2712 lines
102 KiB
C++
2712 lines
102 KiB
C++
/* Definitions of target machine for GNU compiler. MIPS version.
|
||
Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
Contributed by A. Lichnewsky (lich@inria.inria.fr).
|
||
Changed by Michael Meissner (meissner@osf.org).
|
||
64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
|
||
Brendan Eich (brendan@microunity.com).
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
|
||
/* MIPS external variables defined in mips.c. */
|
||
|
||
/* Which processor to schedule for. Since there is no difference between
|
||
a R2000 and R3000 in terms of the scheduler, we collapse them into
|
||
just an R3000. The elements of the enumeration must match exactly
|
||
the cpu attribute in the mips.md machine description. */
|
||
|
||
enum processor_type {
|
||
PROCESSOR_R3000,
|
||
PROCESSOR_4KC,
|
||
PROCESSOR_4KP,
|
||
PROCESSOR_5KC,
|
||
PROCESSOR_5KF,
|
||
PROCESSOR_20KC,
|
||
PROCESSOR_24K,
|
||
PROCESSOR_24KX,
|
||
PROCESSOR_M4K,
|
||
PROCESSOR_R3900,
|
||
PROCESSOR_R6000,
|
||
PROCESSOR_R4000,
|
||
PROCESSOR_R4100,
|
||
PROCESSOR_R4111,
|
||
PROCESSOR_R4120,
|
||
PROCESSOR_R4130,
|
||
PROCESSOR_R4300,
|
||
PROCESSOR_R4600,
|
||
PROCESSOR_R4650,
|
||
PROCESSOR_R5000,
|
||
PROCESSOR_R5400,
|
||
PROCESSOR_R5500,
|
||
PROCESSOR_R7000,
|
||
PROCESSOR_R8000,
|
||
PROCESSOR_R9000,
|
||
PROCESSOR_SB1,
|
||
PROCESSOR_SB1A,
|
||
PROCESSOR_SR71000,
|
||
PROCESSOR_MAX
|
||
};
|
||
|
||
/* Costs of various operations on the different architectures. */
|
||
|
||
struct mips_rtx_cost_data
|
||
{
|
||
unsigned short fp_add;
|
||
unsigned short fp_mult_sf;
|
||
unsigned short fp_mult_df;
|
||
unsigned short fp_div_sf;
|
||
unsigned short fp_div_df;
|
||
unsigned short int_mult_si;
|
||
unsigned short int_mult_di;
|
||
unsigned short int_div_si;
|
||
unsigned short int_div_di;
|
||
unsigned short branch_cost;
|
||
unsigned short memory_latency;
|
||
};
|
||
|
||
/* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
|
||
ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
|
||
to work on a 64 bit machine. */
|
||
|
||
#define ABI_32 0
|
||
#define ABI_N32 1
|
||
#define ABI_64 2
|
||
#define ABI_EABI 3
|
||
#define ABI_O64 4
|
||
|
||
/* Information about one recognized processor. Defined here for the
|
||
benefit of TARGET_CPU_CPP_BUILTINS. */
|
||
struct mips_cpu_info {
|
||
/* The 'canonical' name of the processor as far as GCC is concerned.
|
||
It's typically a manufacturer's prefix followed by a numerical
|
||
designation. It should be lower case. */
|
||
const char *name;
|
||
|
||
/* The internal processor number that most closely matches this
|
||
entry. Several processors can have the same value, if there's no
|
||
difference between them from GCC's point of view. */
|
||
enum processor_type cpu;
|
||
|
||
/* The ISA level that the processor implements. */
|
||
int isa;
|
||
};
|
||
|
||
#ifndef USED_FOR_TARGET
|
||
extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
|
||
extern const char *current_function_file; /* filename current function is in */
|
||
extern int num_source_filenames; /* current .file # */
|
||
extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
|
||
extern int sym_lineno; /* sgi next label # for each stmt */
|
||
extern int set_noreorder; /* # of nested .set noreorder's */
|
||
extern int set_nomacro; /* # of nested .set nomacro's */
|
||
extern int set_noat; /* # of nested .set noat's */
|
||
extern int set_volatile; /* # of nested .set volatile's */
|
||
extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
|
||
extern int mips_dbx_regno[]; /* Map register # to debug register # */
|
||
extern bool mips_split_p[];
|
||
extern GTY(()) rtx cmp_operands[2];
|
||
extern enum processor_type mips_arch; /* which cpu to codegen for */
|
||
extern enum processor_type mips_tune; /* which cpu to schedule for */
|
||
extern int mips_isa; /* architectural level */
|
||
extern int mips_abi; /* which ABI to use */
|
||
extern int mips16_hard_float; /* mips16 without -msoft-float */
|
||
extern const struct mips_cpu_info mips_cpu_info_table[];
|
||
extern const struct mips_cpu_info *mips_arch_info;
|
||
extern const struct mips_cpu_info *mips_tune_info;
|
||
extern const struct mips_rtx_cost_data *mips_cost;
|
||
#endif
|
||
|
||
/* Macros to silence warnings about numbers being signed in traditional
|
||
C and unsigned in ISO C when compiled on 32-bit hosts. */
|
||
|
||
#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
|
||
#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
|
||
#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
|
||
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
|
||
/* True if the call patterns should be split into a jalr followed by
|
||
an instruction to restore $gp. This is only ever true for SVR4 PIC,
|
||
in which $gp is call-clobbered. It is only safe to split the load
|
||
from the call when every use of $gp is explicit. */
|
||
|
||
#define TARGET_SPLIT_CALLS \
|
||
(TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
|
||
|
||
/* True if we're generating a form of -mabicalls in which we can use
|
||
operators like %hi and %lo to refer to locally-binding symbols.
|
||
We can only do this for -mno-shared, and only then if we can use
|
||
relocation operations instead of assembly macros. It isn't really
|
||
worth using absolute sequences for 64-bit symbols because GOT
|
||
accesses are so much shorter. */
|
||
|
||
#define TARGET_ABSOLUTE_ABICALLS \
|
||
(TARGET_ABICALLS \
|
||
&& !TARGET_SHARED \
|
||
&& TARGET_EXPLICIT_RELOCS \
|
||
&& !ABI_HAS_64BIT_SYMBOLS)
|
||
|
||
/* True if we can optimize sibling calls. For simplicity, we only
|
||
handle cases in which call_insn_operand will reject invalid
|
||
sibcall addresses. There are two cases in which this isn't true:
|
||
|
||
- TARGET_MIPS16. call_insn_operand accepts constant addresses
|
||
but there is no direct jump instruction. It isn't worth
|
||
using sibling calls in this case anyway; they would usually
|
||
be longer than normal calls.
|
||
|
||
- TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS. call_insn_operand
|
||
accepts global constants, but "jr $25" is the only allowed
|
||
sibcall. */
|
||
|
||
#define TARGET_SIBCALLS \
|
||
(!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
|
||
|
||
/* True if .gpword or .gpdword should be used for switch tables.
|
||
|
||
Although GAS does understand .gpdword, the SGI linker mishandles
|
||
the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
|
||
We therefore disable GP-relative switch tables for n64 on IRIX targets. */
|
||
#define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
|
||
|
||
/* Generate mips16 code */
|
||
#define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
|
||
/* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
|
||
#define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
|
||
|
||
/* Generic ISA defines. */
|
||
#define ISA_MIPS1 (mips_isa == 1)
|
||
#define ISA_MIPS2 (mips_isa == 2)
|
||
#define ISA_MIPS3 (mips_isa == 3)
|
||
#define ISA_MIPS4 (mips_isa == 4)
|
||
#define ISA_MIPS32 (mips_isa == 32)
|
||
#define ISA_MIPS32R2 (mips_isa == 33)
|
||
#define ISA_MIPS64 (mips_isa == 64)
|
||
|
||
/* Architecture target defines. */
|
||
#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
|
||
#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
|
||
#define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
|
||
#define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
|
||
#define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
|
||
#define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
|
||
#define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
|
||
#define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
|
||
#define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
|
||
|| mips_arch == PROCESSOR_SB1A)
|
||
#define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
|
||
|
||
/* Scheduling target defines. */
|
||
#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
|
||
#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
|
||
#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
|
||
#define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
|
||
#define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
|
||
#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
|
||
#define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
|
||
#define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
|
||
#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
|
||
#define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
|
||
#define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
|
||
#define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
|
||
|| mips_tune == PROCESSOR_SB1A)
|
||
|
||
/* True if the pre-reload scheduler should try to create chains of
|
||
multiply-add or multiply-subtract instructions. For example,
|
||
suppose we have:
|
||
|
||
t1 = a * b
|
||
t2 = t1 + c * d
|
||
t3 = e * f
|
||
t4 = t3 - g * h
|
||
|
||
t1 will have a higher priority than t2 and t3 will have a higher
|
||
priority than t4. However, before reload, there is no dependence
|
||
between t1 and t3, and they can often have similar priorities.
|
||
The scheduler will then tend to prefer:
|
||
|
||
t1 = a * b
|
||
t3 = e * f
|
||
t2 = t1 + c * d
|
||
t4 = t3 - g * h
|
||
|
||
which stops us from making full use of macc/madd-style instructions.
|
||
This sort of situation occurs frequently in Fourier transforms and
|
||
in unrolled loops.
|
||
|
||
To counter this, the TUNE_MACC_CHAINS code will reorder the ready
|
||
queue so that chained multiply-add and multiply-subtract instructions
|
||
appear ahead of any other instruction that is likely to clobber lo.
|
||
In the example above, if t2 and t3 become ready at the same time,
|
||
the code ensures that t2 is scheduled first.
|
||
|
||
Multiply-accumulate instructions are a bigger win for some targets
|
||
than others, so this macro is defined on an opt-in basis. */
|
||
#define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
|
||
|| TUNE_MIPS4120 \
|
||
|| TUNE_MIPS4130)
|
||
|
||
#define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
|
||
#define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
|
||
|
||
/* IRIX specific stuff. */
|
||
#define TARGET_IRIX 0
|
||
#define TARGET_IRIX6 0
|
||
|
||
/* Define preprocessor macros for the -march and -mtune options.
|
||
PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
|
||
processor. If INFO's canonical name is "foo", define PREFIX to
|
||
be "foo", and define an additional macro PREFIX_FOO. */
|
||
#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
|
||
do \
|
||
{ \
|
||
char *macro, *p; \
|
||
\
|
||
macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
|
||
for (p = macro; *p != 0; p++) \
|
||
*p = TOUPPER (*p); \
|
||
\
|
||
builtin_define (macro); \
|
||
builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
|
||
free (macro); \
|
||
} \
|
||
while (0)
|
||
|
||
/* Target CPU builtins. */
|
||
#define TARGET_CPU_CPP_BUILTINS() \
|
||
do \
|
||
{ \
|
||
/* Everyone but IRIX defines this to mips. */ \
|
||
if (!TARGET_IRIX) \
|
||
builtin_assert ("machine=mips"); \
|
||
\
|
||
builtin_assert ("cpu=mips"); \
|
||
builtin_define ("__mips__"); \
|
||
builtin_define ("_mips"); \
|
||
\
|
||
/* We do this here because __mips is defined below \
|
||
and so we can't use builtin_define_std. */ \
|
||
if (!flag_iso) \
|
||
builtin_define ("mips"); \
|
||
\
|
||
if (TARGET_64BIT) \
|
||
builtin_define ("__mips64"); \
|
||
\
|
||
if (!TARGET_IRIX) \
|
||
{ \
|
||
/* Treat _R3000 and _R4000 like register-size \
|
||
defines, which is how they've historically \
|
||
been used. */ \
|
||
if (TARGET_64BIT) \
|
||
{ \
|
||
builtin_define_std ("R4000"); \
|
||
builtin_define ("_R4000"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
builtin_define_std ("R3000"); \
|
||
builtin_define ("_R3000"); \
|
||
} \
|
||
} \
|
||
if (TARGET_FLOAT64) \
|
||
builtin_define ("__mips_fpr=64"); \
|
||
else \
|
||
builtin_define ("__mips_fpr=32"); \
|
||
\
|
||
if (TARGET_MIPS16) \
|
||
builtin_define ("__mips16"); \
|
||
\
|
||
if (TARGET_MIPS3D) \
|
||
builtin_define ("__mips3d"); \
|
||
\
|
||
if (TARGET_DSP) \
|
||
builtin_define ("__mips_dsp"); \
|
||
\
|
||
MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
|
||
MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
|
||
\
|
||
if (ISA_MIPS1) \
|
||
{ \
|
||
builtin_define ("__mips=1"); \
|
||
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
|
||
} \
|
||
else if (ISA_MIPS2) \
|
||
{ \
|
||
builtin_define ("__mips=2"); \
|
||
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
|
||
} \
|
||
else if (ISA_MIPS3) \
|
||
{ \
|
||
builtin_define ("__mips=3"); \
|
||
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
|
||
} \
|
||
else if (ISA_MIPS4) \
|
||
{ \
|
||
builtin_define ("__mips=4"); \
|
||
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
|
||
} \
|
||
else if (ISA_MIPS32) \
|
||
{ \
|
||
builtin_define ("__mips=32"); \
|
||
builtin_define ("__mips_isa_rev=1"); \
|
||
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
|
||
} \
|
||
else if (ISA_MIPS32R2) \
|
||
{ \
|
||
builtin_define ("__mips=32"); \
|
||
builtin_define ("__mips_isa_rev=2"); \
|
||
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
|
||
} \
|
||
else if (ISA_MIPS64) \
|
||
{ \
|
||
builtin_define ("__mips=64"); \
|
||
builtin_define ("__mips_isa_rev=1"); \
|
||
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
|
||
} \
|
||
\
|
||
if (TARGET_HARD_FLOAT) \
|
||
builtin_define ("__mips_hard_float"); \
|
||
else if (TARGET_SOFT_FLOAT) \
|
||
builtin_define ("__mips_soft_float"); \
|
||
\
|
||
if (TARGET_SINGLE_FLOAT) \
|
||
builtin_define ("__mips_single_float"); \
|
||
\
|
||
if (TARGET_PAIRED_SINGLE_FLOAT) \
|
||
builtin_define ("__mips_paired_single_float"); \
|
||
\
|
||
if (TARGET_BIG_ENDIAN) \
|
||
{ \
|
||
builtin_define_std ("MIPSEB"); \
|
||
builtin_define ("_MIPSEB"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
builtin_define_std ("MIPSEL"); \
|
||
builtin_define ("_MIPSEL"); \
|
||
} \
|
||
\
|
||
/* Macros dependent on the C dialect. */ \
|
||
if (preprocessing_asm_p ()) \
|
||
{ \
|
||
builtin_define_std ("LANGUAGE_ASSEMBLY"); \
|
||
builtin_define ("_LANGUAGE_ASSEMBLY"); \
|
||
} \
|
||
else if (c_dialect_cxx ()) \
|
||
{ \
|
||
builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
|
||
builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
|
||
builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
builtin_define_std ("LANGUAGE_C"); \
|
||
builtin_define ("_LANGUAGE_C"); \
|
||
} \
|
||
if (c_dialect_objc ()) \
|
||
{ \
|
||
builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
|
||
builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
|
||
/* Bizarre, but needed at least for Irix. */ \
|
||
builtin_define_std ("LANGUAGE_C"); \
|
||
builtin_define ("_LANGUAGE_C"); \
|
||
} \
|
||
\
|
||
if (mips_abi == ABI_EABI) \
|
||
builtin_define ("__mips_eabi"); \
|
||
\
|
||
} while (0)
|
||
|
||
/* Default target_flags if no switches are specified */
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT 0
|
||
#endif
|
||
|
||
#ifndef TARGET_CPU_DEFAULT
|
||
#define TARGET_CPU_DEFAULT 0
|
||
#endif
|
||
|
||
#ifndef TARGET_ENDIAN_DEFAULT
|
||
#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
|
||
#endif
|
||
|
||
#ifndef TARGET_FP_EXCEPTIONS_DEFAULT
|
||
#define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
|
||
#endif
|
||
|
||
/* 'from-abi' makes a good default: you get whatever the ABI requires. */
|
||
#ifndef MIPS_ISA_DEFAULT
|
||
#ifndef MIPS_CPU_STRING_DEFAULT
|
||
#define MIPS_CPU_STRING_DEFAULT "from-abi"
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef IN_LIBGCC2
|
||
#undef TARGET_64BIT
|
||
/* Make this compile time constant for libgcc2 */
|
||
#ifdef __mips64
|
||
#define TARGET_64BIT 1
|
||
#else
|
||
#define TARGET_64BIT 0
|
||
#endif
|
||
#endif /* IN_LIBGCC2 */
|
||
|
||
#define TARGET_LIBGCC_SDATA_SECTION ".sdata"
|
||
|
||
#ifndef MULTILIB_ENDIAN_DEFAULT
|
||
#if TARGET_ENDIAN_DEFAULT == 0
|
||
#define MULTILIB_ENDIAN_DEFAULT "EL"
|
||
#else
|
||
#define MULTILIB_ENDIAN_DEFAULT "EB"
|
||
#endif
|
||
#endif
|
||
|
||
#ifndef MULTILIB_ISA_DEFAULT
|
||
# if MIPS_ISA_DEFAULT == 1
|
||
# define MULTILIB_ISA_DEFAULT "mips1"
|
||
# else
|
||
# if MIPS_ISA_DEFAULT == 2
|
||
# define MULTILIB_ISA_DEFAULT "mips2"
|
||
# else
|
||
# if MIPS_ISA_DEFAULT == 3
|
||
# define MULTILIB_ISA_DEFAULT "mips3"
|
||
# else
|
||
# if MIPS_ISA_DEFAULT == 4
|
||
# define MULTILIB_ISA_DEFAULT "mips4"
|
||
# else
|
||
# if MIPS_ISA_DEFAULT == 32
|
||
# define MULTILIB_ISA_DEFAULT "mips32"
|
||
# else
|
||
# if MIPS_ISA_DEFAULT == 33
|
||
# define MULTILIB_ISA_DEFAULT "mips32r2"
|
||
# else
|
||
# if MIPS_ISA_DEFAULT == 64
|
||
# define MULTILIB_ISA_DEFAULT "mips64"
|
||
# else
|
||
# define MULTILIB_ISA_DEFAULT "mips1"
|
||
# endif
|
||
# endif
|
||
# endif
|
||
# endif
|
||
# endif
|
||
# endif
|
||
# endif
|
||
#endif
|
||
|
||
#ifndef MULTILIB_DEFAULTS
|
||
#define MULTILIB_DEFAULTS \
|
||
{ MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
|
||
#endif
|
||
|
||
/* We must pass -EL to the linker by default for little endian embedded
|
||
targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
|
||
linker will default to using big-endian output files. The OUTPUT_FORMAT
|
||
line must be in the linker script, otherwise -EB/-EL will not work. */
|
||
|
||
#ifndef ENDIAN_SPEC
|
||
#if TARGET_ENDIAN_DEFAULT == 0
|
||
#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
|
||
#else
|
||
#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
|
||
#endif
|
||
#endif
|
||
|
||
/* Support for a compile-time default CPU, et cetera. The rules are:
|
||
--with-arch is ignored if -march is specified or a -mips is specified
|
||
(other than -mips16).
|
||
--with-tune is ignored if -mtune is specified.
|
||
--with-abi is ignored if -mabi is specified.
|
||
--with-float is ignored if -mhard-float or -msoft-float are
|
||
specified.
|
||
--with-divide is ignored if -mdivide-traps or -mdivide-breaks are
|
||
specified. */
|
||
#define OPTION_DEFAULT_SPECS \
|
||
{"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
|
||
{"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
|
||
{"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
|
||
{"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
|
||
{"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
|
||
|
||
|
||
#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
|
||
&& ISA_HAS_COND_TRAP)
|
||
|
||
#define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY \
|
||
&& !TARGET_SR71K \
|
||
&& !TARGET_MIPS16)
|
||
|
||
/* Generate three-operand multiply instructions for SImode. */
|
||
#define GENERATE_MULT3_SI ((TARGET_MIPS3900 \
|
||
|| TARGET_MIPS5400 \
|
||
|| TARGET_MIPS5500 \
|
||
|| TARGET_MIPS7000 \
|
||
|| TARGET_MIPS9000 \
|
||
|| TARGET_MAD \
|
||
|| ISA_MIPS32 \
|
||
|| ISA_MIPS32R2 \
|
||
|| ISA_MIPS64) \
|
||
&& !TARGET_MIPS16)
|
||
|
||
/* Generate three-operand multiply instructions for DImode. */
|
||
#define GENERATE_MULT3_DI ((TARGET_MIPS3900) \
|
||
&& !TARGET_MIPS16)
|
||
|
||
/* True if the ABI can only work with 64-bit integer registers. We
|
||
generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
|
||
otherwise floating-point registers must also be 64-bit. */
|
||
#define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
|
||
|
||
/* Likewise for 32-bit regs. */
|
||
#define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
|
||
|
||
/* True if symbols are 64 bits wide. At present, n64 is the only
|
||
ABI for which this is true. */
|
||
#define ABI_HAS_64BIT_SYMBOLS (mips_abi == ABI_64 && !TARGET_SYM32)
|
||
|
||
/* ISA has instructions for managing 64 bit fp and gp regs (e.g. mips3). */
|
||
#define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
|
||
|| ISA_MIPS4 \
|
||
|| ISA_MIPS64)
|
||
|
||
/* ISA has branch likely instructions (e.g. mips2). */
|
||
/* Disable branchlikely for tx39 until compare rewrite. They haven't
|
||
been generated up to this point. */
|
||
#define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
|
||
|
||
/* ISA has the conditional move instructions introduced in mips4. */
|
||
#define ISA_HAS_CONDMOVE ((ISA_MIPS4 \
|
||
|| ISA_MIPS32 \
|
||
|| ISA_MIPS32R2 \
|
||
|| ISA_MIPS64) \
|
||
&& !TARGET_MIPS5500 \
|
||
&& !TARGET_MIPS16)
|
||
|
||
/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
|
||
branch on CC, and move (both FP and non-FP) on CC. */
|
||
#define ISA_HAS_8CC (ISA_MIPS4 \
|
||
|| ISA_MIPS32 \
|
||
|| ISA_MIPS32R2 \
|
||
|| ISA_MIPS64)
|
||
|
||
/* This is a catch all for other mips4 instructions: indexed load, the
|
||
FP madd and msub instructions, and the FP recip and recip sqrt
|
||
instructions. */
|
||
#define ISA_HAS_FP4 ((ISA_MIPS4 \
|
||
|| ISA_MIPS64) \
|
||
&& !TARGET_MIPS16)
|
||
|
||
/* ISA has conditional trap instructions. */
|
||
#define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
|
||
&& !TARGET_MIPS16)
|
||
|
||
/* ISA has integer multiply-accumulate instructions, madd and msub. */
|
||
#define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
|
||
|| ISA_MIPS32R2 \
|
||
|| ISA_MIPS64 \
|
||
) && !TARGET_MIPS16)
|
||
|
||
/* ISA has floating-point nmadd and nmsub instructions. */
|
||
#define ISA_HAS_NMADD_NMSUB ((ISA_MIPS4 \
|
||
|| ISA_MIPS64) \
|
||
&& (!TARGET_MIPS5400 || TARGET_MAD) \
|
||
&& ! TARGET_MIPS16)
|
||
|
||
/* ISA has count leading zeroes/ones instruction (not implemented). */
|
||
#define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
|
||
|| ISA_MIPS32R2 \
|
||
|| ISA_MIPS64 \
|
||
) && !TARGET_MIPS16)
|
||
|
||
/* ISA has double-word count leading zeroes/ones instruction (not
|
||
implemented). */
|
||
#define ISA_HAS_DCLZ_DCLO (ISA_MIPS64 \
|
||
&& !TARGET_MIPS16)
|
||
|
||
/* ISA has three operand multiply instructions that put
|
||
the high part in an accumulator: mulhi or mulhiu. */
|
||
#define ISA_HAS_MULHI (TARGET_MIPS5400 \
|
||
|| TARGET_MIPS5500 \
|
||
|| TARGET_SR71K \
|
||
)
|
||
|
||
/* ISA has three operand multiply instructions that
|
||
negates the result and puts the result in an accumulator. */
|
||
#define ISA_HAS_MULS (TARGET_MIPS5400 \
|
||
|| TARGET_MIPS5500 \
|
||
|| TARGET_SR71K \
|
||
)
|
||
|
||
/* ISA has three operand multiply instructions that subtracts the
|
||
result from a 4th operand and puts the result in an accumulator. */
|
||
#define ISA_HAS_MSAC (TARGET_MIPS5400 \
|
||
|| TARGET_MIPS5500 \
|
||
|| TARGET_SR71K \
|
||
)
|
||
/* ISA has three operand multiply instructions that the result
|
||
from a 4th operand and puts the result in an accumulator. */
|
||
#define ISA_HAS_MACC ((TARGET_MIPS4120 && !TARGET_MIPS16) \
|
||
|| (TARGET_MIPS4130 && !TARGET_MIPS16) \
|
||
|| TARGET_MIPS5400 \
|
||
|| TARGET_MIPS5500 \
|
||
|| TARGET_SR71K \
|
||
)
|
||
|
||
/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
|
||
#define ISA_HAS_MACCHI (!TARGET_MIPS16 \
|
||
&& (TARGET_MIPS4120 \
|
||
|| TARGET_MIPS4130))
|
||
|
||
/* ISA has 32-bit rotate right instruction. */
|
||
#define ISA_HAS_ROTR_SI (!TARGET_MIPS16 \
|
||
&& (ISA_MIPS32R2 \
|
||
|| TARGET_MIPS5400 \
|
||
|| TARGET_MIPS5500 \
|
||
|| TARGET_SR71K \
|
||
))
|
||
|
||
/* ISA has 64-bit rotate right instruction. */
|
||
#define ISA_HAS_ROTR_DI (TARGET_64BIT \
|
||
&& !TARGET_MIPS16 \
|
||
&& (TARGET_MIPS5400 \
|
||
|| TARGET_MIPS5500 \
|
||
|| TARGET_SR71K \
|
||
))
|
||
|
||
/* ISA has data prefetch instructions. This controls use of 'pref'. */
|
||
#define ISA_HAS_PREFETCH ((ISA_MIPS4 \
|
||
|| ISA_MIPS32 \
|
||
|| ISA_MIPS32R2 \
|
||
|| ISA_MIPS64) \
|
||
&& !TARGET_MIPS16)
|
||
|
||
/* ISA has data indexed prefetch instructions. This controls use of
|
||
'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
|
||
(prefx is a cop1x instruction, so can only be used if FP is
|
||
enabled.) */
|
||
#define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
|
||
|| ISA_MIPS64) \
|
||
&& !TARGET_MIPS16)
|
||
|
||
/* True if trunc.w.s and trunc.w.d are real (not synthetic)
|
||
instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
|
||
also requires TARGET_DOUBLE_FLOAT. */
|
||
#define ISA_HAS_TRUNC_W (!ISA_MIPS1)
|
||
|
||
/* ISA includes the MIPS32r2 seb and seh instructions. */
|
||
#define ISA_HAS_SEB_SEH (!TARGET_MIPS16 \
|
||
&& (ISA_MIPS32R2 \
|
||
))
|
||
|
||
/* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
|
||
#define ISA_HAS_EXT_INS (!TARGET_MIPS16 \
|
||
&& (ISA_MIPS32R2 \
|
||
))
|
||
|
||
/* True if the result of a load is not available to the next instruction.
|
||
A nop will then be needed between instructions like "lw $4,..."
|
||
and "addiu $4,$4,1". */
|
||
#define ISA_HAS_LOAD_DELAY (mips_isa == 1 \
|
||
&& !TARGET_MIPS3900 \
|
||
&& !TARGET_MIPS16)
|
||
|
||
/* Likewise mtc1 and mfc1. */
|
||
#define ISA_HAS_XFER_DELAY (mips_isa <= 3)
|
||
|
||
/* Likewise floating-point comparisons. */
|
||
#define ISA_HAS_FCMP_DELAY (mips_isa <= 3)
|
||
|
||
/* True if mflo and mfhi can be immediately followed by instructions
|
||
which write to the HI and LO registers.
|
||
|
||
According to MIPS specifications, MIPS ISAs I, II, and III need
|
||
(at least) two instructions between the reads of HI/LO and
|
||
instructions which write them, and later ISAs do not. Contradicting
|
||
the MIPS specifications, some MIPS IV processor user manuals (e.g.
|
||
the UM for the NEC Vr5000) document needing the instructions between
|
||
HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
|
||
MIPS64 and later ISAs to have the interlocks, plus any specific
|
||
earlier-ISA CPUs for which CPU documentation declares that the
|
||
instructions are really interlocked. */
|
||
#define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
|
||
|| ISA_MIPS32R2 \
|
||
|| ISA_MIPS64 \
|
||
|| TARGET_MIPS5500)
|
||
|
||
/* Add -G xx support. */
|
||
|
||
#undef SWITCH_TAKES_ARG
|
||
#define SWITCH_TAKES_ARG(CHAR) \
|
||
(DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
|
||
|
||
#define OVERRIDE_OPTIONS override_options ()
|
||
|
||
#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
|
||
|
||
/* Show we can debug even without a frame pointer. */
|
||
#define CAN_DEBUG_WITHOUT_FP
|
||
|
||
/* Tell collect what flags to pass to nm. */
|
||
#ifndef NM_FLAGS
|
||
#define NM_FLAGS "-Bn"
|
||
#endif
|
||
|
||
|
||
#ifndef MIPS_ABI_DEFAULT
|
||
#define MIPS_ABI_DEFAULT ABI_32
|
||
#endif
|
||
|
||
/* Use the most portable ABI flag for the ASM specs. */
|
||
|
||
#if MIPS_ABI_DEFAULT == ABI_32
|
||
#define MULTILIB_ABI_DEFAULT "mabi=32"
|
||
#endif
|
||
|
||
#if MIPS_ABI_DEFAULT == ABI_O64
|
||
#define MULTILIB_ABI_DEFAULT "mabi=o64"
|
||
#endif
|
||
|
||
#if MIPS_ABI_DEFAULT == ABI_N32
|
||
#define MULTILIB_ABI_DEFAULT "mabi=n32"
|
||
#endif
|
||
|
||
#if MIPS_ABI_DEFAULT == ABI_64
|
||
#define MULTILIB_ABI_DEFAULT "mabi=64"
|
||
#endif
|
||
|
||
#if MIPS_ABI_DEFAULT == ABI_EABI
|
||
#define MULTILIB_ABI_DEFAULT "mabi=eabi"
|
||
#endif
|
||
|
||
/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
|
||
to the assembler. It may be overridden by subtargets. */
|
||
#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
|
||
#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
|
||
%{noasmopt:-O0} \
|
||
%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
|
||
#endif
|
||
|
||
/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
|
||
the assembler. It may be overridden by subtargets.
|
||
|
||
Beginning with gas 2.13, -mdebug must be passed to correctly handle
|
||
COFF debugging info. */
|
||
|
||
#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
|
||
#define SUBTARGET_ASM_DEBUGGING_SPEC "\
|
||
%{g} %{g0} %{g1} %{g2} %{g3} \
|
||
%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
|
||
%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
|
||
%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
|
||
%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
|
||
%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
|
||
#endif
|
||
|
||
/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
|
||
overridden by subtargets. */
|
||
|
||
#ifndef SUBTARGET_ASM_SPEC
|
||
#define SUBTARGET_ASM_SPEC ""
|
||
#endif
|
||
|
||
#undef ASM_SPEC
|
||
#define ASM_SPEC "\
|
||
%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
|
||
%{mips32} %{mips32r2} %{mips64} \
|
||
%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
|
||
%{mips3d:-mips3d} \
|
||
%{mdsp} \
|
||
%{mfix-vr4120} %{mfix-vr4130} \
|
||
%(subtarget_asm_optimizing_spec) \
|
||
%(subtarget_asm_debugging_spec) \
|
||
%{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
|
||
%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
|
||
%{mshared} %{mno-shared} \
|
||
%{msym32} %{mno-sym32} \
|
||
%{mtune=*} %{v} \
|
||
%(subtarget_asm_spec)"
|
||
|
||
/* Extra switches sometimes passed to the linker. */
|
||
/* ??? The bestGnum will never be passed to the linker, because the gcc driver
|
||
will interpret it as a -b option. */
|
||
|
||
#ifndef LINK_SPEC
|
||
#define LINK_SPEC "\
|
||
%(endian_spec) \
|
||
%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
|
||
%{bestGnum} %{shared} %{non_shared}"
|
||
#endif /* LINK_SPEC defined */
|
||
|
||
|
||
/* Specs for the compiler proper */
|
||
|
||
/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
|
||
overridden by subtargets. */
|
||
#ifndef SUBTARGET_CC1_SPEC
|
||
#define SUBTARGET_CC1_SPEC ""
|
||
#endif
|
||
|
||
/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
|
||
|
||
#undef CC1_SPEC
|
||
#define CC1_SPEC "\
|
||
%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
|
||
%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
|
||
%{save-temps: } \
|
||
%(subtarget_cc1_spec)"
|
||
|
||
/* Preprocessor specs. */
|
||
|
||
/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
|
||
overridden by subtargets. */
|
||
#ifndef SUBTARGET_CPP_SPEC
|
||
#define SUBTARGET_CPP_SPEC ""
|
||
#endif
|
||
|
||
#define CPP_SPEC "%(subtarget_cpp_spec)"
|
||
|
||
/* This macro defines names of additional specifications to put in the specs
|
||
that can be used in various specifications like CC1_SPEC. Its definition
|
||
is an initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
specification name, and a string constant that used by the GCC driver
|
||
program.
|
||
|
||
Do not define this macro if it does not need to do anything. */
|
||
|
||
#define EXTRA_SPECS \
|
||
{ "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
|
||
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
|
||
{ "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
|
||
{ "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
|
||
{ "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
|
||
{ "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
|
||
{ "endian_spec", ENDIAN_SPEC }, \
|
||
SUBTARGET_EXTRA_SPECS
|
||
|
||
#ifndef SUBTARGET_EXTRA_SPECS
|
||
#define SUBTARGET_EXTRA_SPECS
|
||
#endif
|
||
|
||
#define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
|
||
#define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
|
||
#define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
|
||
|
||
#ifndef PREFERRED_DEBUGGING_TYPE
|
||
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
|
||
#endif
|
||
|
||
#define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
|
||
|
||
/* By default, turn on GDB extensions. */
|
||
#define DEFAULT_GDB_EXTENSIONS 1
|
||
|
||
/* Local compiler-generated symbols must have a prefix that the assembler
|
||
understands. By default, this is $, although some targets (e.g.,
|
||
NetBSD-ELF) need to override this. */
|
||
|
||
#ifndef LOCAL_LABEL_PREFIX
|
||
#define LOCAL_LABEL_PREFIX "$"
|
||
#endif
|
||
|
||
/* By default on the mips, external symbols do not have an underscore
|
||
prepended, but some targets (e.g., NetBSD) require this. */
|
||
|
||
#ifndef USER_LABEL_PREFIX
|
||
#define USER_LABEL_PREFIX ""
|
||
#endif
|
||
|
||
/* On Sun 4, this limit is 2048. We use 1500 to be safe,
|
||
since the length can run past this up to a continuation point. */
|
||
#undef DBX_CONTIN_LENGTH
|
||
#define DBX_CONTIN_LENGTH 1500
|
||
|
||
/* How to renumber registers for dbx and gdb. */
|
||
#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
|
||
|
||
/* The mapping from gcc register number to DWARF 2 CFA column number. */
|
||
#define DWARF_FRAME_REGNUM(REG) (REG)
|
||
|
||
/* The DWARF 2 CFA column which tracks the return address. */
|
||
#define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
|
||
|
||
/* The DWARF 2 CFA column which tracks the return address from a
|
||
signal handler context. */
|
||
#define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
|
||
|
||
/* Before the prologue, RA lives in r31. */
|
||
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
|
||
|
||
/* Describe how we implement __builtin_eh_return. */
|
||
#define EH_RETURN_DATA_REGNO(N) \
|
||
((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
|
||
|
||
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
|
||
|
||
/* Offsets recorded in opcodes are a multiple of this alignment factor.
|
||
The default for this in 64-bit mode is 8, which causes problems with
|
||
SFmode register saves. */
|
||
#define DWARF_CIE_DATA_ALIGNMENT -4
|
||
|
||
/* Correct the offset of automatic variables and arguments. Note that
|
||
the MIPS debug format wants all automatic variables and arguments
|
||
to be in terms of the virtual frame pointer (stack pointer before
|
||
any adjustment in the function), while the MIPS 3.0 linker wants
|
||
the frame pointer to be the stack pointer after the initial
|
||
adjustment. */
|
||
|
||
#define DEBUGGER_AUTO_OFFSET(X) \
|
||
mips_debugger_offset (X, (HOST_WIDE_INT) 0)
|
||
#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
|
||
mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
|
||
|
||
/* Target machine storage layout */
|
||
|
||
#define BITS_BIG_ENDIAN 0
|
||
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
|
||
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
|
||
|
||
/* Define this to set the endianness to use in libgcc2.c, which can
|
||
not depend on target_flags. */
|
||
#if !defined(MIPSEL) && !defined(__MIPSEL__)
|
||
#define LIBGCC2_WORDS_BIG_ENDIAN 1
|
||
#else
|
||
#define LIBGCC2_WORDS_BIG_ENDIAN 0
|
||
#endif
|
||
|
||
#define MAX_BITS_PER_WORD 64
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
|
||
#ifndef IN_LIBGCC2
|
||
#define MIN_UNITS_PER_WORD 4
|
||
#endif
|
||
|
||
/* For MIPS, width of a floating point register. */
|
||
#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
|
||
|
||
/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
|
||
the next available register. */
|
||
#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
|
||
|
||
/* The largest size of value that can be held in floating-point
|
||
registers and moved with a single instruction. */
|
||
#define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
|
||
|
||
/* The largest size of value that can be held in floating-point
|
||
registers. */
|
||
#define UNITS_PER_FPVALUE \
|
||
(TARGET_SOFT_FLOAT ? 0 \
|
||
: TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
|
||
: LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
|
||
|
||
/* The number of bytes in a double. */
|
||
#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
|
||
|
||
#define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
|
||
|
||
/* Set the sizes of the core types. */
|
||
#define SHORT_TYPE_SIZE 16
|
||
#define INT_TYPE_SIZE 32
|
||
#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
|
||
#define FLOAT_TYPE_SIZE 32
|
||
#define DOUBLE_TYPE_SIZE 64
|
||
#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
|
||
|
||
/* long double is not a fixed mode, but the idea is that, if we
|
||
support long double, we also want a 128-bit integer type. */
|
||
#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
|
||
|
||
#ifdef IN_LIBGCC2
|
||
#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
|
||
|| (defined _ABI64 && _MIPS_SIM == _ABI64)
|
||
# define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
|
||
# else
|
||
# define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
|
||
# endif
|
||
#endif
|
||
|
||
/* Width in bits of a pointer. */
|
||
#ifndef POINTER_SIZE
|
||
#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
|
||
#endif
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY BITS_PER_WORD
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
/* Every structure's size must be a multiple of this. */
|
||
/* 8 is observed right on a DECstation and on riscos 4.02. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 8
|
||
|
||
/* There is no point aligning anything to a rounder boundary than this. */
|
||
#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
|
||
|
||
/* All accesses must be aligned. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Define this if you wish to imitate the way many other C compilers
|
||
handle alignment of bitfields and the structures that contain
|
||
them.
|
||
|
||
The behavior is that the type written for a bit-field (`int',
|
||
`short', or other integer type) imposes an alignment for the
|
||
entire structure, as if the structure really did contain an
|
||
ordinary field of that type. In addition, the bit-field is placed
|
||
within the structure so that it would fit within such a field,
|
||
not crossing a boundary for it.
|
||
|
||
Thus, on most machines, a bit-field whose type is written as `int'
|
||
would not cross a four-byte boundary, and would force four-byte
|
||
alignment for the whole structure. (The alignment used may not
|
||
be four bytes; it is controlled by the other alignment
|
||
parameters.)
|
||
|
||
If the macro is defined, its definition should be a C expression;
|
||
a nonzero value for the expression enables this behavior. */
|
||
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* If defined, a C expression to compute the alignment given to a
|
||
constant that is being placed in memory. CONSTANT is the constant
|
||
and ALIGN is the alignment that the object would ordinarily have.
|
||
The value of this macro is used instead of that alignment to align
|
||
the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
The typical use of this macro is to increase alignment for string
|
||
constants to be word aligned so that `strcpy' calls that copy
|
||
constants can be done inline. */
|
||
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
|
||
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* If defined, a C expression to compute the alignment for a static
|
||
variable. TYPE is the data type, and ALIGN is the alignment that
|
||
the object would ordinarily have. The value of this macro is used
|
||
instead of that alignment to align the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
One use of this macro is to increase alignment of medium-size
|
||
data to make it all fit in fewer cache lines. Another is to
|
||
cause character arrays to be word-aligned so that `strcpy' calls
|
||
that copy constants to character arrays can be done inline. */
|
||
|
||
#undef DATA_ALIGNMENT
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
((((ALIGN) < BITS_PER_WORD) \
|
||
&& (TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
|| TREE_CODE (TYPE) == UNION_TYPE \
|
||
|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
|
||
|
||
|
||
#define PAD_VARARGS_DOWN \
|
||
(FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
|
||
|
||
/* Define if operations between registers always perform the operation
|
||
on the full register even if a narrower mode is specified. */
|
||
#define WORD_REGISTER_OPERATIONS
|
||
|
||
/* When in 64 bit mode, move insns will sign extend SImode and CCmode
|
||
moves. All other references are zero extended. */
|
||
#define LOAD_EXTEND_OP(MODE) \
|
||
(TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
|
||
? SIGN_EXTEND : ZERO_EXTEND)
|
||
|
||
/* Define this macro if it is advisable to hold scalars in registers
|
||
in a wider mode than that declared by the program. In such cases,
|
||
the value is constrained to be within the bounds of the declared
|
||
type, but kept valid in the wider mode. The signedness of the
|
||
extension may differ from that of the type. */
|
||
|
||
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
||
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
|
||
{ \
|
||
if ((MODE) == SImode) \
|
||
(UNSIGNEDP) = 0; \
|
||
(MODE) = Pmode; \
|
||
}
|
||
|
||
/* Define if loading short immediate values into registers sign extends. */
|
||
#define SHORT_IMMEDIATES_SIGN_EXTEND
|
||
|
||
/* The [d]clz instructions have the natural values at 0. */
|
||
|
||
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
|
||
((VALUE) = GET_MODE_BITSIZE (MODE), true)
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of hardware registers. We have:
|
||
|
||
- 32 integer registers
|
||
- 32 floating point registers
|
||
- 8 condition code registers
|
||
- 2 accumulator registers (hi and lo)
|
||
- 32 registers each for coprocessors 0, 2 and 3
|
||
- 3 fake registers:
|
||
- ARG_POINTER_REGNUM
|
||
- FRAME_POINTER_REGNUM
|
||
- FAKE_CALL_REGNO (see the comment above load_callsi for details)
|
||
- 3 dummy entries that were used at various times in the past.
|
||
- 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
|
||
- 6 DSP control registers */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 188
|
||
|
||
/* By default, fix the kernel registers ($26 and $27), the global
|
||
pointer ($28) and the stack pointer ($29). This can change
|
||
depending on the command-line options.
|
||
|
||
Regarding coprocessor registers: without evidence to the contrary,
|
||
it's best to assume that each coprocessor register has a unique
|
||
use. This can be overridden, in, e.g., override_options() or
|
||
CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
|
||
for a particular target. */
|
||
|
||
#define FIXED_REGISTERS \
|
||
{ \
|
||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
|
||
/* COP0 registers */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* COP2 registers */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* COP3 registers */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* 6 DSP accumulator registers & 6 control registers */ \
|
||
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
|
||
}
|
||
|
||
|
||
/* Set up this array for o32 by default.
|
||
|
||
Note that we don't mark $31 as a call-clobbered register. The idea is
|
||
that it's really the call instructions themselves which clobber $31.
|
||
We don't care what the called function does with it afterwards.
|
||
|
||
This approach makes it easier to implement sibcalls. Unlike normal
|
||
calls, sibcalls don't clobber $31, so the register reaches the
|
||
called function in tact. EPILOGUE_USES says that $31 is useful
|
||
to the called function. */
|
||
|
||
#define CALL_USED_REGISTERS \
|
||
{ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* COP0 registers */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* COP2 registers */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* COP3 registers */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* 6 DSP accumulator registers & 6 control registers */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
|
||
}
|
||
|
||
|
||
/* Define this since $28, though fixed, is call-saved in many ABIs. */
|
||
|
||
#define CALL_REALLY_USED_REGISTERS \
|
||
{ /* General registers. */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
|
||
/* Floating-point registers. */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* Others. */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* COP0 registers */ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* COP2 registers */ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* COP3 registers */ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* 6 DSP accumulator registers & 6 control registers */ \
|
||
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
|
||
}
|
||
|
||
/* Internal macros to classify a register number as to whether it's a
|
||
general purpose register, a floating point register, a
|
||
multiply/divide register, or a status register. */
|
||
|
||
#define GP_REG_FIRST 0
|
||
#define GP_REG_LAST 31
|
||
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
|
||
#define GP_DBX_FIRST 0
|
||
|
||
#define FP_REG_FIRST 32
|
||
#define FP_REG_LAST 63
|
||
#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
|
||
#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
|
||
|
||
#define MD_REG_FIRST 64
|
||
#define MD_REG_LAST 65
|
||
#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
|
||
#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
|
||
|
||
#define ST_REG_FIRST 67
|
||
#define ST_REG_LAST 74
|
||
#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
|
||
|
||
|
||
/* FIXME: renumber. */
|
||
#define COP0_REG_FIRST 80
|
||
#define COP0_REG_LAST 111
|
||
#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
|
||
|
||
#define COP2_REG_FIRST 112
|
||
#define COP2_REG_LAST 143
|
||
#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
|
||
|
||
#define COP3_REG_FIRST 144
|
||
#define COP3_REG_LAST 175
|
||
#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
|
||
/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
|
||
#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
|
||
|
||
#define DSP_ACC_REG_FIRST 176
|
||
#define DSP_ACC_REG_LAST 181
|
||
#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
|
||
|
||
#define AT_REGNUM (GP_REG_FIRST + 1)
|
||
#define HI_REGNUM (MD_REG_FIRST + 0)
|
||
#define LO_REGNUM (MD_REG_FIRST + 1)
|
||
#define AC1HI_REGNUM (DSP_ACC_REG_FIRST + 0)
|
||
#define AC1LO_REGNUM (DSP_ACC_REG_FIRST + 1)
|
||
#define AC2HI_REGNUM (DSP_ACC_REG_FIRST + 2)
|
||
#define AC2LO_REGNUM (DSP_ACC_REG_FIRST + 3)
|
||
#define AC3HI_REGNUM (DSP_ACC_REG_FIRST + 4)
|
||
#define AC3LO_REGNUM (DSP_ACC_REG_FIRST + 5)
|
||
|
||
/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
|
||
If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
|
||
should be used instead. */
|
||
#define FPSW_REGNUM ST_REG_FIRST
|
||
|
||
#define GP_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
|
||
#define M16_REG_P(REGNO) \
|
||
(((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
|
||
#define FP_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
|
||
#define MD_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
|
||
#define ST_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
|
||
#define COP0_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
|
||
#define COP2_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
|
||
#define COP3_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
|
||
#define ALL_COP_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
|
||
/* Test if REGNO is one of the 6 new DSP accumulators. */
|
||
#define DSP_ACC_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
|
||
/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
|
||
#define ACC_REG_P(REGNO) \
|
||
(MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
|
||
/* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs. */
|
||
#define ACC_HI_REG_P(REGNO) \
|
||
((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
|
||
|| (REGNO) == AC3HI_REGNUM)
|
||
|
||
#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
|
||
|
||
/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
|
||
to initialize the mips16 gp pseudo register. */
|
||
#define CONST_GP_P(X) \
|
||
(GET_CODE (X) == CONST \
|
||
&& GET_CODE (XEXP (X, 0)) == UNSPEC \
|
||
&& XINT (XEXP (X, 0), 1) == UNSPEC_GP)
|
||
|
||
/* Return coprocessor number from register number. */
|
||
|
||
#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
|
||
(COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
|
||
: COP3_REG_P (REGNO) ? '3' : '?')
|
||
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
|
||
|
||
/* To make the code simpler, HARD_REGNO_MODE_OK just references an
|
||
array built in override_options. Because machmodes.h is not yet
|
||
included before this file is processed, the MODE bound can't be
|
||
expressed here. */
|
||
|
||
extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
|
||
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
|
||
GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
|
||
== (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
|
||
GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
|
||
|
||
/* These two registers don't really exist: they get eliminated to either
|
||
the stack or hard frame pointer. */
|
||
#define ARG_POINTER_REGNUM 77
|
||
#define FRAME_POINTER_REGNUM 78
|
||
|
||
/* $30 is not available on the mips16, so we use $17 as the frame
|
||
pointer. */
|
||
#define HARD_FRAME_POINTER_REGNUM \
|
||
(TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
|
||
|
||
/* Registers used as temporaries in prologue/epilogue code. If we're
|
||
generating mips16 code, these registers must come from the core set
|
||
of 8. The prologue register mustn't conflict with any incoming
|
||
arguments, the static chain pointer, or the frame pointer. The
|
||
epilogue temporary mustn't conflict with the return registers, the
|
||
frame pointer, the EH stack adjustment, or the EH data registers. */
|
||
|
||
#define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
|
||
#define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
|
||
|
||
#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
|
||
#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
|
||
|
||
/* Define this macro if it is as good or better to call a constant
|
||
function address than to call an address kept in a register. */
|
||
#define NO_FUNCTION_CSE 1
|
||
|
||
/* The ABI-defined global pointer. Sometimes we use a different
|
||
register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
|
||
#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
|
||
|
||
/* We normally use $28 as the global pointer. However, when generating
|
||
n32/64 PIC, it is better for leaf functions to use a call-clobbered
|
||
register instead. They can then avoid saving and restoring $28
|
||
and perhaps avoid using a frame at all.
|
||
|
||
When a leaf function uses something other than $28, mips_expand_prologue
|
||
will modify pic_offset_table_rtx in place. Take the register number
|
||
from there after reload. */
|
||
#define PIC_OFFSET_TABLE_REGNUM \
|
||
(reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
|
||
|
||
#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
enum reg_class
|
||
{
|
||
NO_REGS, /* no registers in set */
|
||
M16_NA_REGS, /* mips16 regs not used to pass args */
|
||
M16_REGS, /* mips16 directly accessible registers */
|
||
T_REG, /* mips16 T register ($24) */
|
||
M16_T_REGS, /* mips16 registers plus T register */
|
||
PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
|
||
V1_REG, /* Register $v1 ($3) used for TLS access. */
|
||
LEA_REGS, /* Every GPR except $25 */
|
||
GR_REGS, /* integer registers */
|
||
FP_REGS, /* floating point registers */
|
||
HI_REG, /* hi register */
|
||
LO_REG, /* lo register */
|
||
MD_REGS, /* multiply/divide registers (hi/lo) */
|
||
COP0_REGS, /* generic coprocessor classes */
|
||
COP2_REGS,
|
||
COP3_REGS,
|
||
HI_AND_GR_REGS, /* union classes */
|
||
LO_AND_GR_REGS,
|
||
HI_AND_FP_REGS,
|
||
COP0_AND_GR_REGS,
|
||
COP2_AND_GR_REGS,
|
||
COP3_AND_GR_REGS,
|
||
ALL_COP_REGS,
|
||
ALL_COP_AND_GR_REGS,
|
||
ST_REGS, /* status registers (fp status) */
|
||
DSP_ACC_REGS, /* DSP accumulator registers */
|
||
ACC_REGS, /* Hi/Lo and DSP accumulator registers */
|
||
ALL_REGS, /* all registers */
|
||
LIM_REG_CLASSES /* max value + 1 */
|
||
};
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
#define GENERAL_REGS GR_REGS
|
||
|
||
/* An initializer containing the names of the register classes as C
|
||
string constants. These names are used in writing some of the
|
||
debugging dumps. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ \
|
||
"NO_REGS", \
|
||
"M16_NA_REGS", \
|
||
"M16_REGS", \
|
||
"T_REG", \
|
||
"M16_T_REGS", \
|
||
"PIC_FN_ADDR_REG", \
|
||
"V1_REG", \
|
||
"LEA_REGS", \
|
||
"GR_REGS", \
|
||
"FP_REGS", \
|
||
"HI_REG", \
|
||
"LO_REG", \
|
||
"MD_REGS", \
|
||
/* coprocessor registers */ \
|
||
"COP0_REGS", \
|
||
"COP2_REGS", \
|
||
"COP3_REGS", \
|
||
"HI_AND_GR_REGS", \
|
||
"LO_AND_GR_REGS", \
|
||
"HI_AND_FP_REGS", \
|
||
"COP0_AND_GR_REGS", \
|
||
"COP2_AND_GR_REGS", \
|
||
"COP3_AND_GR_REGS", \
|
||
"ALL_COP_REGS", \
|
||
"ALL_COP_AND_GR_REGS", \
|
||
"ST_REGS", \
|
||
"DSP_ACC_REGS", \
|
||
"ACC_REGS", \
|
||
"ALL_REGS" \
|
||
}
|
||
|
||
/* An initializer containing the contents of the register classes,
|
||
as integers which are bit masks. The Nth integer specifies the
|
||
contents of class N. The way the integer MASK is interpreted is
|
||
that register R is in the class if `MASK & (1 << R)' is 1.
|
||
|
||
When the machine has more than 32 registers, an integer does not
|
||
suffice. Then the integers are replaced by sub-initializers,
|
||
braced groupings containing several integers. Each
|
||
sub-initializer must be suitable as an initializer for the type
|
||
`HARD_REG_SET' which is defined in `hard-reg-set.h'. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
|
||
{ 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
|
||
{ 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
|
||
{ 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
|
||
{ 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
|
||
{ 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SVR4 PIC function address register */ \
|
||
{ 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* only $v1 */ \
|
||
{ 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* Every other GPR except $25 */ \
|
||
{ 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
|
||
{ 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
|
||
{ 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
|
||
{ 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
|
||
{ 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
|
||
{ 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
|
||
{ 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
|
||
{ 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
|
||
{ 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
|
||
{ 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
|
||
{ 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
|
||
{ 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
|
||
{ 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
|
||
{ 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
|
||
{ 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
|
||
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* dsp accumulator registers */ \
|
||
{ 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* hi/lo and dsp accumulator registers */ \
|
||
{ 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* all registers */ \
|
||
}
|
||
|
||
|
||
/* A C expression whose value is a register class containing hard
|
||
register REGNO. In general there is more that one such class;
|
||
choose a class which is "minimal", meaning that no smaller class
|
||
also contains the register. */
|
||
|
||
extern const enum reg_class mips_regno_to_class[];
|
||
|
||
#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
|
||
|
||
/* A macro whose definition is the name of the class to which a
|
||
valid base register must belong. A base register is one used in
|
||
an address which is the register value plus a displacement. */
|
||
|
||
#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
|
||
|
||
/* A macro whose definition is the name of the class to which a
|
||
valid index register must belong. An index register is one used
|
||
in an address where its value is either multiplied by a scale
|
||
factor or added to another register (as well as added to a
|
||
displacement). */
|
||
|
||
#define INDEX_REG_CLASS NO_REGS
|
||
|
||
/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
|
||
registers explicitly used in the rtl to be used as spill registers
|
||
but prevents the compiler from extending the lifetime of these
|
||
registers. */
|
||
|
||
#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
|
||
|
||
/* This macro is used later on in the file. */
|
||
#define GR_REG_CLASS_P(CLASS) \
|
||
((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
|
||
|| (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS \
|
||
|| (CLASS) == V1_REG \
|
||
|| (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
|
||
|
||
/* This macro is also used later on in the file. */
|
||
#define COP_REG_CLASS_P(CLASS) \
|
||
((CLASS) == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
|
||
|
||
/* REG_ALLOC_ORDER is to order in which to allocate registers. This
|
||
is the default value (allocate the registers in numeric order). We
|
||
define it just so that we can override it for the mips16 target in
|
||
ORDER_REGS_FOR_LOCAL_ALLOC. */
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
|
||
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
|
||
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
|
||
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
|
||
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
|
||
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
|
||
96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
|
||
112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
|
||
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
|
||
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
|
||
160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
|
||
176,177,178,179,180,181,182,183,184,185,186,187 \
|
||
}
|
||
|
||
/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
|
||
to be rearranged based on a particular function. On the mips16, we
|
||
want to allocate $24 (T_REG) before other registers for
|
||
instructions for which it is possible. */
|
||
|
||
#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
|
||
|
||
/* True if VALUE is an unsigned 6-bit number. */
|
||
|
||
#define UIMM6_OPERAND(VALUE) \
|
||
(((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
|
||
|
||
/* True if VALUE is a signed 10-bit number. */
|
||
|
||
#define IMM10_OPERAND(VALUE) \
|
||
((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
|
||
|
||
/* True if VALUE is a signed 16-bit number. */
|
||
|
||
#define SMALL_OPERAND(VALUE) \
|
||
((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
|
||
|
||
/* True if VALUE is an unsigned 16-bit number. */
|
||
|
||
#define SMALL_OPERAND_UNSIGNED(VALUE) \
|
||
(((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
|
||
|
||
/* True if VALUE can be loaded into a register using LUI. */
|
||
|
||
#define LUI_OPERAND(VALUE) \
|
||
(((VALUE) | 0x7fff0000) == 0x7fff0000 \
|
||
|| ((VALUE) | 0x7fff0000) + 0x10000 == 0)
|
||
|
||
/* Return a value X with the low 16 bits clear, and such that
|
||
VALUE - X is a signed 16-bit value. */
|
||
|
||
#define CONST_HIGH_PART(VALUE) \
|
||
(((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
|
||
|
||
#define CONST_LOW_PART(VALUE) \
|
||
((VALUE) - CONST_HIGH_PART (VALUE))
|
||
|
||
#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
|
||
#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
|
||
#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
||
mips_preferred_reload_class (X, CLASS)
|
||
|
||
/* Certain machines have the property that some registers cannot be
|
||
copied to some other registers without using memory. Define this
|
||
macro on those machines to be a C expression that is nonzero if
|
||
objects of mode MODE in registers of CLASS1 can only be copied to
|
||
registers of class CLASS2 by storing a register of CLASS1 into
|
||
memory and loading that memory location into a register of CLASS2.
|
||
|
||
Do not define this macro if its value would always be zero. */
|
||
#if 0
|
||
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
||
((!TARGET_DEBUG_H_MODE \
|
||
&& GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
|
||
|| (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
|
||
|| (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
|
||
&& ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
|
||
|| (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
|
||
#endif
|
||
/* The HI and LO registers can only be reloaded via the general
|
||
registers. Condition code registers can only be loaded to the
|
||
general registers, and from the floating point registers. */
|
||
|
||
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
mips_secondary_reload_class (CLASS, MODE, X, 1)
|
||
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
mips_secondary_reload_class (CLASS, MODE, X, 0)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
|
||
|
||
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
|
||
mips_cannot_change_mode_class (FROM, TO, CLASS)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* The offset of the first local variable from the beginning of the frame.
|
||
See compute_frame_size for details about the frame layout.
|
||
|
||
??? If flag_profile_values is true, and we are generating 32-bit code, then
|
||
we assume that we will need 16 bytes of argument space. This is because
|
||
the value profiling code may emit calls to cmpdi2 in leaf functions.
|
||
Without this hack, the local variables will start at sp+8 and the gp save
|
||
area will be at sp+16, and thus they will overlap. compute_frame_size is
|
||
OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
|
||
will end up as 24 instead of 8. This won't be needed if profiling code is
|
||
inserted before virtual register instantiation. */
|
||
|
||
#define STARTING_FRAME_OFFSET \
|
||
((flag_profile_values && ! TARGET_64BIT \
|
||
? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
|
||
: current_function_outgoing_args_size) \
|
||
+ (TARGET_ABICALLS && !TARGET_NEWABI \
|
||
? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
|
||
|
||
#define RETURN_ADDR_RTX mips_return_addr
|
||
|
||
/* Since the mips16 ISA mode is encoded in the least-significant bit
|
||
of the address, mask it off return addresses for purposes of
|
||
finding exception handling regions. */
|
||
|
||
#define MASK_RETURN_ADDR GEN_INT (-2)
|
||
|
||
|
||
/* Similarly, don't use the least-significant bit to tell pointers to
|
||
code from vtable index. */
|
||
|
||
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
|
||
|
||
/* The eliminations to $17 are only used for mips16 code. See the
|
||
definition of HARD_FRAME_POINTER_REGNUM. */
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
|
||
{ ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
|
||
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
|
||
{ FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
|
||
|
||
/* We can always eliminate to the hard frame pointer. We can eliminate
|
||
to the stack pointer unless a frame pointer is needed.
|
||
|
||
In mips16 mode, we need a frame pointer for a large frame; otherwise,
|
||
reload may be unable to compute the address of a local variable,
|
||
since there is no way to add a large constant to the stack pointer
|
||
without using a temporary register. */
|
||
#define CAN_ELIMINATE(FROM, TO) \
|
||
((TO) == HARD_FRAME_POINTER_REGNUM \
|
||
|| ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed \
|
||
&& (!TARGET_MIPS16 \
|
||
|| compute_frame_size (get_frame_size ()) < 32768)))
|
||
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
(OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
|
||
|
||
/* Allocate stack space for arguments at the beginning of each function. */
|
||
#define ACCUMULATE_OUTGOING_ARGS 1
|
||
|
||
/* The argument pointer always points to the first argument. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 0
|
||
|
||
/* o32 and o64 reserve stack space for all argument registers. */
|
||
#define REG_PARM_STACK_SPACE(FNDECL) \
|
||
(TARGET_OLDABI \
|
||
? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
|
||
: 0)
|
||
|
||
/* Define this if it is the responsibility of the caller to
|
||
allocate the area reserved for arguments passed in registers.
|
||
If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
|
||
of this macro is to determine whether the space is included in
|
||
`current_function_outgoing_args_size'. */
|
||
#define OUTGOING_REG_PARM_STACK_SPACE
|
||
|
||
#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
||
|
||
/* Symbolic macros for the registers used to return integer and floating
|
||
point values. */
|
||
|
||
#define GP_RETURN (GP_REG_FIRST + 2)
|
||
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
|
||
|
||
#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
|
||
|
||
/* Symbolic macros for the first/last argument registers. */
|
||
|
||
#define GP_ARG_FIRST (GP_REG_FIRST + 4)
|
||
#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
|
||
#define FP_ARG_FIRST (FP_REG_FIRST + 12)
|
||
#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
mips_function_value (NULL_TREE, NULL, (MODE))
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
mips_function_value ((VALTYPE), (FUNC), VOIDmode)
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the MIPS, R2 R3 and F0 F2 are the only register thus used.
|
||
Currently, R2 and F0 are only implemented here (C has no complex type) */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
|
||
|| (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
|
||
&& (N) == FP_RETURN + 2))
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
We have no FP argument registers when soft-float. When FP registers
|
||
are 32 bits, we can't directly reference the odd numbered ones. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) \
|
||
((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
|
||
|| (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
|
||
&& !fixed_regs[N])
|
||
|
||
/* This structure has to cope with two different argument allocation
|
||
schemes. Most MIPS ABIs view the arguments as a structure, of which
|
||
the first N words go in registers and the rest go on the stack. If I
|
||
< N, the Ith word might go in Ith integer argument register or in a
|
||
floating-point register. For these ABIs, we only need to remember
|
||
the offset of the current argument into the structure.
|
||
|
||
The EABI instead allocates the integer and floating-point arguments
|
||
separately. The first N words of FP arguments go in FP registers,
|
||
the rest go on the stack. Likewise, the first N words of the other
|
||
arguments go in integer registers, and the rest go on the stack. We
|
||
need to maintain three counts: the number of integer registers used,
|
||
the number of floating-point registers used, and the number of words
|
||
passed on the stack.
|
||
|
||
We could keep separate information for the two ABIs (a word count for
|
||
the standard ABIs, and three separate counts for the EABI). But it
|
||
seems simpler to view the standard ABIs as forms of EABI that do not
|
||
allocate floating-point registers.
|
||
|
||
So for the standard ABIs, the first N words are allocated to integer
|
||
registers, and function_arg decides on an argument-by-argument basis
|
||
whether that argument should really go in an integer register, or in
|
||
a floating-point one. */
|
||
|
||
typedef struct mips_args {
|
||
/* Always true for varargs functions. Otherwise true if at least
|
||
one argument has been passed in an integer register. */
|
||
int gp_reg_found;
|
||
|
||
/* The number of arguments seen so far. */
|
||
unsigned int arg_number;
|
||
|
||
/* The number of integer registers used so far. For all ABIs except
|
||
EABI, this is the number of words that have been added to the
|
||
argument structure, limited to MAX_ARGS_IN_REGISTERS. */
|
||
unsigned int num_gprs;
|
||
|
||
/* For EABI, the number of floating-point registers used so far. */
|
||
unsigned int num_fprs;
|
||
|
||
/* The number of words passed on the stack. */
|
||
unsigned int stack_words;
|
||
|
||
/* On the mips16, we need to keep track of which floating point
|
||
arguments were passed in general registers, but would have been
|
||
passed in the FP regs if this were a 32 bit function, so that we
|
||
can move them to the FP regs if we wind up calling a 32 bit
|
||
function. We record this information in fp_code, encoded in base
|
||
four. A zero digit means no floating point argument, a one digit
|
||
means an SFmode argument, and a two digit means a DFmode argument,
|
||
and a three digit is not used. The low order digit is the first
|
||
argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
|
||
an SFmode argument. ??? A more sophisticated approach will be
|
||
needed if MIPS_ABI != ABI_32. */
|
||
int fp_code;
|
||
|
||
/* True if the function has a prototype. */
|
||
int prototype;
|
||
} CUMULATIVE_ARGS;
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
|
||
init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_advance (&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* Determine where to put an argument to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
function_arg( &CUM, MODE, TYPE, NAMED)
|
||
|
||
#define FUNCTION_ARG_BOUNDARY function_arg_boundary
|
||
|
||
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
|
||
(mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
|
||
|
||
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
|
||
(mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
|
||
|
||
/* True if using EABI and varargs can be passed in floating-point
|
||
registers. Under these conditions, we need a more complex form
|
||
of va_list, which tracks GPR, FPR and stack arguments separately. */
|
||
#define EABI_FLOAT_VARARGS_P \
|
||
(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
|
||
|
||
|
||
/* Say that the epilogue uses the return address register. Note that
|
||
in the case of sibcalls, the values "used by the epilogue" are
|
||
considered live at the start of the called function. */
|
||
#define EPILOGUE_USES(REGNO) ((REGNO) == 31)
|
||
|
||
/* Treat LOC as a byte offset from the stack pointer and round it up
|
||
to the next fully-aligned offset. */
|
||
#define MIPS_STACK_ALIGN(LOC) \
|
||
(TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
|
||
|
||
|
||
/* Implement `va_start' for varargs and stdarg. */
|
||
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
|
||
mips_va_start (valist, nextarg)
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
{ \
|
||
if (TARGET_MIPS16) \
|
||
sorry ("mips16 function profiling"); \
|
||
fprintf (FILE, "\t.set\tnoat\n"); \
|
||
fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
|
||
reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
|
||
if (!TARGET_NEWABI) \
|
||
{ \
|
||
fprintf (FILE, \
|
||
"\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
|
||
TARGET_64BIT ? "dsubu" : "subu", \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
Pmode == DImode ? 16 : 8); \
|
||
} \
|
||
fprintf (FILE, "\tjal\t_mcount\n"); \
|
||
fprintf (FILE, "\t.set\tat\n"); \
|
||
}
|
||
|
||
/* No mips port has ever used the profiler counter word, so don't emit it
|
||
or the label for it. */
|
||
|
||
#define NO_PROFILE_COUNTERS 1
|
||
|
||
/* Define this macro if the code for function profiling should come
|
||
before the function prologue. Normally, the profiling code comes
|
||
after. */
|
||
|
||
/* #define PROFILE_BEFORE_PROLOGUE */
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
|
||
/* A C statement to output, on the stream FILE, assembler code for a
|
||
block of data that contains the constant parts of a trampoline.
|
||
This code should not include a label--the label is taken care of
|
||
automatically. */
|
||
|
||
#define TRAMPOLINE_TEMPLATE(STREAM) \
|
||
{ \
|
||
if (ptr_mode == DImode) \
|
||
fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove $1,$31\n"); \
|
||
else \
|
||
fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
|
||
fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
|
||
fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
|
||
if (ptr_mode == DImode) \
|
||
{ \
|
||
fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
|
||
fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
|
||
fprintf (STREAM, "\t.word\t0x0060c82d\t\t# dmove $25,$3\n"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
|
||
fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
|
||
fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3\n"); \
|
||
} \
|
||
fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
|
||
if (ptr_mode == DImode) \
|
||
{ \
|
||
fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove $31,$1\n"); \
|
||
fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
|
||
fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
|
||
fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
|
||
fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
|
||
} \
|
||
}
|
||
|
||
/* A C expression for the size in bytes of the trampoline, as an
|
||
integer. */
|
||
|
||
#define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
|
||
|
||
/* Alignment required for trampolines, in bits. */
|
||
|
||
#define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
|
||
|
||
/* INITIALIZE_TRAMPOLINE calls this library function to flush
|
||
program and data caches. */
|
||
|
||
#ifndef CACHE_FLUSH_FUNC
|
||
#define CACHE_FLUSH_FUNC "_flush_cache"
|
||
#endif
|
||
|
||
/* A C statement to initialize the variable parts of a trampoline.
|
||
ADDR is an RTX for the address of the trampoline; FNADDR is an
|
||
RTX for the address of the nested function; STATIC_CHAIN is an
|
||
RTX for the static chain value that should be passed to the
|
||
function when it is called. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
|
||
{ \
|
||
rtx func_addr, chain_addr; \
|
||
\
|
||
func_addr = plus_constant (ADDR, 32); \
|
||
chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode)); \
|
||
emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC); \
|
||
emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN); \
|
||
\
|
||
/* Flush both caches. We need to flush the data cache in case \
|
||
the system has a write-back cache. */ \
|
||
/* ??? Should check the return value for errors. */ \
|
||
if (mips_cache_flush_func && mips_cache_flush_func[0]) \
|
||
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
|
||
0, VOIDmode, 3, ADDR, Pmode, \
|
||
GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
|
||
GEN_INT (3), TYPE_MODE (integer_type_node)); \
|
||
}
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
|
||
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
|
||
mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects them all.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Some source files that are used after register allocation
|
||
need to be strict. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
|
||
#else
|
||
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
|
||
#endif
|
||
|
||
#define REG_OK_FOR_INDEX_P(X) 0
|
||
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 1
|
||
|
||
#ifdef REG_OK_STRICT
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ \
|
||
if (mips_legitimate_address_p (MODE, X, 1)) \
|
||
goto ADDR; \
|
||
}
|
||
#else
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ \
|
||
if (mips_legitimate_address_p (MODE, X, 0)) \
|
||
goto ADDR; \
|
||
}
|
||
#endif
|
||
|
||
/* Check for constness inline but use mips_legitimate_address_p
|
||
to check whether a constant really is an address. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
|
||
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
|
||
do { \
|
||
if (mips_legitimize_address (&(X), MODE)) \
|
||
goto WIN; \
|
||
} while (0)
|
||
|
||
|
||
/* A C statement or compound statement with a conditional `goto
|
||
LABEL;' executed if memory address X (an RTX) can have different
|
||
meanings depending on the machine mode of the memory reference it
|
||
is used for.
|
||
|
||
Autoincrement and autodecrement addresses typically have
|
||
mode-dependent effects because the amount of the increment or
|
||
decrement is the size of the operand being addressed. Some
|
||
machines have other mode-dependent addresses. Many RISC machines
|
||
have no mode-dependent addresses.
|
||
|
||
You may assume that ADDR is a valid address for the machine. */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
|
||
|
||
/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
|
||
'the start of the function that this code is output in'. */
|
||
|
||
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
|
||
if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
|
||
asm_fprintf ((FILE), "%U%s", \
|
||
XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
|
||
else \
|
||
asm_fprintf ((FILE), "%U%s", (NAME))
|
||
|
||
/* Flag to mark a function decl symbol that requires a long call. */
|
||
#define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
|
||
#define SYMBOL_REF_LONG_CALL_P(X) \
|
||
((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction.
|
||
??? Using HImode in mips16 mode can cause overflow. */
|
||
#define CASE_VECTOR_MODE \
|
||
(TARGET_MIPS16 ? HImode : ptr_mode)
|
||
|
||
/* Define as C expression which evaluates to nonzero if the tablejump
|
||
instruction expects the table to contain offsets from the address of the
|
||
table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#ifndef DEFAULT_SIGNED_CHAR
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
#endif
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
|
||
#define MAX_MOVE_MAX 8
|
||
|
||
/* Define this macro as a C expression which is nonzero if
|
||
accessing less than a word of memory (i.e. a `char' or a
|
||
`short') is no faster than accessing a word of memory, i.e., if
|
||
such access require more than one instruction or if there is no
|
||
difference in cost between byte and (aligned) word loads.
|
||
|
||
On RISC machines, it tends to generate better code to define
|
||
this as 1, since it avoids making a QI or HI mode register. */
|
||
#define SLOW_BYTE_ACCESS 1
|
||
|
||
/* Define this to be nonzero if shift instructions ignore all but the low-order
|
||
few bits. */
|
||
#define SHIFT_COUNT_TRUNCATED 1
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
|
||
(TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
|
||
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
|
||
#ifndef Pmode
|
||
#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
|
||
#endif
|
||
|
||
/* Give call MEMs SImode since it is the "most permissive" mode
|
||
for both 32-bit and 64-bit targets. */
|
||
|
||
#define FUNCTION_MODE SImode
|
||
|
||
|
||
/* The cost of loading values from the constant pool. It should be
|
||
larger than the cost of any constant we want to synthesize in-line. */
|
||
|
||
#define CONSTANT_POOL_COST COSTS_N_INSNS (8)
|
||
|
||
/* A C expression for the cost of moving data from a register in
|
||
class FROM to one in class TO. The classes are expressed using
|
||
the enumeration values such as `GENERAL_REGS'. A value of 2 is
|
||
the default; other values are interpreted relative to that.
|
||
|
||
It is not required that the cost always equal 2 when FROM is the
|
||
same as TO; on some machines it is expensive to move between
|
||
registers if they are not general registers.
|
||
|
||
If reload sees an insn consisting of a single `set' between two
|
||
hard registers, and if `REGISTER_MOVE_COST' applied to their
|
||
classes returns a value of 2, reload does not check to ensure
|
||
that the constraints of the insn are met. Setting a cost of
|
||
other than 2 will allow reload to verify that the constraints are
|
||
met. You should do this if the `movM' pattern's constraints do
|
||
not allow such copying. */
|
||
|
||
#define REGISTER_MOVE_COST(MODE, FROM, TO) \
|
||
mips_register_move_cost (MODE, FROM, TO)
|
||
|
||
#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
|
||
(mips_cost->memory_latency \
|
||
+ memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
|
||
|
||
/* Define if copies to/from condition code registers should be avoided.
|
||
|
||
This is needed for the MIPS because reload_outcc is not complete;
|
||
it needs to handle cases where the source is a general or another
|
||
condition code register. */
|
||
#define AVOID_CCMODE_COPIES
|
||
|
||
/* A C expression for the cost of a branch instruction. A value of
|
||
1 is the default; other values are interpreted relative to that. */
|
||
|
||
#define BRANCH_COST mips_cost->branch_cost
|
||
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
|
||
|
||
/* If defined, modifies the length assigned to instruction INSN as a
|
||
function of the context in which it is used. LENGTH is an lvalue
|
||
that contains the initially computed length of the insn and should
|
||
be updated with the correct length of the insn. */
|
||
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
|
||
((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
|
||
|
||
/* Return the asm template for a non-MIPS16 conditional branch instruction.
|
||
OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
|
||
its operands. */
|
||
#define MIPS_BRANCH(OPCODE, OPERANDS) \
|
||
"%*" OPCODE "%?\t" OPERANDS "%/"
|
||
|
||
/* Return the asm template for a call. INSN is the instruction's mnemonic
|
||
("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
|
||
of the target.
|
||
|
||
When generating -mabicalls without explicit relocation operators,
|
||
all calls should use assembly macros. Otherwise, all indirect
|
||
calls should use "jr" or "jalr"; we will arrange to restore $gp
|
||
afterwards if necessary. Finally, we can only generate direct
|
||
calls for -mabicalls by temporarily switching to non-PIC mode. */
|
||
#define MIPS_CALL(INSN, OPERANDS, OPNO) \
|
||
(TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS \
|
||
? "%*" INSN "\t%" #OPNO "%/" \
|
||
: REG_P (OPERANDS[OPNO]) \
|
||
? "%*" INSN "r\t%" #OPNO "%/" \
|
||
: TARGET_ABICALLS \
|
||
? (".option\tpic0\n\t" \
|
||
"%*" INSN "\t%" #OPNO "%/\n\t" \
|
||
".option\tpic2") \
|
||
: "%*" INSN "\t%" #OPNO "%/")
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#ifndef ASM_APP_ON
|
||
#define ASM_APP_ON " #APP\n"
|
||
#endif
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#ifndef ASM_APP_OFF
|
||
#define ASM_APP_OFF " #NO_APP\n"
|
||
#endif
|
||
|
||
#define REGISTER_NAMES \
|
||
{ "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
|
||
"$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
|
||
"$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
|
||
"$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
|
||
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
|
||
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
|
||
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
|
||
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
|
||
"hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
|
||
"$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec", \
|
||
"$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
|
||
"$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
|
||
"$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
|
||
"$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
|
||
"$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
|
||
"$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
|
||
"$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
|
||
"$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
|
||
"$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
|
||
"$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
|
||
"$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
|
||
"$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
|
||
"$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
|
||
"$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
|
||
|
||
/* List the "software" names for each register. Also list the numerical
|
||
names for $fp and $sp. */
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES \
|
||
{ \
|
||
{ "$29", 29 + GP_REG_FIRST }, \
|
||
{ "$30", 30 + GP_REG_FIRST }, \
|
||
{ "at", 1 + GP_REG_FIRST }, \
|
||
{ "v0", 2 + GP_REG_FIRST }, \
|
||
{ "v1", 3 + GP_REG_FIRST }, \
|
||
{ "a0", 4 + GP_REG_FIRST }, \
|
||
{ "a1", 5 + GP_REG_FIRST }, \
|
||
{ "a2", 6 + GP_REG_FIRST }, \
|
||
{ "a3", 7 + GP_REG_FIRST }, \
|
||
{ "t0", 8 + GP_REG_FIRST }, \
|
||
{ "t1", 9 + GP_REG_FIRST }, \
|
||
{ "t2", 10 + GP_REG_FIRST }, \
|
||
{ "t3", 11 + GP_REG_FIRST }, \
|
||
{ "t4", 12 + GP_REG_FIRST }, \
|
||
{ "t5", 13 + GP_REG_FIRST }, \
|
||
{ "t6", 14 + GP_REG_FIRST }, \
|
||
{ "t7", 15 + GP_REG_FIRST }, \
|
||
{ "s0", 16 + GP_REG_FIRST }, \
|
||
{ "s1", 17 + GP_REG_FIRST }, \
|
||
{ "s2", 18 + GP_REG_FIRST }, \
|
||
{ "s3", 19 + GP_REG_FIRST }, \
|
||
{ "s4", 20 + GP_REG_FIRST }, \
|
||
{ "s5", 21 + GP_REG_FIRST }, \
|
||
{ "s6", 22 + GP_REG_FIRST }, \
|
||
{ "s7", 23 + GP_REG_FIRST }, \
|
||
{ "t8", 24 + GP_REG_FIRST }, \
|
||
{ "t9", 25 + GP_REG_FIRST }, \
|
||
{ "k0", 26 + GP_REG_FIRST }, \
|
||
{ "k1", 27 + GP_REG_FIRST }, \
|
||
{ "gp", 28 + GP_REG_FIRST }, \
|
||
{ "sp", 29 + GP_REG_FIRST }, \
|
||
{ "fp", 30 + GP_REG_FIRST }, \
|
||
{ "ra", 31 + GP_REG_FIRST }, \
|
||
ALL_COP_ADDITIONAL_REGISTER_NAMES \
|
||
}
|
||
|
||
/* This is meant to be redefined in the host dependent files. It is a
|
||
set of alternative names and regnums for mips coprocessors. */
|
||
|
||
#define ALL_COP_ADDITIONAL_REGISTER_NAMES
|
||
|
||
/* A C compound statement to output to stdio stream STREAM the
|
||
assembler syntax for an instruction operand X. X is an RTL
|
||
expression.
|
||
|
||
CODE is a value that can be used to specify one of several ways
|
||
of printing the operand. It is used when identical operands
|
||
must be printed differently depending on the context. CODE
|
||
comes from the `%' specification that was used to request
|
||
printing of the operand. If the specification was just `%DIGIT'
|
||
then CODE is 0; if the specification was `%LTR DIGIT' then CODE
|
||
is the ASCII code for LTR.
|
||
|
||
If X is a register, this macro should print the register's name.
|
||
The names can be found in an array `reg_names' whose type is
|
||
`char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
|
||
|
||
When the machine description has a specification `%PUNCT' (a `%'
|
||
followed by a punctuation character), this macro is called with
|
||
a null pointer for X and the punctuation character for CODE.
|
||
|
||
See mips.c for the MIPS specific codes. */
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
||
|
||
/* A C expression which evaluates to true if CODE is a valid
|
||
punctuation character for use in the `PRINT_OPERAND' macro. If
|
||
`PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
|
||
punctuation characters (except for the standard one, `%') are
|
||
used in this way. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
|
||
|
||
/* A C compound statement to output to stdio stream STREAM the
|
||
assembler syntax for an instruction operand that is a memory
|
||
reference whose address is ADDR. ADDR is an RTL expression. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
|
||
|
||
|
||
/* A C statement, to be executed after all slot-filler instructions
|
||
have been output. If necessary, call `dbr_sequence_length' to
|
||
determine the number of slots filled in a sequence (zero if not
|
||
currently outputting a sequence), to decide how many no-ops to
|
||
output, or whatever.
|
||
|
||
Don't define this macro if it has nothing to do, but it is
|
||
helpful in reading assembly output if the extent of the delay
|
||
sequence is made explicit (e.g. with white space).
|
||
|
||
Note that output routines for instructions with delay slots must
|
||
be prepared to deal with not being output as part of a sequence
|
||
(i.e. when the scheduling pass is not run, or when no slot
|
||
fillers could be found.) The variable `final_sequence' is null
|
||
when not processing a sequence, otherwise it contains the
|
||
`sequence' rtx being output. */
|
||
|
||
#define DBR_OUTPUT_SEQEND(STREAM) \
|
||
do \
|
||
{ \
|
||
if (set_nomacro > 0 && --set_nomacro == 0) \
|
||
fputs ("\t.set\tmacro\n", STREAM); \
|
||
\
|
||
if (set_noreorder > 0 && --set_noreorder == 0) \
|
||
fputs ("\t.set\treorder\n", STREAM); \
|
||
\
|
||
fputs ("\n", STREAM); \
|
||
} \
|
||
while (0)
|
||
|
||
|
||
/* How to tell the debugger about changes of source files. */
|
||
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
|
||
mips_output_filename (STREAM, NAME)
|
||
|
||
/* mips-tfile does not understand .stabd directives. */
|
||
#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
|
||
dbxout_begin_stabn_sline (LINE); \
|
||
dbxout_stab_value_internal_label ("LM", &COUNTER); \
|
||
} while (0)
|
||
|
||
/* Use .loc directives for SDB line numbers. */
|
||
#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
|
||
fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
|
||
|
||
/* The MIPS implementation uses some labels for its own purpose. The
|
||
following lists what labels are created, and are all formed by the
|
||
pattern $L[a-z].*. The machine independent portion of GCC creates
|
||
labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
|
||
|
||
LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
|
||
$Lb[0-9]+ Begin blocks for MIPS debug support
|
||
$Lc[0-9]+ Label for use in s<xx> operation.
|
||
$Le[0-9]+ End blocks for MIPS debug support */
|
||
|
||
#undef ASM_DECLARE_OBJECT_NAME
|
||
#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
|
||
mips_declare_object (STREAM, NAME, "", ":\n", 0)
|
||
|
||
/* Globalizing directive for a label. */
|
||
#define GLOBAL_ASM_OP "\t.globl\t"
|
||
|
||
/* This says how to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
|
||
|
||
/* This says how to define a local common symbol (i.e., not visible to
|
||
linker). */
|
||
|
||
#ifndef ASM_OUTPUT_ALIGNED_LOCAL
|
||
#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
|
||
mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
|
||
#endif
|
||
|
||
/* This says how to output an external. It would be possible not to
|
||
output anything and let undefined symbol become external. However
|
||
the assembler uses length information on externals to allocate in
|
||
data/sdata bss/sbss, thereby saving exec time. */
|
||
|
||
#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
|
||
mips_output_external(STREAM,DECL,NAME)
|
||
|
||
/* This is how to declare a function name. The actual work of
|
||
emitting the label is moved to function_prologue, so that we can
|
||
get the line number correctly emitted before the .ent directive,
|
||
and after any .file directives. Define as empty so that the function
|
||
is not declared before the .ent directive elsewhere. */
|
||
|
||
#undef ASM_DECLARE_FUNCTION_NAME
|
||
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
|
||
|
||
#ifndef FUNCTION_NAME_ALREADY_DECLARED
|
||
#define FUNCTION_NAME_ALREADY_DECLARED 0
|
||
#endif
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#undef ASM_GENERATE_INTERNAL_LABEL
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
|
||
fprintf (STREAM, "\t%s\t%sL%d\n", \
|
||
ptr_mode == DImode ? ".dword" : ".word", \
|
||
LOCAL_LABEL_PREFIX, \
|
||
VALUE)
|
||
|
||
/* This is how to output an element of a case-vector. We can make the
|
||
entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
|
||
is supported. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
|
||
do { \
|
||
if (TARGET_MIPS16) \
|
||
fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
|
||
LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
|
||
else if (TARGET_GPWORD) \
|
||
fprintf (STREAM, "\t%s\t%sL%d\n", \
|
||
ptr_mode == DImode ? ".gpdword" : ".gpword", \
|
||
LOCAL_LABEL_PREFIX, VALUE); \
|
||
else \
|
||
fprintf (STREAM, "\t%s\t%sL%d\n", \
|
||
ptr_mode == DImode ? ".dword" : ".word", \
|
||
LOCAL_LABEL_PREFIX, VALUE); \
|
||
} while (0)
|
||
|
||
/* When generating MIPS16 code, we want the jump table to be in the text
|
||
section so that we can load its address using a PC-relative addition. */
|
||
#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
|
||
fprintf (STREAM, "\t.align\t%d\n", (LOG))
|
||
|
||
/* This is how to output an assembler line to advance the location
|
||
counter by SIZE bytes. */
|
||
|
||
#undef ASM_OUTPUT_SKIP
|
||
#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
|
||
fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
|
||
|
||
/* This is how to output a string. */
|
||
#undef ASM_OUTPUT_ASCII
|
||
#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
|
||
mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
|
||
|
||
/* Output #ident as a in the read-only data section. */
|
||
#undef ASM_OUTPUT_IDENT
|
||
#define ASM_OUTPUT_IDENT(FILE, STRING) \
|
||
{ \
|
||
const char *p = STRING; \
|
||
int size = strlen (p) + 1; \
|
||
switch_to_section (readonly_data_section); \
|
||
assemble_string (p, size); \
|
||
}
|
||
|
||
/* Default to -G 8 */
|
||
#ifndef MIPS_DEFAULT_GVALUE
|
||
#define MIPS_DEFAULT_GVALUE 8
|
||
#endif
|
||
|
||
/* Define the strings to put out for each section in the object file. */
|
||
#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
|
||
#define DATA_SECTION_ASM_OP "\t.data" /* large data */
|
||
|
||
#undef READONLY_DATA_SECTION_ASM_OP
|
||
#define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
|
||
do \
|
||
{ \
|
||
fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
|
||
TARGET_64BIT ? "dsubu" : "subu", \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
TARGET_64BIT ? "sd" : "sw", \
|
||
reg_names[REGNO], \
|
||
reg_names[STACK_POINTER_REGNUM]); \
|
||
} \
|
||
while (0)
|
||
|
||
#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
|
||
do \
|
||
{ \
|
||
if (! set_noreorder) \
|
||
fprintf (STREAM, "\t.set\tnoreorder\n"); \
|
||
\
|
||
fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
|
||
TARGET_64BIT ? "ld" : "lw", \
|
||
reg_names[REGNO], \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
TARGET_64BIT ? "daddu" : "addu", \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[STACK_POINTER_REGNUM]); \
|
||
\
|
||
if (! set_noreorder) \
|
||
fprintf (STREAM, "\t.set\treorder\n"); \
|
||
} \
|
||
while (0)
|
||
|
||
/* How to start an assembler comment.
|
||
The leading space is important (the mips native assembler requires it). */
|
||
#ifndef ASM_COMMENT_START
|
||
#define ASM_COMMENT_START " #"
|
||
#endif
|
||
|
||
/* Default definitions for size_t and ptrdiff_t. We must override the
|
||
definitions from ../svr4.h on mips-*-linux-gnu. */
|
||
|
||
#undef SIZE_TYPE
|
||
#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
|
||
|
||
#undef PTRDIFF_TYPE
|
||
#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
|
||
|
||
#ifndef __mips16
|
||
/* Since the bits of the _init and _fini function is spread across
|
||
many object files, each potentially with its own GP, we must assume
|
||
we need to load our GP. We don't preserve $gp or $ra, since each
|
||
init/fini chunk is supposed to initialize $gp, and crti/crtn
|
||
already take care of preserving $ra and, when appropriate, $gp. */
|
||
#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
|
||
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
||
asm (SECTION_OP "\n\
|
||
.set noreorder\n\
|
||
bal 1f\n\
|
||
nop\n\
|
||
1: .cpload $31\n\
|
||
.set reorder\n\
|
||
jal " USER_LABEL_PREFIX #FUNC "\n\
|
||
" TEXT_SECTION_ASM_OP);
|
||
#endif /* Switch to #elif when we're no longer limited by K&R C. */
|
||
#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
|
||
|| (defined _ABI64 && _MIPS_SIM == _ABI64)
|
||
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
||
asm (SECTION_OP "\n\
|
||
.set noreorder\n\
|
||
bal 1f\n\
|
||
nop\n\
|
||
1: .set reorder\n\
|
||
.cpsetup $31, $2, 1b\n\
|
||
jal " USER_LABEL_PREFIX #FUNC "\n\
|
||
" TEXT_SECTION_ASM_OP);
|
||
#endif
|
||
#endif
|
||
|
||
#ifndef HAVE_AS_TLS
|
||
#define HAVE_AS_TLS 0
|
||
#endif
|