freebsd-dev/sys/powerpc/powermac/cuda.c
2008-12-13 18:49:01 +00:00

717 lines
16 KiB
C

/*-
* Copyright (c) 2006 Michael Lorenz
* Copyright 2008 by Nathan Whitehorn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/openfirm.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/pio.h>
#include <machine/resource.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <sys/rman.h>
#include <dev/adb/adb.h>
#include "cudavar.h"
#include "viareg.h"
/*
* MacIO interface
*/
static int cuda_probe(device_t);
static int cuda_attach(device_t);
static int cuda_detach(device_t);
static u_int cuda_adb_send(device_t dev, u_char command_byte, int len,
u_char *data, u_char poll);
static u_int cuda_adb_autopoll(device_t dev, uint16_t mask);
static void cuda_poll(device_t dev);
static void cuda_send_inbound(struct cuda_softc *sc);
static void cuda_send_outbound(struct cuda_softc *sc);
static device_method_t cuda_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cuda_probe),
DEVMETHOD(device_attach, cuda_attach),
DEVMETHOD(device_detach, cuda_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
/* bus interface, for ADB root */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* ADB bus interface */
DEVMETHOD(adb_hb_send_raw_packet, cuda_adb_send),
DEVMETHOD(adb_hb_controller_poll, cuda_poll),
DEVMETHOD(adb_hb_set_autopoll_mask, cuda_adb_autopoll),
{ 0, 0 },
};
static driver_t cuda_driver = {
"cuda",
cuda_methods,
sizeof(struct cuda_softc),
};
static devclass_t cuda_devclass;
DRIVER_MODULE(cuda, macio, cuda_driver, cuda_devclass, 0, 0);
DRIVER_MODULE(adb, cuda, adb_driver, adb_devclass, 0, 0);
static void cuda_intr(void *arg);
static uint8_t cuda_read_reg(struct cuda_softc *sc, u_int offset);
static void cuda_write_reg(struct cuda_softc *sc, u_int offset, uint8_t value);
static void cuda_idle(struct cuda_softc *);
static void cuda_tip(struct cuda_softc *);
static void cuda_clear_tip(struct cuda_softc *);
static void cuda_in(struct cuda_softc *);
static void cuda_out(struct cuda_softc *);
static void cuda_toggle_ack(struct cuda_softc *);
static void cuda_ack_off(struct cuda_softc *);
static int cuda_intr_state(struct cuda_softc *);
static int
cuda_probe(device_t dev)
{
const char *type = ofw_bus_get_type(dev);
if (strcmp(type, "via-cuda") != 0)
return (ENXIO);
device_set_desc(dev, CUDA_DEVSTR);
return (0);
}
static int
cuda_attach(device_t dev)
{
struct cuda_softc *sc;
volatile int i;
uint8_t reg;
phandle_t node,child;
sc = device_get_softc(dev);
sc->sc_dev = dev;
sc->sc_memrid = 0;
sc->sc_memr = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_memrid, RF_ACTIVE);
if (sc->sc_memr == NULL) {
device_printf(dev, "Could not alloc mem resource!\n");
return (ENXIO);
}
sc->sc_irqrid = 0;
sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irqrid,
RF_ACTIVE);
if (sc->sc_irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
return (ENXIO);
}
if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_MISC | INTR_MPSAFE
| INTR_ENTROPY, NULL, cuda_intr, dev, &sc->sc_ih) != 0) {
device_printf(dev, "could not setup interrupt\n");
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irqrid,
sc->sc_irq);
return (ENXIO);
}
mtx_init(&sc->sc_mutex,"cuda",NULL,MTX_DEF | MTX_RECURSE);
sc->sc_sent = 0;
sc->sc_received = 0;
sc->sc_waiting = 0;
sc->sc_polling = 0;
sc->sc_state = CUDA_NOTREADY;
sc->sc_autopoll = 0;
STAILQ_INIT(&sc->sc_inq);
STAILQ_INIT(&sc->sc_outq);
STAILQ_INIT(&sc->sc_freeq);
for (i = 0; i < CUDA_MAXPACKETS; i++)
STAILQ_INSERT_TAIL(&sc->sc_freeq, &sc->sc_pkts[i], pkt_q);
/* Init CUDA */
reg = cuda_read_reg(sc, vDirB);
reg |= 0x30; /* register B bits 4 and 5: outputs */
cuda_write_reg(sc, vDirB, reg);
reg = cuda_read_reg(sc, vDirB);
reg &= 0xf7; /* register B bit 3: input */
cuda_write_reg(sc, vDirB, reg);
reg = cuda_read_reg(sc, vACR);
reg &= ~vSR_OUT; /* make sure SR is set to IN */
cuda_write_reg(sc, vACR, reg);
cuda_write_reg(sc, vACR, (cuda_read_reg(sc, vACR) | 0x0c) & ~0x10);
sc->sc_state = CUDA_IDLE; /* used by all types of hardware */
cuda_write_reg(sc, vIER, 0x84); /* make sure VIA interrupts are on */
cuda_idle(sc); /* reset ADB */
/* Reset CUDA */
i = cuda_read_reg(sc, vSR); /* clear interrupt */
cuda_write_reg(sc, vIER, 0x04); /* no interrupts while clearing */
cuda_idle(sc); /* reset state to idle */
DELAY(150);
cuda_tip(sc); /* signal start of frame */
DELAY(150);
cuda_toggle_ack(sc);
DELAY(150);
cuda_clear_tip(sc);
DELAY(150);
cuda_idle(sc); /* back to idle state */
i = cuda_read_reg(sc, vSR); /* clear interrupt */
cuda_write_reg(sc, vIER, 0x84); /* ints ok now */
/* Initialize child buses (ADB) */
node = ofw_bus_get_node(dev);
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
char name[32];
memset(name, 0, sizeof(name));
OF_getprop(child, "name", name, sizeof(name));
if (bootverbose)
device_printf(dev, "CUDA child <%s>\n",name);
if (strncmp(name, "adb", 4) == 0) {
sc->adb_bus = device_add_child(dev,"adb",-1);
}
}
return (bus_generic_attach(dev));
}
static int cuda_detach(device_t dev) {
struct cuda_softc *sc;
sc = device_get_softc(dev);
bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irqrid, sc->sc_irq);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_memrid, sc->sc_memr);
mtx_destroy(&sc->sc_mutex);
return (bus_generic_detach(dev));
}
static uint8_t
cuda_read_reg(struct cuda_softc *sc, u_int offset) {
return (bus_read_1(sc->sc_memr, offset));
}
static void
cuda_write_reg(struct cuda_softc *sc, u_int offset, uint8_t value) {
bus_write_1(sc->sc_memr, offset, value);
}
static void
cuda_idle(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vBufB);
reg |= (vPB4 | vPB5);
cuda_write_reg(sc, vBufB, reg);
}
static void
cuda_tip(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vBufB);
reg &= ~vPB5;
cuda_write_reg(sc, vBufB, reg);
}
static void
cuda_clear_tip(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vBufB);
reg |= vPB5;
cuda_write_reg(sc, vBufB, reg);
}
static void
cuda_in(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vACR);
reg &= ~vSR_OUT;
cuda_write_reg(sc, vACR, reg);
}
static void
cuda_out(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vACR);
reg |= vSR_OUT;
cuda_write_reg(sc, vACR, reg);
}
static void
cuda_toggle_ack(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vBufB);
reg ^= vPB4;
cuda_write_reg(sc, vBufB, reg);
}
static void
cuda_ack_off(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vBufB);
reg |= vPB4;
cuda_write_reg(sc, vBufB, reg);
}
static int
cuda_intr_state(struct cuda_softc *sc)
{
return ((cuda_read_reg(sc, vBufB) & vPB3) == 0);
}
static int
cuda_send(void *cookie, int poll, int length, uint8_t *msg)
{
struct cuda_softc *sc = cookie;
device_t dev = sc->sc_dev;
struct cuda_packet *pkt;
if (sc->sc_state == CUDA_NOTREADY)
return (-1);
mtx_lock(&sc->sc_mutex);
pkt = STAILQ_FIRST(&sc->sc_freeq);
if (pkt == NULL) {
mtx_unlock(&sc->sc_mutex);
return (-1);
}
pkt->len = length - 1;
pkt->type = msg[0];
memcpy(pkt->data, &msg[1], pkt->len);
STAILQ_REMOVE_HEAD(&sc->sc_freeq, pkt_q);
STAILQ_INSERT_TAIL(&sc->sc_outq, pkt, pkt_q);
/*
* If we already are sending a packet, we should bail now that this
* one has been added to the queue.
*/
if (sc->sc_waiting) {
mtx_unlock(&sc->sc_mutex);
return (0);
}
cuda_send_outbound(sc);
mtx_unlock(&sc->sc_mutex);
if (sc->sc_polling || poll || cold)
cuda_poll(dev);
return (0);
}
static void
cuda_send_outbound(struct cuda_softc *sc)
{
struct cuda_packet *pkt;
mtx_assert(&sc->sc_mutex, MA_OWNED);
pkt = STAILQ_FIRST(&sc->sc_outq);
if (pkt == NULL)
return;
sc->sc_out_length = pkt->len + 1;
memcpy(sc->sc_out, &pkt->type, pkt->len + 1);
sc->sc_sent = 0;
STAILQ_REMOVE_HEAD(&sc->sc_outq, pkt_q);
STAILQ_INSERT_TAIL(&sc->sc_freeq, pkt, pkt_q);
sc->sc_waiting = 1;
cuda_poll(sc->sc_dev);
DELAY(150);
if (sc->sc_state == CUDA_IDLE && !cuda_intr_state(sc)) {
sc->sc_state = CUDA_OUT;
cuda_out(sc);
cuda_write_reg(sc, vSR, sc->sc_out[0]);
cuda_ack_off(sc);
cuda_tip(sc);
}
}
static void
cuda_send_inbound(struct cuda_softc *sc)
{
device_t dev;
struct cuda_packet *pkt;
dev = sc->sc_dev;
mtx_lock(&sc->sc_mutex);
while ((pkt = STAILQ_FIRST(&sc->sc_inq)) != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_inq, pkt_q);
mtx_unlock(&sc->sc_mutex);
/* check if we have a handler for this message */
switch (pkt->type) {
case CUDA_ADB:
if (pkt->len > 2) {
adb_receive_raw_packet(sc->adb_bus,
pkt->data[0],pkt->data[1],
pkt->len - 2,&pkt->data[2]);
} else {
adb_receive_raw_packet(sc->adb_bus,
pkt->data[0],pkt->data[1],0,NULL);
}
break;
case CUDA_PSEUDO:
mtx_lock(&sc->sc_mutex);
if (pkt->data[0] == CMD_AUTOPOLL)
sc->sc_autopoll = 1;
mtx_unlock(&sc->sc_mutex);
break;
case CUDA_ERROR:
/*
* CUDA will throw errors if we miss a race between
* sending and receiving packets. This is already
* handled when we abort packet output to handle
* this packet in cuda_intr(). Thus, we ignore
* these messages.
*/
break;
default:
device_printf(dev,"unknown CUDA command %d\n",
pkt->type);
break;
}
mtx_lock(&sc->sc_mutex);
STAILQ_INSERT_TAIL(&sc->sc_freeq, pkt, pkt_q);
}
mtx_unlock(&sc->sc_mutex);
}
static void
cuda_poll(device_t dev)
{
struct cuda_softc *sc = device_get_softc(dev);
if (sc->sc_state == CUDA_IDLE && !cuda_intr_state(sc) &&
!sc->sc_waiting)
return;
cuda_intr(dev);
}
static void
cuda_intr(void *arg)
{
device_t dev;
struct cuda_softc *sc;
int i, ending, restart_send, process_inbound;
uint8_t reg;
dev = (device_t)arg;
sc = device_get_softc(dev);
mtx_lock(&sc->sc_mutex);
restart_send = 0;
process_inbound = 0;
reg = cuda_read_reg(sc, vIFR);
if ((reg & vSR_INT) != vSR_INT) {
mtx_unlock(&sc->sc_mutex);
return;
}
cuda_write_reg(sc, vIFR, 0x7f); /* Clear interrupt */
switch_start:
switch (sc->sc_state) {
case CUDA_IDLE:
/*
* This is an unexpected packet, so grab the first (dummy)
* byte, set up the proper vars, and tell the chip we are
* starting to receive the packet by setting the TIP bit.
*/
sc->sc_in[1] = cuda_read_reg(sc, vSR);
if (cuda_intr_state(sc) == 0) {
/* must have been a fake start */
if (sc->sc_waiting) {
/* start over */
DELAY(150);
sc->sc_state = CUDA_OUT;
sc->sc_sent = 0;
cuda_out(sc);
cuda_write_reg(sc, vSR, sc->sc_out[1]);
cuda_ack_off(sc);
cuda_tip(sc);
}
break;
}
cuda_in(sc);
cuda_tip(sc);
sc->sc_received = 1;
sc->sc_state = CUDA_IN;
break;
case CUDA_IN:
sc->sc_in[sc->sc_received] = cuda_read_reg(sc, vSR);
ending = 0;
if (sc->sc_received > 255) {
/* bitch only once */
if (sc->sc_received == 256) {
device_printf(dev,"input overflow\n");
ending = 1;
}
} else
sc->sc_received++;
/* intr off means this is the last byte (end of frame) */
if (cuda_intr_state(sc) == 0) {
ending = 1;
} else {
cuda_toggle_ack(sc);
}
if (ending == 1) { /* end of message? */
struct cuda_packet *pkt;
/* reset vars and signal the end of this frame */
cuda_idle(sc);
/* Queue up the packet */
pkt = STAILQ_FIRST(&sc->sc_freeq);
if (pkt != NULL) {
/* If we have a free packet, process it */
pkt->len = sc->sc_received - 2;
pkt->type = sc->sc_in[1];
memcpy(pkt->data, &sc->sc_in[2], pkt->len);
STAILQ_REMOVE_HEAD(&sc->sc_freeq, pkt_q);
STAILQ_INSERT_TAIL(&sc->sc_inq, pkt, pkt_q);
process_inbound = 1;
}
sc->sc_state = CUDA_IDLE;
sc->sc_received = 0;
/*
* If there is something waiting to be sent out,
* set everything up and send the first byte.
*/
if (sc->sc_waiting == 1) {
DELAY(1500); /* required */
sc->sc_sent = 0;
sc->sc_state = CUDA_OUT;
/*
* If the interrupt is on, we were too slow
* and the chip has already started to send
* something to us, so back out of the write
* and start a read cycle.
*/
if (cuda_intr_state(sc)) {
cuda_in(sc);
cuda_idle(sc);
sc->sc_sent = 0;
sc->sc_state = CUDA_IDLE;
sc->sc_received = 0;
DELAY(150);
goto switch_start;
}
/*
* If we got here, it's ok to start sending
* so load the first byte and tell the chip
* we want to send.
*/
cuda_out(sc);
cuda_write_reg(sc, vSR,
sc->sc_out[sc->sc_sent]);
cuda_ack_off(sc);
cuda_tip(sc);
}
}
break;
case CUDA_OUT:
i = cuda_read_reg(sc, vSR); /* reset SR-intr in IFR */
sc->sc_sent++;
if (cuda_intr_state(sc)) { /* ADB intr low during write */
cuda_in(sc); /* make sure SR is set to IN */
cuda_idle(sc);
sc->sc_sent = 0; /* must start all over */
sc->sc_state = CUDA_IDLE; /* new state */
sc->sc_received = 0;
sc->sc_waiting = 1; /* must retry when done with
* read */
DELAY(150);
goto switch_start; /* process next state right
* now */
break;
}
if (sc->sc_out_length == sc->sc_sent) { /* check for done */
sc->sc_waiting = 0; /* done writing */
sc->sc_state = CUDA_IDLE; /* signal bus is idle */
cuda_in(sc);
cuda_idle(sc);
} else {
/* send next byte */
cuda_write_reg(sc, vSR, sc->sc_out[sc->sc_sent]);
cuda_toggle_ack(sc); /* signal byte ready to
* shift */
}
break;
case CUDA_NOTREADY:
break;
default:
break;
}
mtx_unlock(&sc->sc_mutex);
if (process_inbound)
cuda_send_inbound(sc);
mtx_lock(&sc->sc_mutex);
/* If we have another packet waiting, set it up */
if (!sc->sc_waiting && sc->sc_state == CUDA_IDLE)
cuda_send_outbound(sc);
mtx_unlock(&sc->sc_mutex);
}
static u_int
cuda_adb_send(device_t dev, u_char command_byte, int len, u_char *data,
u_char poll)
{
struct cuda_softc *sc = device_get_softc(dev);
uint8_t packet[16];
int i;
/* construct an ADB command packet and send it */
packet[0] = CUDA_ADB;
packet[1] = command_byte;
for (i = 0; i < len; i++)
packet[i + 2] = data[i];
cuda_send(sc, poll, len + 2, packet);
return (0);
}
static u_int
cuda_adb_autopoll(device_t dev, uint16_t mask) {
struct cuda_softc *sc = device_get_softc(dev);
uint8_t cmd[] = {CUDA_PSEUDO, CMD_AUTOPOLL, mask != 0};
mtx_lock(&sc->sc_mutex);
if (cmd[2] == sc->sc_autopoll) {
mtx_unlock(&sc->sc_mutex);
return (0);
}
sc->sc_autopoll = -1;
cuda_send(sc, 1, 3, cmd);
mtx_unlock(&sc->sc_mutex);
return (0);
}