b6de32bd9b
for allocation of fictitious pages, for which PHYS_TO_VM_PAGE() returns proper fictitious vm_page_t. The range should be de-registered after consumer stopped using it. De-inline the PHYS_TO_VM_PAGE() since it now carries code to iterate over registered ranges. A hash container might be developed instead of range registration interface, and fake pages could be put automatically into the hash, were PHYS_TO_VM_PAGE() could look them up later. This should be considered before the MFC of the commit is done. Sponsored by: The FreeBSD Foundation Reviewed by: alc MFC after: 1 month
1008 lines
27 KiB
C
1008 lines
27 KiB
C
/*-
|
|
* Copyright (c) 2002-2006 Rice University
|
|
* Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed for the FreeBSD Project by Alan L. Cox,
|
|
* Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
|
|
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Physical memory system implementation
|
|
*
|
|
* Any external functions defined by this module are only to be used by the
|
|
* virtual memory system.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_phys.h>
|
|
|
|
/*
|
|
* VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each
|
|
* domain. These extra lists are stored at the end of the regular
|
|
* free lists starting with VM_NFREELIST.
|
|
*/
|
|
#define VM_RAW_NFREELIST (VM_NFREELIST + VM_NDOMAIN - 1)
|
|
|
|
struct vm_freelist {
|
|
struct pglist pl;
|
|
int lcnt;
|
|
};
|
|
|
|
struct vm_phys_seg {
|
|
vm_paddr_t start;
|
|
vm_paddr_t end;
|
|
vm_page_t first_page;
|
|
int domain;
|
|
struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
|
|
};
|
|
|
|
struct mem_affinity *mem_affinity;
|
|
|
|
static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
|
|
|
|
static int vm_phys_nsegs;
|
|
|
|
#define VM_PHYS_FICTITIOUS_NSEGS 8
|
|
static struct vm_phys_fictitious_seg {
|
|
vm_paddr_t start;
|
|
vm_paddr_t end;
|
|
vm_page_t first_page;
|
|
} vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
|
|
static struct mtx vm_phys_fictitious_reg_mtx;
|
|
MALLOC_DEFINE(M_FICT_PAGES, "", "");
|
|
|
|
static struct vm_freelist
|
|
vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
|
|
static struct vm_freelist
|
|
(*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER];
|
|
|
|
static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
|
|
|
|
static int cnt_prezero;
|
|
SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
|
|
&cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
|
|
|
|
static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
|
|
NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
|
|
|
|
static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
|
|
NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
|
|
|
|
#if VM_NDOMAIN > 1
|
|
static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD,
|
|
NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists");
|
|
#endif
|
|
|
|
static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
|
|
int domain);
|
|
static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
|
|
static int vm_phys_paddr_to_segind(vm_paddr_t pa);
|
|
static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
|
|
int order);
|
|
|
|
/*
|
|
* Outputs the state of the physical memory allocator, specifically,
|
|
* the amount of physical memory in each free list.
|
|
*/
|
|
static int
|
|
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sbuf sbuf;
|
|
struct vm_freelist *fl;
|
|
int error, flind, oind, pind;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
|
|
"\n ORDER (SIZE) | NUMBER"
|
|
"\n ", flind);
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
sbuf_printf(&sbuf, " | POOL %d", pind);
|
|
sbuf_printf(&sbuf, "\n-- ");
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
sbuf_printf(&sbuf, "-- -- ");
|
|
sbuf_printf(&sbuf, "--\n");
|
|
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
|
|
sbuf_printf(&sbuf, " %2d (%6dK)", oind,
|
|
1 << (PAGE_SHIFT - 10 + oind));
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = vm_phys_free_queues[flind][pind];
|
|
sbuf_printf(&sbuf, " | %6d", fl[oind].lcnt);
|
|
}
|
|
sbuf_printf(&sbuf, "\n");
|
|
}
|
|
}
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Outputs the set of physical memory segments.
|
|
*/
|
|
static int
|
|
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sbuf sbuf;
|
|
struct vm_phys_seg *seg;
|
|
int error, segind;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
|
|
seg = &vm_phys_segs[segind];
|
|
sbuf_printf(&sbuf, "start: %#jx\n",
|
|
(uintmax_t)seg->start);
|
|
sbuf_printf(&sbuf, "end: %#jx\n",
|
|
(uintmax_t)seg->end);
|
|
sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
|
|
sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
|
|
}
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
|
|
#if VM_NDOMAIN > 1
|
|
/*
|
|
* Outputs the set of free list lookup lists.
|
|
*/
|
|
static int
|
|
sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sbuf sbuf;
|
|
int domain, error, flind, ndomains;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
|
|
ndomains = vm_nfreelists - VM_NFREELIST + 1;
|
|
for (domain = 0; domain < ndomains; domain++) {
|
|
sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain);
|
|
for (flind = 0; flind < vm_nfreelists; flind++)
|
|
sbuf_printf(&sbuf, " [%d]:\t%p\n", flind,
|
|
vm_phys_lookup_lists[domain][flind]);
|
|
}
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Create a physical memory segment.
|
|
*/
|
|
static void
|
|
_vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
|
|
{
|
|
struct vm_phys_seg *seg;
|
|
#ifdef VM_PHYSSEG_SPARSE
|
|
long pages;
|
|
int segind;
|
|
|
|
pages = 0;
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
seg = &vm_phys_segs[segind];
|
|
pages += atop(seg->end - seg->start);
|
|
}
|
|
#endif
|
|
KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
|
|
("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
|
|
seg = &vm_phys_segs[vm_phys_nsegs++];
|
|
seg->start = start;
|
|
seg->end = end;
|
|
seg->domain = domain;
|
|
#ifdef VM_PHYSSEG_SPARSE
|
|
seg->first_page = &vm_page_array[pages];
|
|
#else
|
|
seg->first_page = PHYS_TO_VM_PAGE(start);
|
|
#endif
|
|
#if VM_NDOMAIN > 1
|
|
if (flind == VM_FREELIST_DEFAULT && domain != 0) {
|
|
flind = VM_NFREELIST + (domain - 1);
|
|
if (flind >= vm_nfreelists)
|
|
vm_nfreelists = flind + 1;
|
|
}
|
|
#endif
|
|
seg->free_queues = &vm_phys_free_queues[flind];
|
|
}
|
|
|
|
static void
|
|
vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
|
|
{
|
|
int i;
|
|
|
|
if (mem_affinity == NULL) {
|
|
_vm_phys_create_seg(start, end, flind, 0);
|
|
return;
|
|
}
|
|
|
|
for (i = 0;; i++) {
|
|
if (mem_affinity[i].end == 0)
|
|
panic("Reached end of affinity info");
|
|
if (mem_affinity[i].end <= start)
|
|
continue;
|
|
if (mem_affinity[i].start > start)
|
|
panic("No affinity info for start %jx",
|
|
(uintmax_t)start);
|
|
if (mem_affinity[i].end >= end) {
|
|
_vm_phys_create_seg(start, end, flind,
|
|
mem_affinity[i].domain);
|
|
break;
|
|
}
|
|
_vm_phys_create_seg(start, mem_affinity[i].end, flind,
|
|
mem_affinity[i].domain);
|
|
start = mem_affinity[i].end;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the physical memory allocator.
|
|
*/
|
|
void
|
|
vm_phys_init(void)
|
|
{
|
|
struct vm_freelist *fl;
|
|
int flind, i, oind, pind;
|
|
#if VM_NDOMAIN > 1
|
|
int ndomains, j;
|
|
#endif
|
|
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
#ifdef VM_FREELIST_ISADMA
|
|
if (phys_avail[i] < 16777216) {
|
|
if (phys_avail[i + 1] > 16777216) {
|
|
vm_phys_create_seg(phys_avail[i], 16777216,
|
|
VM_FREELIST_ISADMA);
|
|
vm_phys_create_seg(16777216, phys_avail[i + 1],
|
|
VM_FREELIST_DEFAULT);
|
|
} else {
|
|
vm_phys_create_seg(phys_avail[i],
|
|
phys_avail[i + 1], VM_FREELIST_ISADMA);
|
|
}
|
|
if (VM_FREELIST_ISADMA >= vm_nfreelists)
|
|
vm_nfreelists = VM_FREELIST_ISADMA + 1;
|
|
} else
|
|
#endif
|
|
#ifdef VM_FREELIST_HIGHMEM
|
|
if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
|
|
if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
|
|
vm_phys_create_seg(phys_avail[i],
|
|
VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
|
|
vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
|
|
phys_avail[i + 1], VM_FREELIST_HIGHMEM);
|
|
} else {
|
|
vm_phys_create_seg(phys_avail[i],
|
|
phys_avail[i + 1], VM_FREELIST_HIGHMEM);
|
|
}
|
|
if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
|
|
vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
|
|
} else
|
|
#endif
|
|
vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
|
|
VM_FREELIST_DEFAULT);
|
|
}
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = vm_phys_free_queues[flind][pind];
|
|
for (oind = 0; oind < VM_NFREEORDER; oind++)
|
|
TAILQ_INIT(&fl[oind].pl);
|
|
}
|
|
}
|
|
#if VM_NDOMAIN > 1
|
|
/*
|
|
* Build a free list lookup list for each domain. All of the
|
|
* memory domain lists are inserted at the VM_FREELIST_DEFAULT
|
|
* index in a round-robin order starting with the current
|
|
* domain.
|
|
*/
|
|
ndomains = vm_nfreelists - VM_NFREELIST + 1;
|
|
for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++)
|
|
for (i = 0; i < ndomains; i++)
|
|
vm_phys_lookup_lists[i][flind] =
|
|
&vm_phys_free_queues[flind];
|
|
for (i = 0; i < ndomains; i++)
|
|
for (j = 0; j < ndomains; j++) {
|
|
flind = (i + j) % ndomains;
|
|
if (flind == 0)
|
|
flind = VM_FREELIST_DEFAULT;
|
|
else
|
|
flind += VM_NFREELIST - 1;
|
|
vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] =
|
|
&vm_phys_free_queues[flind];
|
|
}
|
|
for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST;
|
|
flind++)
|
|
for (i = 0; i < ndomains; i++)
|
|
vm_phys_lookup_lists[i][flind + ndomains - 1] =
|
|
&vm_phys_free_queues[flind];
|
|
#else
|
|
for (flind = 0; flind < vm_nfreelists; flind++)
|
|
vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind];
|
|
#endif
|
|
|
|
mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
|
|
}
|
|
|
|
/*
|
|
* Split a contiguous, power of two-sized set of physical pages.
|
|
*/
|
|
static __inline void
|
|
vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
|
|
{
|
|
vm_page_t m_buddy;
|
|
|
|
while (oind > order) {
|
|
oind--;
|
|
m_buddy = &m[1 << oind];
|
|
KASSERT(m_buddy->order == VM_NFREEORDER,
|
|
("vm_phys_split_pages: page %p has unexpected order %d",
|
|
m_buddy, m_buddy->order));
|
|
m_buddy->order = oind;
|
|
TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
|
|
fl[oind].lcnt++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize a physical page and add it to the free lists.
|
|
*/
|
|
void
|
|
vm_phys_add_page(vm_paddr_t pa)
|
|
{
|
|
vm_page_t m;
|
|
|
|
cnt.v_page_count++;
|
|
m = vm_phys_paddr_to_vm_page(pa);
|
|
m->phys_addr = pa;
|
|
m->queue = PQ_NONE;
|
|
m->segind = vm_phys_paddr_to_segind(pa);
|
|
m->flags = PG_FREE;
|
|
KASSERT(m->order == VM_NFREEORDER,
|
|
("vm_phys_add_page: page %p has unexpected order %d",
|
|
m, m->order));
|
|
m->pool = VM_FREEPOOL_DEFAULT;
|
|
pmap_page_init(m);
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
cnt.v_free_count++;
|
|
vm_phys_free_pages(m, 0);
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
}
|
|
|
|
/*
|
|
* Allocate a contiguous, power of two-sized set of physical pages
|
|
* from the free lists.
|
|
*
|
|
* The free page queues must be locked.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_alloc_pages(int pool, int order)
|
|
{
|
|
vm_page_t m;
|
|
int flind;
|
|
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
m = vm_phys_alloc_freelist_pages(flind, pool, order);
|
|
if (m != NULL)
|
|
return (m);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find and dequeue a free page on the given free list, with the
|
|
* specified pool and order
|
|
*/
|
|
vm_page_t
|
|
vm_phys_alloc_freelist_pages(int flind, int pool, int order)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_freelist *alt;
|
|
int domain, oind, pind;
|
|
vm_page_t m;
|
|
|
|
KASSERT(flind < VM_NFREELIST,
|
|
("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
|
|
KASSERT(pool < VM_NFREEPOOL,
|
|
("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
|
|
KASSERT(order < VM_NFREEORDER,
|
|
("vm_phys_alloc_freelist_pages: order %d is out of range", order));
|
|
|
|
#if VM_NDOMAIN > 1
|
|
domain = PCPU_GET(domain);
|
|
#else
|
|
domain = 0;
|
|
#endif
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
fl = (*vm_phys_lookup_lists[domain][flind])[pool];
|
|
for (oind = order; oind < VM_NFREEORDER; oind++) {
|
|
m = TAILQ_FIRST(&fl[oind].pl);
|
|
if (m != NULL) {
|
|
TAILQ_REMOVE(&fl[oind].pl, m, pageq);
|
|
fl[oind].lcnt--;
|
|
m->order = VM_NFREEORDER;
|
|
vm_phys_split_pages(m, oind, fl, order);
|
|
return (m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The given pool was empty. Find the largest
|
|
* contiguous, power-of-two-sized set of pages in any
|
|
* pool. Transfer these pages to the given pool, and
|
|
* use them to satisfy the allocation.
|
|
*/
|
|
for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
alt = (*vm_phys_lookup_lists[domain][flind])[pind];
|
|
m = TAILQ_FIRST(&alt[oind].pl);
|
|
if (m != NULL) {
|
|
TAILQ_REMOVE(&alt[oind].pl, m, pageq);
|
|
alt[oind].lcnt--;
|
|
m->order = VM_NFREEORDER;
|
|
vm_phys_set_pool(pool, m, oind);
|
|
vm_phys_split_pages(m, oind, fl, order);
|
|
return (m);
|
|
}
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find the vm_page corresponding to the given physical address.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_paddr_to_vm_page(vm_paddr_t pa)
|
|
{
|
|
struct vm_phys_seg *seg;
|
|
int segind;
|
|
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
seg = &vm_phys_segs[segind];
|
|
if (pa >= seg->start && pa < seg->end)
|
|
return (&seg->first_page[atop(pa - seg->start)]);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
vm_page_t
|
|
vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
|
|
{
|
|
struct vm_phys_fictitious_seg *seg;
|
|
vm_page_t m;
|
|
int segind;
|
|
|
|
m = NULL;
|
|
for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
|
|
seg = &vm_phys_fictitious_segs[segind];
|
|
if (pa >= seg->start && pa < seg->end) {
|
|
m = &seg->first_page[atop(pa - seg->start)];
|
|
KASSERT((m->flags & PG_FICTITIOUS) != 0,
|
|
("%p not fictitious", m));
|
|
break;
|
|
}
|
|
}
|
|
return (m);
|
|
}
|
|
|
|
int
|
|
vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
|
|
vm_memattr_t memattr)
|
|
{
|
|
struct vm_phys_fictitious_seg *seg;
|
|
vm_page_t fp;
|
|
long i, page_count;
|
|
int segind;
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
long pi;
|
|
boolean_t malloced;
|
|
#endif
|
|
|
|
page_count = (end - start) / PAGE_SIZE;
|
|
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
pi = atop(start);
|
|
if (pi >= first_page && atop(end) < vm_page_array_size) {
|
|
fp = &vm_page_array[pi - first_page];
|
|
malloced = FALSE;
|
|
} else
|
|
#endif
|
|
{
|
|
fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
|
|
M_WAITOK | M_ZERO);
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
malloced = TRUE;
|
|
#endif
|
|
}
|
|
for (i = 0; i < page_count; i++) {
|
|
vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
|
|
pmap_page_init(&fp[i]);
|
|
fp[i].oflags &= ~(VPO_BUSY | VPO_UNMANAGED);
|
|
}
|
|
mtx_lock(&vm_phys_fictitious_reg_mtx);
|
|
for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
|
|
seg = &vm_phys_fictitious_segs[segind];
|
|
if (seg->start == 0 && seg->end == 0) {
|
|
seg->start = start;
|
|
seg->end = end;
|
|
seg->first_page = fp;
|
|
mtx_unlock(&vm_phys_fictitious_reg_mtx);
|
|
return (0);
|
|
}
|
|
}
|
|
mtx_unlock(&vm_phys_fictitious_reg_mtx);
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
if (malloced)
|
|
#endif
|
|
free(fp, M_FICT_PAGES);
|
|
return (EBUSY);
|
|
}
|
|
|
|
void
|
|
vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
|
|
{
|
|
struct vm_phys_fictitious_seg *seg;
|
|
vm_page_t fp;
|
|
int segind;
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
long pi;
|
|
#endif
|
|
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
pi = atop(start);
|
|
#endif
|
|
|
|
mtx_lock(&vm_phys_fictitious_reg_mtx);
|
|
for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
|
|
seg = &vm_phys_fictitious_segs[segind];
|
|
if (seg->start == start && seg->end == end) {
|
|
seg->start = seg->end = 0;
|
|
fp = seg->first_page;
|
|
seg->first_page = NULL;
|
|
mtx_unlock(&vm_phys_fictitious_reg_mtx);
|
|
#ifdef VM_PHYSSEG_DENSE
|
|
if (pi < first_page || atop(end) >= vm_page_array_size)
|
|
#endif
|
|
free(fp, M_FICT_PAGES);
|
|
return;
|
|
}
|
|
}
|
|
mtx_unlock(&vm_phys_fictitious_reg_mtx);
|
|
KASSERT(0, ("Unregistering not registered fictitious range"));
|
|
}
|
|
|
|
/*
|
|
* Find the segment containing the given physical address.
|
|
*/
|
|
static int
|
|
vm_phys_paddr_to_segind(vm_paddr_t pa)
|
|
{
|
|
struct vm_phys_seg *seg;
|
|
int segind;
|
|
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
seg = &vm_phys_segs[segind];
|
|
if (pa >= seg->start && pa < seg->end)
|
|
return (segind);
|
|
}
|
|
panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
|
|
(uintmax_t)pa);
|
|
}
|
|
|
|
/*
|
|
* Free a contiguous, power of two-sized set of physical pages.
|
|
*
|
|
* The free page queues must be locked.
|
|
*/
|
|
void
|
|
vm_phys_free_pages(vm_page_t m, int order)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_phys_seg *seg;
|
|
vm_paddr_t pa;
|
|
vm_page_t m_buddy;
|
|
|
|
KASSERT(m->order == VM_NFREEORDER,
|
|
("vm_phys_free_pages: page %p has unexpected order %d",
|
|
m, m->order));
|
|
KASSERT(m->pool < VM_NFREEPOOL,
|
|
("vm_phys_free_pages: page %p has unexpected pool %d",
|
|
m, m->pool));
|
|
KASSERT(order < VM_NFREEORDER,
|
|
("vm_phys_free_pages: order %d is out of range", order));
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
seg = &vm_phys_segs[m->segind];
|
|
if (order < VM_NFREEORDER - 1) {
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
do {
|
|
pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
|
|
if (pa < seg->start || pa >= seg->end)
|
|
break;
|
|
m_buddy = &seg->first_page[atop(pa - seg->start)];
|
|
if (m_buddy->order != order)
|
|
break;
|
|
fl = (*seg->free_queues)[m_buddy->pool];
|
|
TAILQ_REMOVE(&fl[order].pl, m_buddy, pageq);
|
|
fl[order].lcnt--;
|
|
m_buddy->order = VM_NFREEORDER;
|
|
if (m_buddy->pool != m->pool)
|
|
vm_phys_set_pool(m->pool, m_buddy, order);
|
|
order++;
|
|
pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
|
|
m = &seg->first_page[atop(pa - seg->start)];
|
|
} while (order < VM_NFREEORDER - 1);
|
|
}
|
|
m->order = order;
|
|
fl = (*seg->free_queues)[m->pool];
|
|
TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
|
|
fl[order].lcnt++;
|
|
}
|
|
|
|
/*
|
|
* Free a contiguous, arbitrarily sized set of physical pages.
|
|
*
|
|
* The free page queues must be locked.
|
|
*/
|
|
void
|
|
vm_phys_free_contig(vm_page_t m, u_long npages)
|
|
{
|
|
u_int n;
|
|
int order;
|
|
|
|
/*
|
|
* Avoid unnecessary coalescing by freeing the pages in the largest
|
|
* possible power-of-two-sized subsets.
|
|
*/
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
for (;; npages -= n) {
|
|
/*
|
|
* Unsigned "min" is used here so that "order" is assigned
|
|
* "VM_NFREEORDER - 1" when "m"'s physical address is zero
|
|
* or the low-order bits of its physical address are zero
|
|
* because the size of a physical address exceeds the size of
|
|
* a long.
|
|
*/
|
|
order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
|
|
VM_NFREEORDER - 1);
|
|
n = 1 << order;
|
|
if (npages < n)
|
|
break;
|
|
vm_phys_free_pages(m, order);
|
|
m += n;
|
|
}
|
|
/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
|
|
for (; npages > 0; npages -= n) {
|
|
order = flsl(npages) - 1;
|
|
n = 1 << order;
|
|
vm_phys_free_pages(m, order);
|
|
m += n;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the pool for a contiguous, power of two-sized set of physical pages.
|
|
*/
|
|
void
|
|
vm_phys_set_pool(int pool, vm_page_t m, int order)
|
|
{
|
|
vm_page_t m_tmp;
|
|
|
|
for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
|
|
m_tmp->pool = pool;
|
|
}
|
|
|
|
/*
|
|
* Search for the given physical page "m" in the free lists. If the search
|
|
* succeeds, remove "m" from the free lists and return TRUE. Otherwise, return
|
|
* FALSE, indicating that "m" is not in the free lists.
|
|
*
|
|
* The free page queues must be locked.
|
|
*/
|
|
boolean_t
|
|
vm_phys_unfree_page(vm_page_t m)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_phys_seg *seg;
|
|
vm_paddr_t pa, pa_half;
|
|
vm_page_t m_set, m_tmp;
|
|
int order;
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
|
|
/*
|
|
* First, find the contiguous, power of two-sized set of free
|
|
* physical pages containing the given physical page "m" and
|
|
* assign it to "m_set".
|
|
*/
|
|
seg = &vm_phys_segs[m->segind];
|
|
for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
|
|
order < VM_NFREEORDER - 1; ) {
|
|
order++;
|
|
pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
|
|
if (pa >= seg->start)
|
|
m_set = &seg->first_page[atop(pa - seg->start)];
|
|
else
|
|
return (FALSE);
|
|
}
|
|
if (m_set->order < order)
|
|
return (FALSE);
|
|
if (m_set->order == VM_NFREEORDER)
|
|
return (FALSE);
|
|
KASSERT(m_set->order < VM_NFREEORDER,
|
|
("vm_phys_unfree_page: page %p has unexpected order %d",
|
|
m_set, m_set->order));
|
|
|
|
/*
|
|
* Next, remove "m_set" from the free lists. Finally, extract
|
|
* "m" from "m_set" using an iterative algorithm: While "m_set"
|
|
* is larger than a page, shrink "m_set" by returning the half
|
|
* of "m_set" that does not contain "m" to the free lists.
|
|
*/
|
|
fl = (*seg->free_queues)[m_set->pool];
|
|
order = m_set->order;
|
|
TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
|
|
fl[order].lcnt--;
|
|
m_set->order = VM_NFREEORDER;
|
|
while (order > 0) {
|
|
order--;
|
|
pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
|
|
if (m->phys_addr < pa_half)
|
|
m_tmp = &seg->first_page[atop(pa_half - seg->start)];
|
|
else {
|
|
m_tmp = m_set;
|
|
m_set = &seg->first_page[atop(pa_half - seg->start)];
|
|
}
|
|
m_tmp->order = order;
|
|
TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
|
|
fl[order].lcnt++;
|
|
}
|
|
KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
|
|
return (TRUE);
|
|
}
|
|
|
|
/*
|
|
* Try to zero one physical page. Used by an idle priority thread.
|
|
*/
|
|
boolean_t
|
|
vm_phys_zero_pages_idle(void)
|
|
{
|
|
static struct vm_freelist *fl = vm_phys_free_queues[0][0];
|
|
static int flind, oind, pind;
|
|
vm_page_t m, m_tmp;
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
for (;;) {
|
|
TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
|
|
for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
|
|
if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
|
|
vm_phys_unfree_page(m_tmp);
|
|
cnt.v_free_count--;
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
pmap_zero_page_idle(m_tmp);
|
|
m_tmp->flags |= PG_ZERO;
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
cnt.v_free_count++;
|
|
vm_phys_free_pages(m_tmp, 0);
|
|
vm_page_zero_count++;
|
|
cnt_prezero++;
|
|
return (TRUE);
|
|
}
|
|
}
|
|
}
|
|
oind++;
|
|
if (oind == VM_NFREEORDER) {
|
|
oind = 0;
|
|
pind++;
|
|
if (pind == VM_NFREEPOOL) {
|
|
pind = 0;
|
|
flind++;
|
|
if (flind == vm_nfreelists)
|
|
flind = 0;
|
|
}
|
|
fl = vm_phys_free_queues[flind][pind];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a contiguous set of physical pages of the given size
|
|
* "npages" from the free lists. All of the physical pages must be at
|
|
* or above the given physical address "low" and below the given
|
|
* physical address "high". The given value "alignment" determines the
|
|
* alignment of the first physical page in the set. If the given value
|
|
* "boundary" is non-zero, then the set of physical pages cannot cross
|
|
* any physical address boundary that is a multiple of that value. Both
|
|
* "alignment" and "boundary" must be a power of two.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
|
|
u_long alignment, vm_paddr_t boundary)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_phys_seg *seg;
|
|
vm_paddr_t pa, pa_last, size;
|
|
vm_page_t m, m_ret;
|
|
u_long npages_end;
|
|
int domain, flind, oind, order, pind;
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
#if VM_NDOMAIN > 1
|
|
domain = PCPU_GET(domain);
|
|
#else
|
|
domain = 0;
|
|
#endif
|
|
size = npages << PAGE_SHIFT;
|
|
KASSERT(size != 0,
|
|
("vm_phys_alloc_contig: size must not be 0"));
|
|
KASSERT((alignment & (alignment - 1)) == 0,
|
|
("vm_phys_alloc_contig: alignment must be a power of 2"));
|
|
KASSERT((boundary & (boundary - 1)) == 0,
|
|
("vm_phys_alloc_contig: boundary must be a power of 2"));
|
|
/* Compute the queue that is the best fit for npages. */
|
|
for (order = 0; (1 << order) < npages; order++);
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = (*vm_phys_lookup_lists[domain][flind])
|
|
[pind];
|
|
TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
|
|
/*
|
|
* A free list may contain physical pages
|
|
* from one or more segments.
|
|
*/
|
|
seg = &vm_phys_segs[m_ret->segind];
|
|
if (seg->start > high ||
|
|
low >= seg->end)
|
|
continue;
|
|
|
|
/*
|
|
* Is the size of this allocation request
|
|
* larger than the largest block size?
|
|
*/
|
|
if (order >= VM_NFREEORDER) {
|
|
/*
|
|
* Determine if a sufficient number
|
|
* of subsequent blocks to satisfy
|
|
* the allocation request are free.
|
|
*/
|
|
pa = VM_PAGE_TO_PHYS(m_ret);
|
|
pa_last = pa + size;
|
|
for (;;) {
|
|
pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
|
|
if (pa >= pa_last)
|
|
break;
|
|
if (pa < seg->start ||
|
|
pa >= seg->end)
|
|
break;
|
|
m = &seg->first_page[atop(pa - seg->start)];
|
|
if (m->order != VM_NFREEORDER - 1)
|
|
break;
|
|
}
|
|
/* If not, continue to the next block. */
|
|
if (pa < pa_last)
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Determine if the blocks are within the given range,
|
|
* satisfy the given alignment, and do not cross the
|
|
* given boundary.
|
|
*/
|
|
pa = VM_PAGE_TO_PHYS(m_ret);
|
|
if (pa >= low &&
|
|
pa + size <= high &&
|
|
(pa & (alignment - 1)) == 0 &&
|
|
((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (NULL);
|
|
done:
|
|
for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
|
|
fl = (*seg->free_queues)[m->pool];
|
|
TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
|
|
fl[m->order].lcnt--;
|
|
m->order = VM_NFREEORDER;
|
|
}
|
|
if (m_ret->pool != VM_FREEPOOL_DEFAULT)
|
|
vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
|
|
fl = (*seg->free_queues)[m_ret->pool];
|
|
vm_phys_split_pages(m_ret, oind, fl, order);
|
|
/* Return excess pages to the free lists. */
|
|
npages_end = roundup2(npages, 1 << imin(oind, order));
|
|
if (npages < npages_end)
|
|
vm_phys_free_contig(&m_ret[npages], npages_end - npages);
|
|
return (m_ret);
|
|
}
|
|
|
|
#ifdef DDB
|
|
/*
|
|
* Show the number of physical pages in each of the free lists.
|
|
*/
|
|
DB_SHOW_COMMAND(freepages, db_show_freepages)
|
|
{
|
|
struct vm_freelist *fl;
|
|
int flind, oind, pind;
|
|
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
db_printf("FREE LIST %d:\n"
|
|
"\n ORDER (SIZE) | NUMBER"
|
|
"\n ", flind);
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
db_printf(" | POOL %d", pind);
|
|
db_printf("\n-- ");
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
db_printf("-- -- ");
|
|
db_printf("--\n");
|
|
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
|
|
db_printf(" %2.2d (%6.6dK)", oind,
|
|
1 << (PAGE_SHIFT - 10 + oind));
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = vm_phys_free_queues[flind][pind];
|
|
db_printf(" | %6.6d", fl[oind].lcnt);
|
|
}
|
|
db_printf("\n");
|
|
}
|
|
db_printf("\n");
|
|
}
|
|
}
|
|
#endif
|