91a4536f22
callout_stop() would fail in two cases: 1) The timeout was currently executing, and 2) The timeout had already executed. We only needed to work around the race for 1). We caught some instances of 2) via the PS_TIMEOUT flag, however, if endtsleep() fired after the process had been woken up but before it had resumed execution, PS_TIMEOUT would not be set, but callout_stop() would fail, so we would block the process until endtsleep() resumed it. Except that endtsleep() had already run and couldn't resume it. This adds a new flag PS_TIMOFAIL to indicate the case of 2) when PS_TIMEOUT isn't set. - Implement this race fix for condition variables as well. Tested by: sos
572 lines
14 KiB
C
572 lines
14 KiB
C
/*-
|
|
* Copyright (c) 2000 Jake Burkholder <jake@freebsd.org>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_ktrace.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/resourcevar.h>
|
|
#ifdef KTRACE
|
|
#include <sys/uio.h>
|
|
#include <sys/ktrace.h>
|
|
#endif
|
|
|
|
/*
|
|
* Common sanity checks for cv_wait* functions.
|
|
*/
|
|
#define CV_ASSERT(cvp, mp, p) do { \
|
|
KASSERT((p) != NULL, ("%s: curproc NULL", __FUNCTION__)); \
|
|
KASSERT((p)->p_stat == SRUN, ("%s: not SRUN", __FUNCTION__)); \
|
|
KASSERT((cvp) != NULL, ("%s: cvp NULL", __FUNCTION__)); \
|
|
KASSERT((mp) != NULL, ("%s: mp NULL", __FUNCTION__)); \
|
|
mtx_assert((mp), MA_OWNED | MA_NOTRECURSED); \
|
|
} while (0)
|
|
|
|
#ifdef CV_DEBUG
|
|
#define CV_WAIT_VALIDATE(cvp, mp) do { \
|
|
if (TAILQ_EMPTY(&(cvp)->cv_waitq)) { \
|
|
/* Only waiter. */ \
|
|
(cvp)->cv_mtx = (mp); \
|
|
} else { \
|
|
/* \
|
|
* Other waiter; assert that we're using the \
|
|
* same mutex. \
|
|
*/ \
|
|
KASSERT((cvp)->cv_mtx == (mp), \
|
|
("%s: Multiple mutexes", __FUNCTION__)); \
|
|
} \
|
|
} while (0)
|
|
#define CV_SIGNAL_VALIDATE(cvp) do { \
|
|
if (!TAILQ_EMPTY(&(cvp)->cv_waitq)) { \
|
|
KASSERT(mtx_owned((cvp)->cv_mtx), \
|
|
("%s: Mutex not owned", __FUNCTION__)); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define CV_WAIT_VALIDATE(cvp, mp)
|
|
#define CV_SIGNAL_VALIDATE(cvp)
|
|
#endif
|
|
|
|
static void cv_timedwait_end(void *arg);
|
|
|
|
/*
|
|
* Initialize a condition variable. Must be called before use.
|
|
*/
|
|
void
|
|
cv_init(struct cv *cvp, const char *desc)
|
|
{
|
|
|
|
TAILQ_INIT(&cvp->cv_waitq);
|
|
cvp->cv_mtx = NULL;
|
|
cvp->cv_description = desc;
|
|
}
|
|
|
|
/*
|
|
* Destroy a condition variable. The condition variable must be re-initialized
|
|
* in order to be re-used.
|
|
*/
|
|
void
|
|
cv_destroy(struct cv *cvp)
|
|
{
|
|
|
|
KASSERT(cv_waitq_empty(cvp), ("%s: cv_waitq non-empty", __FUNCTION__));
|
|
}
|
|
|
|
/*
|
|
* Common code for cv_wait* functions. All require sched_lock.
|
|
*/
|
|
|
|
/*
|
|
* Switch context.
|
|
*/
|
|
static __inline void
|
|
cv_switch(struct proc *p)
|
|
{
|
|
|
|
p->p_stat = SSLEEP;
|
|
p->p_stats->p_ru.ru_nvcsw++;
|
|
mi_switch();
|
|
CTR3(KTR_PROC, "cv_switch: resume proc %p (pid %d, %s)", p, p->p_pid,
|
|
p->p_comm);
|
|
}
|
|
|
|
/*
|
|
* Switch context, catching signals.
|
|
*/
|
|
static __inline int
|
|
cv_switch_catch(struct proc *p)
|
|
{
|
|
int sig;
|
|
|
|
/*
|
|
* We put ourselves on the sleep queue and start our timeout before
|
|
* calling CURSIG, as we could stop there, and a wakeup or a SIGCONT (or
|
|
* both) could occur while we were stopped. A SIGCONT would cause us to
|
|
* be marked as SSLEEP without resuming us, thus we must be ready for
|
|
* sleep when CURSIG is called. If the wakeup happens while we're
|
|
* stopped, p->p_wchan will be 0 upon return from CURSIG.
|
|
*/
|
|
p->p_sflag |= PS_SINTR;
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_LOCK(p);
|
|
sig = CURSIG(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
PROC_UNLOCK_NOSWITCH(p);
|
|
if (sig != 0) {
|
|
if (p->p_wchan != NULL)
|
|
cv_waitq_remove(p);
|
|
p->p_stat = SRUN;
|
|
} else if (p->p_wchan != NULL) {
|
|
cv_switch(p);
|
|
}
|
|
p->p_sflag &= ~PS_SINTR;
|
|
|
|
return sig;
|
|
}
|
|
|
|
/*
|
|
* Add a process to the wait queue of a condition variable.
|
|
*/
|
|
static __inline void
|
|
cv_waitq_add(struct cv *cvp, struct proc *p)
|
|
{
|
|
|
|
/*
|
|
* Process may be sitting on a slpque if asleep() was called, remove it
|
|
* before re-adding.
|
|
*/
|
|
if (p->p_wchan != NULL)
|
|
unsleep(p);
|
|
|
|
p->p_sflag |= PS_CVWAITQ;
|
|
p->p_wchan = cvp;
|
|
p->p_wmesg = cvp->cv_description;
|
|
p->p_slptime = 0;
|
|
p->p_pri.pri_native = p->p_pri.pri_level;
|
|
CTR3(KTR_PROC, "cv_waitq_add: proc %p (pid %d, %s)", p, p->p_pid,
|
|
p->p_comm);
|
|
TAILQ_INSERT_TAIL(&cvp->cv_waitq, p, p_slpq);
|
|
}
|
|
|
|
/*
|
|
* Wait on a condition variable. The current process is placed on the condition
|
|
* variable's wait queue and suspended. A cv_signal or cv_broadcast on the same
|
|
* condition variable will resume the process. The mutex is released before
|
|
* sleeping and will be held on return. It is recommended that the mutex be
|
|
* held when cv_signal or cv_broadcast are called.
|
|
*/
|
|
void
|
|
cv_wait(struct cv *cvp, struct mtx *mp)
|
|
{
|
|
struct proc *p;
|
|
WITNESS_SAVE_DECL(mp);
|
|
|
|
p = CURPROC;
|
|
#ifdef KTRACE
|
|
if (p && KTRPOINT(p, KTR_CSW))
|
|
ktrcsw(p->p_tracep, 1, 0);
|
|
#endif
|
|
CV_ASSERT(cvp, mp, p);
|
|
WITNESS_SLEEP(0, &mp->mtx_object);
|
|
WITNESS_SAVE(&mp->mtx_object, mp);
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
if (cold || panicstr) {
|
|
/*
|
|
* After a panic, or during autoconfiguration, just give
|
|
* interrupts a chance, then just return; don't run any other
|
|
* procs or panic below, in case this is the idle process and
|
|
* already asleep.
|
|
*/
|
|
mtx_unlock_spin(&sched_lock);
|
|
return;
|
|
}
|
|
CV_WAIT_VALIDATE(cvp, mp);
|
|
|
|
DROP_GIANT_NOSWITCH();
|
|
mtx_unlock_flags(mp, MTX_NOSWITCH);
|
|
|
|
cv_waitq_add(cvp, p);
|
|
cv_switch(p);
|
|
|
|
mtx_unlock_spin(&sched_lock);
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_CSW))
|
|
ktrcsw(p->p_tracep, 0, 0);
|
|
#endif
|
|
PICKUP_GIANT();
|
|
mtx_lock(mp);
|
|
WITNESS_RESTORE(&mp->mtx_object, mp);
|
|
}
|
|
|
|
/*
|
|
* Wait on a condition variable, allowing interruption by signals. Return 0 if
|
|
* the process was resumed with cv_signal or cv_broadcast, EINTR or ERESTART if
|
|
* a signal was caught. If ERESTART is returned the system call should be
|
|
* restarted if possible.
|
|
*/
|
|
int
|
|
cv_wait_sig(struct cv *cvp, struct mtx *mp)
|
|
{
|
|
struct proc *p;
|
|
int rval;
|
|
int sig;
|
|
WITNESS_SAVE_DECL(mp);
|
|
|
|
p = CURPROC;
|
|
rval = 0;
|
|
#ifdef KTRACE
|
|
if (p && KTRPOINT(p, KTR_CSW))
|
|
ktrcsw(p->p_tracep, 1, 0);
|
|
#endif
|
|
CV_ASSERT(cvp, mp, p);
|
|
WITNESS_SLEEP(0, &mp->mtx_object);
|
|
WITNESS_SAVE(&mp->mtx_object, mp);
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
if (cold || panicstr) {
|
|
/*
|
|
* After a panic, or during autoconfiguration, just give
|
|
* interrupts a chance, then just return; don't run any other
|
|
* procs or panic below, in case this is the idle process and
|
|
* already asleep.
|
|
*/
|
|
mtx_unlock_spin(&sched_lock);
|
|
return 0;
|
|
}
|
|
CV_WAIT_VALIDATE(cvp, mp);
|
|
|
|
DROP_GIANT_NOSWITCH();
|
|
mtx_unlock_flags(mp, MTX_NOSWITCH);
|
|
|
|
cv_waitq_add(cvp, p);
|
|
sig = cv_switch_catch(p);
|
|
|
|
mtx_unlock_spin(&sched_lock);
|
|
PICKUP_GIANT();
|
|
|
|
PROC_LOCK(p);
|
|
if (sig == 0)
|
|
sig = CURSIG(p);
|
|
if (sig != 0) {
|
|
if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
|
|
rval = EINTR;
|
|
else
|
|
rval = ERESTART;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
|
|
#ifdef KTRACE
|
|
mtx_lock(&Giant);
|
|
if (KTRPOINT(p, KTR_CSW))
|
|
ktrcsw(p->p_tracep, 0, 0);
|
|
mtx_unlock(&Giant);
|
|
#endif
|
|
mtx_lock(mp);
|
|
WITNESS_RESTORE(&mp->mtx_object, mp);
|
|
|
|
return (rval);
|
|
}
|
|
|
|
/*
|
|
* Wait on a condition variable for at most timo/hz seconds. Returns 0 if the
|
|
* process was resumed by cv_signal or cv_broadcast, EWOULDBLOCK if the timeout
|
|
* expires.
|
|
*/
|
|
int
|
|
cv_timedwait(struct cv *cvp, struct mtx *mp, int timo)
|
|
{
|
|
struct proc *p;
|
|
int rval;
|
|
WITNESS_SAVE_DECL(mp);
|
|
|
|
p = CURPROC;
|
|
rval = 0;
|
|
#ifdef KTRACE
|
|
if (p && KTRPOINT(p, KTR_CSW))
|
|
ktrcsw(p->p_tracep, 1, 0);
|
|
#endif
|
|
CV_ASSERT(cvp, mp, p);
|
|
WITNESS_SLEEP(0, &mp->mtx_object);
|
|
WITNESS_SAVE(&mp->mtx_object, mp);
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
if (cold || panicstr) {
|
|
/*
|
|
* After a panic, or during autoconfiguration, just give
|
|
* interrupts a chance, then just return; don't run any other
|
|
* procs or panic below, in case this is the idle process and
|
|
* already asleep.
|
|
*/
|
|
mtx_unlock_spin(&sched_lock);
|
|
return 0;
|
|
}
|
|
CV_WAIT_VALIDATE(cvp, mp);
|
|
|
|
DROP_GIANT_NOSWITCH();
|
|
mtx_unlock_flags(mp, MTX_NOSWITCH);
|
|
|
|
cv_waitq_add(cvp, p);
|
|
callout_reset(&p->p_slpcallout, timo, cv_timedwait_end, p);
|
|
cv_switch(p);
|
|
|
|
if (p->p_sflag & PS_TIMEOUT) {
|
|
p->p_sflag &= ~PS_TIMEOUT;
|
|
rval = EWOULDBLOCK;
|
|
} else if (p->p_sflag & PS_TIMOFAIL)
|
|
p->p_sflag &= ~PS_TIMOFAIL;
|
|
else if (callout_stop(&p->p_slpcallout) == 0) {
|
|
/*
|
|
* Work around race with cv_timedwait_end similar to that
|
|
* between msleep and endtsleep.
|
|
*/
|
|
p->p_sflag |= PS_TIMEOUT;
|
|
p->p_stats->p_ru.ru_nivcsw++;
|
|
mi_switch();
|
|
}
|
|
|
|
mtx_unlock_spin(&sched_lock);
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_CSW))
|
|
ktrcsw(p->p_tracep, 0, 0);
|
|
#endif
|
|
PICKUP_GIANT();
|
|
mtx_lock(mp);
|
|
WITNESS_RESTORE(&mp->mtx_object, mp);
|
|
|
|
return (rval);
|
|
}
|
|
|
|
/*
|
|
* Wait on a condition variable for at most timo/hz seconds, allowing
|
|
* interruption by signals. Returns 0 if the process was resumed by cv_signal
|
|
* or cv_broadcast, EWOULDBLOCK if the timeout expires, and EINTR or ERESTART if
|
|
* a signal was caught.
|
|
*/
|
|
int
|
|
cv_timedwait_sig(struct cv *cvp, struct mtx *mp, int timo)
|
|
{
|
|
struct proc *p;
|
|
int rval;
|
|
int sig;
|
|
WITNESS_SAVE_DECL(mp);
|
|
|
|
p = CURPROC;
|
|
rval = 0;
|
|
#ifdef KTRACE
|
|
if (p && KTRPOINT(p, KTR_CSW))
|
|
ktrcsw(p->p_tracep, 1, 0);
|
|
#endif
|
|
CV_ASSERT(cvp, mp, p);
|
|
WITNESS_SLEEP(0, &mp->mtx_object);
|
|
WITNESS_SAVE(&mp->mtx_object, mp);
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
if (cold || panicstr) {
|
|
/*
|
|
* After a panic, or during autoconfiguration, just give
|
|
* interrupts a chance, then just return; don't run any other
|
|
* procs or panic below, in case this is the idle process and
|
|
* already asleep.
|
|
*/
|
|
mtx_unlock_spin(&sched_lock);
|
|
return 0;
|
|
}
|
|
CV_WAIT_VALIDATE(cvp, mp);
|
|
|
|
DROP_GIANT_NOSWITCH();
|
|
mtx_unlock_flags(mp, MTX_NOSWITCH);
|
|
|
|
cv_waitq_add(cvp, p);
|
|
callout_reset(&p->p_slpcallout, timo, cv_timedwait_end, p);
|
|
sig = cv_switch_catch(p);
|
|
|
|
if (p->p_sflag & PS_TIMEOUT) {
|
|
p->p_sflag &= ~PS_TIMEOUT;
|
|
rval = EWOULDBLOCK;
|
|
} else if (p->p_sflag & PS_TIMOFAIL)
|
|
p->p_sflag &= ~PS_TIMOFAIL;
|
|
else if (callout_stop(&p->p_slpcallout) == 0) {
|
|
/*
|
|
* Work around race with cv_timedwait_end similar to that
|
|
* between msleep and endtsleep.
|
|
*/
|
|
p->p_sflag |= PS_TIMEOUT;
|
|
p->p_stats->p_ru.ru_nivcsw++;
|
|
mi_switch();
|
|
}
|
|
|
|
mtx_unlock_spin(&sched_lock);
|
|
PICKUP_GIANT();
|
|
|
|
PROC_LOCK(p);
|
|
if (sig == 0)
|
|
sig = CURSIG(p);
|
|
if (sig != 0) {
|
|
if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
|
|
rval = EINTR;
|
|
else
|
|
rval = ERESTART;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
|
|
#ifdef KTRACE
|
|
mtx_lock(&Giant);
|
|
if (KTRPOINT(p, KTR_CSW))
|
|
ktrcsw(p->p_tracep, 0, 0);
|
|
mtx_unlock(&Giant);
|
|
#endif
|
|
mtx_lock(mp);
|
|
WITNESS_RESTORE(&mp->mtx_object, mp);
|
|
|
|
return (rval);
|
|
}
|
|
|
|
/*
|
|
* Common code for signal and broadcast. Assumes waitq is not empty. Must be
|
|
* called with sched_lock held.
|
|
*/
|
|
static __inline void
|
|
cv_wakeup(struct cv *cvp)
|
|
{
|
|
struct proc *p;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
p = TAILQ_FIRST(&cvp->cv_waitq);
|
|
KASSERT(p->p_wchan == cvp, ("%s: bogus wchan", __FUNCTION__));
|
|
KASSERT(p->p_sflag & PS_CVWAITQ, ("%s: not on waitq", __FUNCTION__));
|
|
TAILQ_REMOVE(&cvp->cv_waitq, p, p_slpq);
|
|
p->p_sflag &= ~PS_CVWAITQ;
|
|
p->p_wchan = 0;
|
|
if (p->p_stat == SSLEEP) {
|
|
/* OPTIMIZED EXPANSION OF setrunnable(p); */
|
|
CTR3(KTR_PROC, "cv_signal: proc %p (pid %d, %s)",
|
|
p, p->p_pid, p->p_comm);
|
|
if (p->p_slptime > 1)
|
|
updatepri(p);
|
|
p->p_slptime = 0;
|
|
p->p_stat = SRUN;
|
|
if (p->p_sflag & PS_INMEM) {
|
|
setrunqueue(p);
|
|
maybe_resched(p);
|
|
} else {
|
|
p->p_sflag |= PS_SWAPINREQ;
|
|
wakeup(&proc0);
|
|
}
|
|
/* END INLINE EXPANSION */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Signal a condition variable, wakes up one waiting process. Will also wakeup
|
|
* the swapper if the process is not in memory, so that it can bring the
|
|
* sleeping process in. Note that this may also result in additional processes
|
|
* being made runnable. Should be called with the same mutex as was passed to
|
|
* cv_wait held.
|
|
*/
|
|
void
|
|
cv_signal(struct cv *cvp)
|
|
{
|
|
|
|
KASSERT(cvp != NULL, ("%s: cvp NULL", __FUNCTION__));
|
|
mtx_lock_spin(&sched_lock);
|
|
if (!TAILQ_EMPTY(&cvp->cv_waitq)) {
|
|
CV_SIGNAL_VALIDATE(cvp);
|
|
cv_wakeup(cvp);
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
|
|
/*
|
|
* Broadcast a signal to a condition variable. Wakes up all waiting processes.
|
|
* Should be called with the same mutex as was passed to cv_wait held.
|
|
*/
|
|
void
|
|
cv_broadcast(struct cv *cvp)
|
|
{
|
|
|
|
KASSERT(cvp != NULL, ("%s: cvp NULL", __FUNCTION__));
|
|
mtx_lock_spin(&sched_lock);
|
|
CV_SIGNAL_VALIDATE(cvp);
|
|
while (!TAILQ_EMPTY(&cvp->cv_waitq))
|
|
cv_wakeup(cvp);
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
|
|
/*
|
|
* Remove a process from the wait queue of its condition variable. This may be
|
|
* called externally.
|
|
*/
|
|
void
|
|
cv_waitq_remove(struct proc *p)
|
|
{
|
|
struct cv *cvp;
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
if ((cvp = p->p_wchan) != NULL && p->p_sflag & PS_CVWAITQ) {
|
|
TAILQ_REMOVE(&cvp->cv_waitq, p, p_slpq);
|
|
p->p_sflag &= ~PS_CVWAITQ;
|
|
p->p_wchan = NULL;
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
|
|
/*
|
|
* Timeout function for cv_timedwait. Put the process on the runqueue and set
|
|
* its timeout flag.
|
|
*/
|
|
static void
|
|
cv_timedwait_end(void *arg)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = arg;
|
|
CTR3(KTR_PROC, "cv_timedwait_end: proc %p (pid %d, %s)", p, p->p_pid,
|
|
p->p_comm);
|
|
mtx_lock_spin(&sched_lock);
|
|
if (p->p_sflag & PS_TIMEOUT) {
|
|
p->p_sflag &= ~PS_TIMEOUT;
|
|
setrunqueue(p);
|
|
} else if (p->p_wchan != NULL) {
|
|
if (p->p_stat == SSLEEP)
|
|
setrunnable(p);
|
|
else
|
|
cv_waitq_remove(p);
|
|
p->p_sflag |= PS_TIMEOUT;
|
|
} else
|
|
p->p_sflag |= PS_TIMOFAIL;
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|