4a027d50c7
for the process, not a separate set for each thread). By default, the process now only has signal handlers installed for SIGVTALRM, SIGINFO and SIGCHLD. The thread kernel signal handler is installed for other signals on demand. This means that SIG_IGN and SIG_DFL processing is now left to the kernel, not the thread kernel. Change the signal dispatch to no longer use a signal thread, and call the signal handler using the stack of the thread that has the signal pending. Change the atomic lock method to use test-and-set asm code with a yield if blocked. This introduces separate locks for each type of object instead of blocking signals to prevent a context switch. It was this blocking of signals that caused the performance degradation the people have noted. This is a *big* change!
198 lines
6.9 KiB
C
198 lines
6.9 KiB
C
/*
|
|
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by John Birrell.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include <stdio.h>
|
|
#include <fcntl.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#ifdef _THREAD_SAFE
|
|
#include <pthread.h>
|
|
#include "pthread_private.h"
|
|
|
|
struct s_thread_info {
|
|
enum pthread_state state;
|
|
char *name;
|
|
};
|
|
|
|
/* Static variables: */
|
|
static const struct s_thread_info thread_info[] = {
|
|
{PS_RUNNING , "Running"},
|
|
{PS_SIGTHREAD , "Waiting on signal thread"},
|
|
{PS_MUTEX_WAIT , "Waiting on a mutex"},
|
|
{PS_COND_WAIT , "Waiting on a condition variable"},
|
|
{PS_FDLR_WAIT , "Waiting for a file read lock"},
|
|
{PS_FDLW_WAIT , "Waiting for a file write lock"},
|
|
{PS_FDR_WAIT , "Waiting for read"},
|
|
{PS_FDW_WAIT , "Waiting for write"},
|
|
{PS_FILE_WAIT , "Waiting for FILE lock"},
|
|
{PS_SELECT_WAIT , "Waiting on select"},
|
|
{PS_SLEEP_WAIT , "Sleeping"},
|
|
{PS_WAIT_WAIT , "Waiting process"},
|
|
{PS_SIGWAIT , "Waiting for a signal"},
|
|
{PS_JOIN , "Waiting to join"},
|
|
{PS_SUSPENDED , "Suspended"},
|
|
{PS_DEAD , "Dead"},
|
|
{PS_STATE_MAX , "Not a real state!"}
|
|
};
|
|
|
|
void
|
|
_thread_dump_info(void)
|
|
{
|
|
char s[128];
|
|
int fd;
|
|
int i;
|
|
int j;
|
|
pthread_t pthread;
|
|
|
|
/* Open the dump file for append and create it if necessary: */
|
|
if ((fd = _thread_sys_open("/tmp/uthread.dump", O_RDWR | O_CREAT | O_APPEND, 0666)) < 0) {
|
|
/* Can't open the dump file. */
|
|
} else {
|
|
/* Output a header for active threads: */
|
|
strcpy(s, "\n\n=============\nACTIVE THREADS\n\n");
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
|
|
/* Enter a loop to report each thread in the global list: */
|
|
for (pthread = _thread_link_list; pthread != NULL; pthread = pthread->nxt) {
|
|
/* Find the state: */
|
|
for (j = 0; j < (sizeof(thread_info) / sizeof(struct s_thread_info)) - 1; j++)
|
|
if (thread_info[j].state == pthread->state)
|
|
break;
|
|
/* Output a record for the current thread: */
|
|
sprintf(s, "--------------------\nThread %p (%s) prio %3d state %s [%s:%d]\n",
|
|
pthread, (pthread->name == NULL) ? "":pthread->name, pthread->pthread_priority, thread_info[j].name,pthread->fname,pthread->lineno);
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
|
|
/* Check if this is the running thread: */
|
|
if (pthread == _thread_run) {
|
|
/* Output a record for the running thread: */
|
|
strcpy(s, "This is the running thread\n");
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
}
|
|
/* Check if this is the initial thread: */
|
|
if (pthread == _thread_initial) {
|
|
/* Output a record for the initial thread: */
|
|
strcpy(s, "This is the initial thread\n");
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
}
|
|
/* Process according to thread state: */
|
|
switch (pthread->state) {
|
|
/* File descriptor read lock wait: */
|
|
case PS_FDLR_WAIT:
|
|
case PS_FDLW_WAIT:
|
|
case PS_FDR_WAIT:
|
|
case PS_FDW_WAIT:
|
|
/* Write the lock details: */
|
|
sprintf(s, "fd %d[%s:%d]", pthread->data.fd.fd, pthread->data.fd.fname, pthread->data.fd.branch);
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
sprintf(s, "owner %pr/%pw\n", _thread_fd_table[pthread->data.fd.fd]->r_owner, _thread_fd_table[pthread->data.fd.fd]->w_owner);
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
break;
|
|
case PS_SIGWAIT:
|
|
sprintf(s, "sigmask 0x%08lx\n", pthread->sigmask);
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
break;
|
|
|
|
/*
|
|
* Trap other states that are not explicitly
|
|
* coded to dump information:
|
|
*/
|
|
default:
|
|
/* Nothing to do here. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check if there are no dead threads: */
|
|
if (_thread_dead == NULL) {
|
|
/* Output a record: */
|
|
strcpy(s, "\n\nTHERE ARE NO DEAD THREADS\n");
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
} else {
|
|
/* Output a header for dead threads: */
|
|
strcpy(s, "\n\nDEAD THREADS\n\n");
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
|
|
/*
|
|
* Enter a loop to report each thread in the global
|
|
* dead thread list:
|
|
*/
|
|
for (pthread = _thread_dead; pthread != NULL; pthread = pthread->nxt) {
|
|
/* Output a record for the current thread: */
|
|
sprintf(s, "Thread %p prio %3d [%s:%d]\n", pthread, pthread->pthread_priority,pthread->fname,pthread->lineno);
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
}
|
|
}
|
|
|
|
/* Output a header for file descriptors: */
|
|
strcpy(s, "\n\n=============\nFILE DESCRIPTOR TABLE\n\n");
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
|
|
/* Enter a loop to report file descriptor lock usage: */
|
|
for (i = 0; i < _thread_dtablesize; i++) {
|
|
/*
|
|
* Check if memory is allocated for this file
|
|
* descriptor:
|
|
*/
|
|
if (_thread_fd_table[i] != NULL) {
|
|
/* Report the file descriptor lock status: */
|
|
sprintf(s, "fd[%3d] read owner %p count %d [%s:%d]\n write owner %p count %d [%s:%d]\n",
|
|
i,
|
|
_thread_fd_table[i]->r_owner,
|
|
_thread_fd_table[i]->r_lockcount,
|
|
_thread_fd_table[i]->r_fname,
|
|
_thread_fd_table[i]->r_lineno,
|
|
_thread_fd_table[i]->w_owner,
|
|
_thread_fd_table[i]->w_lockcount,
|
|
_thread_fd_table[i]->w_fname,
|
|
_thread_fd_table[i]->w_lineno);
|
|
_thread_sys_write(fd, s, strlen(s));
|
|
}
|
|
}
|
|
|
|
/* Close the dump file: */
|
|
_thread_sys_close(fd);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Set the thread name for debug: */
|
|
void
|
|
pthread_set_name_np(pthread_t thread, char *name)
|
|
{
|
|
/* Check if the caller has specified a valid thread: */
|
|
if (thread != NULL && thread->magic == PTHREAD_MAGIC)
|
|
thread->name = strdup(name);
|
|
return;
|
|
}
|
|
#endif
|