL);
}
save_mem_ptr = awe_free_mem_ptr();
sflists[current_sf_id-1].mem_ptr = samples[i].v.start - awe_mem_start;
MEMCPY(&samples[i].v, &cursmp, sizeof(cursmp));
if ((rc = awe_write_wave_data(addr, offset, &samples[i].v, channels)) != 0)
return rc;
sflists[current_sf_id-1].mem_ptr = save_mem_ptr;
samples[i].v.sf_id = current_sf_id;
return 0;
}
/*----------------------------------------------------------------*/
static const char *readbuf_addr;
static int readbuf_offs;
static int readbuf_flags;
#ifdef __FreeBSD__
static unsigned short *readbuf_loop;
static int readbuf_loopstart, readbuf_loopend;
#endif
/* initialize read buffer */
static int
readbuf_init(const char *addr, int offset, awe_sample_info *sp)
{
#ifdef __FreeBSD__
readbuf_loop = NULL;
readbuf_loopstart = sp->loopstart;
readbuf_loopend = sp->loopend;
if (sp->mode_flags & (AWE_SAMPLE_BIDIR_LOOP|AWE_SAMPLE_REVERSE_LOOP)) {
int looplen = sp->loopend - sp->loopstart;
readbuf_loop = my_malloc(looplen * 2);
if (readbuf_loop == NULL) {
printk("AWE32: can't malloc temp buffer\n");
return RET_ERROR(ENOSPC);
}
}
#endif
readbuf_addr = addr;
readbuf_offs = offset;
readbuf_flags = sp->mode_flags;
return 0;
}
/* read directly from user buffer */
static unsigned short
readbuf_word(int pos)
{
unsigned short c;
/* read from user buffer */
if (readbuf_flags & AWE_SAMPLE_8BITS) {
unsigned char cc;
GET_BYTE_FROM_USER(cc, readbuf_addr, readbuf_offs + pos);
c = cc << 8; /* convert 8bit -> 16bit */
} else {
GET_SHORT_FROM_USER(c, readbuf_addr, readbuf_offs + pos * 2);
}
if (readbuf_flags & AWE_SAMPLE_UNSIGNED)
c ^= 0x8000; /* unsigned -> signed */
#ifdef __FreeBSD__
/* write on cache for reverse loop */
if (readbuf_flags & (AWE_SAMPLE_BIDIR_LOOP|AWE_SAMPLE_REVERSE_LOOP)) {
if (pos >= readbuf_loopstart && pos < readbuf_loopend)
readbuf_loop[pos - readbuf_loopstart] = c;
}
#endif
return c;
}
#ifdef __FreeBSD__
/* read from cache */
static unsigned short
readbuf_word_cache(int pos)
{
if (pos >= readbuf_loopstart && pos < readbuf_loopend)
return readbuf_loop[pos - readbuf_loopstart];
return 0;
}
static void
readbuf_end(void)
{
if (readbuf_loop) {
my_free(readbuf_loop);
}
readbuf_loop = NULL;
}
#else
#define readbuf_word_cache readbuf_word
#define readbuf_end() /**/
#endif
/*----------------------------------------------------------------*/
#define BLANK_LOOP_START 8
#define BLANK_LOOP_END 40
#define BLANK_LOOP_SIZE 48
/* loading onto memory */
static int
awe_write_wave_data(const char *addr, int offset, awe_sample_info *sp, int channels)
{
int i, truesize, dram_offset;
int rc;
/* be sure loop points start < end */
if (sp->loopstart > sp->loopend) {
int tmp = sp->loopstart;
sp->loopstart = sp->loopend;
sp->loopend = tmp;
}
/* compute true data size to be loaded */
truesize = sp->size;
if (sp->mode_flags & AWE_SAMPLE_BIDIR_LOOP)
truesize += sp->loopend - sp->loopstart;
if (sp->mode_flags & AWE_SAMPLE_NO_BLANK)
truesize += BLANK_LOOP_SIZE;
if (awe_free_mem_ptr() + truesize >= awe_mem_size/2) {
printk("AWE32 Error: Sample memory full\n");
return RET_ERROR(ENOSPC);
}
/* recalculate address offset */
sp->end -= sp->start;
sp->loopstart -= sp->start;
sp->loopend -= sp->start;
dram_offset = awe_free_mem_ptr() + awe_mem_start;
sp->start = dram_offset;
sp->end += dram_offset;
sp->loopstart += dram_offset;
sp->loopend += dram_offset;
/* set the total size (store onto obsolete checksum value) */
if (sp->size == 0)
sp->checksum = 0;
else
sp->checksum = truesize;
if ((rc = awe_open_dram_for_write(dram_offset, channels)) != 0)
return rc;
if (readbuf_init(addr, offset, sp) < 0)
return RET_ERROR(ENOSPC);
for (i = 0; i < sp->size; i++) {
unsigned short c;
c = readbuf_word(i);
awe_write_dram(c);
if (i == sp->loopend &&
(sp->mode_flags & (AWE_SAMPLE_BIDIR_LOOP|AWE_SAMPLE_REVERSE_LOOP))) {
int looplen = sp->loopend - sp->loopstart;
/* copy reverse loop */
int k;
for (k = 1; k <= looplen; k++) {
c = readbuf_word_cache(i - k);
awe_write_dram(c);
}
if (sp->mode_flags & AWE_SAMPLE_BIDIR_LOOP) {
sp->end += looplen;
} else {
sp->start += looplen;
sp->end += looplen;
}
}
}
readbuf_end();
/* if no blank loop is attached in the sample, add it */
if (sp->mode_flags & AWE_SAMPLE_NO_BLANK) {
for (i = 0; i < BLANK_LOOP_SIZE; i++)
awe_write_dram(0);
if (sp->mode_flags & AWE_SAMPLE_SINGLESHOT) {
sp->loopstart = sp->end + BLANK_LOOP_START;
sp->loopend = sp->end + BLANK_LOOP_END;
}
}
sflists[current_sf_id-1].mem_ptr += truesize;
awe_close_dram();
/* initialize FM */
awe_init_fm();
return 0;
}
/*----------------------------------------------------------------*/
#ifdef AWE_HAS_GUS_COMPATIBILITY
/* calculate GUS envelope time:
* is this correct? i have no idea..
*/
static int
calc_gus_envelope_time(int rate, int start, int end)
{
int r, p, t;
r = (3 - ((rate >> 6) & 3)) * 3;
p = rate & 0x3f;
t = end - start;
if (t < 0) t = -t;
if (13 > r)
t = t << (13 - r);
else
t = t >> (r - 13);
return (t * 10) / (p * 441);
}
#define calc_gus_sustain(val) (0x7f - vol_table[(val)/2])
#define calc_gus_attenuation(val) vol_table[(val)/2]
/* load GUS patch */
static int
awe_load_guspatch(const char *addr, int offs, int size, int pmgr_flag)
{
struct patch_info patch;
awe_voice_info *rec;
awe_sample_info *smp;
int sizeof_patch;
int note, free_sample, free_info;
int rc;
sizeof_patch = offsetof(struct patch_info, data); /* header size */
if (size < sizeof_patch) {
printk("AWE32 Error: Patch header too short\n");
return RET_ERROR(EINVAL);
}
COPY_FROM_USER(((char*)&patch) + offs, addr, offs, sizeof_patch - offs);
size -= sizeof_patch;
if (size < patch.len) {
printk("AWE32 Warning: Patch record too short (%d<%ld)\n",
size, patch.len);
return RET_ERROR(EINVAL);
}
if (check_patch_opened(AWE_PAT_TYPE_GUS, NULL) < 0)
return RET_ERROR(ENOSPC);
if (alloc_new_sample() < 0)
return RET_ERROR(ENOSPC);
if (alloc_new_info(1))
return RET_ERROR(ENOSPC);
free_sample = awe_free_sample();
smp = &samples[free_sample].v;
smp->sample = free_sample;
smp->start = 0;
smp->end = patch.len;
smp->loopstart = patch.loop_start;
smp->loopend = patch.loop_end;
smp->size = patch.len;
/* set up mode flags */
smp->mode_flags = 0;
if (!(patch.mode & WAVE_16_BITS))
smp->mode_flags |= AWE_SAMPLE_8BITS;
if (patch.mode & WAVE_UNSIGNED)
smp->mode_flags |= AWE_SAMPLE_UNSIGNED;
smp->mode_flags |= AWE_SAMPLE_NO_BLANK;
if (!(patch.mode & (WAVE_LOOPING|WAVE_BIDIR_LOOP|WAVE_LOOP_BACK)))
smp->mode_flags |= AWE_SAMPLE_SINGLESHOT;
if (patch.mode & WAVE_BIDIR_LOOP)
smp->mode_flags |= AWE_SAMPLE_BIDIR_LOOP;
if (patch.mode & WAVE_LOOP_BACK)
smp->mode_flags |= AWE_SAMPLE_REVERSE_LOOP;
DEBUG(0,printk("AWE32: [sample %d mode %x]\n", patch.instr_no, smp->mode_flags));
if (patch.mode & WAVE_16_BITS) {
/* convert to word offsets */
smp->size /= 2;
smp->end /= 2;
smp->loopstart /= 2;
smp->loopend /= 2;
}
smp->checksum_flag = 0;
smp->checksum = 0;
if ((rc = awe_write_wave_data(addr, sizeof_patch, smp, -1)) != 0)
return rc;
smp->sf_id = current_sf_id;
add_sf_sample(free_sample);
/* set up voice info */
free_info = awe_free_info();
rec = &infos[free_info].v;
awe_init_voice_info(rec);
rec->sample = free_sample; /* the last sample */
rec->rate_offset = calc_rate_offset(patch.base_freq);
note = freq_to_note(patch.base_note);
rec->root = note / 100;
rec->tune = -(note % 100);
rec->low = freq_to_note(patch.low_note) / 100;
rec->high = freq_to_note(patch.high_note) / 100;
DEBUG(1,printk("AWE32: [gus base offset=%d, note=%d, range=%d-%d(%lu-%lu)]\n",
rec->rate_offset, note,
rec->low, rec->high,
patch.low_note, patch.high_note));
/* panning position; -128 - 127 => 0-127 */
rec->pan = (patch.panning + 128) / 2;
/* detuning is ignored */
/* 6points volume envelope */
if (patch.mode & WAVE_ENVELOPES) {
int attack, hold, decay, release;
attack = calc_gus_envelope_time
(patch.env_rate[0], 0, patch.env_offset[0]);
hold = calc_gus_envelope_time
(patch.env_rate[1], patch.env_offset[0],
patch.env_offset[1]);
decay = calc_gus_envelope_time
(patch.env_rate[2], patch.env_offset[1],
patch.env_offset[2]);
release = calc_gus_envelope_time
(patch.env_rate[3], patch.env_offset[1],
patch.env_offset[4]);
release += calc_gus_envelope_time
(patch.env_rate[4], patch.env_offset[3],
patch.env_offset[4]);
release += calc_gus_envelope_time
(patch.env_rate[5], patch.env_offset[4],
patch.env_offset[5]);
rec->parm.volatkhld = (calc_parm_attack(attack) << 8) |
calc_parm_hold(hold);
rec->parm.voldcysus = (calc_gus_sustain(patch.env_offset[2]) << 8) |
calc_parm_decay(decay);
rec->parm.volrelease = 0x8000 | calc_parm_decay(release);
DEBUG(2,printk("AWE32: [gusenv atk=%d, hld=%d, dcy=%d, rel=%d]\n", attack, hold, decay, release));
rec->attenuation = calc_gus_attenuation(patch.env_offset[0]);
}
/* tremolo effect */
if (patch.mode & WAVE_TREMOLO) {
int rate = (patch.tremolo_rate * 1000 / 38) / 42;
rec->parm.tremfrq = ((patch.tremolo_depth / 2) << 8) | rate;
DEBUG(2,printk("AWE32: [gusenv tremolo rate=%d, dep=%d, tremfrq=%x]\n",
patch.tremolo_rate, patch.tremolo_depth,
rec->parm.tremfrq));
}
/* vibrato effect */
if (patch.mode & WAVE_VIBRATO) {
int rate = (patch.vibrato_rate * 1000 / 38) / 42;
rec->parm.fm2frq2 = ((patch.vibrato_depth / 6) << 8) | rate;
DEBUG(2,printk("AWE32: [gusenv vibrato rate=%d, dep=%d, tremfrq=%x]\n",
patch.tremolo_rate, patch.tremolo_depth,
rec->parm.tremfrq));
}
/* scale_freq, scale_factor, volume, and fractions not implemented */
/* append to the tail of the list */
infos[free_info].bank = misc_modes[AWE_MD_GUS_BANK];
infos[free_info].instr = patch.instr_no;
infos[free_info].disabled = FALSE;
infos[free_info].type = V_ST_NORMAL;
infos[free_info].v.sf_id = current_sf_id;
add_info_list(free_info);
add_sf_info(free_info);
/* set the voice index */
awe_set_sample(rec);
return 0;
}
#endif /* AWE_HAS_GUS_COMPATIBILITY */
/*----------------------------------------------------------------
* sample and voice list handlers
*----------------------------------------------------------------*/
/* append this to the sf list */
static void add_sf_info(int rec)
{
int sf_id = infos[rec].v.sf_id;
if (sf_id == 0) return;
sf_id--;
if (sflists[sf_id].infos < 0)
sflists[sf_id].infos = rec;
else {
int i, prev;
prev = sflists[sf_id].infos;
while ((i = infos[prev].next) >= 0)
prev = i;
infos[prev].next = rec;
}
infos[rec].next = -1;
sflists[sf_id].num_info++;
}
/* prepend this sample to sf list */
static void add_sf_sample(int rec)
{
int sf_id = samples[rec].v.sf_id;
if (sf_id == 0) return;
sf_id--;
samples[rec].next = sflists[sf_id].samples;
sflists[sf_id].samples = rec;
sflists[sf_id].num_sample++;
}
/* purge the old records which don't belong with the same file id */
static void purge_old_list(int rec, int next)
{
infos[rec].next_instr = next;
if (infos[rec].bank == AWE_DRUM_BANK) {
/* remove samples with the same note range */
int cur, *prevp = &infos[rec].next_instr;
int low = infos[rec].v.low;
int high = infos[rec].v.high;
for (cur = next; cur >= 0; cur = infos[cur].next_instr) {
if (infos[cur].v.low == low &&
infos[cur].v.high == high &&
infos[cur].v.sf_id != infos[rec].v.sf_id)
*prevp = infos[cur].next_instr;
prevp = &infos[cur].next_instr;
}
} else {
if (infos[next].v.sf_id != infos[rec].v.sf_id)
infos[rec].next_instr = -1;
}
}
/* prepend to top of the preset table */
static void add_info_list(int rec)
{
int *prevp, cur;
int instr = infos[rec].instr;
int bank = infos[rec].bank;
if (infos[rec].disabled)
return;
prevp = &preset_table[instr];
cur = *prevp;
while (cur >= 0) {
/* search the first record with the same bank number */
if (infos[cur].bank == bank) {
/* replace the list with the new record */
infos[rec].next_bank = infos[cur].next_bank;
*prevp = rec;
purge_old_list(rec, cur);
return;
}
prevp = &infos[cur].next_bank;
cur = infos[cur].next_bank;
}
/* this is the first bank record.. just add this */
infos[rec].next_instr = -1;
infos[rec].next_bank = preset_table[instr];
preset_table[instr] = rec;
}
/* remove samples later than the specified sf_id */
static void
awe_remove_samples(int sf_id)
{
if (sf_id <= 0) {
awe_reset_samples();
return;
}
/* already removed? */
if (current_sf_id <= sf_id)
return;
current_sf_id = sf_id;
if (locked_sf_id > sf_id)
locked_sf_id = sf_id;
rebuild_preset_list();
}
/* rebuild preset search list */
static void rebuild_preset_list(void)
{
int i, j;
for (i = 0; i < AWE_MAX_PRESETS; i++)
preset_table[i] = -1;
for (i = 0; i < current_sf_id; i++) {
for (j = sflists[i].infos; j >= 0; j = infos[j].next)
add_info_list(j);
}
}
/* search the specified sample */
static short
awe_set_sample(awe_voice_info *vp)
{
int i;
vp->index = -1;
for (i = sflists[vp->sf_id-1].samples; i >= 0; i = samples[i].next) {
if (samples[i].v.sample == vp->sample) {
/* set the actual sample offsets */
vp->start += samples[i].v.start;
vp->end += samples[i].v.end;
vp->loopstart += samples[i].v.loopstart;
vp->loopend += samples[i].v.loopend;
/* copy mode flags */
vp->mode = samples[i].v.mode_flags;
/* set index */
vp->index = i;
return i;
}
}
return -1;
}
/*----------------------------------------------------------------
* voice allocation
*----------------------------------------------------------------*/
/* look for all voices associated with the specified note & velocity */
static int
awe_search_multi_voices(int rec, int note, int velocity, awe_voice_info **vlist)
{
int nvoices;
nvoices = 0;
for (; rec >= 0; rec = infos[rec].next_instr) {
if (note >= infos[rec].v.low &&
note <= infos[rec].v.high &&
velocity >= infos[rec].v.vellow &&
velocity <= infos[rec].v.velhigh) {
vlist[nvoices] = &infos[rec].v;
if (infos[rec].type == V_ST_MAPPED) /* mapper */
return -1;
nvoices++;
if (nvoices >= AWE_MAX_VOICES)
break;
}
}
return nvoices;
}
/* store the voice list from the specified note and velocity.
if the preset is mapped, seek for the destination preset, and rewrite
the note number if necessary.
*/
static int
really_alloc_voices(int vrec, int def_vrec, int *note, int velocity, awe_voice_info **vlist, int level)
{
int nvoices;
nvoices = awe_search_multi_voices(vrec, *note, velocity, vlist);
if (nvoices == 0)
nvoices = awe_search_multi_voices(def_vrec, *note, velocity, vlist);
if (nvoices < 0) { /* mapping */
int preset = vlist[0]->start;
int bank = vlist[0]->end;
int key = vlist[0]->fixkey;
if (level > 5) {
printk("AWE32: too deep mapping level\n");
return 0;
}
vrec = awe_search_instr(bank, preset);
if (bank == AWE_DRUM_BANK)
def_vrec = awe_search_instr(bank, 0);
else
def_vrec = awe_search_instr(0, preset);
if (key >= 0)
*note = key;
return really_alloc_voices(vrec, def_vrec, note, velocity, vlist, level+1);
}
return nvoices;
}
/* allocate voices corresponding note and velocity; supports multiple insts. */
static void
awe_alloc_multi_voices(int ch, int note, int velocity, int key)
{
int i, v, nvoices;
awe_voice_info *vlist[AWE_MAX_VOICES];
if (channels[ch].vrec < 0 && channels[ch].def_vrec < 0)
awe_set_instr(0, ch, channels[ch].instr);
/* check the possible voices; note may be changeable if mapped */
nvoices = really_alloc_voices(channels[ch].vrec, channels[ch].def_vrec,
&note, velocity, vlist, 0);
/* set the voices */
current_alloc_time++;
for (i = 0; i < nvoices; i++) {
v = awe_clear_voice();
voices[v].key = key;
voices[v].ch = ch;
voices[v].note = note;
voices[v].velocity = velocity;
voices[v].time = current_alloc_time;
voices[v].cinfo = &channels[ch];
voices[v].sample = vlist[i];
voices[v].state = AWE_ST_MARK;
voices[v].layer = nvoices - i - 1; /* in reverse order */
}
/* clear the mark in allocated voices */
for (i = 0; i < awe_max_voices; i++) {
if (voices[i].state == AWE_ST_MARK)
voices[i].state = AWE_ST_OFF;
}
}
/* search the best voice from the specified status condition */
static int
search_best_voice(int condition)
{
int i, time, best;
best = -1;
time = current_alloc_time + 1;
for (i = 0; i < awe_max_voices; i++) {
if ((voices[i].state & condition) &&
(best < 0 || voices[i].time < time)) {
best = i;
time = voices[i].time;
}
}
/* clear voice */
if (best >= 0) {
if (voices[best].state != AWE_ST_OFF)
awe_terminate(best);
awe_voice_init(best, TRUE);
}
return best;
}
/* search an empty voice.
if no empty voice is found, at least terminate a voice
*/
static int
awe_clear_voice(void)
{
int best;
/* looking for the oldest empty voice */
if ((best = search_best_voice(AWE_ST_OFF)) >= 0)
return best;
if ((best = search_best_voice(AWE_ST_RELEASED)) >= 0)
return best;
/* looking for the oldest sustained voice */
if ((best = search_best_voice(AWE_ST_SUSTAINED)) >= 0)
return best;
#ifdef AWE_LOOKUP_MIDI_PRIORITY
if (MULTI_LAYER_MODE() && misc_modes[AWE_MD_CHN_PRIOR]) {
int ch = -1;
int time = current_alloc_time + 1;
int i;
/* looking for the voices from high channel (except drum ch) */
for (i = 0; i < awe_max_voices; i++) {
if (IS_DRUM_CHANNEL(voices[i].ch)) continue;
if (voices[i].ch < ch) continue;
if (voices[i].state != AWE_ST_MARK &&
(voices[i].ch > ch || voices[i].time < time)) {
best = i;
time = voices[i].time;
ch = voices[i].ch;
}
}
}
#endif
if (best < 0)
best = search_best_voice(~AWE_ST_MARK);
if (best >= 0)
return best;
return 0;
}
/* search sample for the specified note & velocity and set it on the voice;
* note that voice is the voice index (not channel index)
*/
static void
awe_alloc_one_voice(int voice, int note, int velocity)
{
int ch, nvoices;
awe_voice_info *vlist[AWE_MAX_VOICES];
ch = voices[voice].ch;
if (channels[ch].vrec < 0 && channels[ch].def_vrec < 0)
awe_set_instr(0, ch, channels[ch].instr);
nvoices = really_alloc_voices(voices[voice].cinfo->vrec,
voices[voice].cinfo->def_vrec,
&note, velocity, vlist, 0);
if (nvoices > 0) {
voices[voice].time = ++current_alloc_time;
voices[voice].sample = vlist[0]; /* use the first one */
voices[voice].layer = 0;
voices[voice].note = note;
voices[voice].velocity = velocity;
}
}
/*----------------------------------------------------------------
* sequencer2 functions
*----------------------------------------------------------------*/
/* search an empty voice; used by sequencer2 */
static int
awe_alloc(int dev, int chn, int note, struct voice_alloc_info *alloc)
{
playing_mode = AWE_PLAY_MULTI2;
awe_info.nr_voices = AWE_MAX_CHANNELS;
return awe_clear_voice();
}
/* set up voice; used by sequencer2 */
static void
awe_setup_voice(int dev, int voice, int chn)
{
struct channel_info *info;
if (synth_devs[dev] == NULL ||
(info = &synth_devs[dev]->chn_info[chn]) == NULL)
return;
if (voice < 0 || voice >= awe_max_voices)
return;
DEBUG(2,printk("AWE32: [setup(%d) ch=%d]\n", voice, chn));
channels[chn].expression_vol = info->controllers[CTL_EXPRESSION];
channels[chn].main_vol = info->controllers[CTL_MAIN_VOLUME];
channels[chn].panning =
info->controllers[CTL_PAN] * 2 - 128; /* signed 8bit */
channels[chn].bender = info->bender_value; /* zero center */
channels[chn].bank = info->controllers[CTL_BANK_SELECT];
channels[chn].sustained = info->controllers[CTL_SUSTAIN];
if (info->controllers[CTL_EXT_EFF_DEPTH]) {
FX_SET(&channels[chn].fx, AWE_FX_REVERB,
info->controllers[CTL_EXT_EFF_DEPTH] * 2);
}
if (info->controllers[CTL_CHORUS_DEPTH]) {
FX_SET(&channels[chn].fx, AWE_FX_CHORUS,
info->controllers[CTL_CHORUS_DEPTH] * 2);
}
awe_set_instr(dev, chn, info->pgm_num);
}
#ifdef CONFIG_AWE32_MIXER
/*================================================================
* AWE32 mixer device control
*================================================================*/
static int
awe_mixer_ioctl(int dev, unsigned int cmd, caddr_t arg)
{
int i, level;
if (((cmd >> 8) & 0xff) != 'M')
return RET_ERROR(EINVAL);
level = (int)IOCTL_IN(arg);
level = ((level & 0xff) + (level >> 8)) / 2;
DEBUG(0,printk("AWEMix: cmd=%x val=%d\n", cmd & 0xff, level));
if (IO_WRITE_CHECK(cmd)) {
switch (cmd & 0xff) {
case SOUND_MIXER_BASS:
awe_bass_level = level * 12 / 100;
if (awe_bass_level >= 12)
awe_bass_level = 11;
awe_equalizer(awe_bass_level, awe_treble_level);
break;
case SOUND_MIXER_TREBLE:
awe_treble_level = level * 12 / 100;
if (awe_treble_level >= 12)
awe_treble_level = 11;
awe_equalizer(awe_bass_level, awe_treble_level);
break;
case SOUND_MIXER_VOLUME:
level = level * 127 / 100;
if (level >= 128) level = 127;
init_atten = vol_table[level];
for (i = 0; i < awe_max_voices; i++)
awe_set_voice_vol(i, TRUE);
break;
}
}
switch (cmd & 0xff) {
case SOUND_MIXER_BASS:
level = awe_bass_level * 100 / 24;
level = (level << 8) | level;
break;
case SOUND_MIXER_TREBLE:
level = awe_treble_level * 100 / 24;
level = (level << 8) | level;
break;
case SOUND_MIXER_VOLUME:
for (i = 127; i > 0; i--) {
if (init_atten <= vol_table[i])
break;
}
level = i * 100 / 127;
level = (level << 8) | level;
break;
case SOUND_MIXER_DEVMASK:
level = SOUND_MASK_BASS|SOUND_MASK_TREBLE|SOUND_MASK_VOLUME;
break;
default:
level = 0;
break;
}
return IOCTL_OUT(arg, level);
}
#endif /* CONFIG_AWE32_MIXER */
/*================================================================
* initialization of AWE32
*================================================================*/
/* intiailize audio channels */
static void
awe_init_audio(void)
{
int ch;
/* turn off envelope engines */
for (ch = 0; ch < AWE_MAX_VOICES; ch++) {
awe_poke(AWE_DCYSUSV(ch), 0x80);
}
/* reset all other parameters to zero */
for (ch = 0; ch < AWE_MAX_VOICES; ch++) {
awe_poke(AWE_ENVVOL(ch), 0);
awe_poke(AWE_ENVVAL(ch), 0);
awe_poke(AWE_DCYSUS(ch), 0);
awe_poke(AWE_ATKHLDV(ch), 0);
awe_poke(AWE_LFO1VAL(ch), 0);
awe_poke(AWE_ATKHLD(ch), 0);
awe_poke(AWE_LFO2VAL(ch), 0);
awe_poke(AWE_IP(ch), 0);
awe_poke(AWE_IFATN(ch), 0);
awe_poke(AWE_PEFE(ch), 0);
awe_poke(AWE_FMMOD(ch), 0);
awe_poke(AWE_TREMFRQ(ch), 0);
awe_poke(AWE_FM2FRQ2(ch), 0);
awe_poke_dw(AWE_PTRX(ch), 0);
awe_poke_dw(AWE_VTFT(ch), 0);
awe_poke_dw(AWE_PSST(ch), 0);
awe_poke_dw(AWE_CSL(ch), 0);
awe_poke_dw(AWE_CCCA(ch), 0);
}
for (ch = 0; ch < AWE_MAX_VOICES; ch++) {
awe_poke_dw(AWE_CPF(ch), 0);
awe_poke_dw(AWE_CVCF(ch), 0);
}
}
/* initialize DMA address */
static void
awe_init_dma(void)
{
awe_poke_dw(AWE_SMALR, 0);
awe_poke_dw(AWE_SMARR, 0);
awe_poke_dw(AWE_SMALW, 0);
awe_poke_dw(AWE_SMARW, 0);
}
/* initialization arrays; from ADIP */
static unsigned short init1[128] = {
0x03ff, 0x0030, 0x07ff, 0x0130, 0x0bff, 0x0230, 0x0fff, 0x0330,
0x13ff, 0x0430, 0x17ff, 0x0530, 0x1bff, 0x0630, 0x1fff, 0x0730,
0x23ff, 0x0830, 0x27ff, 0x0930, 0x2bff, 0x0a30, 0x2fff, 0x0b30,
0x33ff, 0x0c30, 0x37ff, 0x0d30, 0x3bff, 0x0e30, 0x3fff, 0x0f30,
0x43ff, 0x0030, 0x47ff, 0x0130, 0x4bff, 0x0230, 0x4fff, 0x0330,
0x53ff, 0x0430, 0x57ff, 0x0530, 0x5bff, 0x0630, 0x5fff, 0x0730,
0x63ff, 0x0830, 0x67ff, 0x0930, 0x6bff, 0x0a30, 0x6fff, 0x0b30,
0x73ff, 0x0c30, 0x77ff, 0x0d30, 0x7bff, 0x0e30, 0x7fff, 0x0f30,
0x83ff, 0x0030, 0x87ff, 0x0130, 0x8bff, 0x0230, 0x8fff, 0x0330,
0x93ff, 0x0430, 0x97ff, 0x0530, 0x9bff, 0x0630, 0x9fff, 0x0730,
0xa3ff, 0x0830, 0xa7ff, 0x0930, 0xabff, 0x0a30, 0xafff, 0x0b30,
0xb3ff, 0x0c30, 0xb7ff, 0x0d30, 0xbbff, 0x0e30, 0xbfff, 0x0f30,
0xc3ff, 0x0030, 0xc7ff, 0x0130, 0xcbff, 0x0230, 0xcfff, 0x0330,
0xd3ff, 0x0430, 0xd7ff, 0x0530, 0xdbff, 0x0630, 0xdfff, 0x0730,
0xe3ff, 0x0830, 0xe7ff, 0x0930, 0xebff, 0x0a30, 0xefff, 0x0b30,
0xf3ff, 0x0c30, 0xf7ff, 0x0d30, 0xfbff, 0x0e30, 0xffff, 0x0f30,
};
static unsigned short init2[128] = {
0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,
0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,
0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,
0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
};
static unsigned short init3[128] = {
0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,
0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,
0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,
0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
};
static unsigned short init4[128] = {
0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,
0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,
0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,
0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
};
/* send initialization arrays to start up */
static void
awe_init_array(void)
{
awe_send_array(init1);
awe_wait(1024);
awe_send_array(init2);
awe_send_array(init3);
awe_poke_dw(AWE_HWCF4, 0);
awe_poke_dw(AWE_HWCF5, 0x83);
awe_poke_dw(AWE_HWCF6, 0x8000);
awe_send_array(init4);
}
/* send an initialization array */
static void
awe_send_array(unsigned short *data)
{
int i;
unsigned short *p;
p = data;
for (i = 0; i < AWE_MAX_VOICES; i++, p++)
awe_poke(AWE_INIT1(i), *p);
for (i = 0; i < AWE_MAX_VOICES; i++, p++)
awe_poke(AWE_INIT2(i), *p);
for (i = 0; i < AWE_MAX_VOICES; i++, p++)
awe_poke(AWE_INIT3(i), *p);
for (i = 0; i < AWE_MAX_VOICES; i++, p++)
awe_poke(AWE_INIT4(i), *p);
}
/*
* set up awe32 channels to some known state.
*/
/* set the envelope & LFO parameters to the default values; see ADIP */
static void
awe_tweak_voice(int i)
{
/* set all mod/vol envelope shape to minimum */
awe_poke(AWE_ENVVOL(i), 0x8000);
awe_poke(AWE_ENVVAL(i), 0x8000);
awe_poke(AWE_DCYSUS(i), 0x7F7F);
awe_poke(AWE_ATKHLDV(i), 0x7F7F);
awe_poke(AWE_ATKHLD(i), 0x7F7F);
awe_poke(AWE_PEFE(i), 0); /* mod envelope height to zero */
awe_poke(AWE_LFO1VAL(i), 0x8000); /* no delay for LFO1 */
awe_poke(AWE_LFO2VAL(i), 0x8000);
awe_poke(AWE_IP(i), 0xE000); /* no pitch shift */
awe_poke(AWE_IFATN(i), 0xFF00); /* volume to minimum */
awe_poke(AWE_FMMOD(i), 0);
awe_poke(AWE_TREMFRQ(i), 0);
awe_poke(AWE_FM2FRQ2(i), 0);
}
static void
awe_tweak(void)
{
int i;
/* reset all channels */
for (i = 0; i < awe_max_voices; i++)
awe_tweak_voice(i);
}
/*
* initializes the FM section of AWE32;
* see Vince Vu's unofficial AWE32 programming guide
*/
static void
awe_init_fm(void)
{
#ifndef AWE_ALWAYS_INIT_FM
/* if no extended memory is on board.. */
if (awe_mem_size <= 0)
return;
#endif
DEBUG(3,printk("AWE32: initializing FM\n"));
/* Initialize the last two channels for DRAM refresh and producing
the reverb and chorus effects for Yamaha OPL-3 synthesizer */
/* 31: FM left channel, 0xffffe0-0xffffe8 */
awe_poke(AWE_DCYSUSV(30), 0x80);
awe_poke_dw(AWE_PSST(30), 0xFFFFFFE0); /* full left */
awe_poke_dw(AWE_CSL(30), 0x00FFFFE8 |
(DEF_FM_CHORUS_DEPTH << 24));
awe_poke_dw(AWE_PTRX(30), (DEF_FM_REVERB_DEPTH << 8));
awe_poke_dw(AWE_CPF(30), 0);
awe_poke_dw(AWE_CCCA(30), 0x00FFFFE3);
/* 32: FM right channel, 0xfffff0-0xfffff8 */
awe_poke(AWE_DCYSUSV(31), 0x80);
awe_poke_dw(AWE_PSST(31), 0x00FFFFF0); /* full right */
awe_poke_dw(AWE_CSL(31), 0x00FFFFF8 |
(DEF_FM_CHORUS_DEPTH << 24));
awe_poke_dw(AWE_PTRX(31), (DEF_FM_REVERB_DEPTH << 8));
awe_poke_dw(AWE_CPF(31), 0x8000);
awe_poke_dw(AWE_CCCA(31), 0x00FFFFF3);
/* skew volume & cutoff */
awe_poke_dw(AWE_VTFT(30), 0x8000FFFF);
awe_poke_dw(AWE_VTFT(31), 0x8000FFFF);
voices[30].state = AWE_ST_FM;
voices[31].state = AWE_ST_FM;
/* change maximum channels to 30 */
awe_max_voices = AWE_NORMAL_VOICES;
if (playing_mode == AWE_PLAY_DIRECT)
awe_info.nr_voices = awe_max_voices;
else
awe_info.nr_voices = AWE_MAX_CHANNELS;
voice_alloc->max_voice = awe_max_voices;
}
/*
* AWE32 DRAM access routines
*/
/* open DRAM write accessing mode */
static int
awe_open_dram_for_write(int offset, int channels)
{
int vidx[AWE_NORMAL_VOICES];
int i;
if (channels < 0 || channels >= AWE_NORMAL_VOICES) {
channels = AWE_NORMAL_VOICES;
for (i = 0; i < AWE_NORMAL_VOICES; i++)
vidx[i] = i;
} else {
for (i = 0; i < channels; i++)
vidx[i] = awe_clear_voice();
}
/* use all channels for DMA transfer */
for (i = 0; i < channels; i++) {
if (vidx[i] < 0) continue;
awe_poke(AWE_DCYSUSV(vidx[i]), 0x80);
awe_poke_dw(AWE_VTFT(vidx[i]), 0);
awe_poke_dw(AWE_CVCF(vidx[i]), 0);
awe_poke_dw(AWE_PTRX(vidx[i]), 0x40000000);
awe_poke_dw(AWE_CPF(vidx[i]), 0x40000000);
awe_poke_dw(AWE_PSST(vidx[i]), 0);
awe_poke_dw(AWE_CSL(vidx[i]), 0);
awe_poke_dw(AWE_CCCA(vidx[i]), 0x06000000);
voices[vidx[i]].state = AWE_ST_DRAM;
}
/* point channels 31 & 32 to ROM samples for DRAM refresh */
awe_poke_dw(AWE_VTFT(30), 0);
awe_poke_dw(AWE_PSST(30), 0x1d8);
awe_poke_dw(AWE_CSL(30), 0x1e0);
awe_poke_dw(AWE_CCCA(30), 0x1d8);
awe_poke_dw(AWE_VTFT(31), 0);
awe_poke_dw(AWE_PSST(31), 0x1d8);
awe_poke_dw(AWE_CSL(31), 0x1e0);
awe_poke_dw(AWE_CCCA(31), 0x1d8);
voices[30].state = AWE_ST_FM;
voices[31].state = AWE_ST_FM;
/* if full bit is on, not ready to write on */
if (awe_peek_dw(AWE_SMALW) & 0x80000000) {
for (i = 0; i < channels; i++) {
awe_poke_dw(AWE_CCCA(vidx[i]), 0);
voices[i].state = AWE_ST_OFF;
}
return RET_ERROR(ENOSPC);
}
/* set address to write */
awe_poke_dw(AWE_SMALW, offset);
return 0;
}
/* open DRAM for RAM size detection */
static void
awe_open_dram_for_check(void)
{
int i;
for (i = 0; i < AWE_NORMAL_VOICES; i++) {
awe_poke(AWE_DCYSUSV(i), 0x80);
awe_poke_dw(AWE_VTFT(i), 0);
awe_poke_dw(AWE_CVCF(i), 0);
awe_poke_dw(AWE_PTRX(i), 0x40000000);
awe_poke_dw(AWE_CPF(i), 0x40000000);
awe_poke_dw(AWE_PSST(i), 0);
awe_poke_dw(AWE_CSL(i), 0);
if (i & 1) /* DMA write */
awe_poke_dw(AWE_CCCA(i), 0x06000000);
else /* DMA read */
awe_poke_dw(AWE_CCCA(i), 0x04000000);
voices[i].state = AWE_ST_DRAM;
}
}
/* close dram access */
static void
awe_close_dram(void)
{
int i;
/* wait until FULL bit in SMAxW register be false */
for (i = 0; i < 10000; i++) {
if (!(awe_peek_dw(AWE_SMALW) & 0x80000000))
break;
awe_wait(10);
}
for (i = 0; i < AWE_NORMAL_VOICES; i++) {
if (voices[i].state == AWE_ST_DRAM) {
awe_poke_dw(AWE_CCCA(i), 0);
awe_poke(AWE_DCYSUSV(i), 0x807F);
voices[i].state = AWE_ST_OFF;
}
}
}
/*================================================================
* detect presence of AWE32 and check memory size
*================================================================*/
/* detect emu8000 chip on the specified address; from VV's guide */
static int
awe_detect_base(int addr)
{
awe_base = addr;
if ((awe_peek(AWE_U1) & 0x000F) != 0x000C)
return 0;
if ((awe_peek(AWE_HWCF1) & 0x007E) != 0x0058)
return 0;
if ((awe_peek(AWE_HWCF2) & 0x0003) != 0x0003)
return 0;
DEBUG(0,printk("AWE32 found at %x\n", awe_base));
return 1;
}
static int
awe_detect(void)
{
int base;
if (awe_base == 0) {
for (base = 0x620; base <= 0x680; base += 0x20)
if (awe_detect_base(base))
return 1;
DEBUG(0,printk("AWE32 not found\n"));
return 0;
}
return 1;
}
/*================================================================
* check dram size on AWE board
*================================================================*/
/* any three numbers you like */
#define UNIQUE_ID1 0x1234
#define UNIQUE_ID2 0x4321
#define UNIQUE_ID3 0xFFFF
static int
awe_check_dram(void)
{
if (awe_mem_size > 0) {
awe_mem_size *= 1024; /* convert to Kbytes */
return awe_mem_size;
}
awe_open_dram_for_check();
awe_mem_size = 0;
/* set up unique two id numbers */
awe_poke_dw(AWE_SMALW, AWE_DRAM_OFFSET);
awe_poke(AWE_SMLD, UNIQUE_ID1);
awe_poke(AWE_SMLD, UNIQUE_ID2);
while (awe_mem_size < AWE_MAX_DRAM_SIZE) {
awe_wait(2);
/* read a data on the DRAM start address */
awe_poke_dw(AWE_SMALR, AWE_DRAM_OFFSET);
awe_peek(AWE_SMLD); /* discard stale data */
if (awe_peek(AWE_SMLD) != UNIQUE_ID1)
break;
if (awe_peek(AWE_SMLD) != UNIQUE_ID2)
break;
awe_mem_size += 32; /* increment 32 Kbytes */
/* Write a unique data on the test address;
* if the address is out of range, the data is written on
* 0x200000(=AWE_DRAM_OFFSET). Then the two id words are
* broken by this data.
*/
awe_poke_dw(AWE_SMALW, AWE_DRAM_OFFSET + awe_mem_size*512L);
awe_poke(AWE_SMLD, UNIQUE_ID3);
awe_wait(2);
/* read a data on the just written DRAM address */
awe_poke_dw(AWE_SMALR, AWE_DRAM_OFFSET + awe_mem_size*512L);
awe_peek(AWE_SMLD); /* discard stale data */
if (awe_peek(AWE_SMLD) != UNIQUE_ID3)
break;
}
awe_close_dram();
DEBUG(0,printk("AWE32: %d Kbytes memory detected\n", awe_mem_size));
/* convert to Kbytes */
awe_mem_size *= 1024;
return awe_mem_size;
}
/*================================================================
* chorus and reverb controls; from VV's guide
*================================================================*/
/* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
static char chorus_defined[AWE_CHORUS_NUMBERS];
static awe_chorus_fx_rec chorus_parm[AWE_CHORUS_NUMBERS] = {
{0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
{0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
{0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
{0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
{0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
{0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
{0xE600, 0x0B06, 0xBC00, 0x0000E000, 0x00000083}, /* short delay */
{0xE6C0, 0x0B06, 0xBC00, 0x0000E000, 0x00000083}, /* short delay + feedback */
};
static int
awe_load_chorus_fx(awe_patch_info *patch, const char *addr, int count)
{
if (patch->optarg < AWE_CHORUS_PREDEFINED || patch->optarg >= AWE_CHORUS_NUMBERS) {
printk("AWE32 Error: illegal chorus mode %d for uploading\n", patch->optarg);
return RET_ERROR(EINVAL);
}
if (count < sizeof(awe_chorus_fx_rec)) {
printk("AWE32 Error: too short chorus fx parameters\n");
return RET_ERROR(EINVAL);
}
COPY_FROM_USER(&chorus_parm[patch->optarg], addr, AWE_PATCH_INFO_SIZE,
sizeof(awe_chorus_fx_rec));
chorus_defined[patch->optarg] = TRUE;
return 0;
}
static void
awe_set_chorus_mode(int effect)
{
if (effect < 0 || effect >= AWE_CHORUS_NUMBERS ||
(effect >= AWE_CHORUS_PREDEFINED && !chorus_defined[effect]))
return;
awe_poke(AWE_INIT3(9), chorus_parm[effect].feedback);
awe_poke(AWE_INIT3(12), chorus_parm[effect].delay_offset);
awe_poke(AWE_INIT4(3), chorus_parm[effect].lfo_depth);
awe_poke_dw(AWE_HWCF4, chorus_parm[effect].delay);
awe_poke_dw(AWE_HWCF5, chorus_parm[effect].lfo_freq);
awe_poke_dw(AWE_HWCF6, 0x8000);
awe_poke_dw(AWE_HWCF7, 0x0000);
chorus_mode = effect;
}
/*----------------------------------------------------------------*/
/* reverb mode settings; write the following 28 data of 16 bit length
* on the corresponding ports in the reverb_cmds array
*/
static char reverb_defined[AWE_CHORUS_NUMBERS];
static awe_reverb_fx_rec reverb_parm[AWE_REVERB_NUMBERS] = {
{{ /* room 1 */
0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* room 2 */
0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* room 3 */
0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
}},
{{ /* hall 1 */
0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
}},
{{ /* hall 2 */
0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* plate */
0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* delay */
0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
}},
{{ /* panning delay */
0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
}},
};
static struct ReverbCmdPair {
unsigned short cmd, port;
} reverb_cmds[28] = {
{AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
{AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
{AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
{AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
{AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
{AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
{AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
};
static int
awe_load_reverb_fx(awe_patch_info *patch, const char *addr, int count)
{
if (patch->optarg < AWE_REVERB_PREDEFINED || patch->optarg >= AWE_REVERB_NUMBERS) {
printk("AWE32 Error: illegal reverb mode %d for uploading\n", patch->optarg);
return RET_ERROR(EINVAL);
}
if (count < sizeof(awe_reverb_fx_rec)) {
printk("AWE32 Error: too short reverb fx parameters\n");
return RET_ERROR(EINVAL);
}
COPY_FROM_USER(&reverb_parm[patch->optarg], addr, AWE_PATCH_INFO_SIZE,
sizeof(awe_reverb_fx_rec));
reverb_defined[patch->optarg] = TRUE;
return 0;
}
static void
awe_set_reverb_mode(int effect)
{
int i;
if (effect < 0 || effect >= AWE_REVERB_NUMBERS ||
(effect >= AWE_REVERB_PREDEFINED && !reverb_defined[effect]))
return;
for (i = 0; i < 28; i++)
awe_poke(reverb_cmds[i].cmd, reverb_cmds[i].port,
reverb_parm[effect].parms[i]);
reverb_mode = effect;
}
/*================================================================
* treble/bass equalizer control
*================================================================*/
static unsigned short bass_parm[12][3] = {
{0xD26A, 0xD36A, 0x0000}, /* -12 dB */
{0xD25B, 0xD35B, 0x0000}, /* -8 */
{0xD24C, 0xD34C, 0x0000}, /* -6 */
{0xD23D, 0xD33D, 0x0000}, /* -4 */
{0xD21F, 0xD31F, 0x0000}, /* -2 */
{0xC208, 0xC308, 0x0001}, /* 0 (HW default) */
{0xC219, 0xC319, 0x0001}, /* +2 */
{0xC22A, 0xC32A, 0x0001}, /* +4 */
{0xC24C, 0xC34C, 0x0001}, /* +6 */
{0xC26E, 0xC36E, 0x0001}, /* +8 */
{0xC248, 0xC348, 0x0002}, /* +10 */
{0xC26A, 0xC36A, 0x0002}, /* +12 dB */
};
static unsigned short treble_parm[12][9] = {
{0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
{0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
{0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
{0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +12 dB */
};
/*
* set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
*/
static void
awe_equalizer(int bass, int treble)
{
unsigned short w;
if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
return;
awe_bass_level = bass;
awe_treble_level = treble;
awe_poke(AWE_INIT4(0x01), bass_parm[bass][0]);
awe_poke(AWE_INIT4(0x11), bass_parm[bass][1]);
awe_poke(AWE_INIT3(0x11), treble_parm[treble][0]);
awe_poke(AWE_INIT3(0x13), treble_parm[treble][1]);
awe_poke(AWE_INIT3(0x1B), treble_parm[treble][2]);
awe_poke(AWE_INIT4(0x07), treble_parm[treble][3]);
awe_poke(AWE_INIT4(0x0B), treble_parm[treble][4]);
awe_poke(AWE_INIT4(0x0D), treble_parm[treble][5]);
awe_poke(AWE_INIT4(0x17), treble_parm[treble][6]);
awe_poke(AWE_INIT4(0x19), treble_parm[treble][7]);
w = bass_parm[bass][2] + treble_parm[treble][8];
awe_poke(AWE_INIT4(0x15), (unsigned short)(w + 0x0262));
awe_poke(AWE_INIT4(0x1D), (unsigned short)(w + 0x8362));
}
#endif /* CONFIG_AWE32_SYNTH */