freebsd-dev/contrib/sendmail/libmilter/engine.c
2003-02-08 20:31:29 +00:00

1153 lines
25 KiB
C

/*
* Copyright (c) 1999-2002 Sendmail, Inc. and its suppliers.
* All rights reserved.
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the sendmail distribution.
*
*/
#include <sm/gen.h>
SM_RCSID("@(#)$Id: engine.c,v 8.109.2.4 2002/12/03 17:27:32 ca Exp $")
#include "libmilter.h"
#if NETINET || NETINET6
# include <arpa/inet.h>
#endif /* NETINET || NETINET6 */
/* generic argument for functions in the command table */
struct arg_struct
{
size_t a_len; /* length of buffer */
char *a_buf; /* argument string */
int a_idx; /* index for macro array */
SMFICTX_PTR a_ctx; /* context */
};
typedef struct arg_struct genarg;
/* structure for commands received from MTA */
struct cmdfct_t
{
char cm_cmd; /* command */
int cm_argt; /* type of arguments expected */
int cm_next; /* next state */
int cm_todo; /* what to do next */
int cm_macros; /* index for macros */
int (*cm_fct) __P((genarg *)); /* function to execute */
};
typedef struct cmdfct_t cmdfct;
/* possible values for cm_argt */
#define CM_ARG0 0 /* no args */
#define CM_ARG1 1 /* one arg (string) */
#define CM_ARG2 2 /* two args (strings) */
#define CM_ARGA 4 /* one string and _SOCK_ADDR */
#define CM_ARGO 5 /* two integers */
#define CM_ARGV 8 /* \0 separated list of args, NULL-terminated */
#define CM_ARGN 9 /* \0 separated list of args (strings) */
/* possible values for cm_todo */
#define CT_CONT 0x0000 /* continue reading commands */
#define CT_IGNO 0x0001 /* continue even when error */
/* not needed right now, done via return code instead */
#define CT_KEEP 0x0004 /* keep buffer (contains symbols) */
#define CT_END 0x0008 /* start replying */
/* index in macro array: macros only for these commands */
#define CI_NONE (-1)
#define CI_CONN 0
#define CI_HELO 1
#define CI_MAIL 2
#define CI_RCPT 3
#if CI_RCPT >= MAX_MACROS_ENTRIES
ERROR: do not compile with CI_RCPT >= MAX_MACROS_ENTRIES
#endif
/* function prototypes */
static int st_abortfct __P((genarg *));
static int st_macros __P((genarg *));
static int st_optionneg __P((genarg *));
static int st_bodychunk __P((genarg *));
static int st_connectinfo __P((genarg *));
static int st_bodyend __P((genarg *));
static int st_helo __P((genarg *));
static int st_header __P((genarg *));
static int st_sender __P((genarg *));
static int st_rcpt __P((genarg *));
static int st_eoh __P((genarg *));
static int st_quit __P((genarg *));
static int sendreply __P((sfsistat, socket_t, struct timeval *, SMFICTX_PTR));
static void fix_stm __P((SMFICTX_PTR));
static bool trans_ok __P((int, int));
static char **dec_argv __P((char *, size_t));
static int dec_arg2 __P((char *, size_t, char **, char **));
/* states */
#define ST_NONE (-1)
#define ST_INIT 0 /* initial state */
#define ST_OPTS 1 /* option negotiation */
#define ST_CONN 2 /* connection info */
#define ST_HELO 3 /* helo */
#define ST_MAIL 4 /* mail from */
#define ST_RCPT 5 /* rcpt to */
#define ST_HDRS 6 /* headers */
#define ST_EOHS 7 /* end of headers */
#define ST_BODY 8 /* body */
#define ST_ENDM 9 /* end of message */
#define ST_QUIT 10 /* quit */
#define ST_ABRT 11 /* abort */
#define ST_LAST ST_ABRT
#define ST_SKIP 15 /* not a state but required for the state table */
/* in a mail transaction? must be before eom according to spec. */
#define ST_IN_MAIL(st) ((st) >= ST_MAIL && (st) < ST_ENDM)
/*
** set of next states
** each state (ST_*) corresponds to bit in an int value (1 << state)
** each state has a set of allowed transitions ('or' of bits of states)
** so a state transition is valid if the mask of the next state
** is set in the NX_* value
** this function is coded in trans_ok(), see below.
*/
#define MI_MASK(x) (0x0001 << (x)) /* generate a bit "mask" for a state */
#define NX_INIT (MI_MASK(ST_OPTS))
#define NX_OPTS (MI_MASK(ST_CONN))
#define NX_CONN (MI_MASK(ST_HELO) | MI_MASK(ST_MAIL))
#define NX_HELO (MI_MASK(ST_HELO) | MI_MASK(ST_MAIL))
#define NX_MAIL (MI_MASK(ST_RCPT) | MI_MASK(ST_ABRT))
#define NX_RCPT (MI_MASK(ST_HDRS) | MI_MASK(ST_EOHS) | \
MI_MASK(ST_BODY) | MI_MASK(ST_ENDM) | \
MI_MASK(ST_RCPT) | MI_MASK(ST_ABRT))
#define NX_HDRS (MI_MASK(ST_EOHS) | MI_MASK(ST_HDRS) | MI_MASK(ST_ABRT))
#define NX_EOHS (MI_MASK(ST_BODY) | MI_MASK(ST_ENDM) | MI_MASK(ST_ABRT))
#define NX_BODY (MI_MASK(ST_ENDM) | MI_MASK(ST_BODY) | MI_MASK(ST_ABRT))
#define NX_ENDM (MI_MASK(ST_QUIT) | MI_MASK(ST_MAIL))
#define NX_QUIT 0
#define NX_ABRT 0
#define NX_SKIP MI_MASK(ST_SKIP)
static int next_states[] =
{
NX_INIT,
NX_OPTS,
NX_CONN,
NX_HELO,
NX_MAIL,
NX_RCPT,
NX_HDRS,
NX_EOHS,
NX_BODY,
NX_ENDM,
NX_QUIT,
NX_ABRT
};
/* commands received by milter */
static cmdfct cmds[] =
{
{SMFIC_ABORT, CM_ARG0, ST_ABRT, CT_CONT, CI_NONE, st_abortfct },
{SMFIC_MACRO, CM_ARGV, ST_NONE, CT_KEEP, CI_NONE, st_macros },
{SMFIC_BODY, CM_ARG1, ST_BODY, CT_CONT, CI_NONE, st_bodychunk },
{SMFIC_CONNECT, CM_ARG2, ST_CONN, CT_CONT, CI_CONN, st_connectinfo },
{SMFIC_BODYEOB, CM_ARG1, ST_ENDM, CT_CONT, CI_NONE, st_bodyend },
{SMFIC_HELO, CM_ARG1, ST_HELO, CT_CONT, CI_HELO, st_helo },
{SMFIC_HEADER, CM_ARG2, ST_HDRS, CT_CONT, CI_NONE, st_header },
{SMFIC_MAIL, CM_ARGV, ST_MAIL, CT_CONT, CI_MAIL, st_sender },
{SMFIC_OPTNEG, CM_ARGO, ST_OPTS, CT_CONT, CI_NONE, st_optionneg },
{SMFIC_EOH, CM_ARG0, ST_EOHS, CT_CONT, CI_NONE, st_eoh },
{SMFIC_QUIT, CM_ARG0, ST_QUIT, CT_END, CI_NONE, st_quit },
{SMFIC_RCPT, CM_ARGV, ST_RCPT, CT_IGNO, CI_RCPT, st_rcpt }
};
/* additional (internal) reply codes */
#define _SMFIS_KEEP 20
#define _SMFIS_ABORT 21
#define _SMFIS_OPTIONS 22
#define _SMFIS_NOREPLY 23
#define _SMFIS_FAIL (-1)
#define _SMFIS_NONE (-2)
/*
** MI_ENGINE -- receive commands and process them
**
** Parameters:
** ctx -- context structure
**
** Returns:
** MI_FAILURE/MI_SUCCESS
*/
int
mi_engine(ctx)
SMFICTX_PTR ctx;
{
size_t len;
int i;
socket_t sd;
int ret = MI_SUCCESS;
int ncmds = sizeof(cmds) / sizeof(cmdfct);
int curstate = ST_INIT;
int newstate;
bool call_abort;
sfsistat r;
char cmd;
char *buf = NULL;
genarg arg;
struct timeval timeout;
int (*f) __P((genarg *));
sfsistat (*fi_abort) __P((SMFICTX *));
sfsistat (*fi_close) __P((SMFICTX *));
arg.a_ctx = ctx;
sd = ctx->ctx_sd;
fi_abort = ctx->ctx_smfi->xxfi_abort;
mi_clr_macros(ctx, 0);
fix_stm(ctx);
r = _SMFIS_NONE;
do
{
/* call abort only if in a mail transaction */
call_abort = ST_IN_MAIL(curstate);
timeout.tv_sec = ctx->ctx_timeout;
timeout.tv_usec = 0;
if (mi_stop() == MILTER_ABRT)
{
if (ctx->ctx_dbg > 3)
sm_dprintf("[%d] milter_abort\n",
(int) ctx->ctx_id);
ret = MI_FAILURE;
break;
}
/*
** Notice: buf is allocated by mi_rd_cmd() and it will
** usually be free()d after it has been used in f().
** However, if the function returns _SMFIS_KEEP then buf
** contains macros and will not be free()d.
** Hence r must be set to _SMFIS_NONE if a new buf is
** allocated to avoid problem with housekeeping, esp.
** if the code "break"s out of the loop.
*/
r = _SMFIS_NONE;
if ((buf = mi_rd_cmd(sd, &timeout, &cmd, &len,
ctx->ctx_smfi->xxfi_name)) == NULL &&
cmd < SMFIC_VALIDCMD)
{
if (ctx->ctx_dbg > 5)
sm_dprintf("[%d] mi_engine: mi_rd_cmd error (%x)\n",
(int) ctx->ctx_id, (int) cmd);
/*
** eof is currently treated as failure ->
** abort() instead of close(), otherwise use:
** if (cmd != SMFIC_EOF)
*/
ret = MI_FAILURE;
break;
}
if (ctx->ctx_dbg > 4)
sm_dprintf("[%d] got cmd '%c' len %d\n",
(int) ctx->ctx_id, cmd, (int) len);
for (i = 0; i < ncmds; i++)
{
if (cmd == cmds[i].cm_cmd)
break;
}
if (i >= ncmds)
{
/* unknown command */
if (ctx->ctx_dbg > 1)
sm_dprintf("[%d] cmd '%c' unknown\n",
(int) ctx->ctx_id, cmd);
ret = MI_FAILURE;
break;
}
if ((f = cmds[i].cm_fct) == NULL)
{
/* stop for now */
if (ctx->ctx_dbg > 1)
sm_dprintf("[%d] cmd '%c' not impl\n",
(int) ctx->ctx_id, cmd);
ret = MI_FAILURE;
break;
}
/* is new state ok? */
newstate = cmds[i].cm_next;
if (ctx->ctx_dbg > 5)
sm_dprintf("[%d] cur %x new %x nextmask %x\n",
(int) ctx->ctx_id,
curstate, newstate, next_states[curstate]);
if (newstate != ST_NONE && !trans_ok(curstate, newstate))
{
if (ctx->ctx_dbg > 1)
sm_dprintf("[%d] abort: cur %d (%x) new %d (%x) next %x\n",
(int) ctx->ctx_id,
curstate, MI_MASK(curstate),
newstate, MI_MASK(newstate),
next_states[curstate]);
/* call abort only if in a mail transaction */
if (fi_abort != NULL && call_abort)
(void) (*fi_abort)(ctx);
/*
** try to reach the new state from HELO
** if it can't be reached, ignore the command.
*/
curstate = ST_HELO;
if (!trans_ok(curstate, newstate))
{
if (buf != NULL)
{
free(buf);
buf = NULL;
}
continue;
}
}
arg.a_len = len;
arg.a_buf = buf;
if (newstate != ST_NONE)
{
curstate = newstate;
ctx->ctx_state = curstate;
}
arg.a_idx = cmds[i].cm_macros;
/* call function to deal with command */
r = (*f)(&arg);
if (r != _SMFIS_KEEP && buf != NULL)
{
free(buf);
buf = NULL;
}
if (sendreply(r, sd, &timeout, ctx) != MI_SUCCESS)
{
ret = MI_FAILURE;
break;
}
call_abort = ST_IN_MAIL(curstate);
if (r == SMFIS_ACCEPT)
{
/* accept mail, no further actions taken */
curstate = ST_HELO;
}
else if (r == SMFIS_REJECT || r == SMFIS_DISCARD ||
r == SMFIS_TEMPFAIL)
{
/*
** further actions depend on current state
** if the IGNO bit is set: "ignore" the error,
** i.e., stay in the current state
*/
if (!bitset(CT_IGNO, cmds[i].cm_todo))
curstate = ST_HELO;
}
else if (r == _SMFIS_ABORT)
{
if (ctx->ctx_dbg > 5)
sm_dprintf("[%d] function returned abort\n",
(int) ctx->ctx_id);
ret = MI_FAILURE;
break;
}
} while (!bitset(CT_END, cmds[i].cm_todo));
if (ret != MI_SUCCESS)
{
/* call abort only if in a mail transaction */
if (fi_abort != NULL && call_abort)
(void) (*fi_abort)(ctx);
}
/* close must always be called */
if ((fi_close = ctx->ctx_smfi->xxfi_close) != NULL)
(void) (*fi_close)(ctx);
if (r != _SMFIS_KEEP && buf != NULL)
free(buf);
mi_clr_macros(ctx, 0);
return ret;
}
/*
** SENDREPLY -- send a reply to the MTA
**
** Parameters:
** r -- reply code
** sd -- socket descriptor
** timeout_ptr -- (ptr to) timeout to use for sending
** ctx -- context structure
**
** Returns:
** MI_SUCCESS/MI_FAILURE
*/
static int
sendreply(r, sd, timeout_ptr, ctx)
sfsistat r;
socket_t sd;
struct timeval *timeout_ptr;
SMFICTX_PTR ctx;
{
int ret = MI_SUCCESS;
switch (r)
{
case SMFIS_CONTINUE:
ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_CONTINUE, NULL, 0);
break;
case SMFIS_TEMPFAIL:
case SMFIS_REJECT:
if (ctx->ctx_reply != NULL &&
((r == SMFIS_TEMPFAIL && *ctx->ctx_reply == '4') ||
(r == SMFIS_REJECT && *ctx->ctx_reply == '5')))
{
ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_REPLYCODE,
ctx->ctx_reply,
strlen(ctx->ctx_reply) + 1);
free(ctx->ctx_reply);
ctx->ctx_reply = NULL;
}
else
{
ret = mi_wr_cmd(sd, timeout_ptr, r == SMFIS_REJECT ?
SMFIR_REJECT : SMFIR_TEMPFAIL, NULL, 0);
}
break;
case SMFIS_DISCARD:
ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_DISCARD, NULL, 0);
break;
case SMFIS_ACCEPT:
ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_ACCEPT, NULL, 0);
break;
case _SMFIS_OPTIONS:
{
char buf[MILTER_OPTLEN];
mi_int32 v;
v = htonl(ctx->ctx_smfi->xxfi_version);
(void) memcpy(&(buf[0]), (void *) &v, MILTER_LEN_BYTES);
v = htonl(ctx->ctx_smfi->xxfi_flags);
(void) memcpy(&(buf[MILTER_LEN_BYTES]), (void *) &v,
MILTER_LEN_BYTES);
v = htonl(ctx->ctx_pflags);
(void) memcpy(&(buf[MILTER_LEN_BYTES * 2]), (void *) &v,
MILTER_LEN_BYTES);
ret = mi_wr_cmd(sd, timeout_ptr, SMFIC_OPTNEG, buf,
MILTER_OPTLEN);
}
break;
default: /* don't send a reply */
break;
}
return ret;
}
/*
** CLR_MACROS -- clear set of macros starting from a given index
**
** Parameters:
** ctx -- context structure
** m -- index from which to clear all macros
**
** Returns:
** None.
*/
void
mi_clr_macros(ctx, m)
SMFICTX_PTR ctx;
int m;
{
int i;
for (i = m; i < MAX_MACROS_ENTRIES; i++)
{
if (ctx->ctx_mac_ptr[i] != NULL)
{
free(ctx->ctx_mac_ptr[i]);
ctx->ctx_mac_ptr[i] = NULL;
}
if (ctx->ctx_mac_buf[i] != NULL)
{
free(ctx->ctx_mac_buf[i]);
ctx->ctx_mac_buf[i] = NULL;
}
}
}
/*
** ST_OPTIONNEG -- negotiate options
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** abort/send options/continue
*/
static int
st_optionneg(g)
genarg *g;
{
mi_int32 i, v;
if (g == NULL || g->a_ctx->ctx_smfi == NULL)
return SMFIS_CONTINUE;
mi_clr_macros(g->a_ctx, g->a_idx + 1);
/* check for minimum length */
if (g->a_len < MILTER_OPTLEN)
{
smi_log(SMI_LOG_ERR,
"%s: st_optionneg[%d]: len too short %d < %d",
g->a_ctx->ctx_smfi->xxfi_name,
(int) g->a_ctx->ctx_id, (int) g->a_len,
MILTER_OPTLEN);
return _SMFIS_ABORT;
}
(void) memcpy((void *) &i, (void *) &(g->a_buf[0]),
MILTER_LEN_BYTES);
v = ntohl(i);
if (v < g->a_ctx->ctx_smfi->xxfi_version)
{
/* hard failure for now! */
smi_log(SMI_LOG_ERR,
"%s: st_optionneg[%d]: version mismatch MTA: %d < milter: %d",
g->a_ctx->ctx_smfi->xxfi_name,
(int) g->a_ctx->ctx_id, (int) v,
g->a_ctx->ctx_smfi->xxfi_version);
return _SMFIS_ABORT;
}
(void) memcpy((void *) &i, (void *) &(g->a_buf[MILTER_LEN_BYTES]),
MILTER_LEN_BYTES);
v = ntohl(i);
/* no flags? set to default value for V1 actions */
if (v == 0)
v = SMFI_V1_ACTS;
i = g->a_ctx->ctx_smfi->xxfi_flags;
if ((v & i) != i)
{
smi_log(SMI_LOG_ERR,
"%s: st_optionneg[%d]: 0x%x does not fulfill action requirements 0x%x",
g->a_ctx->ctx_smfi->xxfi_name,
(int) g->a_ctx->ctx_id, v, i);
return _SMFIS_ABORT;
}
(void) memcpy((void *) &i, (void *) &(g->a_buf[MILTER_LEN_BYTES * 2]),
MILTER_LEN_BYTES);
v = ntohl(i);
/* no flags? set to default value for V1 protocol */
if (v == 0)
v = SMFI_V1_PROT;
i = g->a_ctx->ctx_pflags;
if ((v & i) != i)
{
smi_log(SMI_LOG_ERR,
"%s: st_optionneg[%d]: 0x%x does not fulfill protocol requirements 0x%x",
g->a_ctx->ctx_smfi->xxfi_name,
(int) g->a_ctx->ctx_id, v, i);
return _SMFIS_ABORT;
}
return _SMFIS_OPTIONS;
}
/*
** ST_CONNECTINFO -- receive connection information
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** continue or filter-specified value
*/
static int
st_connectinfo(g)
genarg *g;
{
size_t l;
size_t i;
char *s, family;
unsigned short port = 0;
_SOCK_ADDR sockaddr;
sfsistat (*fi_connect) __P((SMFICTX *, char *, _SOCK_ADDR *));
if (g == NULL)
return _SMFIS_ABORT;
mi_clr_macros(g->a_ctx, g->a_idx + 1);
if (g->a_ctx->ctx_smfi == NULL ||
(fi_connect = g->a_ctx->ctx_smfi->xxfi_connect) == NULL)
return SMFIS_CONTINUE;
s = g->a_buf;
i = 0;
l = g->a_len;
while (s[i] != '\0' && i <= l)
++i;
if (i >= l)
return _SMFIS_ABORT;
/* Move past trailing \0 in host string */
i++;
family = s[i++];
memset(&sockaddr, '\0', sizeof sockaddr);
if (family != SMFIA_UNKNOWN)
{
(void) memcpy((void *) &port, (void *) (s + i),
sizeof port);
if ((i += sizeof port) >= l)
{
smi_log(SMI_LOG_ERR,
"%s: connect[%d]: wrong len %d >= %d",
g->a_ctx->ctx_smfi->xxfi_name,
(int) g->a_ctx->ctx_id, (int) i, (int) l);
return _SMFIS_ABORT;
}
/* make sure string is terminated */
if (s[l - 1] != '\0')
return _SMFIS_ABORT;
# if NETINET
if (family == SMFIA_INET)
{
if (inet_aton(s + i, (struct in_addr *) &sockaddr.sin.sin_addr)
!= 1)
{
smi_log(SMI_LOG_ERR,
"%s: connect[%d]: inet_aton failed",
g->a_ctx->ctx_smfi->xxfi_name,
(int) g->a_ctx->ctx_id);
return _SMFIS_ABORT;
}
sockaddr.sa.sa_family = AF_INET;
if (port > 0)
sockaddr.sin.sin_port = port;
}
else
# endif /* NETINET */
# if NETINET6
if (family == SMFIA_INET6)
{
if (mi_inet_pton(AF_INET6, s + i,
&sockaddr.sin6.sin6_addr) != 1)
{
smi_log(SMI_LOG_ERR,
"%s: connect[%d]: mi_inet_pton failed",
g->a_ctx->ctx_smfi->xxfi_name,
(int) g->a_ctx->ctx_id);
return _SMFIS_ABORT;
}
sockaddr.sa.sa_family = AF_INET6;
if (port > 0)
sockaddr.sin6.sin6_port = port;
}
else
# endif /* NETINET6 */
# if NETUNIX
if (family == SMFIA_UNIX)
{
if (sm_strlcpy(sockaddr.sunix.sun_path, s + i,
sizeof sockaddr.sunix.sun_path) >=
sizeof sockaddr.sunix.sun_path)
{
smi_log(SMI_LOG_ERR,
"%s: connect[%d]: path too long",
g->a_ctx->ctx_smfi->xxfi_name,
(int) g->a_ctx->ctx_id);
return _SMFIS_ABORT;
}
sockaddr.sunix.sun_family = AF_UNIX;
}
else
# endif /* NETUNIX */
{
smi_log(SMI_LOG_ERR,
"%s: connect[%d]: unknown family %d",
g->a_ctx->ctx_smfi->xxfi_name,
(int) g->a_ctx->ctx_id, family);
return _SMFIS_ABORT;
}
}
return (*fi_connect)(g->a_ctx, g->a_buf,
family != SMFIA_UNKNOWN ? &sockaddr : NULL);
}
/*
** ST_EOH -- end of headers
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** continue or filter-specified value
*/
static int
st_eoh(g)
genarg *g;
{
sfsistat (*fi_eoh) __P((SMFICTX *));
if (g == NULL)
return _SMFIS_ABORT;
if (g->a_ctx->ctx_smfi != NULL &&
(fi_eoh = g->a_ctx->ctx_smfi->xxfi_eoh) != NULL)
return (*fi_eoh)(g->a_ctx);
return SMFIS_CONTINUE;
}
/*
** ST_HELO -- helo/ehlo command
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** continue or filter-specified value
*/
static int
st_helo(g)
genarg *g;
{
sfsistat (*fi_helo) __P((SMFICTX *, char *));
if (g == NULL)
return _SMFIS_ABORT;
mi_clr_macros(g->a_ctx, g->a_idx + 1);
if (g->a_ctx->ctx_smfi != NULL &&
(fi_helo = g->a_ctx->ctx_smfi->xxfi_helo) != NULL)
return (*fi_helo)(g->a_ctx, g->a_buf);
return SMFIS_CONTINUE;
}
/*
** ST_HEADER -- header line
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** continue or filter-specified value
*/
static int
st_header(g)
genarg *g;
{
char *hf, *hv;
sfsistat (*fi_header) __P((SMFICTX *, char *, char *));
if (g == NULL)
return _SMFIS_ABORT;
if (g->a_ctx->ctx_smfi == NULL ||
(fi_header = g->a_ctx->ctx_smfi->xxfi_header) == NULL)
return SMFIS_CONTINUE;
if (dec_arg2(g->a_buf, g->a_len, &hf, &hv) == MI_SUCCESS)
return (*fi_header)(g->a_ctx, hf, hv);
else
return _SMFIS_ABORT;
}
#define ARGV_FCT(lf, rf, idx) \
char **argv; \
sfsistat (*lf) __P((SMFICTX *, char **)); \
int r; \
\
if (g == NULL) \
return _SMFIS_ABORT; \
mi_clr_macros(g->a_ctx, g->a_idx + 1); \
if (g->a_ctx->ctx_smfi == NULL || \
(lf = g->a_ctx->ctx_smfi->rf) == NULL) \
return SMFIS_CONTINUE; \
if ((argv = dec_argv(g->a_buf, g->a_len)) == NULL) \
return _SMFIS_ABORT; \
r = (*lf)(g->a_ctx, argv); \
free(argv); \
return r;
/*
** ST_SENDER -- MAIL FROM command
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** continue or filter-specified value
*/
static int
st_sender(g)
genarg *g;
{
ARGV_FCT(fi_envfrom, xxfi_envfrom, CI_MAIL)
}
/*
** ST_RCPT -- RCPT TO command
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** continue or filter-specified value
*/
static int
st_rcpt(g)
genarg *g;
{
ARGV_FCT(fi_envrcpt, xxfi_envrcpt, CI_RCPT)
}
/*
** ST_MACROS -- deal with macros received from the MTA
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** continue/keep
**
** Side effects:
** set pointer in macro array to current values.
*/
static int
st_macros(g)
genarg *g;
{
int i;
char **argv;
if (g == NULL || g->a_len < 1)
return _SMFIS_FAIL;
if ((argv = dec_argv(g->a_buf + 1, g->a_len - 1)) == NULL)
return _SMFIS_FAIL;
switch (g->a_buf[0])
{
case SMFIC_CONNECT:
i = CI_CONN;
break;
case SMFIC_HELO:
i = CI_HELO;
break;
case SMFIC_MAIL:
i = CI_MAIL;
break;
case SMFIC_RCPT:
i = CI_RCPT;
break;
default:
free(argv);
return _SMFIS_FAIL;
}
if (g->a_ctx->ctx_mac_ptr[i] != NULL)
free(g->a_ctx->ctx_mac_ptr[i]);
if (g->a_ctx->ctx_mac_buf[i] != NULL)
free(g->a_ctx->ctx_mac_buf[i]);
g->a_ctx->ctx_mac_ptr[i] = argv;
g->a_ctx->ctx_mac_buf[i] = g->a_buf;
return _SMFIS_KEEP;
}
/*
** ST_QUIT -- quit command
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** noreply
*/
static int
st_quit(g)
genarg *g;
{
return _SMFIS_NOREPLY;
}
/*
** ST_BODYCHUNK -- deal with a piece of the mail body
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** continue or filter-specified value
*/
static int
st_bodychunk(g)
genarg *g;
{
sfsistat (*fi_body) __P((SMFICTX *, unsigned char *, size_t));
if (g == NULL)
return _SMFIS_ABORT;
if (g->a_ctx->ctx_smfi != NULL &&
(fi_body = g->a_ctx->ctx_smfi->xxfi_body) != NULL)
return (*fi_body)(g->a_ctx, (unsigned char *)g->a_buf,
g->a_len);
return SMFIS_CONTINUE;
}
/*
** ST_BODYEND -- deal with the last piece of the mail body
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** continue or filter-specified value
**
** Side effects:
** sends a reply for the body part (if non-empty).
*/
static int
st_bodyend(g)
genarg *g;
{
sfsistat r;
sfsistat (*fi_body) __P((SMFICTX *, unsigned char *, size_t));
sfsistat (*fi_eom) __P((SMFICTX *));
if (g == NULL)
return _SMFIS_ABORT;
r = SMFIS_CONTINUE;
if (g->a_ctx->ctx_smfi != NULL)
{
if ((fi_body = g->a_ctx->ctx_smfi->xxfi_body) != NULL &&
g->a_len > 0)
{
socket_t sd;
struct timeval timeout;
timeout.tv_sec = g->a_ctx->ctx_timeout;
timeout.tv_usec = 0;
sd = g->a_ctx->ctx_sd;
r = (*fi_body)(g->a_ctx, (unsigned char *)g->a_buf,
g->a_len);
if (r != SMFIS_CONTINUE &&
sendreply(r, sd, &timeout, g->a_ctx) != MI_SUCCESS)
return _SMFIS_ABORT;
}
}
if (r == SMFIS_CONTINUE &&
(fi_eom = g->a_ctx->ctx_smfi->xxfi_eom) != NULL)
return (*fi_eom)(g->a_ctx);
return r;
}
/*
** ST_ABORTFCT -- deal with aborts
**
** Parameters:
** g -- generic argument structure
**
** Returns:
** abort or filter-specified value
*/
static int
st_abortfct(g)
genarg *g;
{
sfsistat (*fi_abort) __P((SMFICTX *));
if (g == NULL)
return _SMFIS_ABORT;
if (g != NULL && g->a_ctx->ctx_smfi != NULL &&
(fi_abort = g->a_ctx->ctx_smfi->xxfi_abort) != NULL)
(void) (*fi_abort)(g->a_ctx);
return _SMFIS_NOREPLY;
}
/*
** TRANS_OK -- is the state transition ok?
**
** Parameters:
** old -- old state
** new -- new state
**
** Returns:
** state transition ok
*/
static bool
trans_ok(old, new)
int old, new;
{
int s, n;
s = old;
do
{
/* is this state transition allowed? */
if ((MI_MASK(new) & next_states[s]) != 0)
return true;
/*
** no: try next state;
** this works since the relevant states are ordered
** strict sequentially
*/
n = s + 1;
/*
** can we actually "skip" this state?
** see fix_stm() which sets this bit for those
** states which the filter program is not interested in
*/
if (bitset(NX_SKIP, next_states[n]))
s = n;
else
return false;
} while (s <= ST_LAST);
return false;
}
/*
** FIX_STM -- add "skip" bits to the state transition table
**
** Parameters:
** ctx -- context structure
**
** Returns:
** None.
**
** Side effects:
** may change state transition table.
*/
static void
fix_stm(ctx)
SMFICTX_PTR ctx;
{
unsigned long fl;
if (ctx == NULL || ctx->ctx_smfi == NULL)
return;
fl = ctx->ctx_pflags;
if (bitset(SMFIP_NOCONNECT, fl))
next_states[ST_CONN] |= NX_SKIP;
if (bitset(SMFIP_NOHELO, fl))
next_states[ST_HELO] |= NX_SKIP;
if (bitset(SMFIP_NOMAIL, fl))
next_states[ST_MAIL] |= NX_SKIP;
if (bitset(SMFIP_NORCPT, fl))
next_states[ST_RCPT] |= NX_SKIP;
if (bitset(SMFIP_NOHDRS, fl))
next_states[ST_HDRS] |= NX_SKIP;
if (bitset(SMFIP_NOEOH, fl))
next_states[ST_EOHS] |= NX_SKIP;
if (bitset(SMFIP_NOBODY, fl))
next_states[ST_BODY] |= NX_SKIP;
}
/*
** DEC_ARGV -- split a buffer into a list of strings, NULL terminated
**
** Parameters:
** buf -- buffer with several strings
** len -- length of buffer
**
** Returns:
** array of pointers to the individual strings
*/
static char **
dec_argv(buf, len)
char *buf;
size_t len;
{
char **s;
size_t i;
int elem, nelem;
nelem = 0;
for (i = 0; i < len; i++)
{
if (buf[i] == '\0')
++nelem;
}
if (nelem == 0)
return NULL;
/* last entry is only for the name */
s = (char **)malloc((nelem + 1) * (sizeof *s));
if (s == NULL)
return NULL;
s[0] = buf;
for (i = 0, elem = 0; i < len && elem < nelem; i++)
{
if (buf[i] == '\0')
s[++elem] = &(buf[i + 1]);
}
/* overwrite last entry */
s[elem] = NULL;
return s;
}
/*
** DEC_ARG2 -- split a buffer into two strings
**
** Parameters:
** buf -- buffer with two strings
** len -- length of buffer
** s1,s2 -- pointer to result strings
**
** Returns:
** MI_FAILURE/MI_SUCCESS
*/
static int
dec_arg2(buf, len, s1, s2)
char *buf;
size_t len;
char **s1;
char **s2;
{
size_t i;
*s1 = buf;
for (i = 1; i < len && buf[i] != '\0'; i++)
continue;
if (i >= len - 1)
return MI_FAILURE;
*s2 = buf + i + 1;
return MI_SUCCESS;
}
/*
** SENDOK -- is it ok for the filter to send stuff to the MTA?
**
** Parameters:
** ctx -- context structure
** flag -- flag to check
**
** Returns:
** sending allowed (in current state)
*/
bool
mi_sendok(ctx, flag)
SMFICTX_PTR ctx;
int flag;
{
if (ctx == NULL || ctx->ctx_smfi == NULL)
return false;
/* did the milter request this operation? */
if (flag != 0 && !bitset(flag, ctx->ctx_smfi->xxfi_flags))
return false;
/* are we in the correct state? It must be "End of Message". */
return ctx->ctx_state == ST_ENDM;
}