freebsd-dev/sys/kern/kern_tc.c
Poul-Henning Kamp 91266b96c4 Isolate the Timecounter internals in their own two files.
Make the public interface more systematically named.

Remove the alternate method, it doesn't do any good, only ruins performance.

Add counters to profile the usage of the 8 access functions.

Apply the beer-ware to my code.

The weird +/- counts are caused by two repocopies behind the scenes:
	kern/kern_clock.c -> kern/kern_tc.c
	sys/time.h -> sys/timetc.h
(thanks peter!)
2000-03-20 14:09:06 +00:00

582 lines
14 KiB
C

/*
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):
* <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
* ----------------------------------------------------------------------------
*
* $FreeBSD$
*/
#include "opt_ntp.h"
#include <sys/param.h>
#include <sys/timetc.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/timex.h>
#include <sys/timepps.h>
/*
* Number of timecounters used to implement stable storage
*/
#ifndef NTIMECOUNTER
#define NTIMECOUNTER 5
#endif
static MALLOC_DEFINE(M_TIMECOUNTER, "timecounter",
"Timecounter stable storage");
static void tco_setscales __P((struct timecounter *tc));
static __inline unsigned tco_delta __P((struct timecounter *tc));
time_t time_second;
struct timeval boottime;
SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
&boottime, timeval, "System boottime");
SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
static unsigned nmicrotime;
static unsigned nnanotime;
static unsigned ngetmicrotime;
static unsigned ngetnanotime;
static unsigned nmicrouptime;
static unsigned nnanouptime;
static unsigned ngetmicrouptime;
static unsigned ngetnanouptime;
SYSCTL_INT(_kern_timecounter, OID_AUTO, nmicrotime, CTLFLAG_RD, &nmicrotime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, nnanotime, CTLFLAG_RD, &nnanotime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, nmicrouptime, CTLFLAG_RD, &nmicrouptime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, nnanouptime, CTLFLAG_RD, &nnanouptime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, ngetmicrotime, CTLFLAG_RD, &ngetmicrotime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, ngetnanotime, CTLFLAG_RD, &ngetnanotime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, ngetmicrouptime, CTLFLAG_RD, &ngetmicrouptime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, ngetnanouptime, CTLFLAG_RD, &ngetnanouptime, 0, "");
/*
* Implement a dummy timecounter which we can use until we get a real one
* in the air. This allows the console and other early stuff to use
* timeservices.
*/
static unsigned
dummy_get_timecount(struct timecounter *tc)
{
static unsigned now;
return (++now);
}
static struct timecounter dummy_timecounter = {
dummy_get_timecount,
0,
~0u,
1000000,
"dummy"
};
struct timecounter *timecounter = &dummy_timecounter;
static __inline unsigned
tco_delta(struct timecounter *tc)
{
return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) &
tc->tc_counter_mask);
}
/*
* We have eight functions for looking at the clock, four for
* microseconds and four for nanoseconds. For each there is fast
* but less precise version "get{nano|micro}[up]time" which will
* return a time which is up to 1/HZ previous to the call, whereas
* the raw version "{nano|micro}[up]time" will return a timestamp
* which is as precise as possible. The "up" variants return the
* time relative to system boot, these are well suited for time
* interval measurements.
*/
void
getmicrotime(struct timeval *tvp)
{
struct timecounter *tc;
ngetmicrotime++;
tc = timecounter;
*tvp = tc->tc_microtime;
}
void
getnanotime(struct timespec *tsp)
{
struct timecounter *tc;
ngetnanotime++;
tc = timecounter;
*tsp = tc->tc_nanotime;
}
void
microtime(struct timeval *tv)
{
struct timecounter *tc;
nmicrotime++;
tc = timecounter;
tv->tv_sec = tc->tc_offset_sec;
tv->tv_usec = tc->tc_offset_micro;
tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
tv->tv_usec += boottime.tv_usec;
tv->tv_sec += boottime.tv_sec;
while (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
}
void
nanotime(struct timespec *ts)
{
unsigned count;
u_int64_t delta;
struct timecounter *tc;
nnanotime++;
tc = timecounter;
ts->tv_sec = tc->tc_offset_sec;
count = tco_delta(tc);
delta = tc->tc_offset_nano;
delta += ((u_int64_t)count * tc->tc_scale_nano_f);
delta >>= 32;
delta += ((u_int64_t)count * tc->tc_scale_nano_i);
delta += boottime.tv_usec * 1000;
ts->tv_sec += boottime.tv_sec;
while (delta >= 1000000000) {
delta -= 1000000000;
ts->tv_sec++;
}
ts->tv_nsec = delta;
}
void
getmicrouptime(struct timeval *tvp)
{
struct timecounter *tc;
ngetmicrouptime++;
tc = timecounter;
tvp->tv_sec = tc->tc_offset_sec;
tvp->tv_usec = tc->tc_offset_micro;
}
void
getnanouptime(struct timespec *tsp)
{
struct timecounter *tc;
ngetnanouptime++;
tc = timecounter;
tsp->tv_sec = tc->tc_offset_sec;
tsp->tv_nsec = tc->tc_offset_nano >> 32;
}
void
microuptime(struct timeval *tv)
{
struct timecounter *tc;
nmicrouptime++;
tc = timecounter;
tv->tv_sec = tc->tc_offset_sec;
tv->tv_usec = tc->tc_offset_micro;
tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
if (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
}
void
nanouptime(struct timespec *ts)
{
unsigned count;
u_int64_t delta;
struct timecounter *tc;
nnanouptime++;
tc = timecounter;
ts->tv_sec = tc->tc_offset_sec;
count = tco_delta(tc);
delta = tc->tc_offset_nano;
delta += ((u_int64_t)count * tc->tc_scale_nano_f);
delta >>= 32;
delta += ((u_int64_t)count * tc->tc_scale_nano_i);
if (delta >= 1000000000) {
delta -= 1000000000;
ts->tv_sec++;
}
ts->tv_nsec = delta;
}
static void
tco_setscales(struct timecounter *tc)
{
u_int64_t scale;
scale = 1000000000LL << 32;
scale += tc->tc_adjustment;
scale /= tc->tc_tweak->tc_frequency;
tc->tc_scale_micro = scale / 1000;
tc->tc_scale_nano_f = scale & 0xffffffff;
tc->tc_scale_nano_i = scale >> 32;
}
void
tc_update(struct timecounter *tc)
{
tco_setscales(tc);
}
void
tc_init(struct timecounter *tc)
{
struct timespec ts1;
struct timecounter *t1, *t2, *t3;
int i;
tc->tc_adjustment = 0;
tc->tc_tweak = tc;
tco_setscales(tc);
tc->tc_offset_count = tc->tc_get_timecount(tc);
if (timecounter == &dummy_timecounter)
tc->tc_avail = tc;
else {
tc->tc_avail = timecounter->tc_tweak->tc_avail;
timecounter->tc_tweak->tc_avail = tc;
}
MALLOC(t1, struct timecounter *, sizeof *t1, M_TIMECOUNTER, M_WAITOK);
tc->tc_other = t1;
*t1 = *tc;
t2 = t1;
for (i = 1; i < NTIMECOUNTER; i++) {
MALLOC(t3, struct timecounter *, sizeof *t3,
M_TIMECOUNTER, M_WAITOK);
*t3 = *tc;
t3->tc_other = t2;
t2 = t3;
}
t1->tc_other = t3;
tc = t1;
printf("Timecounter \"%s\" frequency %lu Hz\n",
tc->tc_name, (u_long)tc->tc_frequency);
/* XXX: For now always start using the counter. */
tc->tc_offset_count = tc->tc_get_timecount(tc);
nanouptime(&ts1);
tc->tc_offset_nano = (u_int64_t)ts1.tv_nsec << 32;
tc->tc_offset_micro = ts1.tv_nsec / 1000;
tc->tc_offset_sec = ts1.tv_sec;
timecounter = tc;
}
void
tc_setclock(struct timespec *ts)
{
struct timespec ts2;
nanouptime(&ts2);
boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
if (boottime.tv_usec < 0) {
boottime.tv_usec += 1000000;
boottime.tv_sec--;
}
/* fiddle all the little crinkly bits around the fiords... */
tc_windup();
}
static void
switch_timecounter(struct timecounter *newtc)
{
int s;
struct timecounter *tc;
struct timespec ts;
s = splclock();
tc = timecounter;
if (newtc->tc_tweak == tc->tc_tweak) {
splx(s);
return;
}
newtc = newtc->tc_tweak->tc_other;
nanouptime(&ts);
newtc->tc_offset_sec = ts.tv_sec;
newtc->tc_offset_nano = (u_int64_t)ts.tv_nsec << 32;
newtc->tc_offset_micro = ts.tv_nsec / 1000;
newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
tco_setscales(newtc);
timecounter = newtc;
splx(s);
}
static struct timecounter *
sync_other_counter(void)
{
struct timecounter *tc, *tcn, *tco;
unsigned delta;
tco = timecounter;
tc = tco->tc_other;
tcn = tc->tc_other;
*tc = *tco;
tc->tc_other = tcn;
delta = tco_delta(tc);
tc->tc_offset_count += delta;
tc->tc_offset_count &= tc->tc_counter_mask;
tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_f;
tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_i << 32;
return (tc);
}
void
tc_windup(void)
{
struct timecounter *tc, *tco;
struct timeval tvt;
tco = timecounter;
tc = sync_other_counter();
/*
* We may be inducing a tiny error here, the tc_poll_pps() may
* process a latched count which happens after the tco_delta()
* in sync_other_counter(), which would extend the previous
* counters parameters into the domain of this new one.
* Since the timewindow is very small for this, the error is
* going to be only a few weenieseconds (as Dave Mills would
* say), so lets just not talk more about it, OK ?
*/
if (tco->tc_poll_pps)
tco->tc_poll_pps(tco);
if (timedelta != 0) {
tvt = boottime;
tvt.tv_usec += tickdelta;
if (tvt.tv_usec >= 1000000) {
tvt.tv_sec++;
tvt.tv_usec -= 1000000;
} else if (tvt.tv_usec < 0) {
tvt.tv_sec--;
tvt.tv_usec += 1000000;
}
boottime = tvt;
timedelta -= tickdelta;
}
while (tc->tc_offset_nano >= 1000000000ULL << 32) {
tc->tc_offset_nano -= 1000000000ULL << 32;
tc->tc_offset_sec++;
ntp_update_second(tc); /* XXX only needed if xntpd runs */
tco_setscales(tc);
}
tc->tc_offset_micro = (tc->tc_offset_nano / 1000) >> 32;
/* Figure out the wall-clock time */
tc->tc_nanotime.tv_sec = tc->tc_offset_sec + boottime.tv_sec;
tc->tc_nanotime.tv_nsec =
(tc->tc_offset_nano >> 32) + boottime.tv_usec * 1000;
tc->tc_microtime.tv_usec = tc->tc_offset_micro + boottime.tv_usec;
if (tc->tc_nanotime.tv_nsec >= 1000000000) {
tc->tc_nanotime.tv_nsec -= 1000000000;
tc->tc_microtime.tv_usec -= 1000000;
tc->tc_nanotime.tv_sec++;
}
time_second = tc->tc_microtime.tv_sec = tc->tc_nanotime.tv_sec;
timecounter = tc;
}
static int
sysctl_kern_timecounter_hardware SYSCTL_HANDLER_ARGS
{
char newname[32];
struct timecounter *newtc, *tc;
int error;
tc = timecounter->tc_tweak;
strncpy(newname, tc->tc_name, sizeof(newname));
error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
if (error == 0 && req->newptr != NULL &&
strcmp(newname, tc->tc_name) != 0) {
for (newtc = tc->tc_avail; newtc != tc;
newtc = newtc->tc_avail) {
if (strcmp(newname, newtc->tc_name) == 0) {
/* Warm up new timecounter. */
(void)newtc->tc_get_timecount(newtc);
switch_timecounter(newtc);
return (0);
}
}
return (EINVAL);
}
return (error);
}
SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
0, 0, sysctl_kern_timecounter_hardware, "A", "");
int
pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
{
pps_params_t *app;
struct pps_fetch_args *fapi;
#ifdef PPS_SYNC
struct pps_kcbind_args *kapi;
#endif
switch (cmd) {
case PPS_IOC_CREATE:
return (0);
case PPS_IOC_DESTROY:
return (0);
case PPS_IOC_SETPARAMS:
app = (pps_params_t *)data;
if (app->mode & ~pps->ppscap)
return (EINVAL);
pps->ppsparam = *app;
return (0);
case PPS_IOC_GETPARAMS:
app = (pps_params_t *)data;
*app = pps->ppsparam;
app->api_version = PPS_API_VERS_1;
return (0);
case PPS_IOC_GETCAP:
*(int*)data = pps->ppscap;
return (0);
case PPS_IOC_FETCH:
fapi = (struct pps_fetch_args *)data;
if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
return (EINVAL);
if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
return (EOPNOTSUPP);
pps->ppsinfo.current_mode = pps->ppsparam.mode;
fapi->pps_info_buf = pps->ppsinfo;
return (0);
case PPS_IOC_KCBIND:
#ifdef PPS_SYNC
kapi = (struct pps_kcbind_args *)data;
/* XXX Only root should be able to do this */
if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
return (EINVAL);
if (kapi->kernel_consumer != PPS_KC_HARDPPS)
return (EINVAL);
if (kapi->edge & ~pps->ppscap)
return (EINVAL);
pps->kcmode = kapi->edge;
return (0);
#else
return (EOPNOTSUPP);
#endif
default:
return (ENOTTY);
}
}
void
pps_init(struct pps_state *pps)
{
pps->ppscap |= PPS_TSFMT_TSPEC;
if (pps->ppscap & PPS_CAPTUREASSERT)
pps->ppscap |= PPS_OFFSETASSERT;
if (pps->ppscap & PPS_CAPTURECLEAR)
pps->ppscap |= PPS_OFFSETCLEAR;
}
void
pps_event(struct pps_state *pps, struct timecounter *tc, unsigned count, int event)
{
struct timespec ts, *tsp, *osp;
u_int64_t delta;
unsigned tcount, *pcount;
int foff, fhard;
pps_seq_t *pseq;
/* Things would be easier with arrays... */
if (event == PPS_CAPTUREASSERT) {
tsp = &pps->ppsinfo.assert_timestamp;
osp = &pps->ppsparam.assert_offset;
foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
fhard = pps->kcmode & PPS_CAPTUREASSERT;
pcount = &pps->ppscount[0];
pseq = &pps->ppsinfo.assert_sequence;
} else {
tsp = &pps->ppsinfo.clear_timestamp;
osp = &pps->ppsparam.clear_offset;
foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
fhard = pps->kcmode & PPS_CAPTURECLEAR;
pcount = &pps->ppscount[1];
pseq = &pps->ppsinfo.clear_sequence;
}
/* The timecounter changed: bail */
if (!pps->ppstc ||
pps->ppstc->tc_name != tc->tc_name ||
tc->tc_name != timecounter->tc_name) {
pps->ppstc = tc;
*pcount = count;
return;
}
/* Nothing really happened */
if (*pcount == count)
return;
*pcount = count;
/* Convert the count to timespec */
ts.tv_sec = tc->tc_offset_sec;
tcount = count - tc->tc_offset_count;
tcount &= tc->tc_counter_mask;
delta = tc->tc_offset_nano;
delta += ((u_int64_t)tcount * tc->tc_scale_nano_f);
delta >>= 32;
delta += ((u_int64_t)tcount * tc->tc_scale_nano_i);
delta += boottime.tv_usec * 1000;
ts.tv_sec += boottime.tv_sec;
while (delta >= 1000000000) {
delta -= 1000000000;
ts.tv_sec++;
}
ts.tv_nsec = delta;
(*pseq)++;
*tsp = ts;
if (foff) {
timespecadd(tsp, osp);
if (tsp->tv_nsec < 0) {
tsp->tv_nsec += 1000000000;
tsp->tv_sec -= 1;
}
}
#ifdef PPS_SYNC
if (fhard) {
/* magic, at its best... */
tcount = count - pps->ppscount[2];
pps->ppscount[2] = count;
tcount &= tc->tc_counter_mask;
delta = ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_f);
delta >>= 32;
delta += ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_i);
hardpps(tsp, delta);
}
#endif
}