freebsd-dev/sys/nfsclient/nfs_vnops.c
John Baldwin 3b14c753ff Revert 195703 and 195821 as this special stop handling in NFS is now
implemented via VFCF_SBDRY rather than passing PBDRY to individual
sleep calls.
2013-03-13 21:06:03 +00:00

3543 lines
92 KiB
C

/*-
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)nfs_vnops.c 8.16 (Berkeley) 5/27/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* vnode op calls for Sun NFS version 2 and 3
*/
#include "opt_inet.h"
#include "opt_kdtrace.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/resourcevar.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/jail.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/namei.h>
#include <sys/socket.h>
#include <sys/vnode.h>
#include <sys/dirent.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/signalvar.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <nfs/nfsproto.h>
#include <nfsclient/nfs.h>
#include <nfsclient/nfsnode.h>
#include <nfsclient/nfsmount.h>
#include <nfs/nfs_kdtrace.h>
#include <nfs/nfs_lock.h>
#include <nfs/xdr_subs.h>
#include <nfsclient/nfsm_subs.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <machine/stdarg.h>
#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
dtrace_nfsclient_accesscache_flush_probe_func_t
dtrace_nfsclient_accesscache_flush_done_probe;
uint32_t nfsclient_accesscache_flush_done_id;
dtrace_nfsclient_accesscache_get_probe_func_t
dtrace_nfsclient_accesscache_get_hit_probe,
dtrace_nfsclient_accesscache_get_miss_probe;
uint32_t nfsclient_accesscache_get_hit_id;
uint32_t nfsclient_accesscache_get_miss_id;
dtrace_nfsclient_accesscache_load_probe_func_t
dtrace_nfsclient_accesscache_load_done_probe;
uint32_t nfsclient_accesscache_load_done_id;
#endif /* !KDTRACE_HOOKS */
/* Defs */
#define TRUE 1
#define FALSE 0
/*
* Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
* calls are not in getblk() and brelse() so that they would not be necessary
* here.
*/
#ifndef B_VMIO
#define vfs_busy_pages(bp, f)
#endif
static vop_read_t nfsfifo_read;
static vop_write_t nfsfifo_write;
static vop_close_t nfsfifo_close;
static int nfs_flush(struct vnode *, int, int);
static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *);
static vop_lookup_t nfs_lookup;
static vop_create_t nfs_create;
static vop_mknod_t nfs_mknod;
static vop_open_t nfs_open;
static vop_close_t nfs_close;
static vop_access_t nfs_access;
static vop_getattr_t nfs_getattr;
static vop_setattr_t nfs_setattr;
static vop_read_t nfs_read;
static vop_fsync_t nfs_fsync;
static vop_remove_t nfs_remove;
static vop_link_t nfs_link;
static vop_rename_t nfs_rename;
static vop_mkdir_t nfs_mkdir;
static vop_rmdir_t nfs_rmdir;
static vop_symlink_t nfs_symlink;
static vop_readdir_t nfs_readdir;
static vop_strategy_t nfs_strategy;
static int nfs_lookitup(struct vnode *, const char *, int,
struct ucred *, struct thread *, struct nfsnode **);
static int nfs_sillyrename(struct vnode *, struct vnode *,
struct componentname *);
static vop_access_t nfsspec_access;
static vop_readlink_t nfs_readlink;
static vop_print_t nfs_print;
static vop_advlock_t nfs_advlock;
static vop_advlockasync_t nfs_advlockasync;
/*
* Global vfs data structures for nfs
*/
struct vop_vector nfs_vnodeops = {
.vop_default = &default_vnodeops,
.vop_access = nfs_access,
.vop_advlock = nfs_advlock,
.vop_advlockasync = nfs_advlockasync,
.vop_close = nfs_close,
.vop_create = nfs_create,
.vop_fsync = nfs_fsync,
.vop_getattr = nfs_getattr,
.vop_getpages = nfs_getpages,
.vop_putpages = nfs_putpages,
.vop_inactive = nfs_inactive,
.vop_link = nfs_link,
.vop_lookup = nfs_lookup,
.vop_mkdir = nfs_mkdir,
.vop_mknod = nfs_mknod,
.vop_open = nfs_open,
.vop_print = nfs_print,
.vop_read = nfs_read,
.vop_readdir = nfs_readdir,
.vop_readlink = nfs_readlink,
.vop_reclaim = nfs_reclaim,
.vop_remove = nfs_remove,
.vop_rename = nfs_rename,
.vop_rmdir = nfs_rmdir,
.vop_setattr = nfs_setattr,
.vop_strategy = nfs_strategy,
.vop_symlink = nfs_symlink,
.vop_write = nfs_write,
};
struct vop_vector nfs_fifoops = {
.vop_default = &fifo_specops,
.vop_access = nfsspec_access,
.vop_close = nfsfifo_close,
.vop_fsync = nfs_fsync,
.vop_getattr = nfs_getattr,
.vop_inactive = nfs_inactive,
.vop_print = nfs_print,
.vop_read = nfsfifo_read,
.vop_reclaim = nfs_reclaim,
.vop_setattr = nfs_setattr,
.vop_write = nfsfifo_write,
};
static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
struct componentname *cnp, struct vattr *vap);
static int nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
struct ucred *cred, struct thread *td);
static int nfs_renamerpc(struct vnode *fdvp, const char *fnameptr,
int fnamelen, struct vnode *tdvp,
const char *tnameptr, int tnamelen,
struct ucred *cred, struct thread *td);
static int nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
struct sillyrename *sp);
/*
* Global variables
*/
struct mtx nfs_iod_mtx;
enum nfsiod_state nfs_iodwant[NFS_MAXASYNCDAEMON];
struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
int nfs_numasync = 0;
#define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1))
SYSCTL_DECL(_vfs_oldnfs);
static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
SYSCTL_INT(_vfs_oldnfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
&nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
static int nfs_prime_access_cache = 0;
SYSCTL_INT(_vfs_oldnfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
&nfs_prime_access_cache, 0,
"Prime NFS ACCESS cache when fetching attributes");
static int nfsv3_commit_on_close = 0;
SYSCTL_INT(_vfs_oldnfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
&nfsv3_commit_on_close, 0, "write+commit on close, else only write");
static int nfs_clean_pages_on_close = 1;
SYSCTL_INT(_vfs_oldnfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
&nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
int nfs_directio_enable = 0;
SYSCTL_INT(_vfs_oldnfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
&nfs_directio_enable, 0, "Enable NFS directio");
/*
* This sysctl allows other processes to mmap a file that has been opened
* O_DIRECT by a process. In general, having processes mmap the file while
* Direct IO is in progress can lead to Data Inconsistencies. But, we allow
* this by default to prevent DoS attacks - to prevent a malicious user from
* opening up files O_DIRECT preventing other users from mmap'ing these
* files. "Protected" environments where stricter consistency guarantees are
* required can disable this knob. The process that opened the file O_DIRECT
* cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
* meaningful.
*/
int nfs_directio_allow_mmap = 1;
SYSCTL_INT(_vfs_oldnfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
&nfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
#if 0
SYSCTL_INT(_vfs_oldnfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
&nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
SYSCTL_INT(_vfs_oldnfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
&nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
#endif
#define NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY \
| NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE \
| NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
/*
* SMP Locking Note :
* The list of locks after the description of the lock is the ordering
* of other locks acquired with the lock held.
* np->n_mtx : Protects the fields in the nfsnode.
VM Object Lock
VI_MTX (acquired indirectly)
* nmp->nm_mtx : Protects the fields in the nfsmount.
rep->r_mtx
* nfs_iod_mtx : Global lock, protects shared nfsiod state.
* nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
nmp->nm_mtx
rep->r_mtx
* rep->r_mtx : Protects the fields in an nfsreq.
*/
static int
nfs3_access_otw(struct vnode *vp, int wmode, struct thread *td,
struct ucred *cred, uint32_t *retmode)
{
const int v3 = 1;
u_int32_t *tl;
int error = 0, attrflag, i, lrupos;
struct mbuf *mreq, *mrep, *md, *mb;
caddr_t bpos, dpos;
u_int32_t rmode;
struct nfsnode *np = VTONFS(vp);
nfsstats.rpccnt[NFSPROC_ACCESS]++;
mreq = m_get2(NFSX_FH(v3) + NFSX_UNSIGNED, M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(vp, v3);
tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED);
*tl = txdr_unsigned(wmode);
nfsm_request(vp, NFSPROC_ACCESS, td, cred);
nfsm_postop_attr(vp, attrflag);
if (!error) {
lrupos = 0;
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
rmode = fxdr_unsigned(u_int32_t, *tl);
mtx_lock(&np->n_mtx);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
if (np->n_accesscache[i].uid == cred->cr_uid) {
np->n_accesscache[i].mode = rmode;
np->n_accesscache[i].stamp = time_second;
break;
}
if (i > 0 && np->n_accesscache[i].stamp <
np->n_accesscache[lrupos].stamp)
lrupos = i;
}
if (i == NFS_ACCESSCACHESIZE) {
np->n_accesscache[lrupos].uid = cred->cr_uid;
np->n_accesscache[lrupos].mode = rmode;
np->n_accesscache[lrupos].stamp = time_second;
}
mtx_unlock(&np->n_mtx);
if (retmode != NULL)
*retmode = rmode;
KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
}
m_freem(mrep);
nfsmout:
#ifdef KDTRACE_HOOKS
if (error) {
KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
error);
}
#endif
return (error);
}
/*
* nfs access vnode op.
* For nfs version 2, just return ok. File accesses may fail later.
* For nfs version 3, use the access rpc to check accessibility. If file modes
* are changed on the server, accesses might still fail later.
*/
static int
nfs_access(struct vop_access_args *ap)
{
struct vnode *vp = ap->a_vp;
int error = 0, i, gotahit;
u_int32_t mode, rmode, wmode;
int v3 = NFS_ISV3(vp);
struct nfsnode *np = VTONFS(vp);
/*
* Disallow write attempts on filesystems mounted read-only;
* unless the file is a socket, fifo, or a block or character
* device resident on the filesystem.
*/
if ((ap->a_accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
switch (vp->v_type) {
case VREG:
case VDIR:
case VLNK:
return (EROFS);
default:
break;
}
}
/*
* For nfs v3, check to see if we have done this recently, and if
* so return our cached result instead of making an ACCESS call.
* If not, do an access rpc, otherwise you are stuck emulating
* ufs_access() locally using the vattr. This may not be correct,
* since the server may apply other access criteria such as
* client uid-->server uid mapping that we do not know about.
*/
if (v3) {
if (ap->a_accmode & VREAD)
mode = NFSV3ACCESS_READ;
else
mode = 0;
if (vp->v_type != VDIR) {
if (ap->a_accmode & VWRITE)
mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
if (ap->a_accmode & VEXEC)
mode |= NFSV3ACCESS_EXECUTE;
} else {
if (ap->a_accmode & VWRITE)
mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
NFSV3ACCESS_DELETE);
if (ap->a_accmode & VEXEC)
mode |= NFSV3ACCESS_LOOKUP;
}
/* XXX safety belt, only make blanket request if caching */
if (nfsaccess_cache_timeout > 0) {
wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
} else {
wmode = mode;
}
/*
* Does our cached result allow us to give a definite yes to
* this request?
*/
gotahit = 0;
mtx_lock(&np->n_mtx);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
if (time_second < (np->n_accesscache[i].stamp +
nfsaccess_cache_timeout) &&
(np->n_accesscache[i].mode & mode) == mode) {
nfsstats.accesscache_hits++;
gotahit = 1;
}
break;
}
}
mtx_unlock(&np->n_mtx);
#ifdef KDTRACE_HOOKS
if (gotahit)
KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
ap->a_cred->cr_uid, mode);
else
KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
ap->a_cred->cr_uid, mode);
#endif
if (gotahit == 0) {
/*
* Either a no, or a don't know. Go to the wire.
*/
nfsstats.accesscache_misses++;
error = nfs3_access_otw(vp, wmode, ap->a_td, ap->a_cred,
&rmode);
if (!error) {
if ((rmode & mode) != mode)
error = EACCES;
}
}
return (error);
} else {
if ((error = nfsspec_access(ap)) != 0) {
return (error);
}
/*
* Attempt to prevent a mapped root from accessing a file
* which it shouldn't. We try to read a byte from the file
* if the user is root and the file is not zero length.
* After calling nfsspec_access, we should have the correct
* file size cached.
*/
mtx_lock(&np->n_mtx);
if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
&& VTONFS(vp)->n_size > 0) {
struct iovec aiov;
struct uio auio;
char buf[1];
mtx_unlock(&np->n_mtx);
aiov.iov_base = buf;
aiov.iov_len = 1;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_offset = 0;
auio.uio_resid = 1;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_READ;
auio.uio_td = ap->a_td;
if (vp->v_type == VREG)
error = nfs_readrpc(vp, &auio, ap->a_cred);
else if (vp->v_type == VDIR) {
char* bp;
bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
aiov.iov_base = bp;
aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
error = nfs_readdirrpc(vp, &auio, ap->a_cred);
free(bp, M_TEMP);
} else if (vp->v_type == VLNK)
error = nfs_readlinkrpc(vp, &auio, ap->a_cred);
else
error = EACCES;
} else
mtx_unlock(&np->n_mtx);
return (error);
}
}
int nfs_otw_getattr_avoid = 0;
/*
* nfs open vnode op
* Check to see if the type is ok
* and that deletion is not in progress.
* For paged in text files, you will need to flush the page cache
* if consistency is lost.
*/
/* ARGSUSED */
static int
nfs_open(struct vop_open_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct vattr vattr;
int error;
int fmode = ap->a_mode;
struct ucred *cred;
if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
return (EOPNOTSUPP);
/*
* Get a valid lease. If cached data is stale, flush it.
*/
mtx_lock(&np->n_mtx);
if (np->n_flag & NMODIFIED) {
mtx_unlock(&np->n_mtx);
error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error == EINTR || error == EIO)
return (error);
mtx_lock(&np->n_mtx);
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
if (vp->v_type == VDIR)
np->n_direofoffset = 0;
mtx_unlock(&np->n_mtx);
error = VOP_GETATTR(vp, &vattr, ap->a_cred);
if (error)
return (error);
mtx_lock(&np->n_mtx);
np->n_mtime = vattr.va_mtime;
} else {
mtx_unlock(&np->n_mtx);
error = VOP_GETATTR(vp, &vattr, ap->a_cred);
if (error)
return (error);
mtx_lock(&np->n_mtx);
if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
if (vp->v_type == VDIR)
np->n_direofoffset = 0;
mtx_unlock(&np->n_mtx);
error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error == EINTR || error == EIO) {
return (error);
}
mtx_lock(&np->n_mtx);
np->n_mtime = vattr.va_mtime;
}
}
/*
* If the object has >= 1 O_DIRECT active opens, we disable caching.
*/
if (nfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
if (np->n_directio_opens == 0) {
mtx_unlock(&np->n_mtx);
error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
if (error)
return (error);
mtx_lock(&np->n_mtx);
np->n_flag |= NNONCACHE;
}
np->n_directio_opens++;
}
/*
* If this is an open for writing, capture a reference to the
* credentials, so they can be used by nfs_putpages(). Using
* these write credentials is preferable to the credentials of
* whatever thread happens to be doing the VOP_PUTPAGES() since
* the write RPCs are less likely to fail with EACCES.
*/
if ((fmode & FWRITE) != 0) {
cred = np->n_writecred;
np->n_writecred = crhold(ap->a_cred);
} else
cred = NULL;
mtx_unlock(&np->n_mtx);
if (cred != NULL)
crfree(cred);
vnode_create_vobject(vp, vattr.va_size, ap->a_td);
return (0);
}
/*
* nfs close vnode op
* What an NFS client should do upon close after writing is a debatable issue.
* Most NFS clients push delayed writes to the server upon close, basically for
* two reasons:
* 1 - So that any write errors may be reported back to the client process
* doing the close system call. By far the two most likely errors are
* NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
* 2 - To put a worst case upper bound on cache inconsistency between
* multiple clients for the file.
* There is also a consistency problem for Version 2 of the protocol w.r.t.
* not being able to tell if other clients are writing a file concurrently,
* since there is no way of knowing if the changed modify time in the reply
* is only due to the write for this client.
* (NFS Version 3 provides weak cache consistency data in the reply that
* should be sufficient to detect and handle this case.)
*
* The current code does the following:
* for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
* for NFS Version 3 - flush dirty buffers to the server but don't invalidate
* or commit them (this satisfies 1 and 2 except for the
* case where the server crashes after this close but
* before the commit RPC, which is felt to be "good
* enough". Changing the last argument to nfs_flush() to
* a 1 would force a commit operation, if it is felt a
* commit is necessary now.
*/
/* ARGSUSED */
static int
nfs_close(struct vop_close_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
int error = 0;
int fmode = ap->a_fflag;
if (vp->v_type == VREG) {
/*
* Examine and clean dirty pages, regardless of NMODIFIED.
* This closes a major hole in close-to-open consistency.
* We want to push out all dirty pages (and buffers) on
* close, regardless of whether they were dirtied by
* mmap'ed writes or via write().
*/
if (nfs_clean_pages_on_close && vp->v_object) {
VM_OBJECT_WLOCK(vp->v_object);
vm_object_page_clean(vp->v_object, 0, 0, 0);
VM_OBJECT_WUNLOCK(vp->v_object);
}
mtx_lock(&np->n_mtx);
if (np->n_flag & NMODIFIED) {
mtx_unlock(&np->n_mtx);
if (NFS_ISV3(vp)) {
/*
* Under NFSv3 we have dirty buffers to dispose of. We
* must flush them to the NFS server. We have the option
* of waiting all the way through the commit rpc or just
* waiting for the initial write. The default is to only
* wait through the initial write so the data is in the
* server's cache, which is roughly similar to the state
* a standard disk subsystem leaves the file in on close().
*
* We cannot clear the NMODIFIED bit in np->n_flag due to
* potential races with other processes, and certainly
* cannot clear it if we don't commit.
*/
int cm = nfsv3_commit_on_close ? 1 : 0;
error = nfs_flush(vp, MNT_WAIT, cm);
/* np->n_flag &= ~NMODIFIED; */
} else
error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
mtx_lock(&np->n_mtx);
}
if (np->n_flag & NWRITEERR) {
np->n_flag &= ~NWRITEERR;
error = np->n_error;
}
mtx_unlock(&np->n_mtx);
}
if (nfs_directio_enable)
KASSERT((np->n_directio_asyncwr == 0),
("nfs_close: dirty unflushed (%d) directio buffers\n",
np->n_directio_asyncwr));
if (nfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
mtx_lock(&np->n_mtx);
KASSERT((np->n_directio_opens > 0),
("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
np->n_directio_opens--;
if (np->n_directio_opens == 0)
np->n_flag &= ~NNONCACHE;
mtx_unlock(&np->n_mtx);
}
return (error);
}
/*
* nfs getattr call from vfs.
*/
static int
nfs_getattr(struct vop_getattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct thread *td = curthread;
struct vattr *vap = ap->a_vap;
struct vattr vattr;
caddr_t bpos, dpos;
int error = 0;
struct mbuf *mreq, *mrep, *md, *mb;
int v3 = NFS_ISV3(vp);
/*
* Update local times for special files.
*/
mtx_lock(&np->n_mtx);
if (np->n_flag & (NACC | NUPD))
np->n_flag |= NCHG;
mtx_unlock(&np->n_mtx);
/*
* First look in the cache.
*/
if (nfs_getattrcache(vp, &vattr) == 0)
goto nfsmout;
if (v3 && nfs_prime_access_cache && nfsaccess_cache_timeout > 0) {
nfsstats.accesscache_misses++;
nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, ap->a_cred, NULL);
if (nfs_getattrcache(vp, &vattr) == 0)
goto nfsmout;
}
nfsstats.rpccnt[NFSPROC_GETATTR]++;
mreq = m_get2(NFSX_FH(v3), M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(vp, v3);
nfsm_request(vp, NFSPROC_GETATTR, td, ap->a_cred);
if (!error) {
nfsm_loadattr(vp, &vattr);
}
m_freem(mrep);
nfsmout:
vap->va_type = vattr.va_type;
vap->va_mode = vattr.va_mode;
vap->va_nlink = vattr.va_nlink;
vap->va_uid = vattr.va_uid;
vap->va_gid = vattr.va_gid;
vap->va_fsid = vattr.va_fsid;
vap->va_fileid = vattr.va_fileid;
vap->va_size = vattr.va_size;
vap->va_blocksize = vattr.va_blocksize;
vap->va_atime = vattr.va_atime;
vap->va_mtime = vattr.va_mtime;
vap->va_ctime = vattr.va_ctime;
vap->va_gen = vattr.va_gen;
vap->va_flags = vattr.va_flags;
vap->va_rdev = vattr.va_rdev;
vap->va_bytes = vattr.va_bytes;
vap->va_filerev = vattr.va_filerev;
return (error);
}
/*
* nfs setattr call.
*/
static int
nfs_setattr(struct vop_setattr_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct vattr *vap = ap->a_vap;
struct thread *td = curthread;
int error = 0;
u_quad_t tsize;
#ifndef nolint
tsize = (u_quad_t)0;
#endif
/*
* Setting of flags is not supported.
*/
if (vap->va_flags != VNOVAL)
return (EOPNOTSUPP);
/*
* Disallow write attempts if the filesystem is mounted read-only.
*/
if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
(vp->v_mount->mnt_flag & MNT_RDONLY)) {
error = EROFS;
goto out;
}
if (vap->va_size != VNOVAL) {
switch (vp->v_type) {
case VDIR:
return (EISDIR);
case VCHR:
case VBLK:
case VSOCK:
case VFIFO:
if (vap->va_mtime.tv_sec == VNOVAL &&
vap->va_atime.tv_sec == VNOVAL &&
vap->va_mode == (mode_t)VNOVAL &&
vap->va_uid == (uid_t)VNOVAL &&
vap->va_gid == (gid_t)VNOVAL)
return (0);
vap->va_size = VNOVAL;
break;
default:
/*
* Disallow write attempts if the filesystem is
* mounted read-only.
*/
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
/*
* We run vnode_pager_setsize() early (why?),
* we must set np->n_size now to avoid vinvalbuf
* V_SAVE races that might setsize a lower
* value.
*/
mtx_lock(&np->n_mtx);
tsize = np->n_size;
mtx_unlock(&np->n_mtx);
error = nfs_meta_setsize(vp, ap->a_cred, td,
vap->va_size);
mtx_lock(&np->n_mtx);
if (np->n_flag & NMODIFIED) {
tsize = np->n_size;
mtx_unlock(&np->n_mtx);
if (vap->va_size == 0)
error = nfs_vinvalbuf(vp, 0, td, 1);
else
error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
if (error) {
vnode_pager_setsize(vp, tsize);
goto out;
}
} else
mtx_unlock(&np->n_mtx);
/*
* np->n_size has already been set to vap->va_size
* in nfs_meta_setsize(). We must set it again since
* nfs_loadattrcache() could be called through
* nfs_meta_setsize() and could modify np->n_size.
*/
mtx_lock(&np->n_mtx);
np->n_vattr.va_size = np->n_size = vap->va_size;
mtx_unlock(&np->n_mtx);
};
} else {
mtx_lock(&np->n_mtx);
if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
(np->n_flag & NMODIFIED) && vp->v_type == VREG) {
mtx_unlock(&np->n_mtx);
if ((error = nfs_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
(error == EINTR || error == EIO))
return error;
} else
mtx_unlock(&np->n_mtx);
}
error = nfs_setattrrpc(vp, vap, ap->a_cred);
if (error && vap->va_size != VNOVAL) {
mtx_lock(&np->n_mtx);
np->n_size = np->n_vattr.va_size = tsize;
vnode_pager_setsize(vp, tsize);
mtx_unlock(&np->n_mtx);
}
out:
return (error);
}
/*
* Do an nfs setattr rpc.
*/
static int
nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred)
{
struct nfsv2_sattr *sp;
struct nfsnode *np = VTONFS(vp);
caddr_t bpos, dpos;
u_int32_t *tl;
int error = 0, i, wccflag = NFSV3_WCCRATTR;
struct mbuf *mreq, *mrep, *md, *mb;
int v3 = NFS_ISV3(vp);
nfsstats.rpccnt[NFSPROC_SETATTR]++;
mreq = m_get2(NFSX_FH(v3) + NFSX_SATTR(v3), M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(vp, v3);
if (v3) {
nfsm_v3attrbuild(vap, TRUE);
tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED);
*tl = nfs_false;
} else {
sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR);
if (vap->va_mode == (mode_t)VNOVAL)
sp->sa_mode = nfs_xdrneg1;
else
sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
if (vap->va_uid == (uid_t)VNOVAL)
sp->sa_uid = nfs_xdrneg1;
else
sp->sa_uid = txdr_unsigned(vap->va_uid);
if (vap->va_gid == (gid_t)VNOVAL)
sp->sa_gid = nfs_xdrneg1;
else
sp->sa_gid = txdr_unsigned(vap->va_gid);
sp->sa_size = txdr_unsigned(vap->va_size);
txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
}
nfsm_request(vp, NFSPROC_SETATTR, curthread, cred);
if (v3) {
mtx_lock(&np->n_mtx);
for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
np->n_accesscache[i].stamp = 0;
mtx_unlock(&np->n_mtx);
KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
nfsm_wcc_data(vp, wccflag);
} else
nfsm_loadattr(vp, NULL);
m_freem(mrep);
nfsmout:
return (error);
}
/*
* nfs lookup call, one step at a time...
* First look in cache
* If not found, unlock the directory nfsnode and do the rpc
*/
static int
nfs_lookup(struct vop_lookup_args *ap)
{
struct componentname *cnp = ap->a_cnp;
struct vnode *dvp = ap->a_dvp;
struct vnode **vpp = ap->a_vpp;
struct mount *mp = dvp->v_mount;
struct vattr dvattr, vattr;
struct timespec nctime;
int flags = cnp->cn_flags;
struct vnode *newvp;
struct nfsmount *nmp;
caddr_t bpos, dpos;
struct mbuf *mreq, *mrep, *md, *mb;
long len;
nfsfh_t *fhp;
struct nfsnode *np, *newnp;
int error = 0, attrflag, dattrflag, fhsize, ltype, ncticks;
int v3 = NFS_ISV3(dvp);
struct thread *td = cnp->cn_thread;
*vpp = NULLVP;
if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
(cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
return (EROFS);
if (dvp->v_type != VDIR)
return (ENOTDIR);
nmp = VFSTONFS(mp);
np = VTONFS(dvp);
if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) {
*vpp = NULLVP;
return (error);
}
error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
if (error > 0 && error != ENOENT)
return (error);
if (error == -1) {
/*
* Lookups of "." are special and always return the
* current directory. cache_lookup() already handles
* associated locking bookkeeping, etc.
*/
if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
/* XXX: Is this really correct? */
if (cnp->cn_nameiop != LOOKUP &&
(flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
return (0);
}
/*
* We only accept a positive hit in the cache if the
* change time of the file matches our cached copy.
* Otherwise, we discard the cache entry and fallback
* to doing a lookup RPC. We also only trust cache
* entries for less than nm_nametimeo seconds.
*
* To better handle stale file handles and attributes,
* clear the attribute cache of this node if it is a
* leaf component, part of an open() call, and not
* locally modified before fetching the attributes.
* This should allow stale file handles to be detected
* here where we can fall back to a LOOKUP RPC to
* recover rather than having nfs_open() detect the
* stale file handle and failing open(2) with ESTALE.
*/
newvp = *vpp;
newnp = VTONFS(newvp);
if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
(flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
!(newnp->n_flag & NMODIFIED)) {
mtx_lock(&newnp->n_mtx);
newnp->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
mtx_unlock(&newnp->n_mtx);
}
if ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
timespeccmp(&vattr.va_ctime, &nctime, ==)) {
nfsstats.lookupcache_hits++;
if (cnp->cn_nameiop != LOOKUP &&
(flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
return (0);
}
cache_purge(newvp);
if (dvp != newvp)
vput(newvp);
else
vrele(newvp);
*vpp = NULLVP;
} else if (error == ENOENT) {
if (dvp->v_iflag & VI_DOOMED)
return (ENOENT);
/*
* We only accept a negative hit in the cache if the
* modification time of the parent directory matches
* the cached copy in the name cache entry.
* Otherwise, we discard all of the negative cache
* entries for this directory. We also only trust
* negative cache entries for up to nm_negnametimeo
* seconds.
*/
if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
timespeccmp(&vattr.va_mtime, &nctime, ==)) {
nfsstats.lookupcache_hits++;
return (ENOENT);
}
cache_purge_negative(dvp);
}
attrflag = dattrflag = 0;
error = 0;
newvp = NULLVP;
nfsstats.lookupcache_misses++;
nfsstats.rpccnt[NFSPROC_LOOKUP]++;
len = cnp->cn_namelen;
mreq = m_get2(NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len), M_WAITOK,
MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(dvp, v3);
nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_thread, cnp->cn_cred);
if (error) {
if (v3) {
nfsm_postop_attr_va(dvp, dattrflag, &vattr);
m_freem(mrep);
}
goto nfsmout;
}
nfsm_getfh(fhp, fhsize, v3);
/*
* Handle RENAME case...
*/
if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
if (NFS_CMPFH(np, fhp, fhsize)) {
m_freem(mrep);
return (EISDIR);
}
error = nfs_nget(mp, fhp, fhsize, &np, LK_EXCLUSIVE);
if (error) {
m_freem(mrep);
return (error);
}
newvp = NFSTOV(np);
if (v3) {
nfsm_postop_attr(newvp, attrflag);
nfsm_postop_attr(dvp, attrflag);
} else
nfsm_loadattr(newvp, NULL);
*vpp = newvp;
m_freem(mrep);
cnp->cn_flags |= SAVENAME;
return (0);
}
if (flags & ISDOTDOT) {
ltype = VOP_ISLOCKED(dvp);
error = vfs_busy(mp, MBF_NOWAIT);
if (error != 0) {
vfs_ref(mp);
VOP_UNLOCK(dvp, 0);
error = vfs_busy(mp, 0);
vn_lock(dvp, ltype | LK_RETRY);
vfs_rel(mp);
if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
vfs_unbusy(mp);
error = ENOENT;
}
if (error != 0) {
m_freem(mrep);
return (error);
}
}
VOP_UNLOCK(dvp, 0);
error = nfs_nget(mp, fhp, fhsize, &np, cnp->cn_lkflags);
if (error == 0)
newvp = NFSTOV(np);
vfs_unbusy(mp);
if (newvp != dvp)
vn_lock(dvp, ltype | LK_RETRY);
if (dvp->v_iflag & VI_DOOMED) {
if (error == 0) {
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
}
error = ENOENT;
}
if (error) {
m_freem(mrep);
return (error);
}
} else if (NFS_CMPFH(np, fhp, fhsize)) {
VREF(dvp);
newvp = dvp;
} else {
error = nfs_nget(mp, fhp, fhsize, &np, cnp->cn_lkflags);
if (error) {
m_freem(mrep);
return (error);
}
newvp = NFSTOV(np);
/*
* Flush the attribute cache when opening a leaf node
* to ensure that fresh attributes are fetched in
* nfs_open() if we are unable to fetch attributes
* from the LOOKUP reply.
*/
if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
!(np->n_flag & NMODIFIED)) {
mtx_lock(&np->n_mtx);
np->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
mtx_unlock(&np->n_mtx);
}
}
if (v3) {
nfsm_postop_attr_va(newvp, attrflag, &vattr);
nfsm_postop_attr_va(dvp, dattrflag, &dvattr);
} else {
nfsm_loadattr(newvp, &vattr);
attrflag = 1;
}
if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
cnp->cn_flags |= SAVENAME;
if ((cnp->cn_flags & MAKEENTRY) &&
(cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
cache_enter_time(dvp, newvp, cnp, &vattr.va_ctime,
newvp->v_type != VDIR ? NULL : &dvattr.va_ctime);
*vpp = newvp;
m_freem(mrep);
nfsmout:
if (error) {
if (newvp != NULLVP) {
vput(newvp);
*vpp = NULLVP;
}
if (error != ENOENT)
goto done;
/* The requested file was not found. */
if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
(flags & ISLASTCN)) {
/*
* XXX: UFS does a full VOP_ACCESS(dvp,
* VWRITE) here instead of just checking
* MNT_RDONLY.
*/
if (mp->mnt_flag & MNT_RDONLY)
return (EROFS);
cnp->cn_flags |= SAVENAME;
return (EJUSTRETURN);
}
if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE &&
dattrflag) {
/*
* Cache the modification time of the parent
* directory from the post-op attributes in
* the name cache entry. The negative cache
* entry will be ignored once the directory
* has changed. Don't bother adding the entry
* if the directory has already changed.
*/
mtx_lock(&np->n_mtx);
if (timespeccmp(&np->n_vattr.va_mtime,
&vattr.va_mtime, ==)) {
mtx_unlock(&np->n_mtx);
cache_enter_time(dvp, NULL, cnp,
&vattr.va_mtime, NULL);
} else
mtx_unlock(&np->n_mtx);
}
return (ENOENT);
}
done:
return (error);
}
/*
* nfs read call.
* Just call nfs_bioread() to do the work.
*/
static int
nfs_read(struct vop_read_args *ap)
{
struct vnode *vp = ap->a_vp;
switch (vp->v_type) {
case VREG:
return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
case VDIR:
return (EISDIR);
default:
return (EOPNOTSUPP);
}
}
/*
* nfs readlink call
*/
static int
nfs_readlink(struct vop_readlink_args *ap)
{
struct vnode *vp = ap->a_vp;
if (vp->v_type != VLNK)
return (EINVAL);
return (nfs_bioread(vp, ap->a_uio, 0, ap->a_cred));
}
/*
* Do a readlink rpc.
* Called by nfs_doio() from below the buffer cache.
*/
int
nfs_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
{
caddr_t bpos, dpos;
int error = 0, len, attrflag;
struct mbuf *mreq, *mrep, *md, *mb;
int v3 = NFS_ISV3(vp);
nfsstats.rpccnt[NFSPROC_READLINK]++;
mreq = m_get2(NFSX_FH(v3), M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(vp, v3);
nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, cred);
if (v3)
nfsm_postop_attr(vp, attrflag);
if (!error) {
nfsm_strsiz(len, NFS_MAXPATHLEN);
if (len == NFS_MAXPATHLEN) {
struct nfsnode *np = VTONFS(vp);
mtx_lock(&np->n_mtx);
if (np->n_size && np->n_size < NFS_MAXPATHLEN)
len = np->n_size;
mtx_unlock(&np->n_mtx);
}
nfsm_mtouio(uiop, len);
}
m_freem(mrep);
nfsmout:
return (error);
}
/*
* nfs read rpc call
* Ditto above
*/
int
nfs_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
{
u_int32_t *tl;
caddr_t bpos, dpos;
struct mbuf *mreq, *mrep, *md, *mb;
struct nfsmount *nmp;
off_t end;
int error = 0, len, retlen, tsiz, eof, attrflag;
int v3 = NFS_ISV3(vp);
int rsize;
#ifndef nolint
eof = 0;
#endif
nmp = VFSTONFS(vp->v_mount);
tsiz = uiop->uio_resid;
mtx_lock(&nmp->nm_mtx);
end = uiop->uio_offset + tsiz;
if (end > nmp->nm_maxfilesize || end < uiop->uio_offset) {
mtx_unlock(&nmp->nm_mtx);
return (EFBIG);
}
rsize = nmp->nm_rsize;
mtx_unlock(&nmp->nm_mtx);
while (tsiz > 0) {
nfsstats.rpccnt[NFSPROC_READ]++;
len = (tsiz > rsize) ? rsize : tsiz;
mreq = m_get2(NFSX_FH(v3) + NFSX_UNSIGNED * 3, M_WAITOK,
MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(vp, v3);
tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED * 3);
if (v3) {
txdr_hyper(uiop->uio_offset, tl);
*(tl + 2) = txdr_unsigned(len);
} else {
*tl++ = txdr_unsigned(uiop->uio_offset);
*tl++ = txdr_unsigned(len);
*tl = 0;
}
nfsm_request(vp, NFSPROC_READ, uiop->uio_td, cred);
if (v3) {
nfsm_postop_attr(vp, attrflag);
if (error) {
m_freem(mrep);
goto nfsmout;
}
tl = nfsm_dissect(u_int32_t *, 2 * NFSX_UNSIGNED);
eof = fxdr_unsigned(int, *(tl + 1));
} else {
nfsm_loadattr(vp, NULL);
}
nfsm_strsiz(retlen, rsize);
nfsm_mtouio(uiop, retlen);
m_freem(mrep);
tsiz -= retlen;
if (v3) {
if (eof || retlen == 0) {
tsiz = 0;
}
} else if (retlen < len) {
tsiz = 0;
}
}
nfsmout:
return (error);
}
/*
* nfs write call
*/
int
nfs_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
int *iomode, int *must_commit)
{
u_int32_t *tl;
int32_t backup;
caddr_t bpos, dpos;
struct mbuf *mreq, *mrep, *md, *mb;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
off_t end;
int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
int wsize;
KASSERT(uiop->uio_iovcnt == 1, ("nfs: writerpc iovcnt > 1"));
*must_commit = 0;
tsiz = uiop->uio_resid;
mtx_lock(&nmp->nm_mtx);
end = uiop->uio_offset + tsiz;
if (end > nmp->nm_maxfilesize || end < uiop->uio_offset) {
mtx_unlock(&nmp->nm_mtx);
return (EFBIG);
}
wsize = nmp->nm_wsize;
mtx_unlock(&nmp->nm_mtx);
while (tsiz > 0) {
nfsstats.rpccnt[NFSPROC_WRITE]++;
len = (tsiz > wsize) ? wsize : tsiz;
mreq = m_get2(NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len),
M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(vp, v3);
if (v3) {
tl = nfsm_build(u_int32_t *, 5 * NFSX_UNSIGNED);
txdr_hyper(uiop->uio_offset, tl);
tl += 2;
*tl++ = txdr_unsigned(len);
*tl++ = txdr_unsigned(*iomode);
*tl = txdr_unsigned(len);
} else {
u_int32_t x;
tl = nfsm_build(u_int32_t *, 4 * NFSX_UNSIGNED);
/* Set both "begin" and "current" to non-garbage. */
x = txdr_unsigned((u_int32_t)uiop->uio_offset);
*tl++ = x; /* "begin offset" */
*tl++ = x; /* "current offset" */
x = txdr_unsigned(len);
*tl++ = x; /* total to this offset */
*tl = x; /* size of this write */
}
nfsm_uiotom(uiop, len);
nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, cred);
if (v3) {
wccflag = NFSV3_WCCCHK;
nfsm_wcc_data(vp, wccflag);
if (!error) {
tl = nfsm_dissect(u_int32_t *, 2 * NFSX_UNSIGNED
+ NFSX_V3WRITEVERF);
rlen = fxdr_unsigned(int, *tl++);
if (rlen == 0) {
error = NFSERR_IO;
m_freem(mrep);
break;
} else if (rlen < len) {
backup = len - rlen;
uiop->uio_iov->iov_base =
(char *)uiop->uio_iov->iov_base -
backup;
uiop->uio_iov->iov_len += backup;
uiop->uio_offset -= backup;
uiop->uio_resid += backup;
len = rlen;
}
commit = fxdr_unsigned(int, *tl++);
/*
* Return the lowest committment level
* obtained by any of the RPCs.
*/
if (committed == NFSV3WRITE_FILESYNC)
committed = commit;
else if (committed == NFSV3WRITE_DATASYNC &&
commit == NFSV3WRITE_UNSTABLE)
committed = commit;
mtx_lock(&nmp->nm_mtx);
if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
NFSX_V3WRITEVERF);
nmp->nm_state |= NFSSTA_HASWRITEVERF;
} else if (bcmp((caddr_t)tl,
(caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
*must_commit = 1;
bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
NFSX_V3WRITEVERF);
}
mtx_unlock(&nmp->nm_mtx);
}
} else {
nfsm_loadattr(vp, NULL);
}
if (wccflag) {
mtx_lock(&(VTONFS(vp))->n_mtx);
VTONFS(vp)->n_mtime = VTONFS(vp)->n_vattr.va_mtime;
mtx_unlock(&(VTONFS(vp))->n_mtx);
}
m_freem(mrep);
if (error)
break;
tsiz -= len;
}
nfsmout:
if (DOINGASYNC(vp))
committed = NFSV3WRITE_FILESYNC;
*iomode = committed;
if (error)
uiop->uio_resid = tsiz;
return (error);
}
/*
* nfs mknod rpc
* For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
* mode set to specify the file type and the size field for rdev.
*/
static int
nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
struct vattr *vap)
{
struct nfsv2_sattr *sp;
u_int32_t *tl;
struct vnode *newvp = NULL;
struct nfsnode *np = NULL;
struct vattr vattr;
caddr_t bpos, dpos;
int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
struct mbuf *mreq, *mrep, *md, *mb;
u_int32_t rdev;
int v3 = NFS_ISV3(dvp);
if (vap->va_type == VCHR || vap->va_type == VBLK)
rdev = txdr_unsigned(vap->va_rdev);
else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
rdev = nfs_xdrneg1;
else {
return (EOPNOTSUPP);
}
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
return (error);
nfsstats.rpccnt[NFSPROC_MKNOD]++;
mreq = m_get2(NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3), M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(dvp, v3);
nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
if (v3) {
tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED);
*tl++ = vtonfsv3_type(vap->va_type);
nfsm_v3attrbuild(vap, FALSE);
if (vap->va_type == VCHR || vap->va_type == VBLK) {
tl = nfsm_build(u_int32_t *, 2 * NFSX_UNSIGNED);
*tl++ = txdr_unsigned(major(vap->va_rdev));
*tl = txdr_unsigned(minor(vap->va_rdev));
}
} else {
sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR);
sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
sp->sa_uid = nfs_xdrneg1;
sp->sa_gid = nfs_xdrneg1;
sp->sa_size = rdev;
txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
}
nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_thread, cnp->cn_cred);
if (!error) {
nfsm_mtofh(dvp, newvp, v3, gotvp);
if (!gotvp) {
if (newvp) {
vput(newvp);
newvp = NULL;
}
error = nfs_lookitup(dvp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np);
if (!error)
newvp = NFSTOV(np);
}
}
if (v3)
nfsm_wcc_data(dvp, wccflag);
m_freem(mrep);
nfsmout:
if (error) {
if (newvp)
vput(newvp);
} else {
*vpp = newvp;
}
mtx_lock(&(VTONFS(dvp))->n_mtx);
VTONFS(dvp)->n_flag |= NMODIFIED;
if (!wccflag) {
VTONFS(dvp)->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
mtx_unlock(&(VTONFS(dvp))->n_mtx);
return (error);
}
/*
* nfs mknod vop
* just call nfs_mknodrpc() to do the work.
*/
/* ARGSUSED */
static int
nfs_mknod(struct vop_mknod_args *ap)
{
return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
}
static u_long create_verf;
/*
* nfs file create call
*/
static int
nfs_create(struct vop_create_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsv2_sattr *sp;
u_int32_t *tl;
struct nfsnode *np = NULL;
struct vnode *newvp = NULL;
caddr_t bpos, dpos;
int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
struct mbuf *mreq, *mrep, *md, *mb;
struct vattr vattr;
int v3 = NFS_ISV3(dvp);
/*
* Oops, not for me..
*/
if (vap->va_type == VSOCK) {
error = nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap);
return (error);
}
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) {
return (error);
}
if (vap->va_vaflags & VA_EXCLUSIVE)
fmode |= O_EXCL;
again:
nfsstats.rpccnt[NFSPROC_CREATE]++;
mreq = m_get2(NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3), M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(dvp, v3);
nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
if (v3) {
tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED);
if (fmode & O_EXCL) {
*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
tl = nfsm_build(u_int32_t *, NFSX_V3CREATEVERF);
#ifdef INET
CURVNET_SET(CRED_TO_VNET(cnp->cn_cred));
IN_IFADDR_RLOCK();
if (!TAILQ_EMPTY(&V_in_ifaddrhead))
*tl++ = IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr.s_addr;
else
#endif
*tl++ = create_verf;
#ifdef INET
IN_IFADDR_RUNLOCK();
CURVNET_RESTORE();
#endif
*tl = ++create_verf;
} else {
*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
nfsm_v3attrbuild(vap, FALSE);
}
} else {
sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR);
sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
sp->sa_uid = nfs_xdrneg1;
sp->sa_gid = nfs_xdrneg1;
sp->sa_size = 0;
txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
}
nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_thread, cnp->cn_cred);
if (!error) {
nfsm_mtofh(dvp, newvp, v3, gotvp);
if (!gotvp) {
if (newvp) {
vput(newvp);
newvp = NULL;
}
error = nfs_lookitup(dvp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np);
if (!error)
newvp = NFSTOV(np);
}
}
if (v3)
nfsm_wcc_data(dvp, wccflag);
m_freem(mrep);
nfsmout:
if (error) {
if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
fmode &= ~O_EXCL;
goto again;
}
if (newvp)
vput(newvp);
} else if (v3 && (fmode & O_EXCL)) {
/*
* We are normally called with only a partially initialized
* VAP. Since the NFSv3 spec says that server may use the
* file attributes to store the verifier, the spec requires
* us to do a SETATTR RPC. FreeBSD servers store the verifier
* in atime, but we can't really assume that all servers will
* so we ensure that our SETATTR sets both atime and mtime.
*/
if (vap->va_mtime.tv_sec == VNOVAL)
vfs_timestamp(&vap->va_mtime);
if (vap->va_atime.tv_sec == VNOVAL)
vap->va_atime = vap->va_mtime;
error = nfs_setattrrpc(newvp, vap, cnp->cn_cred);
if (error)
vput(newvp);
}
if (!error) {
*ap->a_vpp = newvp;
}
mtx_lock(&(VTONFS(dvp))->n_mtx);
VTONFS(dvp)->n_flag |= NMODIFIED;
if (!wccflag) {
VTONFS(dvp)->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
mtx_unlock(&(VTONFS(dvp))->n_mtx);
return (error);
}
/*
* nfs file remove call
* To try and make nfs semantics closer to ufs semantics, a file that has
* other processes using the vnode is renamed instead of removed and then
* removed later on the last close.
* - If v_usecount > 1
* If a rename is not already in the works
* call nfs_sillyrename() to set it up
* else
* do the remove rpc
*/
static int
nfs_remove(struct vop_remove_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *dvp = ap->a_dvp;
struct componentname *cnp = ap->a_cnp;
struct nfsnode *np = VTONFS(vp);
int error = 0;
struct vattr vattr;
KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
if (vp->v_type == VDIR)
error = EPERM;
else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
!VOP_GETATTR(vp, &vattr, cnp->cn_cred) && vattr.va_nlink > 1)) {
/*
* Purge the name cache so that the chance of a lookup for
* the name succeeding while the remove is in progress is
* minimized. Without node locking it can still happen, such
* that an I/O op returns ESTALE, but since you get this if
* another host removes the file..
*/
cache_purge(vp);
/*
* throw away biocache buffers, mainly to avoid
* unnecessary delayed writes later.
*/
error = nfs_vinvalbuf(vp, 0, cnp->cn_thread, 1);
/* Do the rpc */
if (error != EINTR && error != EIO)
error = nfs_removerpc(dvp, cnp->cn_nameptr,
cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
/*
* Kludge City: If the first reply to the remove rpc is lost..
* the reply to the retransmitted request will be ENOENT
* since the file was in fact removed
* Therefore, we cheat and return success.
*/
if (error == ENOENT)
error = 0;
} else if (!np->n_sillyrename)
error = nfs_sillyrename(dvp, vp, cnp);
mtx_lock(&np->n_mtx);
np->n_attrstamp = 0;
mtx_unlock(&np->n_mtx);
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
return (error);
}
/*
* nfs file remove rpc called from nfs_inactive
*/
int
nfs_removeit(struct sillyrename *sp)
{
/*
* Make sure that the directory vnode is still valid.
* XXX we should lock sp->s_dvp here.
*/
if (sp->s_dvp->v_type == VBAD)
return (0);
return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen, sp->s_cred,
NULL));
}
/*
* Nfs remove rpc, called from nfs_remove() and nfs_removeit().
*/
static int
nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
struct ucred *cred, struct thread *td)
{
caddr_t bpos, dpos;
int error = 0, wccflag = NFSV3_WCCRATTR;
struct mbuf *mreq, *mrep, *md, *mb;
int v3 = NFS_ISV3(dvp);
nfsstats.rpccnt[NFSPROC_REMOVE]++;
mreq = m_get2(NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen),
M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(dvp, v3);
nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
if (v3)
nfsm_wcc_data(dvp, wccflag);
m_freem(mrep);
nfsmout:
mtx_lock(&(VTONFS(dvp))->n_mtx);
VTONFS(dvp)->n_flag |= NMODIFIED;
if (!wccflag) {
VTONFS(dvp)->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
mtx_unlock(&(VTONFS(dvp))->n_mtx);
return (error);
}
/*
* nfs file rename call
*/
static int
nfs_rename(struct vop_rename_args *ap)
{
struct vnode *fvp = ap->a_fvp;
struct vnode *tvp = ap->a_tvp;
struct vnode *fdvp = ap->a_fdvp;
struct vnode *tdvp = ap->a_tdvp;
struct componentname *tcnp = ap->a_tcnp;
struct componentname *fcnp = ap->a_fcnp;
int error;
KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
(fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
/* Check for cross-device rename */
if ((fvp->v_mount != tdvp->v_mount) ||
(tvp && (fvp->v_mount != tvp->v_mount))) {
error = EXDEV;
goto out;
}
if (fvp == tvp) {
nfs_printf("nfs_rename: fvp == tvp (can't happen)\n");
error = 0;
goto out;
}
if ((error = vn_lock(fvp, LK_EXCLUSIVE)) != 0)
goto out;
/*
* We have to flush B_DELWRI data prior to renaming
* the file. If we don't, the delayed-write buffers
* can be flushed out later after the file has gone stale
* under NFSV3. NFSV2 does not have this problem because
* ( as far as I can tell ) it flushes dirty buffers more
* often.
*
* Skip the rename operation if the fsync fails, this can happen
* due to the server's volume being full, when we pushed out data
* that was written back to our cache earlier. Not checking for
* this condition can result in potential (silent) data loss.
*/
error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
VOP_UNLOCK(fvp, 0);
if (!error && tvp)
error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
if (error)
goto out;
/*
* If the tvp exists and is in use, sillyrename it before doing the
* rename of the new file over it.
* XXX Can't sillyrename a directory.
*/
if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
vput(tvp);
tvp = NULL;
}
error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
tcnp->cn_thread);
if (fvp->v_type == VDIR) {
if (tvp != NULL && tvp->v_type == VDIR)
cache_purge(tdvp);
cache_purge(fdvp);
}
out:
if (tdvp == tvp)
vrele(tdvp);
else
vput(tdvp);
if (tvp)
vput(tvp);
vrele(fdvp);
vrele(fvp);
/*
* Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
*/
if (error == ENOENT)
error = 0;
return (error);
}
/*
* nfs file rename rpc called from nfs_remove() above
*/
static int
nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
struct sillyrename *sp)
{
return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen, sdvp,
sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_thread));
}
/*
* Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
*/
static int
nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
struct vnode *tdvp, const char *tnameptr, int tnamelen, struct ucred *cred,
struct thread *td)
{
caddr_t bpos, dpos;
int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
struct mbuf *mreq, *mrep, *md, *mb;
int v3 = NFS_ISV3(fdvp);
nfsstats.rpccnt[NFSPROC_RENAME]++;
mreq = m_get2((NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
nfsm_rndup(tnamelen), M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(fdvp, v3);
nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
nfsm_fhtom(tdvp, v3);
nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
if (v3) {
nfsm_wcc_data(fdvp, fwccflag);
nfsm_wcc_data(tdvp, twccflag);
}
m_freem(mrep);
nfsmout:
mtx_lock(&(VTONFS(fdvp))->n_mtx);
VTONFS(fdvp)->n_flag |= NMODIFIED;
mtx_unlock(&(VTONFS(fdvp))->n_mtx);
mtx_lock(&(VTONFS(tdvp))->n_mtx);
VTONFS(tdvp)->n_flag |= NMODIFIED;
mtx_unlock(&(VTONFS(tdvp))->n_mtx);
if (!fwccflag) {
VTONFS(fdvp)->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
}
if (!twccflag) {
VTONFS(tdvp)->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
}
return (error);
}
/*
* nfs hard link create call
*/
static int
nfs_link(struct vop_link_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *tdvp = ap->a_tdvp;
struct componentname *cnp = ap->a_cnp;
caddr_t bpos, dpos;
int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
struct mbuf *mreq, *mrep, *md, *mb;
int v3;
if (vp->v_mount != tdvp->v_mount) {
return (EXDEV);
}
/*
* Push all writes to the server, so that the attribute cache
* doesn't get "out of sync" with the server.
* XXX There should be a better way!
*/
VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
v3 = NFS_ISV3(vp);
nfsstats.rpccnt[NFSPROC_LINK]++;
mreq = m_get2(NFSX_FH(v3)*2 + NFSX_UNSIGNED +
nfsm_rndup(cnp->cn_namelen), M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(vp, v3);
nfsm_fhtom(tdvp, v3);
nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
nfsm_request(vp, NFSPROC_LINK, cnp->cn_thread, cnp->cn_cred);
if (v3) {
nfsm_postop_attr(vp, attrflag);
nfsm_wcc_data(tdvp, wccflag);
}
m_freem(mrep);
nfsmout:
mtx_lock(&(VTONFS(tdvp))->n_mtx);
VTONFS(tdvp)->n_flag |= NMODIFIED;
mtx_unlock(&(VTONFS(tdvp))->n_mtx);
if (!attrflag) {
VTONFS(vp)->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
}
if (!wccflag) {
VTONFS(tdvp)->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
}
return (error);
}
/*
* nfs symbolic link create call
*/
static int
nfs_symlink(struct vop_symlink_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsv2_sattr *sp;
caddr_t bpos, dpos;
int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
struct mbuf *mreq, *mrep, *md, *mb;
struct vnode *newvp = NULL;
int v3 = NFS_ISV3(dvp);
nfsstats.rpccnt[NFSPROC_SYMLINK]++;
slen = strlen(ap->a_target);
mreq = m_get2(NFSX_FH(v3) + 2*NFSX_UNSIGNED +
nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3),
M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(dvp, v3);
nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
if (v3) {
nfsm_v3attrbuild(vap, FALSE);
}
nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
if (!v3) {
sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR);
sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
sp->sa_uid = nfs_xdrneg1;
sp->sa_gid = nfs_xdrneg1;
sp->sa_size = nfs_xdrneg1;
txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
}
/*
* Issue the NFS request and get the rpc response.
*
* Only NFSv3 responses returning an error of 0 actually return
* a file handle that can be converted into newvp without having
* to do an extra lookup rpc.
*/
nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_thread, cnp->cn_cred);
if (v3) {
if (error == 0)
nfsm_mtofh(dvp, newvp, v3, gotvp);
nfsm_wcc_data(dvp, wccflag);
}
/*
* out code jumps -> here, mrep is also freed.
*/
m_freem(mrep);
nfsmout:
/*
* If we do not have an error and we could not extract the newvp from
* the response due to the request being NFSv2, we have to do a
* lookup in order to obtain a newvp to return.
*/
if (error == 0 && newvp == NULL) {
struct nfsnode *np = NULL;
error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
cnp->cn_cred, cnp->cn_thread, &np);
if (!error)
newvp = NFSTOV(np);
}
if (error) {
if (newvp)
vput(newvp);
} else {
*ap->a_vpp = newvp;
}
mtx_lock(&(VTONFS(dvp))->n_mtx);
VTONFS(dvp)->n_flag |= NMODIFIED;
mtx_unlock(&(VTONFS(dvp))->n_mtx);
if (!wccflag) {
VTONFS(dvp)->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
return (error);
}
/*
* nfs make dir call
*/
static int
nfs_mkdir(struct vop_mkdir_args *ap)
{
struct vnode *dvp = ap->a_dvp;
struct vattr *vap = ap->a_vap;
struct componentname *cnp = ap->a_cnp;
struct nfsv2_sattr *sp;
int len;
struct nfsnode *np = NULL;
struct vnode *newvp = NULL;
caddr_t bpos, dpos;
int error = 0, wccflag = NFSV3_WCCRATTR;
int gotvp = 0;
struct mbuf *mreq, *mrep, *md, *mb;
struct vattr vattr;
int v3 = NFS_ISV3(dvp);
if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
return (error);
len = cnp->cn_namelen;
nfsstats.rpccnt[NFSPROC_MKDIR]++;
mreq = m_get2(NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) +
NFSX_SATTR(v3), M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(dvp, v3);
nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
if (v3) {
nfsm_v3attrbuild(vap, FALSE);
} else {
sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR);
sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
sp->sa_uid = nfs_xdrneg1;
sp->sa_gid = nfs_xdrneg1;
sp->sa_size = nfs_xdrneg1;
txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
}
nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_thread, cnp->cn_cred);
if (!error)
nfsm_mtofh(dvp, newvp, v3, gotvp);
if (v3)
nfsm_wcc_data(dvp, wccflag);
m_freem(mrep);
nfsmout:
mtx_lock(&(VTONFS(dvp))->n_mtx);
VTONFS(dvp)->n_flag |= NMODIFIED;
mtx_unlock(&(VTONFS(dvp))->n_mtx);
if (!wccflag) {
VTONFS(dvp)->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
if (error == 0 && newvp == NULL) {
error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
cnp->cn_thread, &np);
if (!error) {
newvp = NFSTOV(np);
if (newvp->v_type != VDIR)
error = EEXIST;
}
}
if (error) {
if (newvp)
vput(newvp);
} else
*ap->a_vpp = newvp;
return (error);
}
/*
* nfs remove directory call
*/
static int
nfs_rmdir(struct vop_rmdir_args *ap)
{
struct vnode *vp = ap->a_vp;
struct vnode *dvp = ap->a_dvp;
struct componentname *cnp = ap->a_cnp;
caddr_t bpos, dpos;
int error = 0, wccflag = NFSV3_WCCRATTR;
struct mbuf *mreq, *mrep, *md, *mb;
int v3 = NFS_ISV3(dvp);
if (dvp == vp)
return (EINVAL);
nfsstats.rpccnt[NFSPROC_RMDIR]++;
mreq = m_get2(NFSX_FH(v3) + NFSX_UNSIGNED +
nfsm_rndup(cnp->cn_namelen), M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(dvp, v3);
nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_thread, cnp->cn_cred);
if (v3)
nfsm_wcc_data(dvp, wccflag);
m_freem(mrep);
nfsmout:
mtx_lock(&(VTONFS(dvp))->n_mtx);
VTONFS(dvp)->n_flag |= NMODIFIED;
mtx_unlock(&(VTONFS(dvp))->n_mtx);
if (!wccflag) {
VTONFS(dvp)->n_attrstamp = 0;
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
}
cache_purge(dvp);
cache_purge(vp);
/*
* Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
*/
if (error == ENOENT)
error = 0;
return (error);
}
/*
* nfs readdir call
*/
static int
nfs_readdir(struct vop_readdir_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct uio *uio = ap->a_uio;
int tresid, error = 0;
struct vattr vattr;
if (vp->v_type != VDIR)
return(EPERM);
/*
* First, check for hit on the EOF offset cache
*/
if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
(np->n_flag & NMODIFIED) == 0) {
if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
mtx_lock(&np->n_mtx);
if (!NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
mtx_unlock(&np->n_mtx);
nfsstats.direofcache_hits++;
goto out;
} else
mtx_unlock(&np->n_mtx);
}
}
/*
* Call nfs_bioread() to do the real work.
*/
tresid = uio->uio_resid;
error = nfs_bioread(vp, uio, 0, ap->a_cred);
if (!error && uio->uio_resid == tresid) {
nfsstats.direofcache_misses++;
}
out:
return (error);
}
/*
* Readdir rpc call.
* Called from below the buffer cache by nfs_doio().
*/
int
nfs_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
{
int len, left;
struct dirent *dp = NULL;
u_int32_t *tl;
caddr_t cp;
nfsuint64 *cookiep;
caddr_t bpos, dpos;
struct mbuf *mreq, *mrep, *md, *mb;
nfsuint64 cookie;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
struct nfsnode *dnp = VTONFS(vp);
u_quad_t fileno;
int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
int attrflag;
int v3 = NFS_ISV3(vp);
KASSERT(uiop->uio_iovcnt == 1 &&
(uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
(uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
("nfs readdirrpc bad uio"));
/*
* If there is no cookie, assume directory was stale.
*/
nfs_dircookie_lock(dnp);
cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
if (cookiep) {
cookie = *cookiep;
nfs_dircookie_unlock(dnp);
} else {
nfs_dircookie_unlock(dnp);
return (NFSERR_BAD_COOKIE);
}
/*
* Loop around doing readdir rpc's of size nm_readdirsize
* truncated to a multiple of DIRBLKSIZ.
* The stopping criteria is EOF or buffer full.
*/
while (more_dirs && bigenough) {
nfsstats.rpccnt[NFSPROC_READDIR]++;
mreq = m_get2(NFSX_FH(v3) + NFSX_READDIR(v3), M_WAITOK,
MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(vp, v3);
if (v3) {
tl = nfsm_build(u_int32_t *, 5 * NFSX_UNSIGNED);
*tl++ = cookie.nfsuquad[0];
*tl++ = cookie.nfsuquad[1];
mtx_lock(&dnp->n_mtx);
*tl++ = dnp->n_cookieverf.nfsuquad[0];
*tl++ = dnp->n_cookieverf.nfsuquad[1];
mtx_unlock(&dnp->n_mtx);
} else {
tl = nfsm_build(u_int32_t *, 2 * NFSX_UNSIGNED);
*tl++ = cookie.nfsuquad[0];
}
*tl = txdr_unsigned(nmp->nm_readdirsize);
nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, cred);
if (v3) {
nfsm_postop_attr(vp, attrflag);
if (!error) {
tl = nfsm_dissect(u_int32_t *,
2 * NFSX_UNSIGNED);
mtx_lock(&dnp->n_mtx);
dnp->n_cookieverf.nfsuquad[0] = *tl++;
dnp->n_cookieverf.nfsuquad[1] = *tl;
mtx_unlock(&dnp->n_mtx);
} else {
m_freem(mrep);
goto nfsmout;
}
}
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
more_dirs = fxdr_unsigned(int, *tl);
/* loop thru the dir entries, doctoring them to 4bsd form */
while (more_dirs && bigenough) {
if (v3) {
tl = nfsm_dissect(u_int32_t *,
3 * NFSX_UNSIGNED);
fileno = fxdr_hyper(tl);
len = fxdr_unsigned(int, *(tl + 2));
} else {
tl = nfsm_dissect(u_int32_t *,
2 * NFSX_UNSIGNED);
fileno = fxdr_unsigned(u_quad_t, *tl++);
len = fxdr_unsigned(int, *tl);
}
if (len <= 0 || len > NFS_MAXNAMLEN) {
error = EBADRPC;
m_freem(mrep);
goto nfsmout;
}
tlen = nfsm_rndup(len);
if (tlen == len)
tlen += 4; /* To ensure null termination */
left = DIRBLKSIZ - blksiz;
if ((tlen + DIRHDSIZ) > left) {
dp->d_reclen += left;
uiop->uio_iov->iov_base =
(char *)uiop->uio_iov->iov_base + left;
uiop->uio_iov->iov_len -= left;
uiop->uio_offset += left;
uiop->uio_resid -= left;
blksiz = 0;
}
if ((tlen + DIRHDSIZ) > uiop->uio_resid)
bigenough = 0;
if (bigenough) {
dp = (struct dirent *)uiop->uio_iov->iov_base;
dp->d_fileno = (int)fileno;
dp->d_namlen = len;
dp->d_reclen = tlen + DIRHDSIZ;
dp->d_type = DT_UNKNOWN;
blksiz += dp->d_reclen;
if (blksiz == DIRBLKSIZ)
blksiz = 0;
uiop->uio_offset += DIRHDSIZ;
uiop->uio_resid -= DIRHDSIZ;
uiop->uio_iov->iov_base =
(char *)uiop->uio_iov->iov_base + DIRHDSIZ;
uiop->uio_iov->iov_len -= DIRHDSIZ;
nfsm_mtouio(uiop, len);
cp = uiop->uio_iov->iov_base;
tlen -= len;
*cp = '\0'; /* null terminate */
uiop->uio_iov->iov_base =
(char *)uiop->uio_iov->iov_base + tlen;
uiop->uio_iov->iov_len -= tlen;
uiop->uio_offset += tlen;
uiop->uio_resid -= tlen;
} else
nfsm_adv(nfsm_rndup(len));
if (v3) {
tl = nfsm_dissect(u_int32_t *,
3 * NFSX_UNSIGNED);
} else {
tl = nfsm_dissect(u_int32_t *,
2 * NFSX_UNSIGNED);
}
if (bigenough) {
cookie.nfsuquad[0] = *tl++;
if (v3)
cookie.nfsuquad[1] = *tl++;
} else if (v3)
tl += 2;
else
tl++;
more_dirs = fxdr_unsigned(int, *tl);
}
/*
* If at end of rpc data, get the eof boolean
*/
if (!more_dirs) {
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
more_dirs = (fxdr_unsigned(int, *tl) == 0);
}
m_freem(mrep);
}
/*
* Fill last record, iff any, out to a multiple of DIRBLKSIZ
* by increasing d_reclen for the last record.
*/
if (blksiz > 0) {
left = DIRBLKSIZ - blksiz;
dp->d_reclen += left;
uiop->uio_iov->iov_base =
(char *)uiop->uio_iov->iov_base + left;
uiop->uio_iov->iov_len -= left;
uiop->uio_offset += left;
uiop->uio_resid -= left;
}
/*
* We are now either at the end of the directory or have filled the
* block.
*/
if (bigenough)
dnp->n_direofoffset = uiop->uio_offset;
else {
if (uiop->uio_resid > 0)
nfs_printf("EEK! readdirrpc resid > 0\n");
nfs_dircookie_lock(dnp);
cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
*cookiep = cookie;
nfs_dircookie_unlock(dnp);
}
nfsmout:
return (error);
}
/*
* NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
*/
int
nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
{
int len, left;
struct dirent *dp;
u_int32_t *tl;
caddr_t cp;
struct vnode *newvp;
nfsuint64 *cookiep;
caddr_t bpos, dpos, dpossav1, dpossav2;
struct mbuf *mreq, *mrep, *md, *mb, *mdsav1, *mdsav2;
struct nameidata nami, *ndp = &nami;
struct componentname *cnp = &ndp->ni_cnd;
nfsuint64 cookie;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
struct nfsnode *dnp = VTONFS(vp), *np;
struct vattr vattr, dvattr;
nfsfh_t *fhp;
u_quad_t fileno;
int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
int attrflag, dattrflag, fhsize;
#ifndef nolint
dp = NULL;
#endif
KASSERT(uiop->uio_iovcnt == 1 &&
(uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
(uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
("nfs readdirplusrpc bad uio"));
ndp->ni_dvp = vp;
newvp = NULLVP;
/*
* If there is no cookie, assume directory was stale.
*/
nfs_dircookie_lock(dnp);
cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
if (cookiep) {
cookie = *cookiep;
nfs_dircookie_unlock(dnp);
} else {
nfs_dircookie_unlock(dnp);
return (NFSERR_BAD_COOKIE);
}
/*
* Loop around doing readdir rpc's of size nm_readdirsize
* truncated to a multiple of DIRBLKSIZ.
* The stopping criteria is EOF or buffer full.
*/
while (more_dirs && bigenough) {
nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
mreq = m_get2(NFSX_FH(1) + 6 * NFSX_UNSIGNED, M_WAITOK,
MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(vp, 1);
tl = nfsm_build(u_int32_t *, 6 * NFSX_UNSIGNED);
*tl++ = cookie.nfsuquad[0];
*tl++ = cookie.nfsuquad[1];
mtx_lock(&dnp->n_mtx);
*tl++ = dnp->n_cookieverf.nfsuquad[0];
*tl++ = dnp->n_cookieverf.nfsuquad[1];
mtx_unlock(&dnp->n_mtx);
*tl++ = txdr_unsigned(nmp->nm_readdirsize);
*tl = txdr_unsigned(nmp->nm_rsize);
nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, cred);
nfsm_postop_attr_va(vp, dattrflag, &dvattr);
if (error) {
m_freem(mrep);
goto nfsmout;
}
tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED);
mtx_lock(&dnp->n_mtx);
dnp->n_cookieverf.nfsuquad[0] = *tl++;
dnp->n_cookieverf.nfsuquad[1] = *tl++;
mtx_unlock(&dnp->n_mtx);
more_dirs = fxdr_unsigned(int, *tl);
/* loop thru the dir entries, doctoring them to 4bsd form */
while (more_dirs && bigenough) {
tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED);
fileno = fxdr_hyper(tl);
len = fxdr_unsigned(int, *(tl + 2));
if (len <= 0 || len > NFS_MAXNAMLEN) {
error = EBADRPC;
m_freem(mrep);
goto nfsmout;
}
tlen = nfsm_rndup(len);
if (tlen == len)
tlen += 4; /* To ensure null termination*/
left = DIRBLKSIZ - blksiz;
if ((tlen + DIRHDSIZ) > left) {
dp->d_reclen += left;
uiop->uio_iov->iov_base =
(char *)uiop->uio_iov->iov_base + left;
uiop->uio_iov->iov_len -= left;
uiop->uio_offset += left;
uiop->uio_resid -= left;
blksiz = 0;
}
if ((tlen + DIRHDSIZ) > uiop->uio_resid)
bigenough = 0;
if (bigenough) {
dp = (struct dirent *)uiop->uio_iov->iov_base;
dp->d_fileno = (int)fileno;
dp->d_namlen = len;
dp->d_reclen = tlen + DIRHDSIZ;
dp->d_type = DT_UNKNOWN;
blksiz += dp->d_reclen;
if (blksiz == DIRBLKSIZ)
blksiz = 0;
uiop->uio_offset += DIRHDSIZ;
uiop->uio_resid -= DIRHDSIZ;
uiop->uio_iov->iov_base =
(char *)uiop->uio_iov->iov_base + DIRHDSIZ;
uiop->uio_iov->iov_len -= DIRHDSIZ;
cnp->cn_nameptr = uiop->uio_iov->iov_base;
cnp->cn_namelen = len;
nfsm_mtouio(uiop, len);
cp = uiop->uio_iov->iov_base;
tlen -= len;
*cp = '\0';
uiop->uio_iov->iov_base =
(char *)uiop->uio_iov->iov_base + tlen;
uiop->uio_iov->iov_len -= tlen;
uiop->uio_offset += tlen;
uiop->uio_resid -= tlen;
} else
nfsm_adv(nfsm_rndup(len));
tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED);
if (bigenough) {
cookie.nfsuquad[0] = *tl++;
cookie.nfsuquad[1] = *tl++;
} else
tl += 2;
/*
* Since the attributes are before the file handle
* (sigh), we must skip over the attributes and then
* come back and get them.
*/
attrflag = fxdr_unsigned(int, *tl);
if (attrflag) {
dpossav1 = dpos;
mdsav1 = md;
nfsm_adv(NFSX_V3FATTR);
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
doit = fxdr_unsigned(int, *tl);
/*
* Skip loading the attrs for "..". There's a
* race between loading the attrs here and
* lookups that look for the directory currently
* being read (in the parent). We try to acquire
* the exclusive lock on ".." here, owning the
* lock on the directory being read. Lookup will
* hold the lock on ".." and try to acquire the
* lock on the directory being read.
*
* There are other ways of fixing this, one would
* be to do a trylock on the ".." vnode and skip
* loading the attrs on ".." if it happens to be
* locked by another process. But skipping the
* attrload on ".." seems the easiest option.
*/
if (strcmp(dp->d_name, "..") == 0) {
doit = 0;
/*
* We've already skipped over the attrs,
* skip over the filehandle. And store d_type
* as VDIR.
*/
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
i = fxdr_unsigned(int, *tl);
nfsm_adv(nfsm_rndup(i));
dp->d_type = IFTODT(VTTOIF(VDIR));
}
if (doit) {
nfsm_getfh(fhp, fhsize, 1);
if (NFS_CMPFH(dnp, fhp, fhsize)) {
VREF(vp);
newvp = vp;
np = dnp;
} else {
error = nfs_nget(vp->v_mount, fhp,
fhsize, &np, LK_EXCLUSIVE);
if (error)
doit = 0;
else
newvp = NFSTOV(np);
}
}
if (doit && bigenough) {
dpossav2 = dpos;
dpos = dpossav1;
mdsav2 = md;
md = mdsav1;
nfsm_loadattr(newvp, &vattr);
dpos = dpossav2;
md = mdsav2;
dp->d_type = IFTODT(VTTOIF(vattr.va_type));
ndp->ni_vp = newvp;
if (newvp->v_type != VDIR || dattrflag != 0)
cache_enter_time(ndp->ni_dvp, ndp->ni_vp,
cnp, &vattr.va_ctime,
newvp->v_type != VDIR ? NULL :
&dvattr.va_ctime);
}
} else {
/* Just skip over the file handle */
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
i = fxdr_unsigned(int, *tl);
if (i) {
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
fhsize = fxdr_unsigned(int, *tl);
nfsm_adv(nfsm_rndup(fhsize));
}
}
if (newvp != NULLVP) {
if (newvp == vp)
vrele(newvp);
else
vput(newvp);
newvp = NULLVP;
}
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
more_dirs = fxdr_unsigned(int, *tl);
}
/*
* If at end of rpc data, get the eof boolean
*/
if (!more_dirs) {
tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
more_dirs = (fxdr_unsigned(int, *tl) == 0);
}
m_freem(mrep);
}
/*
* Fill last record, iff any, out to a multiple of DIRBLKSIZ
* by increasing d_reclen for the last record.
*/
if (blksiz > 0) {
left = DIRBLKSIZ - blksiz;
dp->d_reclen += left;
uiop->uio_iov->iov_base =
(char *)uiop->uio_iov->iov_base + left;
uiop->uio_iov->iov_len -= left;
uiop->uio_offset += left;
uiop->uio_resid -= left;
}
/*
* We are now either at the end of the directory or have filled the
* block.
*/
if (bigenough)
dnp->n_direofoffset = uiop->uio_offset;
else {
if (uiop->uio_resid > 0)
nfs_printf("EEK! readdirplusrpc resid > 0\n");
nfs_dircookie_lock(dnp);
cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
*cookiep = cookie;
nfs_dircookie_unlock(dnp);
}
nfsmout:
if (newvp != NULLVP) {
if (newvp == vp)
vrele(newvp);
else
vput(newvp);
newvp = NULLVP;
}
return (error);
}
/*
* Silly rename. To make the NFS filesystem that is stateless look a little
* more like the "ufs" a remove of an active vnode is translated to a rename
* to a funny looking filename that is removed by nfs_inactive on the
* nfsnode. There is the potential for another process on a different client
* to create the same funny name between the nfs_lookitup() fails and the
* nfs_rename() completes, but...
*/
static int
nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
{
struct sillyrename *sp;
struct nfsnode *np;
int error;
short pid;
unsigned int lticks;
cache_purge(dvp);
np = VTONFS(vp);
KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
sp = malloc(sizeof (struct sillyrename),
M_NFSREQ, M_WAITOK);
sp->s_cred = crhold(cnp->cn_cred);
sp->s_dvp = dvp;
sp->s_removeit = nfs_removeit;
VREF(dvp);
/*
* Fudge together a funny name.
* Changing the format of the funny name to accomodate more
* sillynames per directory.
* The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
* CPU ticks since boot.
*/
pid = cnp->cn_thread->td_proc->p_pid;
lticks = (unsigned int)ticks;
for ( ; ; ) {
sp->s_namlen = sprintf(sp->s_name,
".nfs.%08x.%04x4.4", lticks,
pid);
if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
cnp->cn_thread, NULL))
break;
lticks++;
}
error = nfs_renameit(dvp, cnp, sp);
if (error)
goto bad;
error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
cnp->cn_thread, &np);
np->n_sillyrename = sp;
return (0);
bad:
vrele(sp->s_dvp);
crfree(sp->s_cred);
free((caddr_t)sp, M_NFSREQ);
return (error);
}
/*
* Look up a file name and optionally either update the file handle or
* allocate an nfsnode, depending on the value of npp.
* npp == NULL --> just do the lookup
* *npp == NULL --> allocate a new nfsnode and make sure attributes are
* handled too
* *npp != NULL --> update the file handle in the vnode
*/
static int
nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
struct thread *td, struct nfsnode **npp)
{
struct vnode *newvp = NULL;
struct nfsnode *np, *dnp = VTONFS(dvp);
caddr_t bpos, dpos;
int error = 0, fhlen, attrflag;
struct mbuf *mreq, *mrep, *md, *mb;
nfsfh_t *nfhp;
int v3 = NFS_ISV3(dvp);
nfsstats.rpccnt[NFSPROC_LOOKUP]++;
mreq = m_get2(NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len),
M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(dvp, v3);
nfsm_strtom(name, len, NFS_MAXNAMLEN);
nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
if (npp && !error) {
nfsm_getfh(nfhp, fhlen, v3);
if (*npp) {
np = *npp;
if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
free((caddr_t)np->n_fhp, M_NFSBIGFH);
np->n_fhp = &np->n_fh;
} else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
np->n_fhp =(nfsfh_t *)malloc(fhlen, M_NFSBIGFH, M_WAITOK);
bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
np->n_fhsize = fhlen;
newvp = NFSTOV(np);
} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
VREF(dvp);
newvp = dvp;
} else {
error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np, LK_EXCLUSIVE);
if (error) {
m_freem(mrep);
return (error);
}
newvp = NFSTOV(np);
}
if (v3) {
nfsm_postop_attr(newvp, attrflag);
if (!attrflag && *npp == NULL) {
m_freem(mrep);
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
return (ENOENT);
}
} else
nfsm_loadattr(newvp, NULL);
}
m_freem(mrep);
nfsmout:
if (npp && *npp == NULL) {
if (error) {
if (newvp) {
if (newvp == dvp)
vrele(newvp);
else
vput(newvp);
}
} else
*npp = np;
}
return (error);
}
/*
* Nfs Version 3 commit rpc
*/
int
nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
struct thread *td)
{
u_int32_t *tl;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
caddr_t bpos, dpos;
int error = 0, wccflag = NFSV3_WCCRATTR;
struct mbuf *mreq, *mrep, *md, *mb;
mtx_lock(&nmp->nm_mtx);
if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
mtx_unlock(&nmp->nm_mtx);
return (0);
}
mtx_unlock(&nmp->nm_mtx);
nfsstats.rpccnt[NFSPROC_COMMIT]++;
mreq = m_get2(NFSX_FH(1), M_WAITOK, MT_DATA, 0);
mb = mreq;
bpos = mtod(mb, caddr_t);
nfsm_fhtom(vp, 1);
tl = nfsm_build(u_int32_t *, 3 * NFSX_UNSIGNED);
txdr_hyper(offset, tl);
tl += 2;
*tl = txdr_unsigned(cnt);
nfsm_request(vp, NFSPROC_COMMIT, td, cred);
nfsm_wcc_data(vp, wccflag);
if (!error) {
tl = nfsm_dissect(u_int32_t *, NFSX_V3WRITEVERF);
if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
NFSX_V3WRITEVERF)) {
bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
NFSX_V3WRITEVERF);
error = NFSERR_STALEWRITEVERF;
}
}
m_freem(mrep);
nfsmout:
return (error);
}
/*
* Strategy routine.
* For async requests when nfsiod(s) are running, queue the request by
* calling nfs_asyncio(), otherwise just all nfs_doio() to do the
* request.
*/
static int
nfs_strategy(struct vop_strategy_args *ap)
{
struct buf *bp = ap->a_bp;
struct ucred *cr;
KASSERT(!(bp->b_flags & B_DONE),
("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
BUF_ASSERT_HELD(bp);
if (bp->b_iocmd == BIO_READ)
cr = bp->b_rcred;
else
cr = bp->b_wcred;
/*
* If the op is asynchronous and an i/o daemon is waiting
* queue the request, wake it up and wait for completion
* otherwise just do it ourselves.
*/
if ((bp->b_flags & B_ASYNC) == 0 ||
nfs_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
(void)nfs_doio(ap->a_vp, bp, cr, curthread);
return (0);
}
/*
* fsync vnode op. Just call nfs_flush() with commit == 1.
*/
/* ARGSUSED */
static int
nfs_fsync(struct vop_fsync_args *ap)
{
return (nfs_flush(ap->a_vp, ap->a_waitfor, 1));
}
/*
* Flush all the blocks associated with a vnode.
* Walk through the buffer pool and push any dirty pages
* associated with the vnode.
*/
static int
nfs_flush(struct vnode *vp, int waitfor, int commit)
{
struct nfsnode *np = VTONFS(vp);
struct buf *bp;
int i;
struct buf *nbp;
struct nfsmount *nmp = VFSTONFS(vp->v_mount);
int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
int passone = 1;
u_quad_t off, endoff, toff;
struct ucred* wcred = NULL;
struct buf **bvec = NULL;
struct bufobj *bo;
struct thread *td = curthread;
#ifndef NFS_COMMITBVECSIZ
#define NFS_COMMITBVECSIZ 20
#endif
struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
int bvecsize = 0, bveccount;
if (nmp->nm_flag & NFSMNT_INT)
slpflag = PCATCH;
if (!commit)
passone = 0;
bo = &vp->v_bufobj;
/*
* A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
* server, but has not been committed to stable storage on the server
* yet. On the first pass, the byte range is worked out and the commit
* rpc is done. On the second pass, nfs_writebp() is called to do the
* job.
*/
again:
off = (u_quad_t)-1;
endoff = 0;
bvecpos = 0;
if (NFS_ISV3(vp) && commit) {
if (bvec != NULL && bvec != bvec_on_stack)
free(bvec, M_TEMP);
/*
* Count up how many buffers waiting for a commit.
*/
bveccount = 0;
BO_LOCK(bo);
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (!BUF_ISLOCKED(bp) &&
(bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
== (B_DELWRI | B_NEEDCOMMIT))
bveccount++;
}
/*
* Allocate space to remember the list of bufs to commit. It is
* important to use M_NOWAIT here to avoid a race with nfs_write.
* If we can't get memory (for whatever reason), we will end up
* committing the buffers one-by-one in the loop below.
*/
if (bveccount > NFS_COMMITBVECSIZ) {
/*
* Release the vnode interlock to avoid a lock
* order reversal.
*/
BO_UNLOCK(bo);
bvec = (struct buf **)
malloc(bveccount * sizeof(struct buf *),
M_TEMP, M_NOWAIT);
BO_LOCK(bo);
if (bvec == NULL) {
bvec = bvec_on_stack;
bvecsize = NFS_COMMITBVECSIZ;
} else
bvecsize = bveccount;
} else {
bvec = bvec_on_stack;
bvecsize = NFS_COMMITBVECSIZ;
}
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (bvecpos >= bvecsize)
break;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
nbp = TAILQ_NEXT(bp, b_bobufs);
continue;
}
if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
(B_DELWRI | B_NEEDCOMMIT)) {
BUF_UNLOCK(bp);
nbp = TAILQ_NEXT(bp, b_bobufs);
continue;
}
BO_UNLOCK(bo);
bremfree(bp);
/*
* Work out if all buffers are using the same cred
* so we can deal with them all with one commit.
*
* NOTE: we are not clearing B_DONE here, so we have
* to do it later on in this routine if we intend to
* initiate I/O on the bp.
*
* Note: to avoid loopback deadlocks, we do not
* assign b_runningbufspace.
*/
if (wcred == NULL)
wcred = bp->b_wcred;
else if (wcred != bp->b_wcred)
wcred = NOCRED;
vfs_busy_pages(bp, 1);
BO_LOCK(bo);
/*
* bp is protected by being locked, but nbp is not
* and vfs_busy_pages() may sleep. We have to
* recalculate nbp.
*/
nbp = TAILQ_NEXT(bp, b_bobufs);
/*
* A list of these buffers is kept so that the
* second loop knows which buffers have actually
* been committed. This is necessary, since there
* may be a race between the commit rpc and new
* uncommitted writes on the file.
*/
bvec[bvecpos++] = bp;
toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
bp->b_dirtyoff;
if (toff < off)
off = toff;
toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
if (toff > endoff)
endoff = toff;
}
BO_UNLOCK(bo);
}
if (bvecpos > 0) {
/*
* Commit data on the server, as required.
* If all bufs are using the same wcred, then use that with
* one call for all of them, otherwise commit each one
* separately.
*/
if (wcred != NOCRED)
retv = nfs_commit(vp, off, (int)(endoff - off),
wcred, td);
else {
retv = 0;
for (i = 0; i < bvecpos; i++) {
off_t off, size;
bp = bvec[i];
off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
bp->b_dirtyoff;
size = (u_quad_t)(bp->b_dirtyend
- bp->b_dirtyoff);
retv = nfs_commit(vp, off, (int)size,
bp->b_wcred, td);
if (retv) break;
}
}
if (retv == NFSERR_STALEWRITEVERF)
nfs_clearcommit(vp->v_mount);
/*
* Now, either mark the blocks I/O done or mark the
* blocks dirty, depending on whether the commit
* succeeded.
*/
for (i = 0; i < bvecpos; i++) {
bp = bvec[i];
bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
if (retv) {
/*
* Error, leave B_DELWRI intact
*/
vfs_unbusy_pages(bp);
brelse(bp);
} else {
/*
* Success, remove B_DELWRI ( bundirty() ).
*
* b_dirtyoff/b_dirtyend seem to be NFS
* specific. We should probably move that
* into bundirty(). XXX
*/
bufobj_wref(bo);
bp->b_flags |= B_ASYNC;
bundirty(bp);
bp->b_flags &= ~B_DONE;
bp->b_ioflags &= ~BIO_ERROR;
bp->b_dirtyoff = bp->b_dirtyend = 0;
bufdone(bp);
}
}
}
/*
* Start/do any write(s) that are required.
*/
loop:
BO_LOCK(bo);
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
if (waitfor != MNT_WAIT || passone)
continue;
error = BUF_TIMELOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
BO_MTX(bo), "nfsfsync", slpflag, slptimeo);
if (error == 0) {
BUF_UNLOCK(bp);
goto loop;
}
if (error == ENOLCK) {
error = 0;
goto loop;
}
if (nfs_sigintr(nmp, td)) {
error = EINTR;
goto done;
}
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = 2 * hz;
}
goto loop;
}
if ((bp->b_flags & B_DELWRI) == 0)
panic("nfs_fsync: not dirty");
if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
BUF_UNLOCK(bp);
continue;
}
BO_UNLOCK(bo);
bremfree(bp);
if (passone || !commit)
bp->b_flags |= B_ASYNC;
else
bp->b_flags |= B_ASYNC;
bwrite(bp);
if (nfs_sigintr(nmp, td)) {
error = EINTR;
goto done;
}
goto loop;
}
if (passone) {
passone = 0;
BO_UNLOCK(bo);
goto again;
}
if (waitfor == MNT_WAIT) {
while (bo->bo_numoutput) {
error = bufobj_wwait(bo, slpflag, slptimeo);
if (error) {
BO_UNLOCK(bo);
error = nfs_sigintr(nmp, td);
if (error)
goto done;
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = 2 * hz;
}
BO_LOCK(bo);
}
}
if (bo->bo_dirty.bv_cnt != 0 && commit) {
BO_UNLOCK(bo);
goto loop;
}
/*
* Wait for all the async IO requests to drain
*/
BO_UNLOCK(bo);
mtx_lock(&np->n_mtx);
while (np->n_directio_asyncwr > 0) {
np->n_flag |= NFSYNCWAIT;
error = nfs_msleep(td, (caddr_t)&np->n_directio_asyncwr,
&np->n_mtx, slpflag | (PRIBIO + 1),
"nfsfsync", 0);
if (error) {
if (nfs_sigintr(nmp, td)) {
mtx_unlock(&np->n_mtx);
error = EINTR;
goto done;
}
}
}
mtx_unlock(&np->n_mtx);
} else
BO_UNLOCK(bo);
mtx_lock(&np->n_mtx);
if (np->n_flag & NWRITEERR) {
error = np->n_error;
np->n_flag &= ~NWRITEERR;
}
if (commit && bo->bo_dirty.bv_cnt == 0 &&
bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
np->n_flag &= ~NMODIFIED;
mtx_unlock(&np->n_mtx);
done:
if (bvec != NULL && bvec != bvec_on_stack)
free(bvec, M_TEMP);
return (error);
}
/*
* NFS advisory byte-level locks.
*/
static int
nfs_advlock(struct vop_advlock_args *ap)
{
struct vnode *vp = ap->a_vp;
u_quad_t size;
int error;
error = vn_lock(vp, LK_SHARED);
if (error)
return (error);
if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
size = VTONFS(vp)->n_size;
VOP_UNLOCK(vp, 0);
error = lf_advlock(ap, &(vp->v_lockf), size);
} else {
if (nfs_advlock_p)
error = nfs_advlock_p(ap);
else
error = ENOLCK;
}
return (error);
}
/*
* NFS advisory byte-level locks.
*/
static int
nfs_advlockasync(struct vop_advlockasync_args *ap)
{
struct vnode *vp = ap->a_vp;
u_quad_t size;
int error;
error = vn_lock(vp, LK_SHARED);
if (error)
return (error);
if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
size = VTONFS(vp)->n_size;
VOP_UNLOCK(vp, 0);
error = lf_advlockasync(ap, &(vp->v_lockf), size);
} else {
VOP_UNLOCK(vp, 0);
error = EOPNOTSUPP;
}
return (error);
}
/*
* Print out the contents of an nfsnode.
*/
static int
nfs_print(struct vop_print_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
nfs_printf("\tfileid %ld fsid 0x%x",
np->n_vattr.va_fileid, np->n_vattr.va_fsid);
if (vp->v_type == VFIFO)
fifo_printinfo(vp);
printf("\n");
return (0);
}
/*
* This is the "real" nfs::bwrite(struct buf*).
* We set B_CACHE if this is a VMIO buffer.
*/
int
nfs_writebp(struct buf *bp, int force __unused, struct thread *td)
{
int s;
int oldflags = bp->b_flags;
#if 0
int retv = 1;
off_t off;
#endif
BUF_ASSERT_HELD(bp);
if (bp->b_flags & B_INVAL) {
brelse(bp);
return(0);
}
bp->b_flags |= B_CACHE;
/*
* Undirty the bp. We will redirty it later if the I/O fails.
*/
s = splbio();
bundirty(bp);
bp->b_flags &= ~B_DONE;
bp->b_ioflags &= ~BIO_ERROR;
bp->b_iocmd = BIO_WRITE;
bufobj_wref(bp->b_bufobj);
curthread->td_ru.ru_oublock++;
splx(s);
/*
* Note: to avoid loopback deadlocks, we do not
* assign b_runningbufspace.
*/
vfs_busy_pages(bp, 1);
BUF_KERNPROC(bp);
bp->b_iooffset = dbtob(bp->b_blkno);
bstrategy(bp);
if( (oldflags & B_ASYNC) == 0) {
int rtval = bufwait(bp);
if (oldflags & B_DELWRI) {
s = splbio();
reassignbuf(bp);
splx(s);
}
brelse(bp);
return (rtval);
}
return (0);
}
/*
* nfs special file access vnode op.
* Essentially just get vattr and then imitate iaccess() since the device is
* local to the client.
*/
static int
nfsspec_access(struct vop_access_args *ap)
{
struct vattr *vap;
struct ucred *cred = ap->a_cred;
struct vnode *vp = ap->a_vp;
accmode_t accmode = ap->a_accmode;
struct vattr vattr;
int error;
/*
* Disallow write attempts on filesystems mounted read-only;
* unless the file is a socket, fifo, or a block or character
* device resident on the filesystem.
*/
if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
switch (vp->v_type) {
case VREG:
case VDIR:
case VLNK:
return (EROFS);
default:
break;
}
}
vap = &vattr;
error = VOP_GETATTR(vp, vap, cred);
if (error)
goto out;
error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
accmode, cred, NULL);
out:
return error;
}
/*
* Read wrapper for fifos.
*/
static int
nfsfifo_read(struct vop_read_args *ap)
{
struct nfsnode *np = VTONFS(ap->a_vp);
int error;
/*
* Set access flag.
*/
mtx_lock(&np->n_mtx);
np->n_flag |= NACC;
vfs_timestamp(&np->n_atim);
mtx_unlock(&np->n_mtx);
error = fifo_specops.vop_read(ap);
return error;
}
/*
* Write wrapper for fifos.
*/
static int
nfsfifo_write(struct vop_write_args *ap)
{
struct nfsnode *np = VTONFS(ap->a_vp);
/*
* Set update flag.
*/
mtx_lock(&np->n_mtx);
np->n_flag |= NUPD;
vfs_timestamp(&np->n_mtim);
mtx_unlock(&np->n_mtx);
return(fifo_specops.vop_write(ap));
}
/*
* Close wrapper for fifos.
*
* Update the times on the nfsnode then do fifo close.
*/
static int
nfsfifo_close(struct vop_close_args *ap)
{
struct vnode *vp = ap->a_vp;
struct nfsnode *np = VTONFS(vp);
struct vattr vattr;
struct timespec ts;
mtx_lock(&np->n_mtx);
if (np->n_flag & (NACC | NUPD)) {
vfs_timestamp(&ts);
if (np->n_flag & NACC)
np->n_atim = ts;
if (np->n_flag & NUPD)
np->n_mtim = ts;
np->n_flag |= NCHG;
if (vrefcnt(vp) == 1 &&
(vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
VATTR_NULL(&vattr);
if (np->n_flag & NACC)
vattr.va_atime = np->n_atim;
if (np->n_flag & NUPD)
vattr.va_mtime = np->n_mtim;
mtx_unlock(&np->n_mtx);
(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
goto out;
}
}
mtx_unlock(&np->n_mtx);
out:
return (fifo_specops.vop_close(ap));
}
/*
* Just call nfs_writebp() with the force argument set to 1.
*
* NOTE: B_DONE may or may not be set in a_bp on call.
*/
static int
nfs_bwrite(struct buf *bp)
{
return (nfs_writebp(bp, 1, curthread));
}
struct buf_ops buf_ops_nfs = {
.bop_name = "buf_ops_nfs",
.bop_write = nfs_bwrite,
.bop_strategy = bufstrategy,
.bop_sync = bufsync,
.bop_bdflush = bufbdflush,
};