efb2d09d75
after each other doesn't mean that nothing happened.
767 lines
19 KiB
C
767 lines
19 KiB
C
/*-
|
|
* ----------------------------------------------------------------------------
|
|
* "THE BEER-WARE LICENSE" (Revision 42):
|
|
* <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
|
|
* can do whatever you want with this stuff. If we meet some day, and you think
|
|
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
|
|
* ----------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ntp.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/timepps.h>
|
|
#include <sys/timetc.h>
|
|
#include <sys/timex.h>
|
|
|
|
/*
|
|
* A large step happens on boot. This constant detects such steps.
|
|
* It is relatively small so that ntp_update_second gets called enough
|
|
* in the typical 'missed a couple of seconds' case, but doesn't loop
|
|
* forever when the time step is large.
|
|
*/
|
|
#define LARGE_STEP 200
|
|
|
|
/*
|
|
* Implement a dummy timecounter which we can use until we get a real one
|
|
* in the air. This allows the console and other early stuff to use
|
|
* time services.
|
|
*/
|
|
|
|
static u_int
|
|
dummy_get_timecount(struct timecounter *tc)
|
|
{
|
|
static u_int now;
|
|
|
|
return (++now);
|
|
}
|
|
|
|
static struct timecounter dummy_timecounter = {
|
|
dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
|
|
};
|
|
|
|
struct timehands {
|
|
/* These fields must be initialized by the driver. */
|
|
struct timecounter *th_counter;
|
|
int64_t th_adjustment;
|
|
u_int64_t th_scale;
|
|
u_int th_offset_count;
|
|
struct bintime th_offset;
|
|
struct timeval th_microtime;
|
|
struct timespec th_nanotime;
|
|
/* Fields not to be copied in tc_windup start with th_generation. */
|
|
volatile u_int th_generation;
|
|
struct timehands *th_next;
|
|
};
|
|
|
|
extern struct timehands th0;
|
|
static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
|
|
static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
|
|
static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
|
|
static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
|
|
static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
|
|
static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
|
|
static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
|
|
static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
|
|
static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
|
|
static struct timehands th0 = {
|
|
&dummy_timecounter,
|
|
0,
|
|
(uint64_t)-1 / 1000000,
|
|
0,
|
|
{1, 0},
|
|
{0, 0},
|
|
{0, 0},
|
|
1,
|
|
&th1
|
|
};
|
|
|
|
static struct timehands *volatile timehands = &th0;
|
|
struct timecounter *timecounter = &dummy_timecounter;
|
|
static struct timecounter *timecounters = &dummy_timecounter;
|
|
|
|
time_t time_second = 1;
|
|
time_t time_uptime = 0;
|
|
|
|
static struct bintime boottimebin;
|
|
struct timeval boottime;
|
|
SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
|
|
&boottime, timeval, "System boottime");
|
|
|
|
SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
|
|
|
|
static int timestepwarnings;
|
|
SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
|
|
×tepwarnings, 0, "");
|
|
|
|
#define TC_STATS(foo) \
|
|
static u_int foo; \
|
|
SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
|
|
struct __hack
|
|
|
|
TC_STATS(nbinuptime); TC_STATS(nnanouptime); TC_STATS(nmicrouptime);
|
|
TC_STATS(nbintime); TC_STATS(nnanotime); TC_STATS(nmicrotime);
|
|
TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
|
|
TC_STATS(ngetbintime); TC_STATS(ngetnanotime); TC_STATS(ngetmicrotime);
|
|
TC_STATS(nsetclock);
|
|
|
|
#undef TC_STATS
|
|
|
|
static void tc_windup(void);
|
|
|
|
/*
|
|
* Return the difference between the timehands' counter value now and what
|
|
* was when we copied it to the timehands' offset_count.
|
|
*/
|
|
static __inline u_int
|
|
tc_delta(struct timehands *th)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
tc = th->th_counter;
|
|
return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
|
|
tc->tc_counter_mask);
|
|
}
|
|
|
|
/*
|
|
* Functions for reading the time. We have to loop until we are sure that
|
|
* the timehands that we operated on was not updated under our feet. See
|
|
* the comment in <sys/time.h> for a description of these 12 functions.
|
|
*/
|
|
|
|
void
|
|
binuptime(struct bintime *bt)
|
|
{
|
|
struct timehands *th;
|
|
u_int gen;
|
|
|
|
nbinuptime++;
|
|
do {
|
|
th = timehands;
|
|
gen = th->th_generation;
|
|
*bt = th->th_offset;
|
|
bintime_addx(bt, th->th_scale * tc_delta(th));
|
|
} while (gen == 0 || gen != th->th_generation);
|
|
}
|
|
|
|
void
|
|
nanouptime(struct timespec *tsp)
|
|
{
|
|
struct bintime bt;
|
|
|
|
nnanouptime++;
|
|
binuptime(&bt);
|
|
bintime2timespec(&bt, tsp);
|
|
}
|
|
|
|
void
|
|
microuptime(struct timeval *tvp)
|
|
{
|
|
struct bintime bt;
|
|
|
|
nmicrouptime++;
|
|
binuptime(&bt);
|
|
bintime2timeval(&bt, tvp);
|
|
}
|
|
|
|
void
|
|
bintime(struct bintime *bt)
|
|
{
|
|
|
|
nbintime++;
|
|
binuptime(bt);
|
|
bintime_add(bt, &boottimebin);
|
|
}
|
|
|
|
void
|
|
nanotime(struct timespec *tsp)
|
|
{
|
|
struct bintime bt;
|
|
|
|
nnanotime++;
|
|
bintime(&bt);
|
|
bintime2timespec(&bt, tsp);
|
|
}
|
|
|
|
void
|
|
microtime(struct timeval *tvp)
|
|
{
|
|
struct bintime bt;
|
|
|
|
nmicrotime++;
|
|
bintime(&bt);
|
|
bintime2timeval(&bt, tvp);
|
|
}
|
|
|
|
void
|
|
getbinuptime(struct bintime *bt)
|
|
{
|
|
struct timehands *th;
|
|
u_int gen;
|
|
|
|
ngetbinuptime++;
|
|
do {
|
|
th = timehands;
|
|
gen = th->th_generation;
|
|
*bt = th->th_offset;
|
|
} while (gen == 0 || gen != th->th_generation);
|
|
}
|
|
|
|
void
|
|
getnanouptime(struct timespec *tsp)
|
|
{
|
|
struct timehands *th;
|
|
u_int gen;
|
|
|
|
ngetnanouptime++;
|
|
do {
|
|
th = timehands;
|
|
gen = th->th_generation;
|
|
bintime2timespec(&th->th_offset, tsp);
|
|
} while (gen == 0 || gen != th->th_generation);
|
|
}
|
|
|
|
void
|
|
getmicrouptime(struct timeval *tvp)
|
|
{
|
|
struct timehands *th;
|
|
u_int gen;
|
|
|
|
ngetmicrouptime++;
|
|
do {
|
|
th = timehands;
|
|
gen = th->th_generation;
|
|
bintime2timeval(&th->th_offset, tvp);
|
|
} while (gen == 0 || gen != th->th_generation);
|
|
}
|
|
|
|
void
|
|
getbintime(struct bintime *bt)
|
|
{
|
|
struct timehands *th;
|
|
u_int gen;
|
|
|
|
ngetbintime++;
|
|
do {
|
|
th = timehands;
|
|
gen = th->th_generation;
|
|
*bt = th->th_offset;
|
|
} while (gen == 0 || gen != th->th_generation);
|
|
bintime_add(bt, &boottimebin);
|
|
}
|
|
|
|
void
|
|
getnanotime(struct timespec *tsp)
|
|
{
|
|
struct timehands *th;
|
|
u_int gen;
|
|
|
|
ngetnanotime++;
|
|
do {
|
|
th = timehands;
|
|
gen = th->th_generation;
|
|
*tsp = th->th_nanotime;
|
|
} while (gen == 0 || gen != th->th_generation);
|
|
}
|
|
|
|
void
|
|
getmicrotime(struct timeval *tvp)
|
|
{
|
|
struct timehands *th;
|
|
u_int gen;
|
|
|
|
ngetmicrotime++;
|
|
do {
|
|
th = timehands;
|
|
gen = th->th_generation;
|
|
*tvp = th->th_microtime;
|
|
} while (gen == 0 || gen != th->th_generation);
|
|
}
|
|
|
|
/*
|
|
* Initialize a new timecounter and possibly use it.
|
|
*/
|
|
void
|
|
tc_init(struct timecounter *tc)
|
|
{
|
|
u_int u;
|
|
|
|
u = tc->tc_frequency / tc->tc_counter_mask;
|
|
/* XXX: We need some margin here, 10% is a guess */
|
|
u *= 11;
|
|
u /= 10;
|
|
if (u > hz && tc->tc_quality >= 0) {
|
|
tc->tc_quality = -2000;
|
|
if (bootverbose) {
|
|
printf("Timecounter \"%s\" frequency %ju Hz",
|
|
tc->tc_name, (uintmax_t)tc->tc_frequency);
|
|
printf(" -- Insufficient hz, needs at least %u\n", u);
|
|
}
|
|
} else if (tc->tc_quality >= 0 || bootverbose) {
|
|
printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
|
|
tc->tc_name, (uintmax_t)tc->tc_frequency,
|
|
tc->tc_quality);
|
|
}
|
|
|
|
tc->tc_next = timecounters;
|
|
timecounters = tc;
|
|
/*
|
|
* Never automatically use a timecounter with negative quality.
|
|
* Even though we run on the dummy counter, switching here may be
|
|
* worse since this timecounter may not be monotonous.
|
|
*/
|
|
if (tc->tc_quality < 0)
|
|
return;
|
|
if (tc->tc_quality < timecounter->tc_quality)
|
|
return;
|
|
if (tc->tc_quality == timecounter->tc_quality &&
|
|
tc->tc_frequency < timecounter->tc_frequency)
|
|
return;
|
|
(void)tc->tc_get_timecount(tc);
|
|
(void)tc->tc_get_timecount(tc);
|
|
timecounter = tc;
|
|
}
|
|
|
|
/* Report the frequency of the current timecounter. */
|
|
u_int64_t
|
|
tc_getfrequency(void)
|
|
{
|
|
|
|
return (timehands->th_counter->tc_frequency);
|
|
}
|
|
|
|
/*
|
|
* Step our concept of UTC. This is done by modifying our estimate of
|
|
* when we booted.
|
|
* XXX: not locked.
|
|
*/
|
|
void
|
|
tc_setclock(struct timespec *ts)
|
|
{
|
|
struct timespec ts2;
|
|
struct bintime bt, bt2;
|
|
|
|
nsetclock++;
|
|
binuptime(&bt2);
|
|
timespec2bintime(ts, &bt);
|
|
bintime_sub(&bt, &bt2);
|
|
bintime_add(&bt2, &boottimebin);
|
|
boottimebin = bt;
|
|
bintime2timeval(&bt, &boottime);
|
|
|
|
/* XXX fiddle all the little crinkly bits around the fiords... */
|
|
tc_windup();
|
|
if (timestepwarnings) {
|
|
bintime2timespec(&bt2, &ts2);
|
|
log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
|
|
(intmax_t)ts2.tv_sec, ts2.tv_nsec,
|
|
(intmax_t)ts->tv_sec, ts->tv_nsec);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the next struct timehands in the ring and make
|
|
* it the active timehands. Along the way we might switch to a different
|
|
* timecounter and/or do seconds processing in NTP. Slightly magic.
|
|
*/
|
|
static void
|
|
tc_windup(void)
|
|
{
|
|
struct bintime bt;
|
|
struct timehands *th, *tho;
|
|
u_int64_t scale;
|
|
u_int delta, ncount, ogen;
|
|
int i;
|
|
time_t t;
|
|
|
|
/*
|
|
* Make the next timehands a copy of the current one, but do not
|
|
* overwrite the generation or next pointer. While we update
|
|
* the contents, the generation must be zero.
|
|
*/
|
|
tho = timehands;
|
|
th = tho->th_next;
|
|
ogen = th->th_generation;
|
|
th->th_generation = 0;
|
|
bcopy(tho, th, offsetof(struct timehands, th_generation));
|
|
|
|
/*
|
|
* Capture a timecounter delta on the current timecounter and if
|
|
* changing timecounters, a counter value from the new timecounter.
|
|
* Update the offset fields accordingly.
|
|
*/
|
|
delta = tc_delta(th);
|
|
if (th->th_counter != timecounter)
|
|
ncount = timecounter->tc_get_timecount(timecounter);
|
|
else
|
|
ncount = 0;
|
|
th->th_offset_count += delta;
|
|
th->th_offset_count &= th->th_counter->tc_counter_mask;
|
|
bintime_addx(&th->th_offset, th->th_scale * delta);
|
|
|
|
/*
|
|
* Hardware latching timecounters may not generate interrupts on
|
|
* PPS events, so instead we poll them. There is a finite risk that
|
|
* the hardware might capture a count which is later than the one we
|
|
* got above, and therefore possibly in the next NTP second which might
|
|
* have a different rate than the current NTP second. It doesn't
|
|
* matter in practice.
|
|
*/
|
|
if (tho->th_counter->tc_poll_pps)
|
|
tho->th_counter->tc_poll_pps(tho->th_counter);
|
|
|
|
/*
|
|
* Deal with NTP second processing. The for loop normally
|
|
* iterates at most once, but in extreme situations it might
|
|
* keep NTP sane if timeouts are not run for several seconds.
|
|
* At boot, the time step can be large when the TOD hardware
|
|
* has been read, so on really large steps, we call
|
|
* ntp_update_second only twice. We need to call it twice in
|
|
* case we missed a leap second.
|
|
*/
|
|
bt = th->th_offset;
|
|
bintime_add(&bt, &boottimebin);
|
|
i = bt.sec - tho->th_microtime.tv_sec;
|
|
if (i > LARGE_STEP)
|
|
i = 2;
|
|
for (; i > 0; i--) {
|
|
t = bt.sec;
|
|
ntp_update_second(&th->th_adjustment, &bt.sec);
|
|
if (bt.sec != t)
|
|
boottimebin.sec += bt.sec - t;
|
|
}
|
|
/* Update the UTC timestamps used by the get*() functions. */
|
|
/* XXX shouldn't do this here. Should force non-`get' versions. */
|
|
bintime2timeval(&bt, &th->th_microtime);
|
|
bintime2timespec(&bt, &th->th_nanotime);
|
|
|
|
/* Now is a good time to change timecounters. */
|
|
if (th->th_counter != timecounter) {
|
|
th->th_counter = timecounter;
|
|
th->th_offset_count = ncount;
|
|
}
|
|
|
|
/*-
|
|
* Recalculate the scaling factor. We want the number of 1/2^64
|
|
* fractions of a second per period of the hardware counter, taking
|
|
* into account the th_adjustment factor which the NTP PLL/adjtime(2)
|
|
* processing provides us with.
|
|
*
|
|
* The th_adjustment is nanoseconds per second with 32 bit binary
|
|
* fraction and we want 64 bit binary fraction of second:
|
|
*
|
|
* x = a * 2^32 / 10^9 = a * 4.294967296
|
|
*
|
|
* The range of th_adjustment is +/- 5000PPM so inside a 64bit int
|
|
* we can only multiply by about 850 without overflowing, but that
|
|
* leaves suitably precise fractions for multiply before divide.
|
|
*
|
|
* Divide before multiply with a fraction of 2199/512 results in a
|
|
* systematic undercompensation of 10PPM of th_adjustment. On a
|
|
* 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
|
|
*
|
|
* We happily sacrifice the lowest of the 64 bits of our result
|
|
* to the goddess of code clarity.
|
|
*
|
|
*/
|
|
scale = (u_int64_t)1 << 63;
|
|
scale += (th->th_adjustment / 1024) * 2199;
|
|
scale /= th->th_counter->tc_frequency;
|
|
th->th_scale = scale * 2;
|
|
|
|
/*
|
|
* Now that the struct timehands is again consistent, set the new
|
|
* generation number, making sure to not make it zero.
|
|
*/
|
|
if (++ogen == 0)
|
|
ogen = 1;
|
|
th->th_generation = ogen;
|
|
|
|
/* Go live with the new struct timehands. */
|
|
time_second = th->th_microtime.tv_sec;
|
|
time_uptime = th->th_offset.sec;
|
|
timehands = th;
|
|
}
|
|
|
|
/* Report or change the active timecounter hardware. */
|
|
static int
|
|
sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char newname[32];
|
|
struct timecounter *newtc, *tc;
|
|
int error;
|
|
|
|
tc = timecounter;
|
|
strlcpy(newname, tc->tc_name, sizeof(newname));
|
|
|
|
error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
|
|
if (error != 0 || req->newptr == NULL ||
|
|
strcmp(newname, tc->tc_name) == 0)
|
|
return (error);
|
|
for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
|
|
if (strcmp(newname, newtc->tc_name) != 0)
|
|
continue;
|
|
|
|
/* Warm up new timecounter. */
|
|
(void)newtc->tc_get_timecount(newtc);
|
|
(void)newtc->tc_get_timecount(newtc);
|
|
|
|
timecounter = newtc;
|
|
return (0);
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
|
|
SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
|
|
0, 0, sysctl_kern_timecounter_hardware, "A", "");
|
|
|
|
|
|
/* Report or change the active timecounter hardware. */
|
|
static int
|
|
sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char buf[32], *spc;
|
|
struct timecounter *tc;
|
|
int error;
|
|
|
|
spc = "";
|
|
error = 0;
|
|
for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
|
|
sprintf(buf, "%s%s(%d)",
|
|
spc, tc->tc_name, tc->tc_quality);
|
|
error = SYSCTL_OUT(req, buf, strlen(buf));
|
|
spc = " ";
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
|
|
0, 0, sysctl_kern_timecounter_choice, "A", "");
|
|
|
|
/*
|
|
* RFC 2783 PPS-API implementation.
|
|
*/
|
|
|
|
int
|
|
pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
|
|
{
|
|
pps_params_t *app;
|
|
struct pps_fetch_args *fapi;
|
|
#ifdef PPS_SYNC
|
|
struct pps_kcbind_args *kapi;
|
|
#endif
|
|
|
|
switch (cmd) {
|
|
case PPS_IOC_CREATE:
|
|
return (0);
|
|
case PPS_IOC_DESTROY:
|
|
return (0);
|
|
case PPS_IOC_SETPARAMS:
|
|
app = (pps_params_t *)data;
|
|
if (app->mode & ~pps->ppscap)
|
|
return (EINVAL);
|
|
pps->ppsparam = *app;
|
|
return (0);
|
|
case PPS_IOC_GETPARAMS:
|
|
app = (pps_params_t *)data;
|
|
*app = pps->ppsparam;
|
|
app->api_version = PPS_API_VERS_1;
|
|
return (0);
|
|
case PPS_IOC_GETCAP:
|
|
*(int*)data = pps->ppscap;
|
|
return (0);
|
|
case PPS_IOC_FETCH:
|
|
fapi = (struct pps_fetch_args *)data;
|
|
if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
|
|
return (EINVAL);
|
|
if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
|
|
return (EOPNOTSUPP);
|
|
pps->ppsinfo.current_mode = pps->ppsparam.mode;
|
|
fapi->pps_info_buf = pps->ppsinfo;
|
|
return (0);
|
|
case PPS_IOC_KCBIND:
|
|
#ifdef PPS_SYNC
|
|
kapi = (struct pps_kcbind_args *)data;
|
|
/* XXX Only root should be able to do this */
|
|
if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
|
|
return (EINVAL);
|
|
if (kapi->kernel_consumer != PPS_KC_HARDPPS)
|
|
return (EINVAL);
|
|
if (kapi->edge & ~pps->ppscap)
|
|
return (EINVAL);
|
|
pps->kcmode = kapi->edge;
|
|
return (0);
|
|
#else
|
|
return (EOPNOTSUPP);
|
|
#endif
|
|
default:
|
|
return (ENOTTY);
|
|
}
|
|
}
|
|
|
|
void
|
|
pps_init(struct pps_state *pps)
|
|
{
|
|
pps->ppscap |= PPS_TSFMT_TSPEC;
|
|
if (pps->ppscap & PPS_CAPTUREASSERT)
|
|
pps->ppscap |= PPS_OFFSETASSERT;
|
|
if (pps->ppscap & PPS_CAPTURECLEAR)
|
|
pps->ppscap |= PPS_OFFSETCLEAR;
|
|
}
|
|
|
|
void
|
|
pps_capture(struct pps_state *pps)
|
|
{
|
|
struct timehands *th;
|
|
|
|
th = timehands;
|
|
pps->capgen = th->th_generation;
|
|
pps->capth = th;
|
|
pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
|
|
if (pps->capgen != th->th_generation)
|
|
pps->capgen = 0;
|
|
}
|
|
|
|
void
|
|
pps_event(struct pps_state *pps, int event)
|
|
{
|
|
struct bintime bt;
|
|
struct timespec ts, *tsp, *osp;
|
|
u_int tcount, *pcount;
|
|
int foff, fhard;
|
|
pps_seq_t *pseq;
|
|
|
|
/* If the timecounter was wound up underneath us, bail out. */
|
|
if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
|
|
return;
|
|
|
|
/* Things would be easier with arrays. */
|
|
if (event == PPS_CAPTUREASSERT) {
|
|
tsp = &pps->ppsinfo.assert_timestamp;
|
|
osp = &pps->ppsparam.assert_offset;
|
|
foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
|
|
fhard = pps->kcmode & PPS_CAPTUREASSERT;
|
|
pcount = &pps->ppscount[0];
|
|
pseq = &pps->ppsinfo.assert_sequence;
|
|
} else {
|
|
tsp = &pps->ppsinfo.clear_timestamp;
|
|
osp = &pps->ppsparam.clear_offset;
|
|
foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
|
|
fhard = pps->kcmode & PPS_CAPTURECLEAR;
|
|
pcount = &pps->ppscount[1];
|
|
pseq = &pps->ppsinfo.clear_sequence;
|
|
}
|
|
|
|
/*
|
|
* If the timecounter changed, we cannot compare the count values, so
|
|
* we have to drop the rest of the PPS-stuff until the next event.
|
|
*/
|
|
if (pps->ppstc != pps->capth->th_counter) {
|
|
pps->ppstc = pps->capth->th_counter;
|
|
*pcount = pps->capcount;
|
|
pps->ppscount[2] = pps->capcount;
|
|
return;
|
|
}
|
|
|
|
/* Convert the count to a timespec. */
|
|
tcount = pps->capcount - pps->capth->th_offset_count;
|
|
tcount &= pps->capth->th_counter->tc_counter_mask;
|
|
bt = pps->capth->th_offset;
|
|
bintime_addx(&bt, pps->capth->th_scale * tcount);
|
|
bintime_add(&bt, &boottimebin);
|
|
bintime2timespec(&bt, &ts);
|
|
|
|
/* If the timecounter was wound up underneath us, bail out. */
|
|
if (pps->capgen != pps->capth->th_generation)
|
|
return;
|
|
|
|
*pcount = pps->capcount;
|
|
(*pseq)++;
|
|
*tsp = ts;
|
|
|
|
if (foff) {
|
|
timespecadd(tsp, osp);
|
|
if (tsp->tv_nsec < 0) {
|
|
tsp->tv_nsec += 1000000000;
|
|
tsp->tv_sec -= 1;
|
|
}
|
|
}
|
|
#ifdef PPS_SYNC
|
|
if (fhard) {
|
|
u_int64_t scale;
|
|
|
|
/*
|
|
* Feed the NTP PLL/FLL.
|
|
* The FLL wants to know how many (hardware) nanoseconds
|
|
* elapsed since the previous event.
|
|
*/
|
|
tcount = pps->capcount - pps->ppscount[2];
|
|
pps->ppscount[2] = pps->capcount;
|
|
tcount &= pps->capth->th_counter->tc_counter_mask;
|
|
scale = (u_int64_t)1 << 63;
|
|
scale /= pps->capth->th_counter->tc_frequency;
|
|
scale *= 2;
|
|
bt.sec = 0;
|
|
bt.frac = 0;
|
|
bintime_addx(&bt, scale * tcount);
|
|
bintime2timespec(&bt, &ts);
|
|
hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Timecounters need to be updated every so often to prevent the hardware
|
|
* counter from overflowing. Updating also recalculates the cached values
|
|
* used by the get*() family of functions, so their precision depends on
|
|
* the update frequency.
|
|
*/
|
|
|
|
static int tc_tick;
|
|
SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
|
|
|
|
void
|
|
tc_ticktock(void)
|
|
{
|
|
static int count;
|
|
|
|
if (++count < tc_tick)
|
|
return;
|
|
count = 0;
|
|
tc_windup();
|
|
}
|
|
|
|
static void
|
|
inittimecounter(void *dummy)
|
|
{
|
|
u_int p;
|
|
|
|
/*
|
|
* Set the initial timeout to
|
|
* max(1, <approx. number of hardclock ticks in a millisecond>).
|
|
* People should probably not use the sysctl to set the timeout
|
|
* to smaller than its inital value, since that value is the
|
|
* smallest reasonable one. If they want better timestamps they
|
|
* should use the non-"get"* functions.
|
|
*/
|
|
if (hz > 1000)
|
|
tc_tick = (hz + 500) / 1000;
|
|
else
|
|
tc_tick = 1;
|
|
p = (tc_tick * 1000000) / hz;
|
|
printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
|
|
|
|
/* warm up new timecounter (again) and get rolling. */
|
|
(void)timecounter->tc_get_timecount(timecounter);
|
|
(void)timecounter->tc_get_timecount(timecounter);
|
|
}
|
|
|
|
SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
|