freebsd-dev/sys/arm/xscale/ixp425/ixp425_qmgr.c
Pedro F. Giffuni 51369649b0 sys: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 3-Clause license.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
2017-11-20 19:43:44 +00:00

1105 lines
32 KiB
C

/*-
* Copyright (c) 2006 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2001-2005, Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Intel XScale Queue Manager support.
*
* Each IXP4XXX device has a hardware block that implements a priority
* queue manager that is shared between the XScale cpu and the backend
* devices (such as the NPE). Queues are accessed by reading/writing
* special memory locations. The queue contents are mapped into a shared
* SRAM region with entries managed in a circular buffer. The XScale
* processor can receive interrupts based on queue contents (a condition
* code determines when interrupts should be delivered).
*
* The code here basically replaces the qmgr class in the Intel Access
* Library (IAL).
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/time.h>
#include <sys/bus.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/intr.h>
#include <arm/xscale/ixp425/ixp425reg.h>
#include <arm/xscale/ixp425/ixp425var.h>
#include <arm/xscale/ixp425/ixp425_qmgr.h>
/*
* State per AQM hw queue.
* This structure holds q configuration and dispatch state.
*/
struct qmgrInfo {
int qSizeInWords; /* queue size in words */
uint32_t qOflowStatBitMask; /* overflow status mask */
int qWriteCount; /* queue write count */
bus_size_t qAccRegAddr; /* access register */
bus_size_t qUOStatRegAddr; /* status register */
bus_size_t qConfigRegAddr; /* config register */
int qSizeInEntries; /* queue size in entries */
uint32_t qUflowStatBitMask; /* underflow status mask */
int qReadCount; /* queue read count */
/* XXX union */
uint32_t qStatRegAddr;
uint32_t qStatBitsOffset;
uint32_t qStat0BitMask;
uint32_t qStat1BitMask;
uint32_t intRegCheckMask; /* interrupt reg check mask */
void (*cb)(int, void *); /* callback function */
void *cbarg; /* callback argument */
int priority; /* dispatch priority */
#if 0
/* NB: needed only for A0 parts */
u_int statusWordOffset; /* status word offset */
uint32_t statusMask; /* status mask */
uint32_t statusCheckValue; /* status check value */
#endif
};
struct ixpqmgr_softc {
device_t sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
struct resource *sc_irq1; /* IRQ resource */
void *sc_ih1; /* interrupt handler */
int sc_rid1; /* resource id for irq */
struct resource *sc_irq2;
void *sc_ih2;
int sc_rid2;
struct qmgrInfo qinfo[IX_QMGR_MAX_NUM_QUEUES];
/*
* This array contains a list of queue identifiers ordered by
* priority. The table is split logically between queue
* identifiers 0-31 and 32-63. To optimize lookups bit masks
* are kept for the first-32 and last-32 q's. When the
* table needs to be rebuilt mark rebuildTable and it'll
* happen after the next interrupt.
*/
int priorityTable[IX_QMGR_MAX_NUM_QUEUES];
uint32_t lowPriorityTableFirstHalfMask;
uint32_t uppPriorityTableFirstHalfMask;
int rebuildTable; /* rebuild priorityTable */
uint32_t aqmFreeSramAddress; /* SRAM free space */
};
static int qmgr_debug;
SYSCTL_INT(_debug, OID_AUTO, qmgr, CTLFLAG_RWTUN, &qmgr_debug,
0, "IXP4XX Q-Manager debug msgs");
#define DPRINTF(dev, fmt, ...) do { \
if (qmgr_debug) printf(fmt, __VA_ARGS__); \
} while (0)
#define DPRINTFn(n, dev, fmt, ...) do { \
if (qmgr_debug >= n) printf(fmt, __VA_ARGS__); \
} while (0)
static struct ixpqmgr_softc *ixpqmgr_sc = NULL;
static void ixpqmgr_rebuild(struct ixpqmgr_softc *);
static void ixpqmgr_intr(void *);
static void aqm_int_enable(struct ixpqmgr_softc *sc, int qId);
static void aqm_int_disable(struct ixpqmgr_softc *sc, int qId);
static void aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf);
static void aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId);
static void aqm_reset(struct ixpqmgr_softc *sc);
static void
dummyCallback(int qId, void *arg)
{
/* XXX complain */
}
static uint32_t
aqm_reg_read(struct ixpqmgr_softc *sc, bus_size_t off)
{
DPRINTFn(9, sc->sc_dev, "%s(0x%x)\n", __func__, (int)off);
return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
}
static void
aqm_reg_write(struct ixpqmgr_softc *sc, bus_size_t off, uint32_t val)
{
DPRINTFn(9, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, (int)off, val);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
}
static int
ixpqmgr_probe(device_t dev)
{
device_set_desc(dev, "IXP4XX Q-Manager");
return 0;
}
static int
ixpqmgr_attach(device_t dev)
{
struct ixpqmgr_softc *sc = device_get_softc(dev);
struct ixp425_softc *sa = device_get_softc(device_get_parent(dev));
int i, err;
ixpqmgr_sc = sc;
sc->sc_dev = dev;
sc->sc_iot = sa->sc_iot;
if (bus_space_map(sc->sc_iot, IXP425_QMGR_HWBASE, IXP425_QMGR_SIZE,
0, &sc->sc_ioh))
panic("%s: Cannot map registers", device_get_name(dev));
/* NB: we only use the lower 32 q's */
/* Set up QMGR interrupts */
sc->sc_rid1 = 0;
sc->sc_irq1 = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->sc_rid1,
IXP425_INT_QUE1_32, IXP425_INT_QUE1_32, 1, RF_ACTIVE);
sc->sc_rid2 = 1;
sc->sc_irq2 = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->sc_rid2,
IXP425_INT_QUE33_64, IXP425_INT_QUE33_64, 1, RF_ACTIVE);
if (sc->sc_irq1 == NULL || sc->sc_irq2 == NULL)
panic("Unable to allocate the qmgr irqs.\n");
err = bus_setup_intr(dev, sc->sc_irq1, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ixpqmgr_intr, NULL, &sc->sc_ih1);
if (err) {
device_printf(dev, "failed to set up qmgr irq=%d\n",
IXP425_INT_QUE1_32);
return (ENXIO);
}
err = bus_setup_intr(dev, sc->sc_irq2, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ixpqmgr_intr, NULL, &sc->sc_ih2);
if (err) {
device_printf(dev, "failed to set up qmgr irq=%d\n",
IXP425_INT_QUE33_64);
return (ENXIO);
}
/* NB: softc is pre-zero'd */
for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++) {
struct qmgrInfo *qi = &sc->qinfo[i];
qi->cb = dummyCallback;
qi->priority = IX_QMGR_Q_PRIORITY_0; /* default priority */
/*
* There are two interrupt registers, 32 bits each. One
* for the lower queues(0-31) and one for the upper
* queues(32-63). Therefore need to mod by 32 i.e the
* min upper queue identifier.
*/
qi->intRegCheckMask = (1<<(i%(IX_QMGR_MIN_QUEUPP_QID)));
/*
* Register addresses and bit masks are calculated and
* stored here to optimize QRead, QWrite and QStatusGet
* functions.
*/
/* AQM Queue access reg addresses, per queue */
qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
qi->qAccRegAddr = IX_QMGR_Q_ACCESS_ADDR_GET(i);
qi->qConfigRegAddr = IX_QMGR_Q_CONFIG_ADDR_GET(i);
/* AQM Queue lower-group (0-31), only */
if (i < IX_QMGR_MIN_QUEUPP_QID) {
/* AQM Q underflow/overflow status reg address, per queue */
qi->qUOStatRegAddr = IX_QMGR_QUEUOSTAT0_OFFSET +
((i / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD) *
sizeof(uint32_t));
/* AQM Q underflow status bit masks for status reg per queue */
qi->qUflowStatBitMask =
(IX_QMGR_UNDERFLOW_BIT_OFFSET + 1) <<
((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
(32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
/* AQM Q overflow status bit masks for status reg, per queue */
qi->qOflowStatBitMask =
(IX_QMGR_OVERFLOW_BIT_OFFSET + 1) <<
((i & (IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD - 1)) *
(32 / IX_QMGR_QUEUOSTAT_NUM_QUE_PER_WORD));
/* AQM Q lower-group (0-31) status reg addresses, per queue */
qi->qStatRegAddr = IX_QMGR_QUELOWSTAT0_OFFSET +
((i / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
sizeof(uint32_t));
/* AQM Q lower-group (0-31) status register bit offset */
qi->qStatBitsOffset =
(i & (IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD - 1)) *
(32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD);
} else { /* AQM Q upper-group (32-63), only */
qi->qUOStatRegAddr = 0; /* XXX */
/* AQM Q upper-group (32-63) Nearly Empty status reg bitmasks */
qi->qStat0BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
/* AQM Q upper-group (32-63) Full status register bitmasks */
qi->qStat1BitMask = (1 << (i - IX_QMGR_MIN_QUEUPP_QID));
}
}
sc->aqmFreeSramAddress = 0x100; /* Q buffer space starts at 0x2100 */
ixpqmgr_rebuild(sc); /* build initial priority table */
aqm_reset(sc); /* reset h/w */
return (0);
}
static int
ixpqmgr_detach(device_t dev)
{
struct ixpqmgr_softc *sc = device_get_softc(dev);
aqm_reset(sc); /* disable interrupts */
bus_teardown_intr(dev, sc->sc_irq1, sc->sc_ih1);
bus_teardown_intr(dev, sc->sc_irq2, sc->sc_ih2);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rid1, sc->sc_irq1);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rid2, sc->sc_irq2);
bus_space_unmap(sc->sc_iot, sc->sc_ioh, IXP425_QMGR_SIZE);
return (0);
}
int
ixpqmgr_qconfig(int qId, int qEntries, int ne, int nf, int srcSel,
qconfig_hand_t *cb, void *cbarg)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
struct qmgrInfo *qi = &sc->qinfo[qId];
DPRINTF(sc->sc_dev, "%s(%u, %u, %u, %u, %u, %p, %p)\n",
__func__, qId, qEntries, ne, nf, srcSel, cb, cbarg);
/* NB: entry size is always 1 */
qi->qSizeInWords = qEntries;
qi->qReadCount = 0;
qi->qWriteCount = 0;
qi->qSizeInEntries = qEntries; /* XXX kept for code clarity */
if (cb == NULL) {
/* Reset to dummy callback */
qi->cb = dummyCallback;
qi->cbarg = NULL;
} else {
qi->cb = cb;
qi->cbarg = cbarg;
}
/* Write the config register; NB must be AFTER qinfo setup */
aqm_qcfg(sc, qId, ne, nf);
/*
* Account for space just allocated to queue.
*/
sc->aqmFreeSramAddress += (qi->qSizeInWords * sizeof(uint32_t));
/* Set the interrupt source if this queue is in the range 0-31 */
if (qId < IX_QMGR_MIN_QUEUPP_QID)
aqm_srcsel_write(sc, qId, srcSel);
if (cb != NULL) /* Enable the interrupt */
aqm_int_enable(sc, qId);
sc->rebuildTable = TRUE;
return 0; /* XXX */
}
int
ixpqmgr_qwrite(int qId, uint32_t entry)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
struct qmgrInfo *qi = &sc->qinfo[qId];
DPRINTFn(3, sc->sc_dev, "%s(%u, 0x%x) writeCount %u size %u\n",
__func__, qId, entry, qi->qWriteCount, qi->qSizeInEntries);
/* write the entry */
aqm_reg_write(sc, qi->qAccRegAddr, entry);
/* NB: overflow is available for lower queues only */
if (qId < IX_QMGR_MIN_QUEUPP_QID) {
int qSize = qi->qSizeInEntries;
/*
* Increment the current number of entries in the queue
* and check for overflow .
*/
if (qi->qWriteCount++ == qSize) { /* check for overflow */
uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
int qPtrs;
/*
* Read the status twice because the status may
* not be immediately ready after the write operation
*/
if ((status & qi->qOflowStatBitMask) ||
((status = aqm_reg_read(sc, qi->qUOStatRegAddr)) & qi->qOflowStatBitMask)) {
/*
* The queue is full, clear the overflow status bit if set.
*/
aqm_reg_write(sc, qi->qUOStatRegAddr,
status & ~qi->qOflowStatBitMask);
qi->qWriteCount = qSize;
DPRINTFn(5, sc->sc_dev,
"%s(%u, 0x%x) Q full, overflow status cleared\n",
__func__, qId, entry);
return ENOSPC;
}
/*
* No overflow occurred : someone is draining the queue
* and the current counter needs to be
* updated from the current number of entries in the queue
*/
/* calculate number of words in q */
qPtrs = aqm_reg_read(sc, qi->qConfigRegAddr);
DPRINTFn(2, sc->sc_dev,
"%s(%u, 0x%x) Q full, no overflow status, qConfig 0x%x\n",
__func__, qId, entry, qPtrs);
qPtrs = (qPtrs - (qPtrs >> 7)) & 0x7f;
if (qPtrs == 0) {
/*
* The queue may be full at the time of the
* snapshot. Next access will check
* the overflow status again.
*/
qi->qWriteCount = qSize;
} else {
/* convert the number of words to a number of entries */
qi->qWriteCount = qPtrs & (qSize - 1);
}
}
}
return 0;
}
int
ixpqmgr_qread(int qId, uint32_t *entry)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
struct qmgrInfo *qi = &sc->qinfo[qId];
bus_size_t off = qi->qAccRegAddr;
*entry = aqm_reg_read(sc, off);
/*
* Reset the current read count : next access to the read function
* will force a underflow status check.
*/
qi->qReadCount = 0;
/* Check if underflow occurred on the read */
if (*entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
/* get the queue status */
uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
if (status & qi->qUflowStatBitMask) { /* clear underflow status */
aqm_reg_write(sc, qi->qUOStatRegAddr,
status &~ qi->qUflowStatBitMask);
return ENOSPC;
}
}
return 0;
}
int
ixpqmgr_qreadm(int qId, uint32_t n, uint32_t *p)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
struct qmgrInfo *qi = &sc->qinfo[qId];
uint32_t entry;
bus_size_t off = qi->qAccRegAddr;
entry = aqm_reg_read(sc, off);
while (--n) {
if (entry == 0) {
/* if we read a NULL entry, stop. We have underflowed */
break;
}
*p++ = entry; /* store */
entry = aqm_reg_read(sc, off);
}
*p = entry;
/*
* Reset the current read count : next access to the read function
* will force a underflow status check.
*/
qi->qReadCount = 0;
/* Check if underflow occurred on the read */
if (entry == 0 && qId < IX_QMGR_MIN_QUEUPP_QID) {
/* get the queue status */
uint32_t status = aqm_reg_read(sc, qi->qUOStatRegAddr);
if (status & qi->qUflowStatBitMask) { /* clear underflow status */
aqm_reg_write(sc, qi->qUOStatRegAddr,
status &~ qi->qUflowStatBitMask);
return ENOSPC;
}
}
return 0;
}
uint32_t
ixpqmgr_getqstatus(int qId)
{
#define QLOWSTATMASK \
((1 << (32 / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD)) - 1)
struct ixpqmgr_softc *sc = ixpqmgr_sc;
const struct qmgrInfo *qi = &sc->qinfo[qId];
uint32_t status;
if (qId < IX_QMGR_MIN_QUEUPP_QID) {
/* read the status of a queue in the range 0-31 */
status = aqm_reg_read(sc, qi->qStatRegAddr);
/* mask out the status bits relevant only to this queue */
status = (status >> qi->qStatBitsOffset) & QLOWSTATMASK;
} else { /* read status of a queue in the range 32-63 */
status = 0;
if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT0_OFFSET)&qi->qStat0BitMask)
status |= IX_QMGR_Q_STATUS_NE_BIT_MASK; /* nearly empty */
if (aqm_reg_read(sc, IX_QMGR_QUEUPPSTAT1_OFFSET)&qi->qStat1BitMask)
status |= IX_QMGR_Q_STATUS_F_BIT_MASK; /* full */
}
return status;
#undef QLOWSTATMASK
}
uint32_t
ixpqmgr_getqconfig(int qId)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
return aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId));
}
void
ixpqmgr_dump(void)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
int i, a;
/* status registers */
printf("0x%04x: %08x %08x %08x %08x\n"
, 0x400
, aqm_reg_read(sc, 0x400)
, aqm_reg_read(sc, 0x400+4)
, aqm_reg_read(sc, 0x400+8)
, aqm_reg_read(sc, 0x400+12)
);
printf("0x%04x: %08x %08x %08x %08x\n"
, 0x410
, aqm_reg_read(sc, 0x410)
, aqm_reg_read(sc, 0x410+4)
, aqm_reg_read(sc, 0x410+8)
, aqm_reg_read(sc, 0x410+12)
);
printf("0x%04x: %08x %08x %08x %08x\n"
, 0x420
, aqm_reg_read(sc, 0x420)
, aqm_reg_read(sc, 0x420+4)
, aqm_reg_read(sc, 0x420+8)
, aqm_reg_read(sc, 0x420+12)
);
printf("0x%04x: %08x %08x %08x %08x\n"
, 0x430
, aqm_reg_read(sc, 0x430)
, aqm_reg_read(sc, 0x430+4)
, aqm_reg_read(sc, 0x430+8)
, aqm_reg_read(sc, 0x430+12)
);
/* q configuration registers */
for (a = 0x2000; a < 0x20ff; a += 32)
printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
, a
, aqm_reg_read(sc, a)
, aqm_reg_read(sc, a+4)
, aqm_reg_read(sc, a+8)
, aqm_reg_read(sc, a+12)
, aqm_reg_read(sc, a+16)
, aqm_reg_read(sc, a+20)
, aqm_reg_read(sc, a+24)
, aqm_reg_read(sc, a+28)
);
/* allocated SRAM */
for (i = 0x100; i < sc->aqmFreeSramAddress; i += 32) {
a = 0x2000 + i;
printf("0x%04x: %08x %08x %08x %08x %08x %08x %08x %08x\n"
, a
, aqm_reg_read(sc, a)
, aqm_reg_read(sc, a+4)
, aqm_reg_read(sc, a+8)
, aqm_reg_read(sc, a+12)
, aqm_reg_read(sc, a+16)
, aqm_reg_read(sc, a+20)
, aqm_reg_read(sc, a+24)
, aqm_reg_read(sc, a+28)
);
}
for (i = 0; i < 16; i++) {
printf("Q[%2d] config 0x%08x status 0x%02x "
"Q[%2d] config 0x%08x status 0x%02x\n"
, i, ixpqmgr_getqconfig(i), ixpqmgr_getqstatus(i)
, i+16, ixpqmgr_getqconfig(i+16), ixpqmgr_getqstatus(i+16)
);
}
}
void
ixpqmgr_notify_enable(int qId, int srcSel)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
#if 0
/* Calculate the checkMask and checkValue for this q */
aqm_calc_statuscheck(sc, qId, srcSel);
#endif
/* Set the interrupt source if this queue is in the range 0-31 */
if (qId < IX_QMGR_MIN_QUEUPP_QID)
aqm_srcsel_write(sc, qId, srcSel);
/* Enable the interrupt */
aqm_int_enable(sc, qId);
}
void
ixpqmgr_notify_disable(int qId)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
aqm_int_disable(sc, qId);
}
/*
* Rebuild the priority table used by the dispatcher.
*/
static void
ixpqmgr_rebuild(struct ixpqmgr_softc *sc)
{
int q, pri;
int lowQuePriorityTableIndex, uppQuePriorityTableIndex;
struct qmgrInfo *qi;
sc->lowPriorityTableFirstHalfMask = 0;
sc->uppPriorityTableFirstHalfMask = 0;
lowQuePriorityTableIndex = 0;
uppQuePriorityTableIndex = 32;
for (pri = 0; pri < IX_QMGR_NUM_PRIORITY_LEVELS; pri++) {
/* low priority q's */
for (q = 0; q < IX_QMGR_MIN_QUEUPP_QID; q++) {
qi = &sc->qinfo[q];
if (qi->priority == pri) {
/*
* Build the priority table bitmask which match the
* queues of the first half of the priority table.
*/
if (lowQuePriorityTableIndex < 16) {
sc->lowPriorityTableFirstHalfMask |=
qi->intRegCheckMask;
}
sc->priorityTable[lowQuePriorityTableIndex++] = q;
}
}
/* high priority q's */
for (; q < IX_QMGR_MAX_NUM_QUEUES; q++) {
qi = &sc->qinfo[q];
if (qi->priority == pri) {
/*
* Build the priority table bitmask which match the
* queues of the first half of the priority table .
*/
if (uppQuePriorityTableIndex < 48) {
sc->uppPriorityTableFirstHalfMask |=
qi->intRegCheckMask;
}
sc->priorityTable[uppQuePriorityTableIndex++] = q;
}
}
}
sc->rebuildTable = FALSE;
}
/*
* Count the number of leading zero bits in a word,
* and return the same value than the CLZ instruction.
* Note this is similar to the standard ffs function but
* it counts zero's from the MSB instead of the LSB.
*
* word (in) return value (out)
* 0x80000000 0
* 0x40000000 1
* ,,, ,,,
* 0x00000002 30
* 0x00000001 31
* 0x00000000 32
*
* The C version of this function is used as a replacement
* for system not providing the equivalent of the CLZ
* assembly language instruction.
*
* Note that this version is big-endian
*/
static unsigned int
_lzcount(uint32_t word)
{
unsigned int lzcount = 0;
if (word == 0)
return 32;
while ((word & 0x80000000) == 0) {
word <<= 1;
lzcount++;
}
return lzcount;
}
static void
ixpqmgr_intr(void *arg)
{
struct ixpqmgr_softc *sc = ixpqmgr_sc;
uint32_t intRegVal; /* Interrupt reg val */
struct qmgrInfo *qi;
int priorityTableIndex; /* Priority table index */
int qIndex; /* Current queue being processed */
/* Read the interrupt register */
intRegVal = aqm_reg_read(sc, IX_QMGR_QINTREG0_OFFSET);
/* Write back to clear interrupt */
aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, intRegVal);
DPRINTFn(5, sc->sc_dev, "%s: ISR0 0x%x ISR1 0x%x\n",
__func__, intRegVal, aqm_reg_read(sc, IX_QMGR_QINTREG1_OFFSET));
/* No queue has interrupt register set */
if (intRegVal != 0) {
/* get the first queue Id from the interrupt register value */
qIndex = (32 - 1) - _lzcount(intRegVal);
DPRINTFn(2, sc->sc_dev, "%s: ISR0 0x%x qIndex %u\n",
__func__, intRegVal, qIndex);
/*
* Optimize for single callback case.
*/
qi = &sc->qinfo[qIndex];
if (intRegVal == qi->intRegCheckMask) {
/*
* Only 1 queue event triggered a notification.
* Call the callback function for this queue
*/
qi->cb(qIndex, qi->cbarg);
} else {
/*
* The event is triggered by more than 1 queue,
* the queue search will start from the beginning
* or the middle of the priority table.
*
* The search will end when all the bits of the interrupt
* register are cleared. There is no need to maintain
* a separate value and test it at each iteration.
*/
if (intRegVal & sc->lowPriorityTableFirstHalfMask) {
priorityTableIndex = 0;
} else {
priorityTableIndex = 16;
}
/*
* Iterate over the priority table until all the bits
* of the interrupt register are cleared.
*/
do {
qIndex = sc->priorityTable[priorityTableIndex++];
qi = &sc->qinfo[qIndex];
/* If this queue caused this interrupt to be raised */
if (intRegVal & qi->intRegCheckMask) {
/* Call the callback function for this queue */
qi->cb(qIndex, qi->cbarg);
/* Clear the interrupt register bit */
intRegVal &= ~qi->intRegCheckMask;
}
} while (intRegVal);
}
}
/* Rebuild the priority table if needed */
if (sc->rebuildTable)
ixpqmgr_rebuild(sc);
}
#if 0
/*
* Generate the parameters used to check if a Q's status matches
* the specified source select. We calculate which status word
* to check (statusWordOffset), the value to check the status
* against (statusCheckValue) and the mask (statusMask) to mask
* out all but the bits to check in the status word.
*/
static void
aqm_calc_statuscheck(int qId, IxQMgrSourceId srcSel)
{
struct qmgrInfo *qi = &qinfo[qId];
uint32_t shiftVal;
if (qId < IX_QMGR_MIN_QUEUPP_QID) {
switch (srcSel) {
case IX_QMGR_Q_SOURCE_ID_E:
qi->statusCheckValue = IX_QMGR_Q_STATUS_E_BIT_MASK;
qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NE:
qi->statusCheckValue = IX_QMGR_Q_STATUS_NE_BIT_MASK;
qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NF:
qi->statusCheckValue = IX_QMGR_Q_STATUS_NF_BIT_MASK;
qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_F:
qi->statusCheckValue = IX_QMGR_Q_STATUS_F_BIT_MASK;
qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_E:
qi->statusCheckValue = 0;
qi->statusMask = IX_QMGR_Q_STATUS_E_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_NE:
qi->statusCheckValue = 0;
qi->statusMask = IX_QMGR_Q_STATUS_NE_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_NF:
qi->statusCheckValue = 0;
qi->statusMask = IX_QMGR_Q_STATUS_NF_BIT_MASK;
break;
case IX_QMGR_Q_SOURCE_ID_NOT_F:
qi->statusCheckValue = 0;
qi->statusMask = IX_QMGR_Q_STATUS_F_BIT_MASK;
break;
default:
/* Should never hit */
IX_OSAL_ASSERT(0);
break;
}
/* One nibble of status per queue so need to shift the
* check value and mask out to the correct position.
*/
shiftVal = (qId % IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD) *
IX_QMGR_QUELOWSTAT_BITS_PER_Q;
/* Calculate the which status word to check from the qId,
* 8 Qs status per word
*/
qi->statusWordOffset = qId / IX_QMGR_QUELOWSTAT_NUM_QUE_PER_WORD;
qi->statusCheckValue <<= shiftVal;
qi->statusMask <<= shiftVal;
} else {
/* One status word */
qi->statusWordOffset = 0;
/* Single bits per queue and int source bit hardwired NE,
* Qs start at 32.
*/
qi->statusMask = 1 << (qId - IX_QMGR_MIN_QUEUPP_QID);
qi->statusCheckValue = qi->statusMask;
}
}
#endif
static void
aqm_int_enable(struct ixpqmgr_softc *sc, int qId)
{
bus_size_t reg;
uint32_t v;
if (qId < IX_QMGR_MIN_QUEUPP_QID)
reg = IX_QMGR_QUEIEREG0_OFFSET;
else
reg = IX_QMGR_QUEIEREG1_OFFSET;
v = aqm_reg_read(sc, reg);
aqm_reg_write(sc, reg, v | (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
__func__, qId, reg, v, aqm_reg_read(sc, reg));
}
static void
aqm_int_disable(struct ixpqmgr_softc *sc, int qId)
{
bus_size_t reg;
uint32_t v;
if (qId < IX_QMGR_MIN_QUEUPP_QID)
reg = IX_QMGR_QUEIEREG0_OFFSET;
else
reg = IX_QMGR_QUEIEREG1_OFFSET;
v = aqm_reg_read(sc, reg);
aqm_reg_write(sc, reg, v &~ (1 << (qId % IX_QMGR_MIN_QUEUPP_QID)));
DPRINTF(sc->sc_dev, "%s(%u) 0x%lx: 0x%x => 0x%x\n",
__func__, qId, reg, v, aqm_reg_read(sc, reg));
}
static unsigned
log2(unsigned n)
{
unsigned count;
/*
* N.B. this function will return 0 if supplied 0.
*/
for (count = 0; n/2; count++)
n /= 2;
return count;
}
static __inline unsigned
toAqmEntrySize(int entrySize)
{
/* entrySize 1("00"),2("01"),4("10") */
return log2(entrySize);
}
static __inline unsigned
toAqmBufferSize(unsigned bufferSizeInWords)
{
/* bufferSize 16("00"),32("01),64("10"),128("11") */
return log2(bufferSizeInWords / IX_QMGR_MIN_BUFFER_SIZE);
}
static __inline unsigned
toAqmWatermark(int watermark)
{
/*
* Watermarks 0("000"),1("001"),2("010"),4("011"),
* 8("100"),16("101"),32("110"),64("111")
*/
return log2(2 * watermark);
}
static void
aqm_qcfg(struct ixpqmgr_softc *sc, int qId, u_int ne, u_int nf)
{
const struct qmgrInfo *qi = &sc->qinfo[qId];
uint32_t qCfg;
uint32_t baseAddress;
/* Build config register */
qCfg = ((toAqmEntrySize(1) & IX_QMGR_ENTRY_SIZE_MASK) <<
IX_QMGR_Q_CONFIG_ESIZE_OFFSET)
| ((toAqmBufferSize(qi->qSizeInWords) & IX_QMGR_SIZE_MASK) <<
IX_QMGR_Q_CONFIG_BSIZE_OFFSET);
/* baseAddress, calculated relative to start address */
baseAddress = sc->aqmFreeSramAddress;
/* base address must be word-aligned */
KASSERT((baseAddress % IX_QMGR_BASE_ADDR_16_WORD_ALIGN) == 0,
("address not word-aligned"));
/* Now convert to a 16 word pointer as required by QUECONFIG register */
baseAddress >>= IX_QMGR_BASE_ADDR_16_WORD_SHIFT;
qCfg |= baseAddress << IX_QMGR_Q_CONFIG_BADDR_OFFSET;
/* set watermarks */
qCfg |= (toAqmWatermark(ne) << IX_QMGR_Q_CONFIG_NE_OFFSET)
| (toAqmWatermark(nf) << IX_QMGR_Q_CONFIG_NF_OFFSET);
DPRINTF(sc->sc_dev, "%s(%u, %u, %u) 0x%x => 0x%x @ 0x%x\n",
__func__, qId, ne, nf,
aqm_reg_read(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId)),
qCfg, IX_QMGR_Q_CONFIG_ADDR_GET(qId));
aqm_reg_write(sc, IX_QMGR_Q_CONFIG_ADDR_GET(qId), qCfg);
}
static void
aqm_srcsel_write(struct ixpqmgr_softc *sc, int qId, int sourceId)
{
bus_size_t off;
uint32_t v;
/*
* Calculate the register offset; multiple queues split across registers
*/
off = IX_QMGR_INT0SRCSELREG0_OFFSET +
((qId / IX_QMGR_INTSRC_NUM_QUE_PER_WORD) * sizeof(uint32_t));
v = aqm_reg_read(sc, off);
if (off == IX_QMGR_INT0SRCSELREG0_OFFSET && qId == 0) {
/* Queue 0 at INT0SRCSELREG should not corrupt the value bit-3 */
v |= 0x7;
} else {
const uint32_t bpq = 32 / IX_QMGR_INTSRC_NUM_QUE_PER_WORD;
uint32_t mask;
int qshift;
qshift = (qId & (IX_QMGR_INTSRC_NUM_QUE_PER_WORD-1)) * bpq;
mask = ((1 << bpq) - 1) << qshift; /* q's status mask */
/* merge sourceId */
v = (v &~ mask) | ((sourceId << qshift) & mask);
}
DPRINTF(sc->sc_dev, "%s(%u, %u) 0x%x => 0x%x @ 0x%lx\n",
__func__, qId, sourceId, aqm_reg_read(sc, off), v, off);
aqm_reg_write(sc, off, v);
}
/*
* Reset AQM registers to default values.
*/
static void
aqm_reset(struct ixpqmgr_softc *sc)
{
int i;
/* Reset queues 0..31 status registers 0..3 */
aqm_reg_write(sc, IX_QMGR_QUELOWSTAT0_OFFSET,
IX_QMGR_QUELOWSTAT_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QUELOWSTAT1_OFFSET,
IX_QMGR_QUELOWSTAT_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QUELOWSTAT2_OFFSET,
IX_QMGR_QUELOWSTAT_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QUELOWSTAT3_OFFSET,
IX_QMGR_QUELOWSTAT_RESET_VALUE);
/* Reset underflow/overflow status registers 0..1 */
aqm_reg_write(sc, IX_QMGR_QUEUOSTAT0_OFFSET,
IX_QMGR_QUEUOSTAT_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QUEUOSTAT1_OFFSET,
IX_QMGR_QUEUOSTAT_RESET_VALUE);
/* Reset queues 32..63 nearly empty status registers */
aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT0_OFFSET,
IX_QMGR_QUEUPPSTAT0_RESET_VALUE);
/* Reset queues 32..63 full status registers */
aqm_reg_write(sc, IX_QMGR_QUEUPPSTAT1_OFFSET,
IX_QMGR_QUEUPPSTAT1_RESET_VALUE);
/* Reset int0 status flag source select registers 0..3 */
aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG0_OFFSET,
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG1_OFFSET,
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG2_OFFSET,
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_INT0SRCSELREG3_OFFSET,
IX_QMGR_INT0SRCSELREG_RESET_VALUE);
/* Reset queue interrupt enable register 0..1 */
aqm_reg_write(sc, IX_QMGR_QUEIEREG0_OFFSET,
IX_QMGR_QUEIEREG_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QUEIEREG1_OFFSET,
IX_QMGR_QUEIEREG_RESET_VALUE);
/* Reset queue interrupt register 0..1 */
aqm_reg_write(sc, IX_QMGR_QINTREG0_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
aqm_reg_write(sc, IX_QMGR_QINTREG1_OFFSET, IX_QMGR_QINTREG_RESET_VALUE);
/* Reset queue configuration words 0..63 */
for (i = 0; i < IX_QMGR_MAX_NUM_QUEUES; i++)
aqm_reg_write(sc, sc->qinfo[i].qConfigRegAddr,
IX_QMGR_QUECONFIG_RESET_VALUE);
/* XXX zero SRAM to simplify debugging */
for (i = IX_QMGR_QUEBUFFER_SPACE_OFFSET;
i < IX_QMGR_AQM_SRAM_SIZE_IN_BYTES; i += sizeof(uint32_t))
aqm_reg_write(sc, i, 0);
}
static device_method_t ixpqmgr_methods[] = {
DEVMETHOD(device_probe, ixpqmgr_probe),
DEVMETHOD(device_attach, ixpqmgr_attach),
DEVMETHOD(device_detach, ixpqmgr_detach),
{ 0, 0 }
};
static driver_t ixpqmgr_driver = {
"ixpqmgr",
ixpqmgr_methods,
sizeof(struct ixpqmgr_softc),
};
static devclass_t ixpqmgr_devclass;
DRIVER_MODULE(ixpqmgr, ixp, ixpqmgr_driver, ixpqmgr_devclass, 0, 0);