f9a9fe46dc
- s/overriden/overridden/ MFC after: 3 days
6417 lines
172 KiB
C
6417 lines
172 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/ktr.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
#include <net80211/ieee80211_superg.h>
|
|
#endif
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <net80211/ieee80211_tdma.h>
|
|
#endif
|
|
#include <net80211/ieee80211_ht.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
|
|
#include <dev/ath/ath_hal/ah_diagcodes.h>
|
|
|
|
#include <dev/ath/if_ath_debug.h>
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
#include <dev/ath/ath_tx99/ath_tx99.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_ath_misc.h>
|
|
#include <dev/ath/if_ath_tx.h>
|
|
#include <dev/ath/if_ath_tx_ht.h>
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
#include <dev/ath/if_ath_alq.h>
|
|
#endif
|
|
|
|
/*
|
|
* How many retries to perform in software
|
|
*/
|
|
#define SWMAX_RETRIES 10
|
|
|
|
/*
|
|
* What queue to throw the non-QoS TID traffic into
|
|
*/
|
|
#define ATH_NONQOS_TID_AC WME_AC_VO
|
|
|
|
#if 0
|
|
static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an);
|
|
#endif
|
|
static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
|
|
int tid);
|
|
static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
|
|
int tid);
|
|
static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
|
|
struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
|
|
static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
|
|
struct ieee80211_node *ni, struct mbuf *m0, int *tid);
|
|
static struct ath_buf *
|
|
ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, struct ath_buf *bf);
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
void
|
|
ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first)
|
|
{
|
|
struct ath_buf *bf;
|
|
int i, n;
|
|
const char *ds;
|
|
|
|
/* XXX we should skip out early if debugging isn't enabled! */
|
|
bf = bf_first;
|
|
|
|
while (bf != NULL) {
|
|
/* XXX should ensure bf_nseg > 0! */
|
|
if (bf->bf_nseg == 0)
|
|
break;
|
|
n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1;
|
|
for (i = 0, ds = (const char *) bf->bf_desc;
|
|
i < n;
|
|
i++, ds += sc->sc_tx_desclen) {
|
|
if_ath_alq_post(&sc->sc_alq,
|
|
ATH_ALQ_EDMA_TXDESC,
|
|
sc->sc_tx_desclen,
|
|
ds);
|
|
}
|
|
bf = bf->bf_next;
|
|
}
|
|
}
|
|
#endif /* ATH_DEBUG_ALQ */
|
|
|
|
/*
|
|
* Whether to use the 11n rate scenario functions or not
|
|
*/
|
|
static inline int
|
|
ath_tx_is_11n(struct ath_softc *sc)
|
|
{
|
|
return ((sc->sc_ah->ah_magic == 0x20065416) ||
|
|
(sc->sc_ah->ah_magic == 0x19741014));
|
|
}
|
|
|
|
/*
|
|
* Obtain the current TID from the given frame.
|
|
*
|
|
* Non-QoS frames get mapped to a TID so frames consistently
|
|
* go on a sensible queue.
|
|
*/
|
|
static int
|
|
ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
|
|
{
|
|
const struct ieee80211_frame *wh;
|
|
|
|
wh = mtod(m0, const struct ieee80211_frame *);
|
|
|
|
/* Non-QoS: map frame to a TID queue for software queueing */
|
|
if (! IEEE80211_QOS_HAS_SEQ(wh))
|
|
return (WME_AC_TO_TID(M_WME_GETAC(m0)));
|
|
|
|
/* QoS - fetch the TID from the header, ignore mbuf WME */
|
|
return (ieee80211_gettid(wh));
|
|
}
|
|
|
|
static void
|
|
ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_frame *wh;
|
|
|
|
wh = mtod(bf->bf_m, struct ieee80211_frame *);
|
|
/* Only update/resync if needed */
|
|
if (bf->bf_state.bfs_isretried == 0) {
|
|
wh->i_fc[1] |= IEEE80211_FC1_RETRY;
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
bf->bf_state.bfs_isretried = 1;
|
|
bf->bf_state.bfs_retries ++;
|
|
}
|
|
|
|
/*
|
|
* Determine what the correct AC queue for the given frame
|
|
* should be.
|
|
*
|
|
* For QoS frames, obey the TID. That way things like
|
|
* management frames that are related to a given TID
|
|
* are thus serialised with the rest of the TID traffic,
|
|
* regardless of net80211 overriding priority.
|
|
*
|
|
* For non-QoS frames, return the mbuf WMI priority.
|
|
*
|
|
* This has implications that higher priority non-QoS traffic
|
|
* may end up being scheduled before other non-QoS traffic,
|
|
* leading to out-of-sequence packets being emitted.
|
|
*
|
|
* (It'd be nice to log/count this so we can see if it
|
|
* really is a problem.)
|
|
*
|
|
* TODO: maybe we should throw multicast traffic, QoS or
|
|
* otherwise, into a separate TX queue?
|
|
*/
|
|
static int
|
|
ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
|
|
{
|
|
const struct ieee80211_frame *wh;
|
|
|
|
wh = mtod(m0, const struct ieee80211_frame *);
|
|
|
|
/*
|
|
* QoS data frame (sequence number or otherwise) -
|
|
* return hardware queue mapping for the underlying
|
|
* TID.
|
|
*/
|
|
if (IEEE80211_QOS_HAS_SEQ(wh))
|
|
return TID_TO_WME_AC(ieee80211_gettid(wh));
|
|
|
|
/*
|
|
* Otherwise - return mbuf QoS pri.
|
|
*/
|
|
return (M_WME_GETAC(m0));
|
|
}
|
|
|
|
void
|
|
ath_txfrag_cleanup(struct ath_softc *sc,
|
|
ath_bufhead *frags, struct ieee80211_node *ni)
|
|
{
|
|
struct ath_buf *bf, *next;
|
|
|
|
ATH_TXBUF_LOCK_ASSERT(sc);
|
|
|
|
TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
|
|
/* NB: bf assumed clean */
|
|
TAILQ_REMOVE(frags, bf, bf_list);
|
|
ath_returnbuf_head(sc, bf);
|
|
ieee80211_node_decref(ni);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup xmit of a fragmented frame. Allocate a buffer
|
|
* for each frag and bump the node reference count to
|
|
* reflect the held reference to be setup by ath_tx_start.
|
|
*/
|
|
int
|
|
ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
|
|
struct mbuf *m0, struct ieee80211_node *ni)
|
|
{
|
|
struct mbuf *m;
|
|
struct ath_buf *bf;
|
|
|
|
ATH_TXBUF_LOCK(sc);
|
|
for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
|
|
/* XXX non-management? */
|
|
bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
|
|
if (bf == NULL) { /* out of buffers, cleanup */
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: no buffer?\n",
|
|
__func__);
|
|
ath_txfrag_cleanup(sc, frags, ni);
|
|
break;
|
|
}
|
|
ieee80211_node_incref(ni);
|
|
TAILQ_INSERT_TAIL(frags, bf, bf_list);
|
|
}
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
|
|
return !TAILQ_EMPTY(frags);
|
|
}
|
|
|
|
static int
|
|
ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This
|
|
* also calculates the number of descriptors we need.
|
|
*/
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
/* XXX packet requires too many descriptors */
|
|
bf->bf_nseg = ATH_MAX_SCATTER + 1;
|
|
} else if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
ieee80211_free_mbuf(m0);
|
|
return error;
|
|
}
|
|
/*
|
|
* Discard null packets and check for packets that
|
|
* require too many TX descriptors. We try to convert
|
|
* the latter to a cluster.
|
|
*/
|
|
if (bf->bf_nseg > ATH_MAX_SCATTER) { /* too many desc's, linearize */
|
|
sc->sc_stats.ast_tx_linear++;
|
|
m = m_collapse(m0, M_NOWAIT, ATH_MAX_SCATTER);
|
|
if (m == NULL) {
|
|
ieee80211_free_mbuf(m0);
|
|
sc->sc_stats.ast_tx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
m0 = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
ieee80211_free_mbuf(m0);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg <= ATH_MAX_SCATTER,
|
|
("too many segments after defrag; nseg %u", bf->bf_nseg));
|
|
} else if (bf->bf_nseg == 0) { /* null packet, discard */
|
|
sc->sc_stats.ast_tx_nodata++;
|
|
ieee80211_free_mbuf(m0);
|
|
return EIO;
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
|
|
__func__, m0, m0->m_pkthdr.len);
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
bf->bf_m = m0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Chain together segments+descriptors for a frame - 11n or otherwise.
|
|
*
|
|
* For aggregates, this is called on each frame in the aggregate.
|
|
*/
|
|
static void
|
|
ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0,
|
|
struct ath_buf *bf, bool is_aggr, int is_first_subframe,
|
|
int is_last_subframe)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
char *ds;
|
|
int i, bp, dsp;
|
|
HAL_DMA_ADDR bufAddrList[4];
|
|
uint32_t segLenList[4];
|
|
int numTxMaps = 1;
|
|
int isFirstDesc = 1;
|
|
|
|
/*
|
|
* XXX There's txdma and txdma_mgmt; the descriptor
|
|
* sizes must match.
|
|
*/
|
|
struct ath_descdma *dd = &sc->sc_txdma;
|
|
|
|
/*
|
|
* Fillin the remainder of the descriptor info.
|
|
*/
|
|
|
|
/*
|
|
* We need the number of TX data pointers in each descriptor.
|
|
* EDMA and later chips support 4 TX buffers per descriptor;
|
|
* previous chips just support one.
|
|
*/
|
|
numTxMaps = sc->sc_tx_nmaps;
|
|
|
|
/*
|
|
* For EDMA and later chips ensure the TX map is fully populated
|
|
* before advancing to the next descriptor.
|
|
*/
|
|
ds = (char *) bf->bf_desc;
|
|
bp = dsp = 0;
|
|
bzero(bufAddrList, sizeof(bufAddrList));
|
|
bzero(segLenList, sizeof(segLenList));
|
|
for (i = 0; i < bf->bf_nseg; i++) {
|
|
bufAddrList[bp] = bf->bf_segs[i].ds_addr;
|
|
segLenList[bp] = bf->bf_segs[i].ds_len;
|
|
bp++;
|
|
|
|
/*
|
|
* Go to the next segment if this isn't the last segment
|
|
* and there's space in the current TX map.
|
|
*/
|
|
if ((i != bf->bf_nseg - 1) && (bp < numTxMaps))
|
|
continue;
|
|
|
|
/*
|
|
* Last segment or we're out of buffer pointers.
|
|
*/
|
|
bp = 0;
|
|
|
|
if (i == bf->bf_nseg - 1)
|
|
ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0);
|
|
else
|
|
ath_hal_settxdesclink(ah, (struct ath_desc *) ds,
|
|
bf->bf_daddr + dd->dd_descsize * (dsp + 1));
|
|
|
|
/*
|
|
* XXX This assumes that bfs_txq is the actual destination
|
|
* hardware queue at this point. It may not have been
|
|
* assigned, it may actually be pointing to the multicast
|
|
* software TXQ id. These must be fixed!
|
|
*/
|
|
ath_hal_filltxdesc(ah, (struct ath_desc *) ds
|
|
, bufAddrList
|
|
, segLenList
|
|
, bf->bf_descid /* XXX desc id */
|
|
, bf->bf_state.bfs_tx_queue
|
|
, isFirstDesc /* first segment */
|
|
, i == bf->bf_nseg - 1 /* last segment */
|
|
, (struct ath_desc *) ds0 /* first descriptor */
|
|
);
|
|
|
|
/*
|
|
* Make sure the 11n aggregate fields are cleared.
|
|
*
|
|
* XXX TODO: this doesn't need to be called for
|
|
* aggregate frames; as it'll be called on all
|
|
* sub-frames. Since the descriptors are in
|
|
* non-cacheable memory, this leads to some
|
|
* rather slow writes on MIPS/ARM platforms.
|
|
*/
|
|
if (ath_tx_is_11n(sc))
|
|
ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds);
|
|
|
|
/*
|
|
* If 11n is enabled, set it up as if it's an aggregate
|
|
* frame.
|
|
*/
|
|
if (is_last_subframe) {
|
|
ath_hal_set11n_aggr_last(sc->sc_ah,
|
|
(struct ath_desc *) ds);
|
|
} else if (is_aggr) {
|
|
/*
|
|
* This clears the aggrlen field; so
|
|
* the caller needs to call set_aggr_first()!
|
|
*
|
|
* XXX TODO: don't call this for the first
|
|
* descriptor in the first frame in an
|
|
* aggregate!
|
|
*/
|
|
ath_hal_set11n_aggr_middle(sc->sc_ah,
|
|
(struct ath_desc *) ds,
|
|
bf->bf_state.bfs_ndelim);
|
|
}
|
|
isFirstDesc = 0;
|
|
bf->bf_lastds = (struct ath_desc *) ds;
|
|
|
|
/*
|
|
* Don't forget to skip to the next descriptor.
|
|
*/
|
|
ds += sc->sc_tx_desclen;
|
|
dsp++;
|
|
|
|
/*
|
|
* .. and don't forget to blank these out!
|
|
*/
|
|
bzero(bufAddrList, sizeof(bufAddrList));
|
|
bzero(segLenList, sizeof(segLenList));
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
/*
|
|
* Set the rate control fields in the given descriptor based on
|
|
* the bf_state fields and node state.
|
|
*
|
|
* The bfs fields should already be set with the relevant rate
|
|
* control information, including whether MRR is to be enabled.
|
|
*
|
|
* Since the FreeBSD HAL currently sets up the first TX rate
|
|
* in ath_hal_setuptxdesc(), this will setup the MRR
|
|
* conditionally for the pre-11n chips, and call ath_buf_set_rate
|
|
* unconditionally for 11n chips. These require the 11n rate
|
|
* scenario to be set if MCS rates are enabled, so it's easier
|
|
* to just always call it. The caller can then only set rates 2, 3
|
|
* and 4 if multi-rate retry is needed.
|
|
*/
|
|
static void
|
|
ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct ath_rc_series *rc = bf->bf_state.bfs_rc;
|
|
|
|
/* If mrr is disabled, blank tries 1, 2, 3 */
|
|
if (! bf->bf_state.bfs_ismrr)
|
|
rc[1].tries = rc[2].tries = rc[3].tries = 0;
|
|
|
|
#if 0
|
|
/*
|
|
* If NOACK is set, just set ntries=1.
|
|
*/
|
|
else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) {
|
|
rc[1].tries = rc[2].tries = rc[3].tries = 0;
|
|
rc[0].tries = 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Always call - that way a retried descriptor will
|
|
* have the MRR fields overwritten.
|
|
*
|
|
* XXX TODO: see if this is really needed - setting up
|
|
* the first descriptor should set the MRR fields to 0
|
|
* for us anyway.
|
|
*/
|
|
if (ath_tx_is_11n(sc)) {
|
|
ath_buf_set_rate(sc, ni, bf);
|
|
} else {
|
|
ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
|
|
, rc[1].ratecode, rc[1].tries
|
|
, rc[2].ratecode, rc[2].tries
|
|
, rc[3].ratecode, rc[3].tries
|
|
);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup segments+descriptors for an 11n aggregate.
|
|
* bf_first is the first buffer in the aggregate.
|
|
* The descriptor list must already been linked together using
|
|
* bf->bf_next.
|
|
*/
|
|
static void
|
|
ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
|
|
{
|
|
struct ath_buf *bf, *bf_prev = NULL;
|
|
struct ath_desc *ds0 = bf_first->bf_desc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
|
|
__func__, bf_first->bf_state.bfs_nframes,
|
|
bf_first->bf_state.bfs_al);
|
|
|
|
bf = bf_first;
|
|
|
|
if (bf->bf_state.bfs_txrate0 == 0)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, txrate0=%d\n",
|
|
__func__, bf, 0);
|
|
if (bf->bf_state.bfs_rc[0].ratecode == 0)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, rix0=%d\n",
|
|
__func__, bf, 0);
|
|
|
|
/*
|
|
* Setup all descriptors of all subframes - this will
|
|
* call ath_hal_set11naggrmiddle() on every frame.
|
|
*/
|
|
while (bf != NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
|
|
__func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
|
|
SEQNO(bf->bf_state.bfs_seqno));
|
|
|
|
/*
|
|
* Setup the initial fields for the first descriptor - all
|
|
* the non-11n specific stuff.
|
|
*/
|
|
ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc
|
|
, bf->bf_state.bfs_pktlen /* packet length */
|
|
, bf->bf_state.bfs_hdrlen /* header length */
|
|
, bf->bf_state.bfs_atype /* Atheros packet type */
|
|
, bf->bf_state.bfs_txpower /* txpower */
|
|
, bf->bf_state.bfs_txrate0
|
|
, bf->bf_state.bfs_try0 /* series 0 rate/tries */
|
|
, bf->bf_state.bfs_keyix /* key cache index */
|
|
, bf->bf_state.bfs_txantenna /* antenna mode */
|
|
, bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ /* flags */
|
|
, bf->bf_state.bfs_ctsrate /* rts/cts rate */
|
|
, bf->bf_state.bfs_ctsduration /* rts/cts duration */
|
|
);
|
|
|
|
/*
|
|
* First descriptor? Setup the rate control and initial
|
|
* aggregate header information.
|
|
*/
|
|
if (bf == bf_first) {
|
|
/*
|
|
* setup first desc with rate and aggr info
|
|
*/
|
|
ath_tx_set_ratectrl(sc, bf->bf_node, bf);
|
|
}
|
|
|
|
/*
|
|
* Setup the descriptors for a multi-descriptor frame.
|
|
* This is both aggregate and non-aggregate aware.
|
|
*/
|
|
ath_tx_chaindesclist(sc, ds0, bf,
|
|
1, /* is_aggr */
|
|
!! (bf == bf_first), /* is_first_subframe */
|
|
!! (bf->bf_next == NULL) /* is_last_subframe */
|
|
);
|
|
|
|
if (bf == bf_first) {
|
|
/*
|
|
* Initialise the first 11n aggregate with the
|
|
* aggregate length and aggregate enable bits.
|
|
*/
|
|
ath_hal_set11n_aggr_first(sc->sc_ah,
|
|
ds0,
|
|
bf->bf_state.bfs_al,
|
|
bf->bf_state.bfs_ndelim);
|
|
}
|
|
|
|
/*
|
|
* Link the last descriptor of the previous frame
|
|
* to the beginning descriptor of this frame.
|
|
*/
|
|
if (bf_prev != NULL)
|
|
ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds,
|
|
bf->bf_daddr);
|
|
|
|
/* Save a copy so we can link the next descriptor in */
|
|
bf_prev = bf;
|
|
bf = bf->bf_next;
|
|
}
|
|
|
|
/*
|
|
* Set the first descriptor bf_lastds field to point to
|
|
* the last descriptor in the last subframe, that's where
|
|
* the status update will occur.
|
|
*/
|
|
bf_first->bf_lastds = bf_prev->bf_lastds;
|
|
|
|
/*
|
|
* And bf_last in the first descriptor points to the end of
|
|
* the aggregate list.
|
|
*/
|
|
bf_first->bf_last = bf_prev;
|
|
|
|
/*
|
|
* For non-AR9300 NICs, which require the rate control
|
|
* in the final descriptor - let's set that up now.
|
|
*
|
|
* This is because the filltxdesc() HAL call doesn't
|
|
* populate the last segment with rate control information
|
|
* if firstSeg is also true. For non-aggregate frames
|
|
* that is fine, as the first frame already has rate control
|
|
* info. But if the last frame in an aggregate has one
|
|
* descriptor, both firstseg and lastseg will be true and
|
|
* the rate info isn't copied.
|
|
*
|
|
* This is inefficient on MIPS/ARM platforms that have
|
|
* non-cachable memory for TX descriptors, but we'll just
|
|
* make do for now.
|
|
*
|
|
* As to why the rate table is stashed in the last descriptor
|
|
* rather than the first descriptor? Because proctxdesc()
|
|
* is called on the final descriptor in an MPDU or A-MPDU -
|
|
* ie, the one that gets updated by the hardware upon
|
|
* completion. That way proctxdesc() doesn't need to know
|
|
* about the first _and_ last TX descriptor.
|
|
*/
|
|
ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
|
|
}
|
|
|
|
/*
|
|
* Hand-off a frame to the multicast TX queue.
|
|
*
|
|
* This is a software TXQ which will be appended to the CAB queue
|
|
* during the beacon setup code.
|
|
*
|
|
* XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID
|
|
* as part of the TX descriptor, bf_state.bfs_tx_queue must be updated
|
|
* with the actual hardware txq, or all of this will fall apart.
|
|
*
|
|
* XXX It may not be a bad idea to just stuff the QCU ID into bf_state
|
|
* and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated
|
|
* correctly.
|
|
*/
|
|
static void
|
|
ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
|
|
("%s: busy status 0x%x", __func__, bf->bf_flags));
|
|
|
|
/*
|
|
* Ensure that the tx queue is the cabq, so things get
|
|
* mapped correctly.
|
|
*/
|
|
if (bf->bf_state.bfs_tx_queue != sc->sc_cabq->axq_qnum) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n",
|
|
__func__, bf, bf->bf_state.bfs_tx_queue,
|
|
txq->axq_qnum);
|
|
}
|
|
|
|
ATH_TXQ_LOCK(txq);
|
|
if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) {
|
|
struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s);
|
|
struct ieee80211_frame *wh;
|
|
|
|
/* mark previous frame */
|
|
wh = mtod(bf_last->bf_m, struct ieee80211_frame *);
|
|
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
|
|
bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* link descriptor */
|
|
ath_hal_settxdesclink(sc->sc_ah,
|
|
bf_last->bf_lastds,
|
|
bf->bf_daddr);
|
|
}
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
/*
|
|
* Hand-off packet to a hardware queue.
|
|
*/
|
|
static void
|
|
ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf_first;
|
|
|
|
/*
|
|
* Insert the frame on the outbound list and pass it on
|
|
* to the hardware. Multicast frames buffered for power
|
|
* save stations and transmit from the CAB queue are stored
|
|
* on a s/w only queue and loaded on to the CAB queue in
|
|
* the SWBA handler since frames only go out on DTIM and
|
|
* to avoid possible races.
|
|
*/
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
|
|
("%s: busy status 0x%x", __func__, bf->bf_flags));
|
|
KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
|
|
("ath_tx_handoff_hw called for mcast queue"));
|
|
|
|
/*
|
|
* XXX We should instead just verify that sc_txstart_cnt
|
|
* or ath_txproc_cnt > 0. That would mean that
|
|
* the reset is going to be waiting for us to complete.
|
|
*/
|
|
if (sc->sc_txproc_cnt == 0 && sc->sc_txstart_cnt == 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: TX dispatch without holding txcount/txstart refcnt!\n",
|
|
__func__);
|
|
}
|
|
|
|
/*
|
|
* XXX .. this is going to cause the hardware to get upset;
|
|
* so we really should find some way to drop or queue
|
|
* things.
|
|
*/
|
|
|
|
ATH_TXQ_LOCK(txq);
|
|
|
|
/*
|
|
* XXX TODO: if there's a holdingbf, then
|
|
* ATH_TXQ_PUTRUNNING should be clear.
|
|
*
|
|
* If there is a holdingbf and the list is empty,
|
|
* then axq_link should be pointing to the holdingbf.
|
|
*
|
|
* Otherwise it should point to the last descriptor
|
|
* in the last ath_buf.
|
|
*
|
|
* In any case, we should really ensure that we
|
|
* update the previous descriptor link pointer to
|
|
* this descriptor, regardless of all of the above state.
|
|
*
|
|
* For now this is captured by having axq_link point
|
|
* to either the holdingbf (if the TXQ list is empty)
|
|
* or the end of the list (if the TXQ list isn't empty.)
|
|
* I'd rather just kill axq_link here and do it as above.
|
|
*/
|
|
|
|
/*
|
|
* Append the frame to the TX queue.
|
|
*/
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
ATH_KTR(sc, ATH_KTR_TX, 3,
|
|
"ath_tx_handoff: non-tdma: txq=%u, add bf=%p "
|
|
"depth=%d",
|
|
txq->axq_qnum,
|
|
bf,
|
|
txq->axq_depth);
|
|
|
|
/*
|
|
* If there's a link pointer, update it.
|
|
*
|
|
* XXX we should replace this with the above logic, just
|
|
* to kill axq_link with fire.
|
|
*/
|
|
if (txq->axq_link != NULL) {
|
|
*txq->axq_link = bf->bf_daddr;
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
|
|
txq->axq_qnum, txq->axq_link,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc,
|
|
txq->axq_depth);
|
|
ATH_KTR(sc, ATH_KTR_TX, 5,
|
|
"ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) "
|
|
"lastds=%d",
|
|
txq->axq_qnum, txq->axq_link,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc,
|
|
bf->bf_lastds);
|
|
}
|
|
|
|
/*
|
|
* If we've not pushed anything into the hardware yet,
|
|
* push the head of the queue into the TxDP.
|
|
*
|
|
* Once we've started DMA, there's no guarantee that
|
|
* updating the TxDP with a new value will actually work.
|
|
* So we just don't do that - if we hit the end of the list,
|
|
* we keep that buffer around (the "holding buffer") and
|
|
* re-start DMA by updating the link pointer of _that_
|
|
* descriptor and then restart DMA.
|
|
*/
|
|
if (! (txq->axq_flags & ATH_TXQ_PUTRUNNING)) {
|
|
bf_first = TAILQ_FIRST(&txq->axq_q);
|
|
txq->axq_flags |= ATH_TXQ_PUTRUNNING;
|
|
ath_hal_puttxbuf(ah, txq->axq_qnum, bf_first->bf_daddr);
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: TXDP[%u] = %p (%p) depth %d\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)bf_first->bf_daddr, bf_first->bf_desc,
|
|
txq->axq_depth);
|
|
ATH_KTR(sc, ATH_KTR_TX, 5,
|
|
"ath_tx_handoff: TXDP[%u] = %p (%p) "
|
|
"lastds=%p depth %d",
|
|
txq->axq_qnum,
|
|
(caddr_t)bf_first->bf_daddr, bf_first->bf_desc,
|
|
bf_first->bf_lastds,
|
|
txq->axq_depth);
|
|
}
|
|
|
|
/*
|
|
* Ensure that the bf TXQ matches this TXQ, so later
|
|
* checking and holding buffer manipulation is sane.
|
|
*/
|
|
if (bf->bf_state.bfs_tx_queue != txq->axq_qnum) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n",
|
|
__func__, bf, bf->bf_state.bfs_tx_queue,
|
|
txq->axq_qnum);
|
|
}
|
|
|
|
/*
|
|
* Track aggregate queue depth.
|
|
*/
|
|
if (bf->bf_state.bfs_aggr)
|
|
txq->axq_aggr_depth++;
|
|
|
|
/*
|
|
* Update the link pointer.
|
|
*/
|
|
ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link);
|
|
|
|
/*
|
|
* Start DMA.
|
|
*
|
|
* If we wrote a TxDP above, DMA will start from here.
|
|
*
|
|
* If DMA is running, it'll do nothing.
|
|
*
|
|
* If the DMA engine hit the end of the QCU list (ie LINK=NULL,
|
|
* or VEOL) then it stops at the last transmitted write.
|
|
* We then append a new frame by updating the link pointer
|
|
* in that descriptor and then kick TxE here; it will re-read
|
|
* that last descriptor and find the new descriptor to transmit.
|
|
*
|
|
* This is why we keep the holding descriptor around.
|
|
*/
|
|
ath_hal_txstart(ah, txq->axq_qnum);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
ATH_KTR(sc, ATH_KTR_TX, 1,
|
|
"ath_tx_handoff: txq=%u, txstart", txq->axq_qnum);
|
|
}
|
|
|
|
/*
|
|
* Restart TX DMA for the given TXQ.
|
|
*
|
|
* This must be called whether the queue is empty or not.
|
|
*/
|
|
static void
|
|
ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_buf *bf, *bf_last;
|
|
|
|
ATH_TXQ_LOCK_ASSERT(txq);
|
|
|
|
/* XXX make this ATH_TXQ_FIRST */
|
|
bf = TAILQ_FIRST(&txq->axq_q);
|
|
bf_last = ATH_TXQ_LAST(txq, axq_q_s);
|
|
|
|
if (bf == NULL)
|
|
return;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: Q%d: bf=%p, bf_last=%p, daddr=0x%08x\n",
|
|
__func__,
|
|
txq->axq_qnum,
|
|
bf,
|
|
bf_last,
|
|
(uint32_t) bf->bf_daddr);
|
|
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RESET)
|
|
ath_tx_dump(sc, txq);
|
|
#endif
|
|
|
|
/*
|
|
* This is called from a restart, so DMA is known to be
|
|
* completely stopped.
|
|
*/
|
|
KASSERT((!(txq->axq_flags & ATH_TXQ_PUTRUNNING)),
|
|
("%s: Q%d: called with PUTRUNNING=1\n",
|
|
__func__,
|
|
txq->axq_qnum));
|
|
|
|
ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
|
|
txq->axq_flags |= ATH_TXQ_PUTRUNNING;
|
|
|
|
ath_hal_gettxdesclinkptr(sc->sc_ah, bf_last->bf_lastds,
|
|
&txq->axq_link);
|
|
ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
|
|
}
|
|
|
|
/*
|
|
* Hand off a packet to the hardware (or mcast queue.)
|
|
*
|
|
* The relevant hardware txq should be locked.
|
|
*/
|
|
static void
|
|
ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
#ifdef ATH_DEBUG_ALQ
|
|
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
|
|
ath_tx_alq_post(sc, bf);
|
|
#endif
|
|
|
|
if (txq->axq_qnum == ATH_TXQ_SWQ)
|
|
ath_tx_handoff_mcast(sc, txq, bf);
|
|
else
|
|
ath_tx_handoff_hw(sc, txq, bf);
|
|
}
|
|
|
|
static int
|
|
ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen,
|
|
int *keyix)
|
|
{
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n",
|
|
__func__,
|
|
*hdrlen,
|
|
*pktlen,
|
|
isfrag,
|
|
iswep,
|
|
m0);
|
|
|
|
if (iswep) {
|
|
const struct ieee80211_cipher *cip;
|
|
struct ieee80211_key *k;
|
|
|
|
/*
|
|
* Construct the 802.11 header+trailer for an encrypted
|
|
* frame. The only reason this can fail is because of an
|
|
* unknown or unsupported cipher/key type.
|
|
*/
|
|
k = ieee80211_crypto_encap(ni, m0);
|
|
if (k == NULL) {
|
|
/*
|
|
* This can happen when the key is yanked after the
|
|
* frame was queued. Just discard the frame; the
|
|
* 802.11 layer counts failures and provides
|
|
* debugging/diagnostics.
|
|
*/
|
|
return (0);
|
|
}
|
|
/*
|
|
* Adjust the packet + header lengths for the crypto
|
|
* additions and calculate the h/w key index. When
|
|
* a s/w mic is done the frame will have had any mic
|
|
* added to it prior to entry so m0->m_pkthdr.len will
|
|
* account for it. Otherwise we need to add it to the
|
|
* packet length.
|
|
*/
|
|
cip = k->wk_cipher;
|
|
(*hdrlen) += cip->ic_header;
|
|
(*pktlen) += cip->ic_header + cip->ic_trailer;
|
|
/* NB: frags always have any TKIP MIC done in s/w */
|
|
if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
|
|
(*pktlen) += cip->ic_miclen;
|
|
(*keyix) = k->wk_keyix;
|
|
} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
|
|
/*
|
|
* Use station key cache slot, if assigned.
|
|
*/
|
|
(*keyix) = ni->ni_ucastkey.wk_keyix;
|
|
if ((*keyix) == IEEE80211_KEYIX_NONE)
|
|
(*keyix) = HAL_TXKEYIX_INVALID;
|
|
} else
|
|
(*keyix) = HAL_TXKEYIX_INVALID;
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Calculate whether interoperability protection is required for
|
|
* this frame.
|
|
*
|
|
* This requires the rate control information be filled in,
|
|
* as the protection requirement depends upon the current
|
|
* operating mode / PHY.
|
|
*/
|
|
static void
|
|
ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_frame *wh;
|
|
uint8_t rix;
|
|
uint16_t flags;
|
|
int shortPreamble;
|
|
const HAL_RATE_TABLE *rt = sc->sc_currates;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
flags = bf->bf_state.bfs_txflags;
|
|
rix = bf->bf_state.bfs_rc[0].rix;
|
|
shortPreamble = bf->bf_state.bfs_shpream;
|
|
wh = mtod(bf->bf_m, struct ieee80211_frame *);
|
|
|
|
/* Disable frame protection for TOA probe frames */
|
|
if (bf->bf_flags & ATH_BUF_TOA_PROBE) {
|
|
/* XXX count */
|
|
flags &= ~(HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA);
|
|
bf->bf_state.bfs_doprot = 0;
|
|
goto finish;
|
|
}
|
|
|
|
/*
|
|
* If 802.11g protection is enabled, determine whether
|
|
* to use RTS/CTS or just CTS. Note that this is only
|
|
* done for OFDM unicast frames.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
|
|
rt->info[rix].phy == IEEE80211_T_OFDM &&
|
|
(flags & HAL_TXDESC_NOACK) == 0) {
|
|
bf->bf_state.bfs_doprot = 1;
|
|
/* XXX fragments must use CCK rates w/ protection */
|
|
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
|
|
flags |= HAL_TXDESC_RTSENA;
|
|
} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
|
|
flags |= HAL_TXDESC_CTSENA;
|
|
}
|
|
/*
|
|
* For frags it would be desirable to use the
|
|
* highest CCK rate for RTS/CTS. But stations
|
|
* farther away may detect it at a lower CCK rate
|
|
* so use the configured protection rate instead
|
|
* (for now).
|
|
*/
|
|
sc->sc_stats.ast_tx_protect++;
|
|
}
|
|
|
|
/*
|
|
* If 11n protection is enabled and it's a HT frame,
|
|
* enable RTS.
|
|
*
|
|
* XXX ic_htprotmode or ic_curhtprotmode?
|
|
* XXX should it_htprotmode only matter if ic_curhtprotmode
|
|
* XXX indicates it's not a HT pure environment?
|
|
*/
|
|
if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
|
|
rt->info[rix].phy == IEEE80211_T_HT &&
|
|
(flags & HAL_TXDESC_NOACK) == 0) {
|
|
flags |= HAL_TXDESC_RTSENA;
|
|
sc->sc_stats.ast_tx_htprotect++;
|
|
}
|
|
|
|
finish:
|
|
bf->bf_state.bfs_txflags = flags;
|
|
}
|
|
|
|
/*
|
|
* Update the frame duration given the currently selected rate.
|
|
*
|
|
* This also updates the frame duration value, so it will require
|
|
* a DMA flush.
|
|
*/
|
|
static void
|
|
ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_frame *wh;
|
|
uint8_t rix;
|
|
uint16_t flags;
|
|
int shortPreamble;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const HAL_RATE_TABLE *rt = sc->sc_currates;
|
|
int isfrag = bf->bf_m->m_flags & M_FRAG;
|
|
|
|
flags = bf->bf_state.bfs_txflags;
|
|
rix = bf->bf_state.bfs_rc[0].rix;
|
|
shortPreamble = bf->bf_state.bfs_shpream;
|
|
wh = mtod(bf->bf_m, struct ieee80211_frame *);
|
|
|
|
/*
|
|
* Calculate duration. This logically belongs in the 802.11
|
|
* layer but it lacks sufficient information to calculate it.
|
|
*/
|
|
if ((flags & HAL_TXDESC_NOACK) == 0 &&
|
|
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
|
|
u_int16_t dur;
|
|
if (shortPreamble)
|
|
dur = rt->info[rix].spAckDuration;
|
|
else
|
|
dur = rt->info[rix].lpAckDuration;
|
|
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
|
|
dur += dur; /* additional SIFS+ACK */
|
|
/*
|
|
* Include the size of next fragment so NAV is
|
|
* updated properly. The last fragment uses only
|
|
* the ACK duration
|
|
*
|
|
* XXX TODO: ensure that the rate lookup for each
|
|
* fragment is the same as the rate used by the
|
|
* first fragment!
|
|
*/
|
|
dur += ath_hal_computetxtime(ah,
|
|
rt,
|
|
bf->bf_nextfraglen,
|
|
rix, shortPreamble,
|
|
AH_TRUE);
|
|
}
|
|
if (isfrag) {
|
|
/*
|
|
* Force hardware to use computed duration for next
|
|
* fragment by disabling multi-rate retry which updates
|
|
* duration based on the multi-rate duration table.
|
|
*/
|
|
bf->bf_state.bfs_ismrr = 0;
|
|
bf->bf_state.bfs_try0 = ATH_TXMGTTRY;
|
|
/* XXX update bfs_rc[0].try? */
|
|
}
|
|
|
|
/* Update the duration field itself */
|
|
*(u_int16_t *)wh->i_dur = htole16(dur);
|
|
}
|
|
}
|
|
|
|
static uint8_t
|
|
ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
|
|
int cix, int shortPreamble)
|
|
{
|
|
uint8_t ctsrate;
|
|
|
|
/*
|
|
* CTS transmit rate is derived from the transmit rate
|
|
* by looking in the h/w rate table. We must also factor
|
|
* in whether or not a short preamble is to be used.
|
|
*/
|
|
/* NB: cix is set above where RTS/CTS is enabled */
|
|
KASSERT(cix != 0xff, ("cix not setup"));
|
|
ctsrate = rt->info[cix].rateCode;
|
|
|
|
/* XXX this should only matter for legacy rates */
|
|
if (shortPreamble)
|
|
ctsrate |= rt->info[cix].shortPreamble;
|
|
|
|
return (ctsrate);
|
|
}
|
|
|
|
/*
|
|
* Calculate the RTS/CTS duration for legacy frames.
|
|
*/
|
|
static int
|
|
ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
|
|
int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
|
|
int flags)
|
|
{
|
|
int ctsduration = 0;
|
|
|
|
/* This mustn't be called for HT modes */
|
|
if (rt->info[cix].phy == IEEE80211_T_HT) {
|
|
printf("%s: HT rate where it shouldn't be (0x%x)\n",
|
|
__func__, rt->info[cix].rateCode);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Compute the transmit duration based on the frame
|
|
* size and the size of an ACK frame. We call into the
|
|
* HAL to do the computation since it depends on the
|
|
* characteristics of the actual PHY being used.
|
|
*
|
|
* NB: CTS is assumed the same size as an ACK so we can
|
|
* use the precalculated ACK durations.
|
|
*/
|
|
if (shortPreamble) {
|
|
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
|
|
ctsduration += rt->info[cix].spAckDuration;
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, AH_TRUE, AH_TRUE);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
|
|
ctsduration += rt->info[rix].spAckDuration;
|
|
} else {
|
|
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
|
|
ctsduration += rt->info[cix].lpAckDuration;
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, AH_FALSE, AH_TRUE);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
|
|
ctsduration += rt->info[rix].lpAckDuration;
|
|
}
|
|
|
|
return (ctsduration);
|
|
}
|
|
|
|
/*
|
|
* Update the given ath_buf with updated rts/cts setup and duration
|
|
* values.
|
|
*
|
|
* To support rate lookups for each software retry, the rts/cts rate
|
|
* and cts duration must be re-calculated.
|
|
*
|
|
* This function assumes the RTS/CTS flags have been set as needed;
|
|
* mrr has been disabled; and the rate control lookup has been done.
|
|
*
|
|
* XXX TODO: MRR need only be disabled for the pre-11n NICs.
|
|
* XXX The 11n NICs support per-rate RTS/CTS configuration.
|
|
*/
|
|
static void
|
|
ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
uint16_t ctsduration = 0;
|
|
uint8_t ctsrate = 0;
|
|
uint8_t rix = bf->bf_state.bfs_rc[0].rix;
|
|
uint8_t cix = 0;
|
|
const HAL_RATE_TABLE *rt = sc->sc_currates;
|
|
|
|
/*
|
|
* No RTS/CTS enabled? Don't bother.
|
|
*/
|
|
if ((bf->bf_state.bfs_txflags &
|
|
(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
|
|
/* XXX is this really needed? */
|
|
bf->bf_state.bfs_ctsrate = 0;
|
|
bf->bf_state.bfs_ctsduration = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If protection is enabled, use the protection rix control
|
|
* rate. Otherwise use the rate0 control rate.
|
|
*/
|
|
if (bf->bf_state.bfs_doprot)
|
|
rix = sc->sc_protrix;
|
|
else
|
|
rix = bf->bf_state.bfs_rc[0].rix;
|
|
|
|
/*
|
|
* If the raw path has hard-coded ctsrate0 to something,
|
|
* use it.
|
|
*/
|
|
if (bf->bf_state.bfs_ctsrate0 != 0)
|
|
cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
|
|
else
|
|
/* Control rate from above */
|
|
cix = rt->info[rix].controlRate;
|
|
|
|
/* Calculate the rtscts rate for the given cix */
|
|
ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
|
|
bf->bf_state.bfs_shpream);
|
|
|
|
/* The 11n chipsets do ctsduration calculations for you */
|
|
if (! ath_tx_is_11n(sc))
|
|
ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
|
|
bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
|
|
rt, bf->bf_state.bfs_txflags);
|
|
|
|
/* Squirrel away in ath_buf */
|
|
bf->bf_state.bfs_ctsrate = ctsrate;
|
|
bf->bf_state.bfs_ctsduration = ctsduration;
|
|
|
|
/*
|
|
* Must disable multi-rate retry when using RTS/CTS.
|
|
*/
|
|
if (!sc->sc_mrrprot) {
|
|
bf->bf_state.bfs_ismrr = 0;
|
|
bf->bf_state.bfs_try0 =
|
|
bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup the descriptor chain for a normal or fast-frame
|
|
* frame.
|
|
*
|
|
* XXX TODO: extend to include the destination hardware QCU ID.
|
|
* Make sure that is correct. Make sure that when being added
|
|
* to the mcastq, the CABQ QCUID is set or things will get a bit
|
|
* odd.
|
|
*/
|
|
static void
|
|
ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_desc *ds = bf->bf_desc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
if (bf->bf_state.bfs_txrate0 == 0)
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: bf=%p, txrate0=%d\n", __func__, bf, 0);
|
|
|
|
ath_hal_setuptxdesc(ah, ds
|
|
, bf->bf_state.bfs_pktlen /* packet length */
|
|
, bf->bf_state.bfs_hdrlen /* header length */
|
|
, bf->bf_state.bfs_atype /* Atheros packet type */
|
|
, bf->bf_state.bfs_txpower /* txpower */
|
|
, bf->bf_state.bfs_txrate0
|
|
, bf->bf_state.bfs_try0 /* series 0 rate/tries */
|
|
, bf->bf_state.bfs_keyix /* key cache index */
|
|
, bf->bf_state.bfs_txantenna /* antenna mode */
|
|
, bf->bf_state.bfs_txflags /* flags */
|
|
, bf->bf_state.bfs_ctsrate /* rts/cts rate */
|
|
, bf->bf_state.bfs_ctsduration /* rts/cts duration */
|
|
);
|
|
|
|
/*
|
|
* This will be overridden when the descriptor chain is written.
|
|
*/
|
|
bf->bf_lastds = ds;
|
|
bf->bf_last = bf;
|
|
|
|
/* Set rate control and descriptor chain for this frame */
|
|
ath_tx_set_ratectrl(sc, bf->bf_node, bf);
|
|
ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* Do a rate lookup.
|
|
*
|
|
* This performs a rate lookup for the given ath_buf only if it's required.
|
|
* Non-data frames and raw frames don't require it.
|
|
*
|
|
* This populates the primary and MRR entries; MRR values are
|
|
* then disabled later on if something requires it (eg RTS/CTS on
|
|
* pre-11n chipsets.
|
|
*
|
|
* This needs to be done before the RTS/CTS fields are calculated
|
|
* as they may depend upon the rate chosen.
|
|
*/
|
|
static void
|
|
ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf, int tid,
|
|
int pktlen, int is_aggr)
|
|
{
|
|
uint8_t rate, rix;
|
|
int try0;
|
|
int maxdur; // Note: Unused for now
|
|
int maxpktlen;
|
|
|
|
if (! bf->bf_state.bfs_doratelookup)
|
|
return;
|
|
|
|
/* Get rid of any previous state */
|
|
bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
|
|
|
|
ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
|
|
ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
|
|
pktlen, tid, is_aggr, &rix, &try0, &rate, &maxdur, &maxpktlen);
|
|
|
|
/* In case MRR is disabled, make sure rc[0] is setup correctly */
|
|
bf->bf_state.bfs_rc[0].rix = rix;
|
|
bf->bf_state.bfs_rc[0].ratecode = rate;
|
|
bf->bf_state.bfs_rc[0].tries = try0;
|
|
|
|
if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
|
|
ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
|
|
is_aggr, bf->bf_state.bfs_rc);
|
|
ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
|
|
|
|
sc->sc_txrix = rix; /* for LED blinking */
|
|
sc->sc_lastdatarix = rix; /* for fast frames */
|
|
bf->bf_state.bfs_try0 = try0;
|
|
bf->bf_state.bfs_txrate0 = rate;
|
|
bf->bf_state.bfs_rc_maxpktlen = maxpktlen;
|
|
}
|
|
|
|
/*
|
|
* Update the CLRDMASK bit in the ath_buf if it needs to be set.
|
|
*/
|
|
static void
|
|
ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct ath_node *an = ATH_NODE(bf->bf_node);
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
if (an->clrdmask == 1) {
|
|
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
|
|
an->clrdmask = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return whether this frame should be software queued or
|
|
* direct dispatched.
|
|
*
|
|
* When doing powersave, BAR frames should be queued but other management
|
|
* frames should be directly sent.
|
|
*
|
|
* When not doing powersave, stick BAR frames into the hardware queue
|
|
* so it goes out even though the queue is paused.
|
|
*
|
|
* For now, management frames are also software queued by default.
|
|
*/
|
|
static int
|
|
ath_tx_should_swq_frame(struct ath_softc *sc, struct ath_node *an,
|
|
struct mbuf *m0, int *queue_to_head)
|
|
{
|
|
struct ieee80211_node *ni = &an->an_node;
|
|
struct ieee80211_frame *wh;
|
|
uint8_t type, subtype;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
(*queue_to_head) = 0;
|
|
|
|
/* If it's not in powersave - direct-dispatch BAR */
|
|
if ((ATH_NODE(ni)->an_is_powersave == 0)
|
|
&& type == IEEE80211_FC0_TYPE_CTL &&
|
|
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: BAR: TX'ing direct\n", __func__);
|
|
return (0);
|
|
} else if ((ATH_NODE(ni)->an_is_powersave == 1)
|
|
&& type == IEEE80211_FC0_TYPE_CTL &&
|
|
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
|
|
/* BAR TX whilst asleep; queue */
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: swq: TX'ing\n", __func__);
|
|
(*queue_to_head) = 1;
|
|
return (1);
|
|
} else if ((ATH_NODE(ni)->an_is_powersave == 1)
|
|
&& (type == IEEE80211_FC0_TYPE_MGT ||
|
|
type == IEEE80211_FC0_TYPE_CTL)) {
|
|
/*
|
|
* Other control/mgmt frame; bypass software queuing
|
|
* for now!
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: %6D: Node is asleep; sending mgmt "
|
|
"(type=%d, subtype=%d)\n",
|
|
__func__, ni->ni_macaddr, ":", type, subtype);
|
|
return (0);
|
|
} else {
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transmit the given frame to the hardware.
|
|
*
|
|
* The frame must already be setup; rate control must already have
|
|
* been done.
|
|
*
|
|
* XXX since the TXQ lock is being held here (and I dislike holding
|
|
* it for this long when not doing software aggregation), later on
|
|
* break this function into "setup_normal" and "xmit_normal". The
|
|
* lock only needs to be held for the ath_tx_handoff call.
|
|
*
|
|
* XXX we don't update the leak count here - if we're doing
|
|
* direct frame dispatch, we need to be able to do it without
|
|
* decrementing the leak count (eg multicast queue frames.)
|
|
*/
|
|
static void
|
|
ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct ath_node *an = ATH_NODE(bf->bf_node);
|
|
struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* For now, just enable CLRDMASK. ath_tx_xmit_normal() does
|
|
* set a completion handler however it doesn't (yet) properly
|
|
* handle the strict ordering requirements needed for normal,
|
|
* non-aggregate session frames.
|
|
*
|
|
* Once this is implemented, only set CLRDMASK like this for
|
|
* frames that must go out - eg management/raw frames.
|
|
*/
|
|
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
|
|
|
|
/* Setup the descriptor before handoff */
|
|
ath_tx_do_ratelookup(sc, bf, tid->tid, bf->bf_state.bfs_pktlen, false);
|
|
ath_tx_calc_duration(sc, bf);
|
|
ath_tx_calc_protection(sc, bf);
|
|
ath_tx_set_rtscts(sc, bf);
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
ath_tx_setds(sc, bf);
|
|
|
|
/* Track per-TID hardware queue depth correctly */
|
|
tid->hwq_depth++;
|
|
|
|
/* Assign the completion handler */
|
|
bf->bf_comp = ath_tx_normal_comp;
|
|
|
|
/* Hand off to hardware */
|
|
ath_tx_handoff(sc, txq, bf);
|
|
}
|
|
|
|
/*
|
|
* Do the basic frame setup stuff that's required before the frame
|
|
* is added to a software queue.
|
|
*
|
|
* All frames get mostly the same treatment and it's done once.
|
|
* Retransmits fiddle with things like the rate control setup,
|
|
* setting the retransmit bit in the packet; doing relevant DMA/bus
|
|
* syncing and relinking it (back) into the hardware TX queue.
|
|
*
|
|
* Note that this may cause the mbuf to be reallocated, so
|
|
* m0 may not be valid.
|
|
*/
|
|
static int
|
|
ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int error, iswep, ismcast, isfrag, ismrr;
|
|
int keyix, hdrlen, pktlen, try0 = 0;
|
|
u_int8_t rix = 0, txrate = 0;
|
|
struct ath_desc *ds;
|
|
struct ieee80211_frame *wh;
|
|
u_int subtype, flags;
|
|
HAL_PKT_TYPE atype;
|
|
const HAL_RATE_TABLE *rt;
|
|
HAL_BOOL shortPreamble;
|
|
struct ath_node *an;
|
|
|
|
/* XXX TODO: this pri is only used for non-QoS check, right? */
|
|
u_int pri;
|
|
|
|
/*
|
|
* To ensure that both sequence numbers and the CCMP PN handling
|
|
* is "correct", make sure that the relevant TID queue is locked.
|
|
* Otherwise the CCMP PN and seqno may appear out of order, causing
|
|
* re-ordered frames to have out of order CCMP PN's, resulting
|
|
* in many, many frame drops.
|
|
*/
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
|
|
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
|
|
isfrag = m0->m_flags & M_FRAG;
|
|
hdrlen = ieee80211_anyhdrsize(wh);
|
|
/*
|
|
* Packet length must not include any
|
|
* pad bytes; deduct them here.
|
|
*/
|
|
pktlen = m0->m_pkthdr.len - (hdrlen & 3);
|
|
|
|
/* Handle encryption twiddling if needed */
|
|
if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
|
|
&pktlen, &keyix)) {
|
|
ieee80211_free_mbuf(m0);
|
|
return EIO;
|
|
}
|
|
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
pktlen += IEEE80211_CRC_LEN;
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This
|
|
* also calculates the number of descriptors we need.
|
|
*/
|
|
error = ath_tx_dmasetup(sc, bf, m0);
|
|
if (error != 0)
|
|
return error;
|
|
KASSERT((ni != NULL), ("%s: ni=NULL!", __func__));
|
|
bf->bf_node = ni; /* NB: held reference */
|
|
m0 = bf->bf_m; /* NB: may have changed */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
|
|
/*
|
|
* NB: the 802.11 layer marks whether or not we should
|
|
* use short preamble based on the current mode and
|
|
* negotiated parameters.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
|
|
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
|
|
shortPreamble = AH_TRUE;
|
|
sc->sc_stats.ast_tx_shortpre++;
|
|
} else {
|
|
shortPreamble = AH_FALSE;
|
|
}
|
|
|
|
an = ATH_NODE(ni);
|
|
//flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
|
|
flags = 0;
|
|
ismrr = 0; /* default no multi-rate retry*/
|
|
|
|
pri = ath_tx_getac(sc, m0); /* honor classification */
|
|
/* XXX use txparams instead of fixed values */
|
|
/*
|
|
* Calculate Atheros packet type from IEEE80211 packet header,
|
|
* setup for rate calculations, and select h/w transmit queue.
|
|
*/
|
|
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
|
|
case IEEE80211_FC0_TYPE_MGT:
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
|
|
atype = HAL_PKT_TYPE_BEACON;
|
|
else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
atype = HAL_PKT_TYPE_PROBE_RESP;
|
|
else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
|
|
atype = HAL_PKT_TYPE_ATIM;
|
|
else
|
|
atype = HAL_PKT_TYPE_NORMAL; /* XXX */
|
|
rix = an->an_mgmtrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMGTTRY;
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
break;
|
|
case IEEE80211_FC0_TYPE_CTL:
|
|
atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
|
|
rix = an->an_mgmtrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMGTTRY;
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
break;
|
|
case IEEE80211_FC0_TYPE_DATA:
|
|
atype = HAL_PKT_TYPE_NORMAL; /* default */
|
|
/*
|
|
* Data frames: multicast frames go out at a fixed rate,
|
|
* EAPOL frames use the mgmt frame rate; otherwise consult
|
|
* the rate control module for the rate to use.
|
|
*/
|
|
if (ismcast) {
|
|
rix = an->an_mcastrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = 1;
|
|
} else if (m0->m_flags & M_EAPOL) {
|
|
/* XXX? maybe always use long preamble? */
|
|
rix = an->an_mgmtrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMAXTRY; /* XXX?too many? */
|
|
} else {
|
|
/*
|
|
* Do rate lookup on each TX, rather than using
|
|
* the hard-coded TX information decided here.
|
|
*/
|
|
ismrr = 1;
|
|
bf->bf_state.bfs_doratelookup = 1;
|
|
}
|
|
|
|
/*
|
|
* Check whether to set NOACK for this WME category or not.
|
|
*/
|
|
if (ieee80211_wme_vap_ac_is_noack(vap, pri))
|
|
flags |= HAL_TXDESC_NOACK;
|
|
break;
|
|
default:
|
|
device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n",
|
|
wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
|
|
/* XXX statistic */
|
|
/* XXX free tx dmamap */
|
|
ieee80211_free_mbuf(m0);
|
|
return EIO;
|
|
}
|
|
|
|
/*
|
|
* There are two known scenarios where the frame AC doesn't match
|
|
* what the destination TXQ is.
|
|
*
|
|
* + non-QoS frames (eg management?) that the net80211 stack has
|
|
* assigned a higher AC to, but since it's a non-QoS TID, it's
|
|
* being thrown into TID 16. TID 16 gets the AC_BE queue.
|
|
* It's quite possible that management frames should just be
|
|
* direct dispatched to hardware rather than go via the software
|
|
* queue; that should be investigated in the future. There are
|
|
* some specific scenarios where this doesn't make sense, mostly
|
|
* surrounding ADDBA request/response - hence why that is special
|
|
* cased.
|
|
*
|
|
* + Multicast frames going into the VAP mcast queue. That shows up
|
|
* as "TXQ 11".
|
|
*
|
|
* This driver should eventually support separate TID and TXQ locking,
|
|
* allowing for arbitrary AC frames to appear on arbitrary software
|
|
* queues, being queued to the "correct" hardware queue when needed.
|
|
*/
|
|
#if 0
|
|
if (txq != sc->sc_ac2q[pri]) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n",
|
|
__func__,
|
|
txq,
|
|
txq->axq_qnum,
|
|
pri,
|
|
sc->sc_ac2q[pri],
|
|
sc->sc_ac2q[pri]->axq_qnum);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Calculate miscellaneous flags.
|
|
*/
|
|
if (ismcast) {
|
|
flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
|
|
} else if (pktlen > vap->iv_rtsthreshold &&
|
|
(ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
|
|
flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
|
|
sc->sc_stats.ast_tx_rts++;
|
|
}
|
|
if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
|
|
sc->sc_stats.ast_tx_noack++;
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
|
|
DPRINTF(sc, ATH_DEBUG_TDMA,
|
|
"%s: discard frame, ACK required w/ TDMA\n", __func__);
|
|
sc->sc_stats.ast_tdma_ack++;
|
|
/* XXX free tx dmamap */
|
|
ieee80211_free_mbuf(m0);
|
|
return EIO;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If it's a frame to do location reporting on,
|
|
* communicate it to the HAL.
|
|
*/
|
|
if (ieee80211_get_toa_params(m0, NULL)) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: setting TX positioning bit\n", __func__);
|
|
flags |= HAL_TXDESC_POS;
|
|
|
|
/*
|
|
* Note: The hardware reports timestamps for
|
|
* each of the RX'ed packets as part of the packet
|
|
* exchange. So this means things like RTS/CTS
|
|
* exchanges, as well as the final ACK.
|
|
*
|
|
* So, if you send a RTS-protected NULL data frame,
|
|
* you'll get an RX report for the RTS response, then
|
|
* an RX report for the NULL frame, and then the TX
|
|
* completion at the end.
|
|
*
|
|
* NOTE: it doesn't work right for CCK frames;
|
|
* there's no channel info data provided unless
|
|
* it's OFDM or HT. Will have to dig into it.
|
|
*/
|
|
flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
|
|
bf->bf_flags |= ATH_BUF_TOA_PROBE;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Placeholder: if you want to transmit with the azimuth
|
|
* timestamp in the end of the payload, here's where you
|
|
* should set the TXDESC field.
|
|
*/
|
|
flags |= HAL_TXDESC_HWTS;
|
|
#endif
|
|
|
|
/*
|
|
* Determine if a tx interrupt should be generated for
|
|
* this descriptor. We take a tx interrupt to reap
|
|
* descriptors when the h/w hits an EOL condition or
|
|
* when the descriptor is specifically marked to generate
|
|
* an interrupt. We periodically mark descriptors in this
|
|
* way to insure timely replenishing of the supply needed
|
|
* for sending frames. Defering interrupts reduces system
|
|
* load and potentially allows more concurrent work to be
|
|
* done but if done to aggressively can cause senders to
|
|
* backup.
|
|
*
|
|
* NB: use >= to deal with sc_txintrperiod changing
|
|
* dynamically through sysctl.
|
|
*/
|
|
if (flags & HAL_TXDESC_INTREQ) {
|
|
txq->axq_intrcnt = 0;
|
|
} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
|
|
flags |= HAL_TXDESC_INTREQ;
|
|
txq->axq_intrcnt = 0;
|
|
}
|
|
|
|
/* This point forward is actual TX bits */
|
|
|
|
/*
|
|
* At this point we are committed to sending the frame
|
|
* and we don't need to look at m_nextpkt; clear it in
|
|
* case this frame is part of frag chain.
|
|
*/
|
|
m0->m_nextpkt = NULL;
|
|
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
|
|
ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
|
|
sc->sc_hwmap[rix].ieeerate, -1);
|
|
|
|
if (ieee80211_radiotap_active_vap(vap)) {
|
|
sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
|
|
if (iswep)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
if (isfrag)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
|
|
sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
|
|
sc->sc_tx_th.wt_txpower = ieee80211_get_node_txpower(ni);
|
|
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
|
|
|
|
ieee80211_radiotap_tx(vap, m0);
|
|
}
|
|
|
|
/* Blank the legacy rate array */
|
|
bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
|
|
|
|
/*
|
|
* ath_buf_set_rate needs at least one rate/try to setup
|
|
* the rate scenario.
|
|
*/
|
|
bf->bf_state.bfs_rc[0].rix = rix;
|
|
bf->bf_state.bfs_rc[0].tries = try0;
|
|
bf->bf_state.bfs_rc[0].ratecode = txrate;
|
|
|
|
/* Store the decided rate index values away */
|
|
bf->bf_state.bfs_pktlen = pktlen;
|
|
bf->bf_state.bfs_hdrlen = hdrlen;
|
|
bf->bf_state.bfs_atype = atype;
|
|
bf->bf_state.bfs_txpower = ieee80211_get_node_txpower(ni);
|
|
bf->bf_state.bfs_txrate0 = txrate;
|
|
bf->bf_state.bfs_try0 = try0;
|
|
bf->bf_state.bfs_keyix = keyix;
|
|
bf->bf_state.bfs_txantenna = sc->sc_txantenna;
|
|
bf->bf_state.bfs_txflags = flags;
|
|
bf->bf_state.bfs_shpream = shortPreamble;
|
|
|
|
/* XXX this should be done in ath_tx_setrate() */
|
|
bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */
|
|
bf->bf_state.bfs_ctsrate = 0; /* calculated later */
|
|
bf->bf_state.bfs_ctsduration = 0;
|
|
bf->bf_state.bfs_ismrr = ismrr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Queue a frame to the hardware or software queue.
|
|
*
|
|
* This can be called by the net80211 code.
|
|
*
|
|
* XXX what about locking? Or, push the seqno assign into the
|
|
* XXX aggregate scheduler so its serialised?
|
|
*
|
|
* XXX When sending management frames via ath_raw_xmit(),
|
|
* should CLRDMASK be set unconditionally?
|
|
*/
|
|
int
|
|
ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf, struct mbuf *m0)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
int r = 0;
|
|
u_int pri;
|
|
int tid;
|
|
struct ath_txq *txq;
|
|
int ismcast;
|
|
const struct ieee80211_frame *wh;
|
|
int is_ampdu, is_ampdu_tx, is_ampdu_pending;
|
|
ieee80211_seq seqno;
|
|
uint8_t type, subtype;
|
|
int queue_to_head;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Determine the target hardware queue.
|
|
*
|
|
* For multicast frames, the txq gets overridden appropriately
|
|
* depending upon the state of PS. If powersave is enabled
|
|
* then they get added to the cabq for later transmit.
|
|
*
|
|
* The "fun" issue here is that group addressed frames should
|
|
* have the sequence number from a different pool, rather than
|
|
* the per-TID pool. That means that even QoS group addressed
|
|
* frames will have a sequence number from that global value,
|
|
* which means if we transmit different group addressed frames
|
|
* at different traffic priorities, the sequence numbers will
|
|
* all be out of whack. So - chances are, the right thing
|
|
* to do here is to always put group addressed frames into the BE
|
|
* queue, and ignore the TID for queue selection.
|
|
*
|
|
* For any other frame, we do a TID/QoS lookup inside the frame
|
|
* to see what the TID should be. If it's a non-QoS frame, the
|
|
* AC and TID are overridden. The TID/TXQ code assumes the
|
|
* TID is on a predictable hardware TXQ, so we don't support
|
|
* having a node TID queued to multiple hardware TXQs.
|
|
* This may change in the future but would require some locking
|
|
* fudgery.
|
|
*/
|
|
pri = ath_tx_getac(sc, m0);
|
|
tid = ath_tx_gettid(sc, m0);
|
|
|
|
txq = sc->sc_ac2q[pri];
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
/*
|
|
* Enforce how deep the multicast queue can grow.
|
|
*
|
|
* XXX duplicated in ath_raw_xmit().
|
|
*/
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
|
|
> sc->sc_txq_mcastq_maxdepth) {
|
|
sc->sc_stats.ast_tx_mcastq_overflow++;
|
|
m_freem(m0);
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enforce how deep the unicast queue can grow.
|
|
*
|
|
* If the node is in power save then we don't want
|
|
* the software queue to grow too deep, or a node may
|
|
* end up consuming all of the ath_buf entries.
|
|
*
|
|
* For now, only do this for DATA frames.
|
|
*
|
|
* We will want to cap how many management/control
|
|
* frames get punted to the software queue so it doesn't
|
|
* fill up. But the correct solution isn't yet obvious.
|
|
* In any case, this check should at least let frames pass
|
|
* that we are direct-dispatching.
|
|
*
|
|
* XXX TODO: duplicate this to the raw xmit path!
|
|
*/
|
|
if (type == IEEE80211_FC0_TYPE_DATA &&
|
|
ATH_NODE(ni)->an_is_powersave &&
|
|
ATH_NODE(ni)->an_swq_depth >
|
|
sc->sc_txq_node_psq_maxdepth) {
|
|
sc->sc_stats.ast_tx_node_psq_overflow++;
|
|
m_freem(m0);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/* A-MPDU TX */
|
|
is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
|
|
is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
|
|
is_ampdu = is_ampdu_tx | is_ampdu_pending;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
|
|
__func__, tid, pri, is_ampdu);
|
|
|
|
/* Set local packet state, used to queue packets to hardware */
|
|
bf->bf_state.bfs_tid = tid;
|
|
bf->bf_state.bfs_tx_queue = txq->axq_qnum;
|
|
bf->bf_state.bfs_pri = pri;
|
|
|
|
#if 1
|
|
/*
|
|
* When servicing one or more stations in power-save mode
|
|
* (or) if there is some mcast data waiting on the mcast
|
|
* queue (to prevent out of order delivery) multicast frames
|
|
* must be bufferd until after the beacon.
|
|
*
|
|
* TODO: we should lock the mcastq before we check the length.
|
|
*/
|
|
if (sc->sc_cabq_enable && ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) {
|
|
txq = &avp->av_mcastq;
|
|
/*
|
|
* Mark the frame as eventually belonging on the CAB
|
|
* queue, so the descriptor setup functions will
|
|
* correctly initialise the descriptor 'qcuId' field.
|
|
*/
|
|
bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum;
|
|
}
|
|
#endif
|
|
|
|
/* Do the generic frame setup */
|
|
/* XXX should just bzero the bf_state? */
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
|
|
/* A-MPDU TX? Manually set sequence number */
|
|
/*
|
|
* Don't do it whilst pending; the net80211 layer still
|
|
* assigns them.
|
|
*
|
|
* Don't assign A-MPDU sequence numbers to group address
|
|
* frames; they come from a different sequence number space.
|
|
*/
|
|
if (is_ampdu_tx && (! IEEE80211_IS_MULTICAST(wh->i_addr1))) {
|
|
/*
|
|
* Always call; this function will
|
|
* handle making sure that null data frames
|
|
* and group-addressed frames don't get a sequence number
|
|
* from the current TID and thus mess with the BAW.
|
|
*/
|
|
seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
|
|
|
|
/*
|
|
* Don't add QoS NULL frames and group-addressed frames
|
|
* to the BAW.
|
|
*/
|
|
if (IEEE80211_QOS_HAS_SEQ(wh) &&
|
|
(! IEEE80211_IS_MULTICAST(wh->i_addr1)) &&
|
|
(subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL)) {
|
|
bf->bf_state.bfs_dobaw = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If needed, the sequence number has been assigned.
|
|
* Squirrel it away somewhere easy to get to.
|
|
*/
|
|
bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
|
|
|
|
/* Is ampdu pending? fetch the seqno and print it out */
|
|
if (is_ampdu_pending)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: tid %d: ampdu pending, seqno %d\n",
|
|
__func__, tid, M_SEQNO_GET(m0));
|
|
|
|
/* This also sets up the DMA map; crypto; frame parameters, etc */
|
|
r = ath_tx_normal_setup(sc, ni, bf, m0, txq);
|
|
|
|
if (r != 0)
|
|
goto done;
|
|
|
|
/* At this point m0 could have changed! */
|
|
m0 = bf->bf_m;
|
|
|
|
#if 1
|
|
/*
|
|
* If it's a multicast frame, do a direct-dispatch to the
|
|
* destination hardware queue. Don't bother software
|
|
* queuing it.
|
|
*/
|
|
/*
|
|
* If it's a BAR frame, do a direct dispatch to the
|
|
* destination hardware queue. Don't bother software
|
|
* queuing it, as the TID will now be paused.
|
|
* Sending a BAR frame can occur from the net80211 txa timer
|
|
* (ie, retries) or from the ath txtask (completion call.)
|
|
* It queues directly to hardware because the TID is paused
|
|
* at this point (and won't be unpaused until the BAR has
|
|
* either been TXed successfully or max retries has been
|
|
* reached.)
|
|
*/
|
|
/*
|
|
* Until things are better debugged - if this node is asleep
|
|
* and we're sending it a non-BAR frame, direct dispatch it.
|
|
* Why? Because we need to figure out what's actually being
|
|
* sent - eg, during reassociation/reauthentication after
|
|
* the node (last) disappeared whilst asleep, the driver should
|
|
* have unpaused/unsleep'ed the node. So until that is
|
|
* sorted out, use this workaround.
|
|
*/
|
|
if (txq == &avp->av_mcastq) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: bf=%p: mcastq: TX'ing\n", __func__, bf);
|
|
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
|
|
ath_tx_xmit_normal(sc, txq, bf);
|
|
} else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0,
|
|
&queue_to_head)) {
|
|
ath_tx_swq(sc, ni, txq, queue_to_head, bf);
|
|
} else {
|
|
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
|
|
ath_tx_xmit_normal(sc, txq, bf);
|
|
}
|
|
#else
|
|
/*
|
|
* For now, since there's no software queue,
|
|
* direct-dispatch to the hardware.
|
|
*/
|
|
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
|
|
/*
|
|
* Update the current leak count if
|
|
* we're leaking frames; and set the
|
|
* MORE flag as appropriate.
|
|
*/
|
|
ath_tx_leak_count_update(sc, tid, bf);
|
|
ath_tx_xmit_normal(sc, txq, bf);
|
|
#endif
|
|
done:
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf, struct mbuf *m0,
|
|
const struct ieee80211_bpf_params *params)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
int error, ismcast, ismrr;
|
|
int keyix, hdrlen, pktlen, try0, txantenna;
|
|
u_int8_t rix, txrate;
|
|
struct ieee80211_frame *wh;
|
|
u_int flags;
|
|
HAL_PKT_TYPE atype;
|
|
const HAL_RATE_TABLE *rt;
|
|
struct ath_desc *ds;
|
|
u_int pri;
|
|
int o_tid = -1;
|
|
int do_override;
|
|
uint8_t type, subtype;
|
|
int queue_to_head;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
|
|
hdrlen = ieee80211_anyhdrsize(wh);
|
|
/*
|
|
* Packet length must not include any
|
|
* pad bytes; deduct them here.
|
|
*/
|
|
/* XXX honor IEEE80211_BPF_DATAPAD */
|
|
pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
|
|
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
ATH_KTR(sc, ATH_KTR_TX, 2,
|
|
"ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
|
|
__func__, ismcast);
|
|
|
|
pri = params->ibp_pri & 3;
|
|
/* Override pri if the frame isn't a QoS one */
|
|
if (! IEEE80211_QOS_HAS_SEQ(wh))
|
|
pri = ath_tx_getac(sc, m0);
|
|
|
|
/* XXX If it's an ADDBA, override the correct queue */
|
|
do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
|
|
|
|
/* Map ADDBA to the correct priority */
|
|
if (do_override) {
|
|
#if 1
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: overriding tid %d pri %d -> %d\n",
|
|
__func__, o_tid, pri, TID_TO_WME_AC(o_tid));
|
|
#endif
|
|
pri = TID_TO_WME_AC(o_tid);
|
|
}
|
|
|
|
/*
|
|
* "pri" is the hardware queue to transmit on.
|
|
*
|
|
* Look at the description in ath_tx_start() to understand
|
|
* what needs to be "fixed" here so we just use the TID
|
|
* for QoS frames.
|
|
*/
|
|
|
|
/* Handle encryption twiddling if needed */
|
|
if (! ath_tx_tag_crypto(sc, ni,
|
|
m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
|
|
&hdrlen, &pktlen, &keyix)) {
|
|
ieee80211_free_mbuf(m0);
|
|
return EIO;
|
|
}
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
/* Do the generic frame setup */
|
|
/* XXX should just bzero the bf_state? */
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
|
|
error = ath_tx_dmasetup(sc, bf, m0);
|
|
if (error != 0)
|
|
return error;
|
|
m0 = bf->bf_m; /* NB: may have changed */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
KASSERT((ni != NULL), ("%s: ni=NULL!", __func__));
|
|
bf->bf_node = ni; /* NB: held reference */
|
|
|
|
/* Always enable CLRDMASK for raw frames for now.. */
|
|
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
if (params->ibp_flags & IEEE80211_BPF_RTS)
|
|
flags |= HAL_TXDESC_RTSENA;
|
|
else if (params->ibp_flags & IEEE80211_BPF_CTS) {
|
|
/* XXX assume 11g/11n protection? */
|
|
bf->bf_state.bfs_doprot = 1;
|
|
flags |= HAL_TXDESC_CTSENA;
|
|
}
|
|
/* XXX leave ismcast to injector? */
|
|
if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
|
|
flags |= HAL_TXDESC_NOACK;
|
|
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
|
|
/* Fetch first rate information */
|
|
rix = ath_tx_findrix(sc, params->ibp_rate0);
|
|
try0 = params->ibp_try0;
|
|
|
|
/*
|
|
* Override EAPOL rate as appropriate.
|
|
*/
|
|
if (m0->m_flags & M_EAPOL) {
|
|
/* XXX? maybe always use long preamble? */
|
|
rix = an->an_mgmtrix;
|
|
try0 = ATH_TXMAXTRY; /* XXX?too many? */
|
|
}
|
|
|
|
/*
|
|
* If it's a frame to do location reporting on,
|
|
* communicate it to the HAL.
|
|
*/
|
|
if (ieee80211_get_toa_params(m0, NULL)) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: setting TX positioning bit\n", __func__);
|
|
flags |= HAL_TXDESC_POS;
|
|
flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
|
|
bf->bf_flags |= ATH_BUF_TOA_PROBE;
|
|
}
|
|
|
|
txrate = rt->info[rix].rateCode;
|
|
if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
sc->sc_txrix = rix;
|
|
ismrr = (params->ibp_try1 != 0);
|
|
txantenna = params->ibp_pri >> 2;
|
|
if (txantenna == 0) /* XXX? */
|
|
txantenna = sc->sc_txantenna;
|
|
|
|
/*
|
|
* Since ctsrate is fixed, store it away for later
|
|
* use when the descriptor fields are being set.
|
|
*/
|
|
if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
|
|
bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
|
|
|
|
/*
|
|
* NB: we mark all packets as type PSPOLL so the h/w won't
|
|
* set the sequence number, duration, etc.
|
|
*/
|
|
atype = HAL_PKT_TYPE_PSPOLL;
|
|
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
|
|
ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
|
|
sc->sc_hwmap[rix].ieeerate, -1);
|
|
|
|
if (ieee80211_radiotap_active_vap(vap)) {
|
|
sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
|
|
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
if (m0->m_flags & M_FRAG)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
|
|
sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
|
|
sc->sc_tx_th.wt_txpower = MIN(params->ibp_power,
|
|
ieee80211_get_node_txpower(ni));
|
|
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
|
|
|
|
ieee80211_radiotap_tx(vap, m0);
|
|
}
|
|
|
|
/*
|
|
* Formulate first tx descriptor with tx controls.
|
|
*/
|
|
ds = bf->bf_desc;
|
|
/* XXX check return value? */
|
|
|
|
/* Store the decided rate index values away */
|
|
bf->bf_state.bfs_pktlen = pktlen;
|
|
bf->bf_state.bfs_hdrlen = hdrlen;
|
|
bf->bf_state.bfs_atype = atype;
|
|
bf->bf_state.bfs_txpower = MIN(params->ibp_power,
|
|
ieee80211_get_node_txpower(ni));
|
|
bf->bf_state.bfs_txrate0 = txrate;
|
|
bf->bf_state.bfs_try0 = try0;
|
|
bf->bf_state.bfs_keyix = keyix;
|
|
bf->bf_state.bfs_txantenna = txantenna;
|
|
bf->bf_state.bfs_txflags = flags;
|
|
bf->bf_state.bfs_shpream =
|
|
!! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
|
|
|
|
/* Set local packet state, used to queue packets to hardware */
|
|
bf->bf_state.bfs_tid = WME_AC_TO_TID(pri);
|
|
bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum;
|
|
bf->bf_state.bfs_pri = pri;
|
|
|
|
/* XXX this should be done in ath_tx_setrate() */
|
|
bf->bf_state.bfs_ctsrate = 0;
|
|
bf->bf_state.bfs_ctsduration = 0;
|
|
bf->bf_state.bfs_ismrr = ismrr;
|
|
|
|
/* Blank the legacy rate array */
|
|
bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
|
|
|
|
bf->bf_state.bfs_rc[0].rix = rix;
|
|
bf->bf_state.bfs_rc[0].tries = try0;
|
|
bf->bf_state.bfs_rc[0].ratecode = txrate;
|
|
|
|
if (ismrr) {
|
|
int rix;
|
|
|
|
rix = ath_tx_findrix(sc, params->ibp_rate1);
|
|
bf->bf_state.bfs_rc[1].rix = rix;
|
|
bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
|
|
|
|
rix = ath_tx_findrix(sc, params->ibp_rate2);
|
|
bf->bf_state.bfs_rc[2].rix = rix;
|
|
bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
|
|
|
|
rix = ath_tx_findrix(sc, params->ibp_rate3);
|
|
bf->bf_state.bfs_rc[3].rix = rix;
|
|
bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
|
|
}
|
|
/*
|
|
* All the required rate control decisions have been made;
|
|
* fill in the rc flags.
|
|
*/
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
|
|
/* NB: no buffered multicast in power save support */
|
|
|
|
/*
|
|
* If we're overiding the ADDBA destination, dump directly
|
|
* into the hardware queue, right after any pending
|
|
* frames to that node are.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
|
|
__func__, do_override);
|
|
|
|
#if 1
|
|
/*
|
|
* Put addba frames in the right place in the right TID/HWQ.
|
|
*/
|
|
if (do_override) {
|
|
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
|
|
/*
|
|
* XXX if it's addba frames, should we be leaking
|
|
* them out via the frame leak method?
|
|
* XXX for now let's not risk it; but we may wish
|
|
* to investigate this later.
|
|
*/
|
|
ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
|
|
} else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0,
|
|
&queue_to_head)) {
|
|
/* Queue to software queue */
|
|
ath_tx_swq(sc, ni, sc->sc_ac2q[pri], queue_to_head, bf);
|
|
} else {
|
|
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
|
|
ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
|
|
}
|
|
#else
|
|
/* Direct-dispatch to the hardware */
|
|
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
|
|
/*
|
|
* Update the current leak count if
|
|
* we're leaking frames; and set the
|
|
* MORE flag as appropriate.
|
|
*/
|
|
ath_tx_leak_count_update(sc, tid, bf);
|
|
ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Send a raw frame.
|
|
*
|
|
* This can be called by net80211.
|
|
*/
|
|
int
|
|
ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
|
|
const struct ieee80211_bpf_params *params)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_softc;
|
|
struct ath_buf *bf;
|
|
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
|
|
int error = 0;
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
if (sc->sc_inreset_cnt > 0) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: sc_inreset_cnt > 0; bailing\n", __func__);
|
|
error = EIO;
|
|
ATH_PCU_UNLOCK(sc);
|
|
goto badbad;
|
|
}
|
|
sc->sc_txstart_cnt++;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
/* Wake the hardware up already */
|
|
ATH_LOCK(sc);
|
|
ath_power_set_power_state(sc, HAL_PM_AWAKE);
|
|
ATH_UNLOCK(sc);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
|
|
if (!sc->sc_running || sc->sc_invalid) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, r/i: %d/%d",
|
|
__func__, sc->sc_running, sc->sc_invalid);
|
|
m_freem(m);
|
|
error = ENETDOWN;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Enforce how deep the multicast queue can grow.
|
|
*
|
|
* XXX duplicated in ath_tx_start().
|
|
*/
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
|
|
> sc->sc_txq_mcastq_maxdepth) {
|
|
sc->sc_stats.ast_tx_mcastq_overflow++;
|
|
error = ENOBUFS;
|
|
}
|
|
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Grab a TX buffer and associated resources.
|
|
*/
|
|
bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
|
|
if (bf == NULL) {
|
|
sc->sc_stats.ast_tx_nobuf++;
|
|
m_freem(m);
|
|
error = ENOBUFS;
|
|
goto bad;
|
|
}
|
|
ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n",
|
|
m, params, bf);
|
|
|
|
if (params == NULL) {
|
|
/*
|
|
* Legacy path; interpret frame contents to decide
|
|
* precisely how to send the frame.
|
|
*/
|
|
if (ath_tx_start(sc, ni, bf, m)) {
|
|
error = EIO; /* XXX */
|
|
goto bad2;
|
|
}
|
|
} else {
|
|
/*
|
|
* Caller supplied explicit parameters to use in
|
|
* sending the frame.
|
|
*/
|
|
if (ath_tx_raw_start(sc, ni, bf, m, params)) {
|
|
error = EIO; /* XXX */
|
|
goto bad2;
|
|
}
|
|
}
|
|
sc->sc_wd_timer = 5;
|
|
sc->sc_stats.ast_tx_raw++;
|
|
|
|
/*
|
|
* Update the TIM - if there's anything queued to the
|
|
* software queue and power save is enabled, we should
|
|
* set the TIM.
|
|
*/
|
|
ath_tx_update_tim(sc, ni, 1);
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txstart_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
/* Put the hardware back to sleep if required */
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
return 0;
|
|
|
|
bad2:
|
|
ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, "
|
|
"bf=%p",
|
|
m,
|
|
params,
|
|
bf);
|
|
ATH_TXBUF_LOCK(sc);
|
|
ath_returnbuf_head(sc, bf);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
|
|
bad:
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
ATH_PCU_LOCK(sc);
|
|
sc->sc_txstart_cnt--;
|
|
ATH_PCU_UNLOCK(sc);
|
|
|
|
/* Put the hardware back to sleep if required */
|
|
ATH_LOCK(sc);
|
|
ath_power_restore_power_state(sc);
|
|
ATH_UNLOCK(sc);
|
|
|
|
badbad:
|
|
ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p",
|
|
m, params);
|
|
sc->sc_stats.ast_tx_raw_fail++;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Some helper functions */
|
|
|
|
/*
|
|
* ADDBA (and potentially others) need to be placed in the same
|
|
* hardware queue as the TID/node it's relating to. This is so
|
|
* it goes out after any pending non-aggregate frames to the
|
|
* same node/TID.
|
|
*
|
|
* If this isn't done, the ADDBA can go out before the frames
|
|
* queued in hardware. Even though these frames have a sequence
|
|
* number -earlier- than the ADDBA can be transmitted (but
|
|
* no frames whose sequence numbers are after the ADDBA should
|
|
* be!) they'll arrive after the ADDBA - and the receiving end
|
|
* will simply drop them as being out of the BAW.
|
|
*
|
|
* The frames can't be appended to the TID software queue - it'll
|
|
* never be sent out. So these frames have to be directly
|
|
* dispatched to the hardware, rather than queued in software.
|
|
* So if this function returns true, the TXQ has to be
|
|
* overridden and it has to be directly dispatched.
|
|
*
|
|
* It's a dirty hack, but someone's gotta do it.
|
|
*/
|
|
|
|
/*
|
|
* XXX doesn't belong here!
|
|
*/
|
|
static int
|
|
ieee80211_is_action(struct ieee80211_frame *wh)
|
|
{
|
|
/* Type: Management frame? */
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
|
|
IEEE80211_FC0_TYPE_MGT)
|
|
return 0;
|
|
|
|
/* Subtype: Action frame? */
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
|
|
IEEE80211_FC0_SUBTYPE_ACTION)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Return an alternate TID for ADDBA request frames.
|
|
*
|
|
* Yes, this likely should be done in the net80211 layer.
|
|
*/
|
|
static int
|
|
ath_tx_action_frame_override_queue(struct ath_softc *sc,
|
|
struct ieee80211_node *ni,
|
|
struct mbuf *m0, int *tid)
|
|
{
|
|
struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
|
|
struct ieee80211_action_ba_addbarequest *ia;
|
|
uint8_t *frm;
|
|
uint16_t baparamset;
|
|
|
|
/* Not action frame? Bail */
|
|
if (! ieee80211_is_action(wh))
|
|
return 0;
|
|
|
|
/* XXX Not needed for frames we send? */
|
|
#if 0
|
|
/* Correct length? */
|
|
if (! ieee80211_parse_action(ni, m))
|
|
return 0;
|
|
#endif
|
|
|
|
/* Extract out action frame */
|
|
frm = (u_int8_t *)&wh[1];
|
|
ia = (struct ieee80211_action_ba_addbarequest *) frm;
|
|
|
|
/* Not ADDBA? Bail */
|
|
if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
|
|
return 0;
|
|
if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
|
|
return 0;
|
|
|
|
/* Extract TID, return it */
|
|
baparamset = le16toh(ia->rq_baparamset);
|
|
*tid = (int) _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Per-node software queue operations */
|
|
|
|
/*
|
|
* Add the current packet to the given BAW.
|
|
* It is assumed that the current packet
|
|
*
|
|
* + fits inside the BAW;
|
|
* + already has had a sequence number allocated.
|
|
*
|
|
* Since the BAW status may be modified by both the ath task and
|
|
* the net80211/ifnet contexts, the TID must be locked.
|
|
*/
|
|
void
|
|
ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, struct ath_buf *bf)
|
|
{
|
|
int index, cindex;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
if (bf->bf_state.bfs_isretried)
|
|
return;
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
|
|
if (! bf->bf_state.bfs_dobaw) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: dobaw=0, seqno=%d, window %d:%d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno),
|
|
tap->txa_start, tap->txa_wnd);
|
|
}
|
|
|
|
if (bf->bf_state.bfs_addedbaw)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: re-added? tid=%d, seqno %d; window %d:%d; "
|
|
"baw head=%d tail=%d\n",
|
|
__func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
|
|
tap->txa_start, tap->txa_wnd, tid->baw_head,
|
|
tid->baw_tail);
|
|
|
|
/*
|
|
* Verify that the given sequence number is not outside of the
|
|
* BAW. Complain loudly if that's the case.
|
|
*/
|
|
if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
|
|
SEQNO(bf->bf_state.bfs_seqno))) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; "
|
|
"baw head=%d tail=%d\n",
|
|
__func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
|
|
tap->txa_start, tap->txa_wnd, tid->baw_head,
|
|
tid->baw_tail);
|
|
}
|
|
|
|
/*
|
|
* ni->ni_txseqs[] is the currently allocated seqno.
|
|
* the txa state contains the current baw start.
|
|
*/
|
|
index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
|
|
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d "
|
|
"baw head=%d tail=%d\n",
|
|
__func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
|
|
tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head,
|
|
tid->baw_tail);
|
|
|
|
#if 0
|
|
assert(tid->tx_buf[cindex] == NULL);
|
|
#endif
|
|
if (tid->tx_buf[cindex] != NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: ba packet dup (index=%d, cindex=%d, "
|
|
"head=%d, tail=%d)\n",
|
|
__func__, index, cindex, tid->baw_head, tid->baw_tail);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
|
|
__func__,
|
|
tid->tx_buf[cindex],
|
|
SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
|
|
bf,
|
|
SEQNO(bf->bf_state.bfs_seqno)
|
|
);
|
|
}
|
|
tid->tx_buf[cindex] = bf;
|
|
|
|
if (index >= ((tid->baw_tail - tid->baw_head) &
|
|
(ATH_TID_MAX_BUFS - 1))) {
|
|
tid->baw_tail = cindex;
|
|
INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flip the BAW buffer entry over from the existing one to the new one.
|
|
*
|
|
* When software retransmitting a (sub-)frame, it is entirely possible that
|
|
* the frame ath_buf is marked as BUSY and can't be immediately reused.
|
|
* In that instance the buffer is cloned and the new buffer is used for
|
|
* retransmit. We thus need to update the ath_buf slot in the BAW buf
|
|
* tracking array to maintain consistency.
|
|
*/
|
|
static void
|
|
ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
|
|
{
|
|
int index, cindex;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
index = ATH_BA_INDEX(tap->txa_start, seqno);
|
|
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
|
|
/*
|
|
* Just warn for now; if it happens then we should find out
|
|
* about it. It's highly likely the aggregation session will
|
|
* soon hang.
|
|
*/
|
|
if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: retransmitted buffer"
|
|
" has mismatching seqno's, BA session may hang.\n",
|
|
__func__);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: old seqno=%d, new_seqno=%d\n", __func__,
|
|
old_bf->bf_state.bfs_seqno, new_bf->bf_state.bfs_seqno);
|
|
}
|
|
|
|
if (tid->tx_buf[cindex] != old_bf) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: ath_buf pointer incorrect; "
|
|
" has m BA session may hang.\n", __func__);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: old bf=%p, new bf=%p\n", __func__, old_bf, new_bf);
|
|
}
|
|
|
|
tid->tx_buf[cindex] = new_bf;
|
|
}
|
|
|
|
/*
|
|
* seq_start - left edge of BAW
|
|
* seq_next - current/next sequence number to allocate
|
|
*
|
|
* Since the BAW status may be modified by both the ath task and
|
|
* the net80211/ifnet contexts, the TID must be locked.
|
|
*/
|
|
static void
|
|
ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, const struct ath_buf *bf)
|
|
{
|
|
int index, cindex;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
int seqno = SEQNO(bf->bf_state.bfs_seqno);
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
index = ATH_BA_INDEX(tap->txa_start, seqno);
|
|
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, "
|
|
"baw head=%d, tail=%d\n",
|
|
__func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
|
|
cindex, tid->baw_head, tid->baw_tail);
|
|
|
|
/*
|
|
* If this occurs then we have a big problem - something else
|
|
* has slid tap->txa_start along without updating the BAW
|
|
* tracking start/end pointers. Thus the TX BAW state is now
|
|
* completely busted.
|
|
*
|
|
* But for now, since I haven't yet fixed TDMA and buffer cloning,
|
|
* it's quite possible that a cloned buffer is making its way
|
|
* here and causing it to fire off. Disable TDMA for now.
|
|
*/
|
|
if (tid->tx_buf[cindex] != bf) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
|
|
__func__, bf, SEQNO(bf->bf_state.bfs_seqno),
|
|
tid->tx_buf[cindex],
|
|
(tid->tx_buf[cindex] != NULL) ?
|
|
SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno) : -1);
|
|
}
|
|
|
|
tid->tx_buf[cindex] = NULL;
|
|
|
|
while (tid->baw_head != tid->baw_tail &&
|
|
!tid->tx_buf[tid->baw_head]) {
|
|
INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
|
|
INCR(tid->baw_head, ATH_TID_MAX_BUFS);
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: tid=%d: baw is now %d:%d, baw head=%d\n",
|
|
__func__, tid->tid, tap->txa_start, tap->txa_wnd, tid->baw_head);
|
|
}
|
|
|
|
static void
|
|
ath_tx_leak_count_update(struct ath_softc *sc, struct ath_tid *tid,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_frame *wh;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
if (tid->an->an_leak_count > 0) {
|
|
wh = mtod(bf->bf_m, struct ieee80211_frame *);
|
|
|
|
/*
|
|
* Update MORE based on the software/net80211 queue states.
|
|
*/
|
|
if ((tid->an->an_stack_psq > 0)
|
|
|| (tid->an->an_swq_depth > 0))
|
|
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
|
|
else
|
|
wh->i_fc[1] &= ~IEEE80211_FC1_MORE_DATA;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
|
|
"%s: %6D: leak count = %d, psq=%d, swq=%d, MORE=%d\n",
|
|
__func__,
|
|
tid->an->an_node.ni_macaddr,
|
|
":",
|
|
tid->an->an_leak_count,
|
|
tid->an->an_stack_psq,
|
|
tid->an->an_swq_depth,
|
|
!! (wh->i_fc[1] & IEEE80211_FC1_MORE_DATA));
|
|
|
|
/*
|
|
* Re-sync the underlying buffer.
|
|
*/
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
tid->an->an_leak_count --;
|
|
}
|
|
}
|
|
|
|
static int
|
|
ath_tx_tid_can_tx_or_sched(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
if (tid->an->an_leak_count > 0) {
|
|
return (1);
|
|
}
|
|
if (tid->paused)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Mark the current node/TID as ready to TX.
|
|
*
|
|
* This is done to make it easy for the software scheduler to
|
|
* find which nodes have data to send.
|
|
*
|
|
* The TXQ lock must be held.
|
|
*/
|
|
void
|
|
ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* If we are leaking out a frame to this destination
|
|
* for PS-POLL, ensure that we allow scheduling to
|
|
* occur.
|
|
*/
|
|
if (! ath_tx_tid_can_tx_or_sched(sc, tid))
|
|
return; /* paused, can't schedule yet */
|
|
|
|
if (tid->sched)
|
|
return; /* already scheduled */
|
|
|
|
tid->sched = 1;
|
|
|
|
#if 0
|
|
/*
|
|
* If this is a sleeping node we're leaking to, given
|
|
* it a higher priority. This is so bad for QoS it hurts.
|
|
*/
|
|
if (tid->an->an_leak_count) {
|
|
TAILQ_INSERT_HEAD(&txq->axq_tidq, tid, axq_qelem);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We can't do the above - it'll confuse the TXQ software
|
|
* scheduler which will keep checking the _head_ TID
|
|
* in the list to see if it has traffic. If we queue
|
|
* a TID to the head of the list and it doesn't transmit,
|
|
* we'll check it again.
|
|
*
|
|
* So, get the rest of this leaking frames support working
|
|
* and reliable first and _then_ optimise it so they're
|
|
* pushed out in front of any other pending software
|
|
* queued nodes.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
|
|
}
|
|
|
|
/*
|
|
* Mark the current node as no longer needing to be polled for
|
|
* TX packets.
|
|
*
|
|
* The TXQ lock must be held.
|
|
*/
|
|
static void
|
|
ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
if (tid->sched == 0)
|
|
return;
|
|
|
|
tid->sched = 0;
|
|
TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
|
|
}
|
|
|
|
/*
|
|
* Assign a sequence number manually to the given frame.
|
|
*
|
|
* This should only be called for A-MPDU TX frames.
|
|
*
|
|
* Note: for group addressed frames, the sequence number
|
|
* should be from NONQOS_TID, and net80211 should have
|
|
* already assigned it for us.
|
|
*/
|
|
static ieee80211_seq
|
|
ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf, struct mbuf *m0)
|
|
{
|
|
struct ieee80211_frame *wh;
|
|
int tid;
|
|
ieee80211_seq seqno;
|
|
uint8_t subtype;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
tid = ieee80211_gettid(wh);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, qos has seq=%d\n",
|
|
__func__, tid, IEEE80211_QOS_HAS_SEQ(wh));
|
|
|
|
/* XXX Is it a control frame? Ignore */
|
|
|
|
/* Does the packet require a sequence number? */
|
|
if (! IEEE80211_QOS_HAS_SEQ(wh))
|
|
return -1;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Is it a QOS NULL Data frame? Give it a sequence number from
|
|
* the default TID (IEEE80211_NONQOS_TID.)
|
|
*
|
|
* The RX path of everything I've looked at doesn't include the NULL
|
|
* data frame sequence number in the aggregation state updates, so
|
|
* assigning it a sequence number there will cause a BAW hole on the
|
|
* RX side.
|
|
*/
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
|
|
/* XXX no locking for this TID? This is a bit of a problem. */
|
|
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
|
|
INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
|
|
} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
/*
|
|
* group addressed frames get a sequence number from
|
|
* a different sequence number space.
|
|
*/
|
|
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
|
|
INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
|
|
} else {
|
|
/* Manually assign sequence number */
|
|
seqno = ni->ni_txseqs[tid];
|
|
INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
|
|
}
|
|
*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
|
|
M_SEQNO_SET(m0, seqno);
|
|
|
|
/* Return so caller can do something with it if needed */
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: -> subtype=0x%x, tid=%d, seqno=%d\n",
|
|
__func__, subtype, tid, seqno);
|
|
return seqno;
|
|
}
|
|
|
|
/*
|
|
* Attempt to direct dispatch an aggregate frame to hardware.
|
|
* If the frame is out of BAW, queue.
|
|
* Otherwise, schedule it as a single frame.
|
|
*/
|
|
static void
|
|
ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_txq *txq, struct ath_buf *bf)
|
|
{
|
|
struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
|
|
/* paused? queue */
|
|
if (! ath_tx_tid_can_tx_or_sched(sc, tid)) {
|
|
ATH_TID_INSERT_HEAD(tid, bf, bf_list);
|
|
/* XXX don't sched - we're paused! */
|
|
return;
|
|
}
|
|
|
|
/* outside baw? queue */
|
|
if (bf->bf_state.bfs_dobaw &&
|
|
(! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
|
|
SEQNO(bf->bf_state.bfs_seqno)))) {
|
|
ATH_TID_INSERT_HEAD(tid, bf, bf_list);
|
|
ath_tx_tid_sched(sc, tid);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is a temporary check and should be removed once
|
|
* all the relevant code paths have been fixed.
|
|
*
|
|
* During aggregate retries, it's possible that the head
|
|
* frame will fail (which has the bfs_aggr and bfs_nframes
|
|
* fields set for said aggregate) and will be retried as
|
|
* a single frame. In this instance, the values should
|
|
* be reset or the completion code will get upset with you.
|
|
*/
|
|
if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: bfs_aggr=%d, bfs_nframes=%d\n", __func__,
|
|
bf->bf_state.bfs_aggr, bf->bf_state.bfs_nframes);
|
|
bf->bf_state.bfs_aggr = 0;
|
|
bf->bf_state.bfs_nframes = 1;
|
|
}
|
|
|
|
/* Update CLRDMASK just before this frame is queued */
|
|
ath_tx_update_clrdmask(sc, tid, bf);
|
|
|
|
/* Direct dispatch to hardware */
|
|
ath_tx_do_ratelookup(sc, bf, tid->tid, bf->bf_state.bfs_pktlen,
|
|
false);
|
|
ath_tx_calc_duration(sc, bf);
|
|
ath_tx_calc_protection(sc, bf);
|
|
ath_tx_set_rtscts(sc, bf);
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
ath_tx_setds(sc, bf);
|
|
|
|
/* Statistics */
|
|
sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
|
|
|
|
/* Track per-TID hardware queue depth correctly */
|
|
tid->hwq_depth++;
|
|
|
|
/* Add to BAW */
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_addto_baw(sc, an, tid, bf);
|
|
bf->bf_state.bfs_addedbaw = 1;
|
|
}
|
|
|
|
/* Set completion handler, multi-frame aggregate or not */
|
|
bf->bf_comp = ath_tx_aggr_comp;
|
|
|
|
/*
|
|
* Update the current leak count if
|
|
* we're leaking frames; and set the
|
|
* MORE flag as appropriate.
|
|
*/
|
|
ath_tx_leak_count_update(sc, tid, bf);
|
|
|
|
/* Hand off to hardware */
|
|
ath_tx_handoff(sc, txq, bf);
|
|
}
|
|
|
|
/*
|
|
* Attempt to send the packet.
|
|
* If the queue isn't busy, direct-dispatch.
|
|
* If the queue is busy enough, queue the given packet on the
|
|
* relevant software queue.
|
|
*/
|
|
void
|
|
ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_txq *txq, int queue_to_head, struct ath_buf *bf)
|
|
{
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ieee80211_frame *wh;
|
|
struct ath_tid *atid;
|
|
int pri, tid;
|
|
struct mbuf *m0 = bf->bf_m;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/* Fetch the TID - non-QoS frames get assigned to TID 16 */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
pri = ath_tx_getac(sc, m0);
|
|
tid = ath_tx_gettid(sc, m0);
|
|
atid = &an->an_tid[tid];
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
|
|
__func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
|
|
|
|
/* Set local packet state, used to queue packets to hardware */
|
|
/* XXX potentially duplicate info, re-check */
|
|
bf->bf_state.bfs_tid = tid;
|
|
bf->bf_state.bfs_tx_queue = txq->axq_qnum;
|
|
bf->bf_state.bfs_pri = pri;
|
|
|
|
/*
|
|
* If the hardware queue isn't busy, queue it directly.
|
|
* If the hardware queue is busy, queue it.
|
|
* If the TID is paused or the traffic it outside BAW, software
|
|
* queue it.
|
|
*
|
|
* If the node is in power-save and we're leaking a frame,
|
|
* leak a single frame.
|
|
*/
|
|
if (! ath_tx_tid_can_tx_or_sched(sc, atid)) {
|
|
/* TID is paused, queue */
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__);
|
|
/*
|
|
* If the caller requested that it be sent at a high
|
|
* priority, queue it at the head of the list.
|
|
*/
|
|
if (queue_to_head)
|
|
ATH_TID_INSERT_HEAD(atid, bf, bf_list);
|
|
else
|
|
ATH_TID_INSERT_TAIL(atid, bf, bf_list);
|
|
} else if (ath_tx_ampdu_pending(sc, an, tid)) {
|
|
/* AMPDU pending; queue */
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__);
|
|
ATH_TID_INSERT_TAIL(atid, bf, bf_list);
|
|
/* XXX sched? */
|
|
} else if (ath_tx_ampdu_running(sc, an, tid)) {
|
|
/*
|
|
* AMPDU running, queue single-frame if the hardware queue
|
|
* isn't busy.
|
|
*
|
|
* If the hardware queue is busy, sending an aggregate frame
|
|
* then just hold off so we can queue more aggregate frames.
|
|
*
|
|
* Otherwise we may end up with single frames leaking through
|
|
* because we are dispatching them too quickly.
|
|
*
|
|
* TODO: maybe we should treat this as two policies - minimise
|
|
* latency, or maximise throughput. Then for BE/BK we can
|
|
* maximise throughput, and VO/VI (if AMPDU is enabled!)
|
|
* minimise latency.
|
|
*/
|
|
|
|
/*
|
|
* Always queue the frame to the tail of the list.
|
|
*/
|
|
ATH_TID_INSERT_TAIL(atid, bf, bf_list);
|
|
|
|
/*
|
|
* If the hardware queue isn't busy, direct dispatch
|
|
* the head frame in the list.
|
|
*
|
|
* Note: if we're say, configured to do ADDBA but not A-MPDU
|
|
* then maybe we want to still queue two non-aggregate frames
|
|
* to the hardware. Again with the per-TID policy
|
|
* configuration..)
|
|
*
|
|
* Otherwise, schedule the TID.
|
|
*/
|
|
/* XXX TXQ locking */
|
|
if (txq->axq_depth + txq->fifo.axq_depth == 0) {
|
|
bf = ATH_TID_FIRST(atid);
|
|
ATH_TID_REMOVE(atid, bf, bf_list);
|
|
|
|
/*
|
|
* Ensure it's definitely treated as a non-AMPDU
|
|
* frame - this information may have been left
|
|
* over from a previous attempt.
|
|
*/
|
|
bf->bf_state.bfs_aggr = 0;
|
|
bf->bf_state.bfs_nframes = 1;
|
|
|
|
/* Queue to the hardware */
|
|
ath_tx_xmit_aggr(sc, an, txq, bf);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: xmit_aggr\n",
|
|
__func__);
|
|
} else {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: ampdu; swq'ing\n",
|
|
__func__);
|
|
|
|
ath_tx_tid_sched(sc, atid);
|
|
}
|
|
/*
|
|
* If we're not doing A-MPDU, be prepared to direct dispatch
|
|
* up to both limits if possible. This particular corner
|
|
* case may end up with packet starvation between aggregate
|
|
* traffic and non-aggregate traffic: we want to ensure
|
|
* that non-aggregate stations get a few frames queued to the
|
|
* hardware before the aggregate station(s) get their chance.
|
|
*
|
|
* So if you only ever see a couple of frames direct dispatched
|
|
* to the hardware from a non-AMPDU client, check both here
|
|
* and in the software queue dispatcher to ensure that those
|
|
* non-AMPDU stations get a fair chance to transmit.
|
|
*/
|
|
/* XXX TXQ locking */
|
|
} else if ((txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit_nonaggr) &&
|
|
(txq->axq_aggr_depth < sc->sc_hwq_limit_aggr)) {
|
|
/* AMPDU not running, attempt direct dispatch */
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__);
|
|
/* See if clrdmask needs to be set */
|
|
ath_tx_update_clrdmask(sc, atid, bf);
|
|
|
|
/*
|
|
* Update the current leak count if
|
|
* we're leaking frames; and set the
|
|
* MORE flag as appropriate.
|
|
*/
|
|
ath_tx_leak_count_update(sc, atid, bf);
|
|
|
|
/*
|
|
* Dispatch the frame.
|
|
*/
|
|
ath_tx_xmit_normal(sc, txq, bf);
|
|
} else {
|
|
/* Busy; queue */
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__);
|
|
ATH_TID_INSERT_TAIL(atid, bf, bf_list);
|
|
ath_tx_tid_sched(sc, atid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only set the clrdmask bit if none of the nodes are currently
|
|
* filtered.
|
|
*
|
|
* XXX TODO: go through all the callers and check to see
|
|
* which are being called in the context of looping over all
|
|
* TIDs (eg, if all tids are being paused, resumed, etc.)
|
|
* That'll avoid O(n^2) complexity here.
|
|
*/
|
|
static void
|
|
ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
int i;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
for (i = 0; i < IEEE80211_TID_SIZE; i++) {
|
|
if (an->an_tid[i].isfiltered == 1)
|
|
return;
|
|
}
|
|
an->clrdmask = 1;
|
|
}
|
|
|
|
/*
|
|
* Configure the per-TID node state.
|
|
*
|
|
* This likely belongs in if_ath_node.c but I can't think of anywhere
|
|
* else to put it just yet.
|
|
*
|
|
* This sets up the SLISTs and the mutex as appropriate.
|
|
*/
|
|
void
|
|
ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
int i, j;
|
|
struct ath_tid *atid;
|
|
|
|
for (i = 0; i < IEEE80211_TID_SIZE; i++) {
|
|
atid = &an->an_tid[i];
|
|
|
|
/* XXX now with this bzer(), is the field 0'ing needed? */
|
|
bzero(atid, sizeof(*atid));
|
|
|
|
TAILQ_INIT(&atid->tid_q);
|
|
TAILQ_INIT(&atid->filtq.tid_q);
|
|
atid->tid = i;
|
|
atid->an = an;
|
|
for (j = 0; j < ATH_TID_MAX_BUFS; j++)
|
|
atid->tx_buf[j] = NULL;
|
|
atid->baw_head = atid->baw_tail = 0;
|
|
atid->paused = 0;
|
|
atid->sched = 0;
|
|
atid->hwq_depth = 0;
|
|
atid->cleanup_inprogress = 0;
|
|
if (i == IEEE80211_NONQOS_TID)
|
|
atid->ac = ATH_NONQOS_TID_AC;
|
|
else
|
|
atid->ac = TID_TO_WME_AC(i);
|
|
}
|
|
an->clrdmask = 1; /* Always start by setting this bit */
|
|
}
|
|
|
|
/*
|
|
* Pause the current TID. This stops packets from being transmitted
|
|
* on it.
|
|
*
|
|
* Since this is also called from upper layers as well as the driver,
|
|
* it will get the TID lock.
|
|
*/
|
|
static void
|
|
ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
tid->paused++;
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: [%6D]: tid=%d, paused = %d\n",
|
|
__func__,
|
|
tid->an->an_node.ni_macaddr, ":",
|
|
tid->tid,
|
|
tid->paused);
|
|
}
|
|
|
|
/*
|
|
* Unpause the current TID, and schedule it if needed.
|
|
*/
|
|
static void
|
|
ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* There's some odd places where ath_tx_tid_resume() is called
|
|
* when it shouldn't be; this works around that particular issue
|
|
* until it's actually resolved.
|
|
*/
|
|
if (tid->paused == 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: [%6D]: tid=%d, paused=0?\n",
|
|
__func__,
|
|
tid->an->an_node.ni_macaddr, ":",
|
|
tid->tid);
|
|
} else {
|
|
tid->paused--;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: [%6D]: tid=%d, unpaused = %d\n",
|
|
__func__,
|
|
tid->an->an_node.ni_macaddr, ":",
|
|
tid->tid,
|
|
tid->paused);
|
|
|
|
if (tid->paused)
|
|
return;
|
|
|
|
/*
|
|
* Override the clrdmask configuration for the next frame
|
|
* from this TID, just to get the ball rolling.
|
|
*/
|
|
ath_tx_set_clrdmask(sc, tid->an);
|
|
|
|
if (tid->axq_depth == 0)
|
|
return;
|
|
|
|
/* XXX isfiltered shouldn't ever be 0 at this point */
|
|
if (tid->isfiltered == 1) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: filtered?!\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
ath_tx_tid_sched(sc, tid);
|
|
|
|
/*
|
|
* Queue the software TX scheduler.
|
|
*/
|
|
ath_tx_swq_kick(sc);
|
|
}
|
|
|
|
/*
|
|
* Add the given ath_buf to the TID filtered frame list.
|
|
* This requires the TID be filtered.
|
|
*/
|
|
static void
|
|
ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid,
|
|
struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
if (!tid->isfiltered)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: not filtered?!\n",
|
|
__func__);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf);
|
|
|
|
/* Set the retry bit and bump the retry counter */
|
|
ath_tx_set_retry(sc, bf);
|
|
sc->sc_stats.ast_tx_swfiltered++;
|
|
|
|
ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list);
|
|
}
|
|
|
|
/*
|
|
* Handle a completed filtered frame from the given TID.
|
|
* This just enables/pauses the filtered frame state if required
|
|
* and appends the filtered frame to the filtered queue.
|
|
*/
|
|
static void
|
|
ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid,
|
|
struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
if (! tid->isfiltered) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d; filter transition\n",
|
|
__func__, tid->tid);
|
|
tid->isfiltered = 1;
|
|
ath_tx_tid_pause(sc, tid);
|
|
}
|
|
|
|
/* Add the frame to the filter queue */
|
|
ath_tx_tid_filt_addbuf(sc, tid, bf);
|
|
}
|
|
|
|
/*
|
|
* Complete the filtered frame TX completion.
|
|
*
|
|
* If there are no more frames in the hardware queue, unpause/unfilter
|
|
* the TID if applicable. Otherwise we will wait for a node PS transition
|
|
* to unfilter.
|
|
*/
|
|
static void
|
|
ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
struct ath_buf *bf;
|
|
int do_resume = 0;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
if (tid->hwq_depth != 0)
|
|
return;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d, hwq=0, transition back\n",
|
|
__func__, tid->tid);
|
|
if (tid->isfiltered == 1) {
|
|
tid->isfiltered = 0;
|
|
do_resume = 1;
|
|
}
|
|
|
|
/* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */
|
|
ath_tx_set_clrdmask(sc, tid->an);
|
|
|
|
/* XXX this is really quite inefficient */
|
|
while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) {
|
|
ATH_TID_FILT_REMOVE(tid, bf, bf_list);
|
|
ATH_TID_INSERT_HEAD(tid, bf, bf_list);
|
|
}
|
|
|
|
/* And only resume if we had paused before */
|
|
if (do_resume)
|
|
ath_tx_tid_resume(sc, tid);
|
|
}
|
|
|
|
/*
|
|
* Called when a single (aggregate or otherwise) frame is completed.
|
|
*
|
|
* Returns 0 if the buffer could be added to the filtered list
|
|
* (cloned or otherwise), 1 if the buffer couldn't be added to the
|
|
* filtered list (failed clone; expired retry) and the caller should
|
|
* free it and handle it like a failure (eg by sending a BAR.)
|
|
*
|
|
* since the buffer may be cloned, bf must be not touched after this
|
|
* if the return value is 0.
|
|
*/
|
|
static int
|
|
ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid,
|
|
struct ath_buf *bf)
|
|
{
|
|
struct ath_buf *nbf;
|
|
int retval;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Don't allow a filtered frame to live forever.
|
|
*/
|
|
if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
|
|
sc->sc_stats.ast_tx_swretrymax++;
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
|
|
"%s: bf=%p, seqno=%d, exceeded retries\n",
|
|
__func__,
|
|
bf,
|
|
SEQNO(bf->bf_state.bfs_seqno));
|
|
retval = 1; /* error */
|
|
goto finish;
|
|
}
|
|
|
|
/*
|
|
* A busy buffer can't be added to the retry list.
|
|
* It needs to be cloned.
|
|
*/
|
|
if (bf->bf_flags & ATH_BUF_BUSY) {
|
|
nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
|
|
"%s: busy buffer clone: %p -> %p\n",
|
|
__func__, bf, nbf);
|
|
} else {
|
|
nbf = bf;
|
|
}
|
|
|
|
if (nbf == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
|
|
"%s: busy buffer couldn't be cloned (%p)!\n",
|
|
__func__, bf);
|
|
retval = 1; /* error */
|
|
} else {
|
|
ath_tx_tid_filt_comp_buf(sc, tid, nbf);
|
|
retval = 0; /* ok */
|
|
}
|
|
finish:
|
|
ath_tx_tid_filt_comp_complete(sc, tid);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static void
|
|
ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid,
|
|
struct ath_buf *bf_first, ath_bufhead *bf_q)
|
|
{
|
|
struct ath_buf *bf, *bf_next, *nbf;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
bf = bf_first;
|
|
while (bf) {
|
|
bf_next = bf->bf_next;
|
|
bf->bf_next = NULL; /* Remove it from the aggr list */
|
|
|
|
/*
|
|
* Don't allow a filtered frame to live forever.
|
|
*/
|
|
if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
|
|
sc->sc_stats.ast_tx_swretrymax++;
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
|
|
"%s: tid=%d, bf=%p, seqno=%d, exceeded retries\n",
|
|
__func__,
|
|
tid->tid,
|
|
bf,
|
|
SEQNO(bf->bf_state.bfs_seqno));
|
|
TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
|
|
goto next;
|
|
}
|
|
|
|
if (bf->bf_flags & ATH_BUF_BUSY) {
|
|
nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
|
|
"%s: tid=%d, busy buffer cloned: %p -> %p, seqno=%d\n",
|
|
__func__, tid->tid, bf, nbf, SEQNO(bf->bf_state.bfs_seqno));
|
|
} else {
|
|
nbf = bf;
|
|
}
|
|
|
|
/*
|
|
* If the buffer couldn't be cloned, add it to bf_q;
|
|
* the caller will free the buffer(s) as required.
|
|
*/
|
|
if (nbf == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
|
|
"%s: tid=%d, buffer couldn't be cloned! (%p) seqno=%d\n",
|
|
__func__, tid->tid, bf, SEQNO(bf->bf_state.bfs_seqno));
|
|
TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
|
|
} else {
|
|
ath_tx_tid_filt_comp_buf(sc, tid, nbf);
|
|
}
|
|
next:
|
|
bf = bf_next;
|
|
}
|
|
|
|
ath_tx_tid_filt_comp_complete(sc, tid);
|
|
}
|
|
|
|
/*
|
|
* Suspend the queue because we need to TX a BAR.
|
|
*/
|
|
static void
|
|
ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: tid=%d, bar_wait=%d, bar_tx=%d, called\n",
|
|
__func__,
|
|
tid->tid,
|
|
tid->bar_wait,
|
|
tid->bar_tx);
|
|
|
|
/* We shouldn't be called when bar_tx is 1 */
|
|
if (tid->bar_tx) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: bar_tx is 1?!\n", __func__);
|
|
}
|
|
|
|
/* If we've already been called, just be patient. */
|
|
if (tid->bar_wait)
|
|
return;
|
|
|
|
/* Wait! */
|
|
tid->bar_wait = 1;
|
|
|
|
/* Only one pause, no matter how many frames fail */
|
|
ath_tx_tid_pause(sc, tid);
|
|
}
|
|
|
|
/*
|
|
* We've finished with BAR handling - either we succeeded or
|
|
* failed. Either way, unsuspend TX.
|
|
*/
|
|
static void
|
|
ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: %6D: TID=%d, called\n",
|
|
__func__,
|
|
tid->an->an_node.ni_macaddr,
|
|
":",
|
|
tid->tid);
|
|
|
|
if (tid->bar_tx == 0 || tid->bar_wait == 0) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n",
|
|
__func__, tid->an->an_node.ni_macaddr, ":",
|
|
tid->tid, tid->bar_tx, tid->bar_wait);
|
|
}
|
|
|
|
tid->bar_tx = tid->bar_wait = 0;
|
|
ath_tx_tid_resume(sc, tid);
|
|
}
|
|
|
|
/*
|
|
* Return whether we're ready to TX a BAR frame.
|
|
*
|
|
* Requires the TID lock be held.
|
|
*/
|
|
static int
|
|
ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
if (tid->bar_wait == 0 || tid->hwq_depth > 0)
|
|
return (0);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: %6D: TID=%d, bar ready\n",
|
|
__func__,
|
|
tid->an->an_node.ni_macaddr,
|
|
":",
|
|
tid->tid);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Check whether the current TID is ready to have a BAR
|
|
* TXed and if so, do the TX.
|
|
*
|
|
* Since the TID/TXQ lock can't be held during a call to
|
|
* ieee80211_send_bar(), we have to do the dirty thing of unlocking it,
|
|
* sending the BAR and locking it again.
|
|
*
|
|
* Eventually, the code to send the BAR should be broken out
|
|
* from this routine so the lock doesn't have to be reacquired
|
|
* just to be immediately dropped by the caller.
|
|
*/
|
|
static void
|
|
ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: %6D: TID=%d, called\n",
|
|
__func__,
|
|
tid->an->an_node.ni_macaddr,
|
|
":",
|
|
tid->tid);
|
|
|
|
tap = ath_tx_get_tx_tid(tid->an, tid->tid);
|
|
|
|
/*
|
|
* This is an error condition!
|
|
*/
|
|
if (tid->bar_wait == 0 || tid->bar_tx == 1) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n",
|
|
__func__, tid->an->an_node.ni_macaddr, ":",
|
|
tid->tid, tid->bar_tx, tid->bar_wait);
|
|
return;
|
|
}
|
|
|
|
/* Don't do anything if we still have pending frames */
|
|
if (tid->hwq_depth > 0) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: %6D: TID=%d, hwq_depth=%d, waiting\n",
|
|
__func__,
|
|
tid->an->an_node.ni_macaddr,
|
|
":",
|
|
tid->tid,
|
|
tid->hwq_depth);
|
|
return;
|
|
}
|
|
|
|
/* We're now about to TX */
|
|
tid->bar_tx = 1;
|
|
|
|
/*
|
|
* Override the clrdmask configuration for the next frame,
|
|
* just to get the ball rolling.
|
|
*/
|
|
ath_tx_set_clrdmask(sc, tid->an);
|
|
|
|
/*
|
|
* Calculate new BAW left edge, now that all frames have either
|
|
* succeeded or failed.
|
|
*
|
|
* XXX verify this is _actually_ the valid value to begin at!
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: %6D: TID=%d, new BAW left edge=%d\n",
|
|
__func__,
|
|
tid->an->an_node.ni_macaddr,
|
|
":",
|
|
tid->tid,
|
|
tap->txa_start);
|
|
|
|
/* Try sending the BAR frame */
|
|
/* We can't hold the lock here! */
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) {
|
|
/* Success? Now we wait for notification that it's done */
|
|
ATH_TX_LOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/* Failure? For now, warn loudly and continue */
|
|
ATH_TX_LOCK(sc);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: %6D: TID=%d, failed to TX BAR, continue!\n",
|
|
__func__, tid->an->an_node.ni_macaddr, ":",
|
|
tid->tid);
|
|
ath_tx_tid_bar_unsuspend(sc, tid);
|
|
}
|
|
|
|
static void
|
|
ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* If the current TID is running AMPDU, update
|
|
* the BAW.
|
|
*/
|
|
if (ath_tx_ampdu_running(sc, an, tid->tid) &&
|
|
bf->bf_state.bfs_dobaw) {
|
|
/*
|
|
* Only remove the frame from the BAW if it's
|
|
* been transmitted at least once; this means
|
|
* the frame was in the BAW to begin with.
|
|
*/
|
|
if (bf->bf_state.bfs_retries > 0) {
|
|
ath_tx_update_baw(sc, an, tid, bf);
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
}
|
|
#if 0
|
|
/*
|
|
* This has become a non-fatal error now
|
|
*/
|
|
if (! bf->bf_state.bfs_addedbaw)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
#endif
|
|
}
|
|
|
|
/* Strip it out of an aggregate list if it was in one */
|
|
bf->bf_next = NULL;
|
|
|
|
/* Insert on the free queue to be freed by the caller */
|
|
TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
|
|
}
|
|
|
|
static void
|
|
ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an,
|
|
const char *pfx, struct ath_tid *tid, struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_node *ni = &an->an_node;
|
|
struct ath_txq *txq;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
txq = sc->sc_ac2q[tid->ac];
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
|
|
"%s: %s: %6D: bf=%p: addbaw=%d, dobaw=%d, "
|
|
"seqno=%d, retry=%d\n",
|
|
__func__,
|
|
pfx,
|
|
ni->ni_macaddr,
|
|
":",
|
|
bf,
|
|
bf->bf_state.bfs_addedbaw,
|
|
bf->bf_state.bfs_dobaw,
|
|
SEQNO(bf->bf_state.bfs_seqno),
|
|
bf->bf_state.bfs_retries);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
|
|
"%s: %s: %6D: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n",
|
|
__func__,
|
|
pfx,
|
|
ni->ni_macaddr,
|
|
":",
|
|
bf,
|
|
txq->axq_qnum,
|
|
txq->axq_depth,
|
|
txq->axq_aggr_depth);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
|
|
"%s: %s: %6D: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, "
|
|
"isfiltered=%d\n",
|
|
__func__,
|
|
pfx,
|
|
ni->ni_macaddr,
|
|
":",
|
|
bf,
|
|
tid->axq_depth,
|
|
tid->hwq_depth,
|
|
tid->bar_wait,
|
|
tid->isfiltered);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
|
|
"%s: %s: %6D: tid %d: "
|
|
"sched=%d, paused=%d, "
|
|
"incomp=%d, baw_head=%d, "
|
|
"baw_tail=%d txa_start=%d, ni_txseqs=%d\n",
|
|
__func__,
|
|
pfx,
|
|
ni->ni_macaddr,
|
|
":",
|
|
tid->tid,
|
|
tid->sched, tid->paused,
|
|
tid->incomp, tid->baw_head,
|
|
tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
|
|
ni->ni_txseqs[tid->tid]);
|
|
|
|
/* XXX Dump the frame, see what it is? */
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
|
|
ieee80211_dump_pkt(ni->ni_ic,
|
|
mtod(bf->bf_m, const uint8_t *),
|
|
bf->bf_m->m_len, 0, -1);
|
|
}
|
|
|
|
/*
|
|
* Free any packets currently pending in the software TX queue.
|
|
*
|
|
* This will be called when a node is being deleted.
|
|
*
|
|
* It can also be called on an active node during an interface
|
|
* reset or state transition.
|
|
*
|
|
* (From Linux/reference):
|
|
*
|
|
* TODO: For frame(s) that are in the retry state, we will reuse the
|
|
* sequence number(s) without setting the retry bit. The
|
|
* alternative is to give up on these and BAR the receiver's window
|
|
* forward.
|
|
*/
|
|
static void
|
|
ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, ath_bufhead *bf_cq)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
struct ieee80211_node *ni = &an->an_node;
|
|
int t;
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/* Walk the queue, free frames */
|
|
t = 0;
|
|
for (;;) {
|
|
bf = ATH_TID_FIRST(tid);
|
|
if (bf == NULL) {
|
|
break;
|
|
}
|
|
|
|
if (t == 0) {
|
|
ath_tx_tid_drain_print(sc, an, "norm", tid, bf);
|
|
// t = 1;
|
|
}
|
|
|
|
ATH_TID_REMOVE(tid, bf, bf_list);
|
|
ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
|
|
}
|
|
|
|
/* And now, drain the filtered frame queue */
|
|
t = 0;
|
|
for (;;) {
|
|
bf = ATH_TID_FILT_FIRST(tid);
|
|
if (bf == NULL)
|
|
break;
|
|
|
|
if (t == 0) {
|
|
ath_tx_tid_drain_print(sc, an, "filt", tid, bf);
|
|
// t = 1;
|
|
}
|
|
|
|
ATH_TID_FILT_REMOVE(tid, bf, bf_list);
|
|
ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
|
|
}
|
|
|
|
/*
|
|
* Override the clrdmask configuration for the next frame
|
|
* in case there is some future transmission, just to get
|
|
* the ball rolling.
|
|
*
|
|
* This won't hurt things if the TID is about to be freed.
|
|
*/
|
|
ath_tx_set_clrdmask(sc, tid->an);
|
|
|
|
/*
|
|
* Now that it's completed, grab the TID lock and update
|
|
* the sequence number and BAW window.
|
|
* Because sequence numbers have been assigned to frames
|
|
* that haven't been sent yet, it's entirely possible
|
|
* we'll be called with some pending frames that have not
|
|
* been transmitted.
|
|
*
|
|
* The cleaner solution is to do the sequence number allocation
|
|
* when the packet is first transmitted - and thus the "retries"
|
|
* check above would be enough to update the BAW/seqno.
|
|
*/
|
|
|
|
/* But don't do it for non-QoS TIDs */
|
|
if (tap) {
|
|
#if 1
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: %6D: node %p: TID %d: sliding BAW left edge to %d\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
an,
|
|
tid->tid,
|
|
tap->txa_start);
|
|
#endif
|
|
ni->ni_txseqs[tid->tid] = tap->txa_start;
|
|
tid->baw_tail = tid->baw_head;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the TID state. This must be only called once the node has
|
|
* had its frames flushed from this TID, to ensure that no other
|
|
* pause / unpause logic can kick in.
|
|
*/
|
|
static void
|
|
ath_tx_tid_reset(struct ath_softc *sc, struct ath_tid *tid)
|
|
{
|
|
|
|
#if 0
|
|
tid->bar_wait = tid->bar_tx = tid->isfiltered = 0;
|
|
tid->paused = tid->sched = tid->addba_tx_pending = 0;
|
|
tid->incomp = tid->cleanup_inprogress = 0;
|
|
#endif
|
|
|
|
/*
|
|
* If we have a bar_wait set, we need to unpause the TID
|
|
* here. Otherwise once cleanup has finished, the TID won't
|
|
* have the right paused counter.
|
|
*
|
|
* XXX I'm not going through resume here - I don't want the
|
|
* node to be rescheuled just yet. This however should be
|
|
* methodized!
|
|
*/
|
|
if (tid->bar_wait) {
|
|
if (tid->paused > 0) {
|
|
tid->paused --;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX same with a currently filtered TID.
|
|
*
|
|
* Since this is being called during a flush, we assume that
|
|
* the filtered frame list is actually empty.
|
|
*
|
|
* XXX TODO: add in a check to ensure that the filtered queue
|
|
* depth is actually 0!
|
|
*/
|
|
if (tid->isfiltered) {
|
|
if (tid->paused > 0) {
|
|
tid->paused --;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear BAR, filtered frames, scheduled and ADDBA pending.
|
|
* The TID may be going through cleanup from the last association
|
|
* where things in the BAW are still in the hardware queue.
|
|
*/
|
|
tid->bar_wait = 0;
|
|
tid->bar_tx = 0;
|
|
tid->isfiltered = 0;
|
|
tid->sched = 0;
|
|
tid->addba_tx_pending = 0;
|
|
|
|
/*
|
|
* XXX TODO: it may just be enough to walk the HWQs and mark
|
|
* frames for that node as non-aggregate; or mark the ath_node
|
|
* with something that indicates that aggregation is no longer
|
|
* occurring. Then we can just toss the BAW complaints and
|
|
* do a complete hard reset of state here - no pause, no
|
|
* complete counter, etc.
|
|
*/
|
|
|
|
}
|
|
|
|
/*
|
|
* Flush all software queued packets for the given node.
|
|
*
|
|
* This occurs when a completion handler frees the last buffer
|
|
* for a node, and the node is thus freed. This causes the node
|
|
* to be cleaned up, which ends up calling ath_tx_node_flush.
|
|
*/
|
|
void
|
|
ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
int tid;
|
|
ath_bufhead bf_cq;
|
|
struct ath_buf *bf;
|
|
|
|
TAILQ_INIT(&bf_cq);
|
|
|
|
ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p",
|
|
&an->an_node);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
DPRINTF(sc, ATH_DEBUG_NODE,
|
|
"%s: %6D: flush; is_powersave=%d, stack_psq=%d, tim=%d, "
|
|
"swq_depth=%d, clrdmask=%d, leak_count=%d\n",
|
|
__func__,
|
|
an->an_node.ni_macaddr,
|
|
":",
|
|
an->an_is_powersave,
|
|
an->an_stack_psq,
|
|
an->an_tim_set,
|
|
an->an_swq_depth,
|
|
an->clrdmask,
|
|
an->an_leak_count);
|
|
|
|
for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
/* Free packets */
|
|
ath_tx_tid_drain(sc, an, atid, &bf_cq);
|
|
|
|
/* Remove this tid from the list of active tids */
|
|
ath_tx_tid_unsched(sc, atid);
|
|
|
|
/* Reset the per-TID pause, BAR, etc state */
|
|
ath_tx_tid_reset(sc, atid);
|
|
}
|
|
|
|
/*
|
|
* Clear global leak count
|
|
*/
|
|
an->an_leak_count = 0;
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/* Handle completed frames */
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drain all the software TXQs currently with traffic queued.
|
|
*/
|
|
void
|
|
ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_tid *tid;
|
|
ath_bufhead bf_cq;
|
|
struct ath_buf *bf;
|
|
|
|
TAILQ_INIT(&bf_cq);
|
|
ATH_TX_LOCK(sc);
|
|
|
|
/*
|
|
* Iterate over all active tids for the given txq,
|
|
* flushing and unsched'ing them
|
|
*/
|
|
while (! TAILQ_EMPTY(&txq->axq_tidq)) {
|
|
tid = TAILQ_FIRST(&txq->axq_tidq);
|
|
ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
|
|
ath_tx_tid_unsched(sc, tid);
|
|
}
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle completion of non-aggregate session frames.
|
|
*
|
|
* This (currently) doesn't implement software retransmission of
|
|
* non-aggregate frames!
|
|
*
|
|
* Software retransmission of non-aggregate frames needs to obey
|
|
* the strict sequence number ordering, and drop any frames that
|
|
* will fail this.
|
|
*
|
|
* For now, filtered frames and frame transmission will cause
|
|
* all kinds of issues. So we don't support them.
|
|
*
|
|
* So anyone queuing frames via ath_tx_normal_xmit() or
|
|
* ath_tx_hw_queue_norm() must override and set CLRDMASK.
|
|
*/
|
|
void
|
|
ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
|
|
|
|
/* The TID state is protected behind the TXQ lock */
|
|
ATH_TX_LOCK(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
|
|
__func__, bf, fail, atid->hwq_depth - 1);
|
|
|
|
atid->hwq_depth--;
|
|
|
|
#if 0
|
|
/*
|
|
* If the frame was filtered, stick it on the filter frame
|
|
* queue and complain about it. It shouldn't happen!
|
|
*/
|
|
if ((ts->ts_status & HAL_TXERR_FILT) ||
|
|
(ts->ts_status != 0 && atid->isfiltered)) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: isfiltered=%d, ts_status=%d: huh?\n",
|
|
__func__,
|
|
atid->isfiltered,
|
|
ts->ts_status);
|
|
ath_tx_tid_filt_comp_buf(sc, atid, bf);
|
|
}
|
|
#endif
|
|
if (atid->isfiltered)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: filtered?!\n", __func__);
|
|
if (atid->hwq_depth < 0)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n",
|
|
__func__, atid->hwq_depth);
|
|
|
|
/* If the TID is being cleaned up, track things */
|
|
/* XXX refactor! */
|
|
if (atid->cleanup_inprogress) {
|
|
atid->incomp--;
|
|
if (atid->incomp == 0) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: TID %d: cleaned up! resume!\n",
|
|
__func__, tid);
|
|
atid->cleanup_inprogress = 0;
|
|
ath_tx_tid_resume(sc, atid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the queue is filtered, potentially mark it as complete
|
|
* and reschedule it as needed.
|
|
*
|
|
* This is required as there may be a subsequent TX descriptor
|
|
* for this end-node that has CLRDMASK set, so it's quite possible
|
|
* that a filtered frame will be followed by a non-filtered
|
|
* (complete or otherwise) frame.
|
|
*
|
|
* XXX should we do this before we complete the frame?
|
|
*/
|
|
if (atid->isfiltered)
|
|
ath_tx_tid_filt_comp_complete(sc, atid);
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/*
|
|
* punt to rate control if we're not being cleaned up
|
|
* during a hw queue drain and the frame wanted an ACK.
|
|
*/
|
|
if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
|
|
ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
|
|
ts,
|
|
bf->bf_state.bfs_pktlen,
|
|
bf->bf_state.bfs_pktlen,
|
|
1, (ts->ts_status == 0) ? 0 : 1);
|
|
|
|
ath_tx_default_comp(sc, bf, fail);
|
|
}
|
|
|
|
/*
|
|
* Handle cleanup of aggregate session packets that aren't
|
|
* an A-MPDU.
|
|
*
|
|
* There's no need to update the BAW here - the session is being
|
|
* torn down.
|
|
*/
|
|
static void
|
|
ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
|
|
__func__, tid, atid->incomp);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
atid->incomp--;
|
|
|
|
/* XXX refactor! */
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
if (!bf->bf_state.bfs_addedbaw)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
}
|
|
|
|
if (atid->incomp == 0) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: TID %d: cleaned up! resume!\n",
|
|
__func__, tid);
|
|
atid->cleanup_inprogress = 0;
|
|
ath_tx_tid_resume(sc, atid);
|
|
}
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
}
|
|
|
|
/*
|
|
* This as it currently stands is a bit dumb. Ideally we'd just
|
|
* fail the frame the normal way and have it permanently fail
|
|
* via the normal aggregate completion path.
|
|
*/
|
|
static void
|
|
ath_tx_tid_cleanup_frame(struct ath_softc *sc, struct ath_node *an,
|
|
int tid, struct ath_buf *bf_head, ath_bufhead *bf_cq)
|
|
{
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ath_buf *bf, *bf_next;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Remove this frame from the queue.
|
|
*/
|
|
ATH_TID_REMOVE(atid, bf_head, bf_list);
|
|
|
|
/*
|
|
* Loop over all the frames in the aggregate.
|
|
*/
|
|
bf = bf_head;
|
|
while (bf != NULL) {
|
|
bf_next = bf->bf_next; /* next aggregate frame, or NULL */
|
|
|
|
/*
|
|
* If it's been added to the BAW we need to kick
|
|
* it out of the BAW before we continue.
|
|
*
|
|
* XXX if it's an aggregate, assert that it's in the
|
|
* BAW - we shouldn't have it be in an aggregate
|
|
* otherwise!
|
|
*/
|
|
if (bf->bf_state.bfs_addedbaw) {
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
}
|
|
|
|
/*
|
|
* Give it the default completion handler.
|
|
*/
|
|
bf->bf_comp = ath_tx_normal_comp;
|
|
bf->bf_next = NULL;
|
|
|
|
/*
|
|
* Add it to the list to free.
|
|
*/
|
|
TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
|
|
|
|
/*
|
|
* Now advance to the next frame in the aggregate.
|
|
*/
|
|
bf = bf_next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Performs transmit side cleanup when TID changes from aggregated to
|
|
* unaggregated and during reassociation.
|
|
*
|
|
* For now, this just tosses everything from the TID software queue
|
|
* whether or not it has been retried and marks the TID as
|
|
* pending completion if there's anything for this TID queued to
|
|
* the hardware.
|
|
*
|
|
* The caller is responsible for pausing the TID and unpausing the
|
|
* TID if no cleanup was required. Otherwise the cleanup path will
|
|
* unpause the TID once the last hardware queued frame is completed.
|
|
*/
|
|
static void
|
|
ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid,
|
|
ath_bufhead *bf_cq)
|
|
{
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ath_buf *bf, *bf_next;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: TID %d: called; inprogress=%d\n", __func__, tid,
|
|
atid->cleanup_inprogress);
|
|
|
|
/*
|
|
* Move the filtered frames to the TX queue, before
|
|
* we run off and discard/process things.
|
|
*/
|
|
|
|
/* XXX this is really quite inefficient */
|
|
while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) {
|
|
ATH_TID_FILT_REMOVE(atid, bf, bf_list);
|
|
ATH_TID_INSERT_HEAD(atid, bf, bf_list);
|
|
}
|
|
|
|
/*
|
|
* Update the frames in the software TX queue:
|
|
*
|
|
* + Discard retry frames in the queue
|
|
* + Fix the completion function to be non-aggregate
|
|
*/
|
|
bf = ATH_TID_FIRST(atid);
|
|
while (bf) {
|
|
/*
|
|
* Grab the next frame in the list, we may
|
|
* be fiddling with the list.
|
|
*/
|
|
bf_next = TAILQ_NEXT(bf, bf_list);
|
|
|
|
/*
|
|
* Free the frame and all subframes.
|
|
*/
|
|
ath_tx_tid_cleanup_frame(sc, an, tid, bf, bf_cq);
|
|
|
|
/*
|
|
* Next frame!
|
|
*/
|
|
bf = bf_next;
|
|
}
|
|
|
|
/*
|
|
* If there's anything in the hardware queue we wait
|
|
* for the TID HWQ to empty.
|
|
*/
|
|
if (atid->hwq_depth > 0) {
|
|
/*
|
|
* XXX how about we kill atid->incomp, and instead
|
|
* replace it with a macro that checks that atid->hwq_depth
|
|
* is 0?
|
|
*/
|
|
atid->incomp = atid->hwq_depth;
|
|
atid->cleanup_inprogress = 1;
|
|
}
|
|
|
|
if (atid->cleanup_inprogress)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: TID %d: cleanup needed: %d packets\n",
|
|
__func__, tid, atid->incomp);
|
|
|
|
/* Owner now must free completed frames */
|
|
}
|
|
|
|
static struct ath_buf *
|
|
ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid, struct ath_buf *bf)
|
|
{
|
|
struct ath_buf *nbf;
|
|
int error;
|
|
|
|
/*
|
|
* Clone the buffer. This will handle the dma unmap and
|
|
* copy the node reference to the new buffer. If this
|
|
* works out, 'bf' will have no DMA mapping, no mbuf
|
|
* pointer and no node reference.
|
|
*/
|
|
nbf = ath_buf_clone(sc, bf);
|
|
|
|
#if 0
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: ATH_BUF_BUSY; cloning\n",
|
|
__func__);
|
|
#endif
|
|
|
|
if (nbf == NULL) {
|
|
/* Failed to clone */
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: failed to clone a busy buffer\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
|
|
/* Setup the dma for the new buffer */
|
|
error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
|
|
if (error != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: failed to setup dma for clone\n",
|
|
__func__);
|
|
/*
|
|
* Put this at the head of the list, not tail;
|
|
* that way it doesn't interfere with the
|
|
* busy buffer logic (which uses the tail of
|
|
* the list.)
|
|
*/
|
|
ATH_TXBUF_LOCK(sc);
|
|
ath_returnbuf_head(sc, nbf);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
return NULL;
|
|
}
|
|
|
|
/* Update BAW if required, before we free the original buf */
|
|
if (bf->bf_state.bfs_dobaw)
|
|
ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
|
|
|
|
/* Free original buffer; return new buffer */
|
|
ath_freebuf(sc, bf);
|
|
|
|
return nbf;
|
|
}
|
|
|
|
/*
|
|
* Handle retrying an unaggregate frame in an aggregate
|
|
* session.
|
|
*
|
|
* If too many retries occur, pause the TID, wait for
|
|
* any further retransmits (as there's no reason why
|
|
* non-aggregate frames in an aggregate session are
|
|
* transmitted in-order; they just have to be in-BAW)
|
|
* and then queue a BAR.
|
|
*/
|
|
static void
|
|
ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
ATH_TX_LOCK(sc);
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid);
|
|
|
|
/*
|
|
* If the buffer is marked as busy, we can't directly
|
|
* reuse it. Instead, try to clone the buffer.
|
|
* If the clone is successful, recycle the old buffer.
|
|
* If the clone is unsuccessful, set bfs_retries to max
|
|
* to force the next bit of code to free the buffer
|
|
* for us.
|
|
*/
|
|
if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
|
|
(bf->bf_flags & ATH_BUF_BUSY)) {
|
|
struct ath_buf *nbf;
|
|
nbf = ath_tx_retry_clone(sc, an, atid, bf);
|
|
if (nbf)
|
|
/* bf has been freed at this point */
|
|
bf = nbf;
|
|
else
|
|
bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
|
|
}
|
|
|
|
if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
|
|
"%s: exceeded retries; seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
sc->sc_stats.ast_tx_swretrymax++;
|
|
|
|
/* Update BAW anyway */
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
if (! bf->bf_state.bfs_addedbaw)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
}
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
|
|
/* Suspend the TX queue and get ready to send the BAR */
|
|
ath_tx_tid_bar_suspend(sc, atid);
|
|
|
|
/* Send the BAR if there are no other frames waiting */
|
|
if (ath_tx_tid_bar_tx_ready(sc, atid))
|
|
ath_tx_tid_bar_tx(sc, atid);
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/* Free buffer, bf is free after this call */
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This increments the retry counter as well as
|
|
* sets the retry flag in the ath_buf and packet
|
|
* body.
|
|
*/
|
|
ath_tx_set_retry(sc, bf);
|
|
sc->sc_stats.ast_tx_swretries++;
|
|
|
|
/*
|
|
* Insert this at the head of the queue, so it's
|
|
* retried before any current/subsequent frames.
|
|
*/
|
|
ATH_TID_INSERT_HEAD(atid, bf, bf_list);
|
|
ath_tx_tid_sched(sc, atid);
|
|
/* Send the BAR if there are no other frames waiting */
|
|
if (ath_tx_tid_bar_tx_ready(sc, atid))
|
|
ath_tx_tid_bar_tx(sc, atid);
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Common code for aggregate excessive retry/subframe retry.
|
|
* If retrying, queues buffers to bf_q. If not, frees the
|
|
* buffers.
|
|
*
|
|
* XXX should unify this with ath_tx_aggr_retry_unaggr()
|
|
*/
|
|
static int
|
|
ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
|
|
ath_bufhead *bf_q)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/* XXX clr11naggr should be done for all subframes */
|
|
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
|
|
ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
|
|
|
|
/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
|
|
|
|
/*
|
|
* If the buffer is marked as busy, we can't directly
|
|
* reuse it. Instead, try to clone the buffer.
|
|
* If the clone is successful, recycle the old buffer.
|
|
* If the clone is unsuccessful, set bfs_retries to max
|
|
* to force the next bit of code to free the buffer
|
|
* for us.
|
|
*/
|
|
if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
|
|
(bf->bf_flags & ATH_BUF_BUSY)) {
|
|
struct ath_buf *nbf;
|
|
nbf = ath_tx_retry_clone(sc, an, atid, bf);
|
|
if (nbf)
|
|
/* bf has been freed at this point */
|
|
bf = nbf;
|
|
else
|
|
bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
|
|
}
|
|
|
|
if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
|
|
sc->sc_stats.ast_tx_swretrymax++;
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
|
|
"%s: max retries: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
if (!bf->bf_state.bfs_addedbaw)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
return 1;
|
|
}
|
|
|
|
ath_tx_set_retry(sc, bf);
|
|
sc->sc_stats.ast_tx_swretries++;
|
|
bf->bf_next = NULL; /* Just to make sure */
|
|
|
|
/* Clear the aggregate state */
|
|
bf->bf_state.bfs_aggr = 0;
|
|
bf->bf_state.bfs_ndelim = 0; /* ??? needed? */
|
|
bf->bf_state.bfs_nframes = 1;
|
|
|
|
TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* error pkt completion for an aggregate destination
|
|
*/
|
|
static void
|
|
ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
|
|
struct ath_tid *tid)
|
|
{
|
|
struct ieee80211_node *ni = bf_first->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_buf *bf_next, *bf;
|
|
ath_bufhead bf_q;
|
|
int drops = 0;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
ath_bufhead bf_cq;
|
|
|
|
TAILQ_INIT(&bf_q);
|
|
TAILQ_INIT(&bf_cq);
|
|
|
|
/*
|
|
* Update rate control - all frames have failed.
|
|
*/
|
|
ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
|
|
&bf_first->bf_status.ds_txstat,
|
|
bf_first->bf_state.bfs_al,
|
|
bf_first->bf_state.bfs_rc_maxpktlen,
|
|
bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
sc->sc_stats.ast_tx_aggr_failall++;
|
|
|
|
/* Retry all subframes */
|
|
bf = bf_first;
|
|
while (bf) {
|
|
bf_next = bf->bf_next;
|
|
bf->bf_next = NULL; /* Remove it from the aggr list */
|
|
sc->sc_stats.ast_tx_aggr_fail++;
|
|
if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
|
|
drops++;
|
|
bf->bf_next = NULL;
|
|
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
|
|
}
|
|
bf = bf_next;
|
|
}
|
|
|
|
/* Prepend all frames to the beginning of the queue */
|
|
while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
|
|
TAILQ_REMOVE(&bf_q, bf, bf_list);
|
|
ATH_TID_INSERT_HEAD(tid, bf, bf_list);
|
|
}
|
|
|
|
/*
|
|
* Schedule the TID to be re-tried.
|
|
*/
|
|
ath_tx_tid_sched(sc, tid);
|
|
|
|
/*
|
|
* send bar if we dropped any frames
|
|
*
|
|
* Keep the txq lock held for now, as we need to ensure
|
|
* that ni_txseqs[] is consistent (as it's being updated
|
|
* in the ifnet TX context or raw TX context.)
|
|
*/
|
|
if (drops) {
|
|
/* Suspend the TX queue and get ready to send the BAR */
|
|
ath_tx_tid_bar_suspend(sc, tid);
|
|
}
|
|
|
|
/*
|
|
* Send BAR if required
|
|
*/
|
|
if (ath_tx_tid_bar_tx_ready(sc, tid))
|
|
ath_tx_tid_bar_tx(sc, tid);
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/* Complete frames which errored out */
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle clean-up of packets from an aggregate list.
|
|
*
|
|
* There's no need to update the BAW here - the session is being
|
|
* torn down.
|
|
*/
|
|
static void
|
|
ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
|
|
{
|
|
struct ath_buf *bf, *bf_next;
|
|
struct ieee80211_node *ni = bf_first->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf_first->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
ATH_TX_LOCK(sc);
|
|
|
|
/* update incomp */
|
|
atid->incomp--;
|
|
|
|
/* Update the BAW */
|
|
bf = bf_first;
|
|
while (bf) {
|
|
/* XXX refactor! */
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
if (!bf->bf_state.bfs_addedbaw)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
}
|
|
bf = bf->bf_next;
|
|
}
|
|
|
|
if (atid->incomp == 0) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: TID %d: cleaned up! resume!\n",
|
|
__func__, tid);
|
|
atid->cleanup_inprogress = 0;
|
|
ath_tx_tid_resume(sc, atid);
|
|
}
|
|
|
|
/* Send BAR if required */
|
|
/* XXX why would we send a BAR when transitioning to non-aggregation? */
|
|
/*
|
|
* XXX TODO: we should likely just tear down the BAR state here,
|
|
* rather than sending a BAR.
|
|
*/
|
|
if (ath_tx_tid_bar_tx_ready(sc, atid))
|
|
ath_tx_tid_bar_tx(sc, atid);
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/* Handle frame completion as individual frames */
|
|
bf = bf_first;
|
|
while (bf) {
|
|
bf_next = bf->bf_next;
|
|
bf->bf_next = NULL;
|
|
ath_tx_default_comp(sc, bf, 1);
|
|
bf = bf_next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle completion of an set of aggregate frames.
|
|
*
|
|
* Note: the completion handler is the last descriptor in the aggregate,
|
|
* not the last descriptor in the first frame.
|
|
*/
|
|
static void
|
|
ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first,
|
|
int fail)
|
|
{
|
|
//struct ath_desc *ds = bf->bf_lastds;
|
|
struct ieee80211_node *ni = bf_first->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf_first->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ath_tx_status ts;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
ath_bufhead bf_q;
|
|
ath_bufhead bf_cq;
|
|
int seq_st, tx_ok;
|
|
int hasba, isaggr;
|
|
uint32_t ba[2];
|
|
struct ath_buf *bf, *bf_next;
|
|
int ba_index;
|
|
int drops = 0;
|
|
int nframes = 0, nbad = 0, nf;
|
|
int pktlen;
|
|
int agglen, rc_agglen;
|
|
/* XXX there's too much on the stack? */
|
|
struct ath_rc_series rc[ATH_RC_NUM];
|
|
int txseq;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
|
|
__func__, atid->hwq_depth);
|
|
|
|
/*
|
|
* Take a copy; this may be needed -after- bf_first
|
|
* has been completed and freed.
|
|
*/
|
|
ts = bf_first->bf_status.ds_txstat;
|
|
agglen = bf_first->bf_state.bfs_al;
|
|
rc_agglen = bf_first->bf_state.bfs_rc_maxpktlen;
|
|
|
|
TAILQ_INIT(&bf_q);
|
|
TAILQ_INIT(&bf_cq);
|
|
|
|
/* The TID state is kept behind the TXQ lock */
|
|
ATH_TX_LOCK(sc);
|
|
|
|
atid->hwq_depth--;
|
|
if (atid->hwq_depth < 0)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: hwq_depth < 0: %d\n",
|
|
__func__, atid->hwq_depth);
|
|
|
|
/*
|
|
* If the TID is filtered, handle completing the filter
|
|
* transition before potentially kicking it to the cleanup
|
|
* function.
|
|
*
|
|
* XXX this is duplicate work, ew.
|
|
*/
|
|
if (atid->isfiltered)
|
|
ath_tx_tid_filt_comp_complete(sc, atid);
|
|
|
|
/*
|
|
* Punt cleanup to the relevant function, not our problem now
|
|
*/
|
|
if (atid->cleanup_inprogress) {
|
|
if (atid->isfiltered)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: isfiltered=1, normal_comp?\n",
|
|
__func__);
|
|
ATH_TX_UNLOCK(sc);
|
|
ath_tx_comp_cleanup_aggr(sc, bf_first);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the frame is filtered, transition to filtered frame
|
|
* mode and add this to the filtered frame list.
|
|
*
|
|
* XXX TODO: figure out how this interoperates with
|
|
* BAR, pause and cleanup states.
|
|
*/
|
|
if ((ts.ts_status & HAL_TXERR_FILT) ||
|
|
(ts.ts_status != 0 && atid->isfiltered)) {
|
|
if (fail != 0)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: isfiltered=1, fail=%d\n", __func__, fail);
|
|
ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq);
|
|
|
|
/* Remove from BAW */
|
|
TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) {
|
|
if (bf->bf_state.bfs_addedbaw)
|
|
drops++;
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
if (!bf->bf_state.bfs_addedbaw)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__,
|
|
SEQNO(bf->bf_state.bfs_seqno));
|
|
}
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
}
|
|
/*
|
|
* If any intermediate frames in the BAW were dropped when
|
|
* handling filtering things, send a BAR.
|
|
*/
|
|
if (drops)
|
|
ath_tx_tid_bar_suspend(sc, atid);
|
|
|
|
/*
|
|
* Finish up by sending a BAR if required and freeing
|
|
* the frames outside of the TX lock.
|
|
*/
|
|
goto finish_send_bar;
|
|
}
|
|
|
|
/*
|
|
* XXX for now, use the first frame in the aggregate for
|
|
* XXX rate control completion; it's at least consistent.
|
|
*/
|
|
pktlen = bf_first->bf_state.bfs_pktlen;
|
|
|
|
/*
|
|
* Handle errors first!
|
|
*
|
|
* Here, handle _any_ error as a "exceeded retries" error.
|
|
* Later on (when filtered frames are to be specially handled)
|
|
* it'll have to be expanded.
|
|
*/
|
|
#if 0
|
|
if (ts.ts_status & HAL_TXERR_XRETRY) {
|
|
#endif
|
|
if (ts.ts_status != 0) {
|
|
ATH_TX_UNLOCK(sc);
|
|
ath_tx_comp_aggr_error(sc, bf_first, atid);
|
|
return;
|
|
}
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid);
|
|
|
|
/*
|
|
* extract starting sequence and block-ack bitmap
|
|
*/
|
|
/* XXX endian-ness of seq_st, ba? */
|
|
seq_st = ts.ts_seqnum;
|
|
hasba = !! (ts.ts_flags & HAL_TX_BA);
|
|
tx_ok = (ts.ts_status == 0);
|
|
isaggr = bf_first->bf_state.bfs_aggr;
|
|
ba[0] = ts.ts_ba_low;
|
|
ba[1] = ts.ts_ba_high;
|
|
|
|
/*
|
|
* Copy the TX completion status and the rate control
|
|
* series from the first descriptor, as it may be freed
|
|
* before the rate control code can get its grubby fingers
|
|
* into things.
|
|
*/
|
|
memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, "
|
|
"isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
|
|
__func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
|
|
isaggr, seq_st, hasba, ba[0], ba[1]);
|
|
|
|
/*
|
|
* The reference driver doesn't do this; it simply ignores
|
|
* this check in its entirety.
|
|
*
|
|
* I've seen this occur when using iperf to send traffic
|
|
* out tid 1 - the aggregate frames are all marked as TID 1,
|
|
* but the TXSTATUS has TID=0. So, let's just ignore this
|
|
* check.
|
|
*/
|
|
#if 0
|
|
/* Occasionally, the MAC sends a tx status for the wrong TID. */
|
|
if (tid != ts.ts_tid) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: tid %d != hw tid %d\n",
|
|
__func__, tid, ts.ts_tid);
|
|
tx_ok = 0;
|
|
}
|
|
#endif
|
|
|
|
/* AR5416 BA bug; this requires an interface reset */
|
|
if (isaggr && tx_ok && (! hasba)) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, "
|
|
"seq_st=%d\n",
|
|
__func__, hasba, tx_ok, isaggr, seq_st);
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
|
|
/* And as we can't really trust the BA here .. */
|
|
ba[0] = 0;
|
|
ba[1] = 0;
|
|
seq_st = 0;
|
|
#ifdef ATH_DEBUG
|
|
ath_printtxbuf(sc, bf_first,
|
|
sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Walk the list of frames, figure out which ones were correctly
|
|
* sent and which weren't.
|
|
*/
|
|
bf = bf_first;
|
|
nf = bf_first->bf_state.bfs_nframes;
|
|
|
|
/* bf_first is going to be invalid once this list is walked */
|
|
bf_first = NULL;
|
|
|
|
/*
|
|
* Walk the list of completed frames and determine
|
|
* which need to be completed and which need to be
|
|
* retransmitted.
|
|
*
|
|
* For completed frames, the completion functions need
|
|
* to be called at the end of this function as the last
|
|
* node reference may free the node.
|
|
*
|
|
* Finally, since the TXQ lock can't be held during the
|
|
* completion callback (to avoid lock recursion),
|
|
* the completion calls have to be done outside of the
|
|
* lock.
|
|
*/
|
|
while (bf) {
|
|
nframes++;
|
|
ba_index = ATH_BA_INDEX(seq_st,
|
|
SEQNO(bf->bf_state.bfs_seqno));
|
|
bf_next = bf->bf_next;
|
|
bf->bf_next = NULL; /* Remove it from the aggr list */
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: checking bf=%p seqno=%d; ack=%d\n",
|
|
__func__, bf, SEQNO(bf->bf_state.bfs_seqno),
|
|
ATH_BA_ISSET(ba, ba_index));
|
|
|
|
if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
|
|
sc->sc_stats.ast_tx_aggr_ok++;
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
if (!bf->bf_state.bfs_addedbaw)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
bf->bf_next = NULL;
|
|
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
|
|
} else {
|
|
sc->sc_stats.ast_tx_aggr_fail++;
|
|
if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
|
|
drops++;
|
|
bf->bf_next = NULL;
|
|
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
|
|
}
|
|
nbad++;
|
|
}
|
|
bf = bf_next;
|
|
}
|
|
|
|
/*
|
|
* Now that the BAW updates have been done, unlock
|
|
*
|
|
* txseq is grabbed before the lock is released so we
|
|
* have a consistent view of what -was- in the BAW.
|
|
* Anything after this point will not yet have been
|
|
* TXed.
|
|
*/
|
|
txseq = tap->txa_start;
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
if (nframes != nf)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: num frames seen=%d; bf nframes=%d\n",
|
|
__func__, nframes, nf);
|
|
|
|
/*
|
|
* Now we know how many frames were bad, call the rate
|
|
* control code.
|
|
*/
|
|
if (fail == 0) {
|
|
ath_tx_update_ratectrl(sc, ni, rc, &ts, agglen, rc_agglen,
|
|
nframes, nbad);
|
|
}
|
|
|
|
/*
|
|
* send bar if we dropped any frames
|
|
*/
|
|
if (drops) {
|
|
/* Suspend the TX queue and get ready to send the BAR */
|
|
ATH_TX_LOCK(sc);
|
|
ath_tx_tid_bar_suspend(sc, atid);
|
|
ATH_TX_UNLOCK(sc);
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: txa_start now %d\n", __func__, tap->txa_start);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
|
|
/* Prepend all frames to the beginning of the queue */
|
|
while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
|
|
TAILQ_REMOVE(&bf_q, bf, bf_list);
|
|
ATH_TID_INSERT_HEAD(atid, bf, bf_list);
|
|
}
|
|
|
|
/*
|
|
* Reschedule to grab some further frames.
|
|
*/
|
|
ath_tx_tid_sched(sc, atid);
|
|
|
|
/*
|
|
* If the queue is filtered, re-schedule as required.
|
|
*
|
|
* This is required as there may be a subsequent TX descriptor
|
|
* for this end-node that has CLRDMASK set, so it's quite possible
|
|
* that a filtered frame will be followed by a non-filtered
|
|
* (complete or otherwise) frame.
|
|
*
|
|
* XXX should we do this before we complete the frame?
|
|
*/
|
|
if (atid->isfiltered)
|
|
ath_tx_tid_filt_comp_complete(sc, atid);
|
|
|
|
finish_send_bar:
|
|
|
|
/*
|
|
* Send BAR if required
|
|
*/
|
|
if (ath_tx_tid_bar_tx_ready(sc, atid))
|
|
ath_tx_tid_bar_tx(sc, atid);
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/* Do deferred completion */
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle completion of unaggregated frames in an ADDBA
|
|
* session.
|
|
*
|
|
* Fail is set to 1 if the entry is being freed via a call to
|
|
* ath_tx_draintxq().
|
|
*/
|
|
static void
|
|
ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
|
|
{
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
int tid = bf->bf_state.bfs_tid;
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
struct ath_tx_status ts;
|
|
int drops = 0;
|
|
|
|
/*
|
|
* Take a copy of this; filtering/cloning the frame may free the
|
|
* bf pointer.
|
|
*/
|
|
ts = bf->bf_status.ds_txstat;
|
|
|
|
/*
|
|
* Update rate control status here, before we possibly
|
|
* punt to retry or cleanup.
|
|
*
|
|
* Do it outside of the TXQ lock.
|
|
*/
|
|
if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
|
|
ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
|
|
&bf->bf_status.ds_txstat,
|
|
bf->bf_state.bfs_pktlen,
|
|
bf->bf_state.bfs_pktlen,
|
|
1, (ts.ts_status == 0) ? 0 : 1);
|
|
|
|
/*
|
|
* This is called early so atid->hwq_depth can be tracked.
|
|
* This unfortunately means that it's released and regrabbed
|
|
* during retry and cleanup. That's rather inefficient.
|
|
*/
|
|
ATH_TX_LOCK(sc);
|
|
|
|
if (tid == IEEE80211_NONQOS_TID)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16!\n", __func__);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n",
|
|
__func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth,
|
|
SEQNO(bf->bf_state.bfs_seqno));
|
|
|
|
atid->hwq_depth--;
|
|
if (atid->hwq_depth < 0)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n",
|
|
__func__, atid->hwq_depth);
|
|
|
|
/*
|
|
* If the TID is filtered, handle completing the filter
|
|
* transition before potentially kicking it to the cleanup
|
|
* function.
|
|
*/
|
|
if (atid->isfiltered)
|
|
ath_tx_tid_filt_comp_complete(sc, atid);
|
|
|
|
/*
|
|
* If a cleanup is in progress, punt to comp_cleanup;
|
|
* rather than handling it here. It's thus their
|
|
* responsibility to clean up, call the completion
|
|
* function in net80211, etc.
|
|
*/
|
|
if (atid->cleanup_inprogress) {
|
|
if (atid->isfiltered)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: isfiltered=1, normal_comp?\n",
|
|
__func__);
|
|
ATH_TX_UNLOCK(sc);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n",
|
|
__func__);
|
|
ath_tx_comp_cleanup_unaggr(sc, bf);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* XXX TODO: how does cleanup, BAR and filtered frame handling
|
|
* overlap?
|
|
*
|
|
* If the frame is filtered OR if it's any failure but
|
|
* the TID is filtered, the frame must be added to the
|
|
* filtered frame list.
|
|
*
|
|
* However - a busy buffer can't be added to the filtered
|
|
* list as it will end up being recycled without having
|
|
* been made available for the hardware.
|
|
*/
|
|
if ((ts.ts_status & HAL_TXERR_FILT) ||
|
|
(ts.ts_status != 0 && atid->isfiltered)) {
|
|
int freeframe;
|
|
|
|
if (fail != 0)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: isfiltered=1, fail=%d\n",
|
|
__func__, fail);
|
|
freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf);
|
|
/*
|
|
* If freeframe=0 then bf is no longer ours; don't
|
|
* touch it.
|
|
*/
|
|
if (freeframe) {
|
|
/* Remove from BAW */
|
|
if (bf->bf_state.bfs_addedbaw)
|
|
drops++;
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
if (!bf->bf_state.bfs_addedbaw)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
}
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
}
|
|
|
|
/*
|
|
* If the frame couldn't be filtered, treat it as a drop and
|
|
* prepare to send a BAR.
|
|
*/
|
|
if (freeframe && drops)
|
|
ath_tx_tid_bar_suspend(sc, atid);
|
|
|
|
/*
|
|
* Send BAR if required
|
|
*/
|
|
if (ath_tx_tid_bar_tx_ready(sc, atid))
|
|
ath_tx_tid_bar_tx(sc, atid);
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
/*
|
|
* If freeframe is set, then the frame couldn't be
|
|
* cloned and bf is still valid. Just complete/free it.
|
|
*/
|
|
if (freeframe)
|
|
ath_tx_default_comp(sc, bf, fail);
|
|
|
|
return;
|
|
}
|
|
/*
|
|
* Don't bother with the retry check if all frames
|
|
* are being failed (eg during queue deletion.)
|
|
*/
|
|
#if 0
|
|
if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
|
|
#endif
|
|
if (fail == 0 && ts.ts_status != 0) {
|
|
ATH_TX_UNLOCK(sc);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n",
|
|
__func__);
|
|
ath_tx_aggr_retry_unaggr(sc, bf);
|
|
return;
|
|
}
|
|
|
|
/* Success? Complete */
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
|
|
__func__, tid, SEQNO(bf->bf_state.bfs_seqno));
|
|
if (bf->bf_state.bfs_dobaw) {
|
|
ath_tx_update_baw(sc, an, atid, bf);
|
|
bf->bf_state.bfs_dobaw = 0;
|
|
if (!bf->bf_state.bfs_addedbaw)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: wasn't added: seqno %d\n",
|
|
__func__, SEQNO(bf->bf_state.bfs_seqno));
|
|
}
|
|
|
|
/*
|
|
* If the queue is filtered, re-schedule as required.
|
|
*
|
|
* This is required as there may be a subsequent TX descriptor
|
|
* for this end-node that has CLRDMASK set, so it's quite possible
|
|
* that a filtered frame will be followed by a non-filtered
|
|
* (complete or otherwise) frame.
|
|
*
|
|
* XXX should we do this before we complete the frame?
|
|
*/
|
|
if (atid->isfiltered)
|
|
ath_tx_tid_filt_comp_complete(sc, atid);
|
|
|
|
/*
|
|
* Send BAR if required
|
|
*/
|
|
if (ath_tx_tid_bar_tx_ready(sc, atid))
|
|
ath_tx_tid_bar_tx(sc, atid);
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
ath_tx_default_comp(sc, bf, fail);
|
|
/* bf is freed at this point */
|
|
}
|
|
|
|
void
|
|
ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
|
|
{
|
|
if (bf->bf_state.bfs_aggr)
|
|
ath_tx_aggr_comp_aggr(sc, bf, fail);
|
|
else
|
|
ath_tx_aggr_comp_unaggr(sc, bf, fail);
|
|
}
|
|
|
|
/*
|
|
* Grab the software queue depth that we COULD transmit.
|
|
*
|
|
* This includes checks if it's in the BAW, whether it's a frame
|
|
* that is supposed to be in the BAW. Other checks could be done;
|
|
* but for now let's try and avoid doing the whole of ath_tx_form_aggr()
|
|
* here.
|
|
*/
|
|
static int
|
|
ath_tx_tid_swq_depth_bytes(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
int nbytes = 0;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
|
|
/*
|
|
* Iterate over each buffer and sum the pkt_len.
|
|
* Bail if we exceed ATH_AGGR_MAXSIZE bytes; we won't
|
|
* ever queue more than that in a single frame.
|
|
*/
|
|
TAILQ_FOREACH(bf, &tid->tid_q, bf_list) {
|
|
/*
|
|
* TODO: I'm not sure if we're going to hit cases where
|
|
* no frames get sent because the list is empty.
|
|
*/
|
|
|
|
/* Check if it's in the BAW */
|
|
if (tap != NULL && (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
|
|
SEQNO(bf->bf_state.bfs_seqno)))) {
|
|
break;
|
|
}
|
|
|
|
/* Check if it's even supposed to be in the BAW */
|
|
if (! bf->bf_state.bfs_dobaw) {
|
|
break;
|
|
}
|
|
|
|
nbytes += bf->bf_state.bfs_pktlen;
|
|
if (nbytes >= ATH_AGGR_MAXSIZE)
|
|
break;
|
|
|
|
/*
|
|
* Check if we're likely going to leak a frame
|
|
* as part of a PSPOLL. Break out at this point;
|
|
* we're only going to send a single frame anyway.
|
|
*/
|
|
if (an->an_leak_count) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return MIN(nbytes, ATH_AGGR_MAXSIZE);
|
|
}
|
|
|
|
/*
|
|
* Schedule some packets from the given node/TID to the hardware.
|
|
*
|
|
* This is the aggregate version.
|
|
*/
|
|
void
|
|
ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
|
|
struct ieee80211_tx_ampdu *tap;
|
|
ATH_AGGR_STATUS status;
|
|
ath_bufhead bf_q;
|
|
int swq_pktbytes;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* XXX TODO: If we're called for a queue that we're leaking frames to,
|
|
* ensure we only leak one.
|
|
*/
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid->tid);
|
|
|
|
if (tid->tid == IEEE80211_NONQOS_TID)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: called for TID=NONQOS_TID?\n", __func__);
|
|
|
|
for (;;) {
|
|
status = ATH_AGGR_DONE;
|
|
|
|
/*
|
|
* If the upper layer has paused the TID, don't
|
|
* queue any further packets.
|
|
*
|
|
* This can also occur from the completion task because
|
|
* of packet loss; but as its serialised with this code,
|
|
* it won't "appear" half way through queuing packets.
|
|
*/
|
|
if (! ath_tx_tid_can_tx_or_sched(sc, tid))
|
|
break;
|
|
|
|
bf = ATH_TID_FIRST(tid);
|
|
if (bf == NULL) {
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the packet doesn't fall within the BAW (eg a NULL
|
|
* data frame), schedule it directly; continue.
|
|
*/
|
|
if (! bf->bf_state.bfs_dobaw) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: non-baw packet\n",
|
|
__func__);
|
|
ATH_TID_REMOVE(tid, bf, bf_list);
|
|
|
|
if (bf->bf_state.bfs_nframes > 1)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX,
|
|
"%s: aggr=%d, nframes=%d\n",
|
|
__func__,
|
|
bf->bf_state.bfs_aggr,
|
|
bf->bf_state.bfs_nframes);
|
|
|
|
/*
|
|
* This shouldn't happen - such frames shouldn't
|
|
* ever have been queued as an aggregate in the
|
|
* first place. However, make sure the fields
|
|
* are correctly setup just to be totally sure.
|
|
*/
|
|
bf->bf_state.bfs_aggr = 0;
|
|
bf->bf_state.bfs_nframes = 1;
|
|
|
|
/* Update CLRDMASK just before this frame is queued */
|
|
ath_tx_update_clrdmask(sc, tid, bf);
|
|
|
|
ath_tx_do_ratelookup(sc, bf, tid->tid,
|
|
bf->bf_state.bfs_pktlen, false);
|
|
ath_tx_calc_duration(sc, bf);
|
|
ath_tx_calc_protection(sc, bf);
|
|
ath_tx_set_rtscts(sc, bf);
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
ath_tx_setds(sc, bf);
|
|
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
|
|
|
|
sc->sc_aggr_stats.aggr_nonbaw_pkt++;
|
|
|
|
/* Queue the packet; continue */
|
|
goto queuepkt;
|
|
}
|
|
|
|
TAILQ_INIT(&bf_q);
|
|
|
|
/*
|
|
* Loop over the swq to find out how long
|
|
* each packet is (up until 64k) and provide that
|
|
* to the rate control lookup.
|
|
*/
|
|
swq_pktbytes = ath_tx_tid_swq_depth_bytes(sc, an, tid);
|
|
ath_tx_do_ratelookup(sc, bf, tid->tid, swq_pktbytes, true);
|
|
|
|
/*
|
|
* Note this only is used for the fragment paths and
|
|
* should really be rethought out if we want to do
|
|
* things like an RTS burst across >1 aggregate.
|
|
*/
|
|
ath_tx_calc_duration(sc, bf);
|
|
ath_tx_calc_protection(sc, bf);
|
|
|
|
ath_tx_set_rtscts(sc, bf);
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
|
|
status = ath_tx_form_aggr(sc, an, tid, &bf_q);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: ath_tx_form_aggr() status=%d\n", __func__, status);
|
|
|
|
/*
|
|
* No frames to be picked up - out of BAW
|
|
*/
|
|
if (TAILQ_EMPTY(&bf_q))
|
|
break;
|
|
|
|
/*
|
|
* This assumes that the descriptor list in the ath_bufhead
|
|
* are already linked together via bf_next pointers.
|
|
*/
|
|
bf = TAILQ_FIRST(&bf_q);
|
|
|
|
if (status == ATH_AGGR_8K_LIMITED)
|
|
sc->sc_aggr_stats.aggr_rts_aggr_limited++;
|
|
|
|
/*
|
|
* If it's the only frame send as non-aggregate
|
|
* assume that ath_tx_form_aggr() has checked
|
|
* whether it's in the BAW and added it appropriately.
|
|
*/
|
|
if (bf->bf_state.bfs_nframes == 1) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: single-frame aggregate\n", __func__);
|
|
|
|
/* Update CLRDMASK just before this frame is queued */
|
|
ath_tx_update_clrdmask(sc, tid, bf);
|
|
|
|
bf->bf_state.bfs_aggr = 0;
|
|
bf->bf_state.bfs_ndelim = 0;
|
|
ath_tx_setds(sc, bf);
|
|
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
|
|
if (status == ATH_AGGR_BAW_CLOSED)
|
|
sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
|
|
else
|
|
sc->sc_aggr_stats.aggr_single_pkt++;
|
|
} else {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
|
|
"%s: multi-frame aggregate: %d frames, "
|
|
"length %d\n",
|
|
__func__, bf->bf_state.bfs_nframes,
|
|
bf->bf_state.bfs_al);
|
|
bf->bf_state.bfs_aggr = 1;
|
|
sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
|
|
sc->sc_aggr_stats.aggr_aggr_pkt++;
|
|
|
|
/* Update CLRDMASK just before this frame is queued */
|
|
ath_tx_update_clrdmask(sc, tid, bf);
|
|
|
|
/*
|
|
* Calculate the duration/protection as required.
|
|
*/
|
|
ath_tx_calc_duration(sc, bf);
|
|
ath_tx_calc_protection(sc, bf);
|
|
|
|
/*
|
|
* Update the rate and rtscts information based on the
|
|
* rate decision made by the rate control code;
|
|
* the first frame in the aggregate needs it.
|
|
*/
|
|
ath_tx_set_rtscts(sc, bf);
|
|
|
|
/*
|
|
* Setup the relevant descriptor fields
|
|
* for aggregation. The first descriptor
|
|
* already points to the rest in the chain.
|
|
*/
|
|
ath_tx_setds_11n(sc, bf);
|
|
}
|
|
queuepkt:
|
|
/* Set completion handler, multi-frame aggregate or not */
|
|
bf->bf_comp = ath_tx_aggr_comp;
|
|
|
|
if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16?\n", __func__);
|
|
|
|
/*
|
|
* Update leak count and frame config if were leaking frames.
|
|
*
|
|
* XXX TODO: it should update all frames in an aggregate
|
|
* correctly!
|
|
*/
|
|
ath_tx_leak_count_update(sc, tid, bf);
|
|
|
|
/* Punt to txq */
|
|
ath_tx_handoff(sc, txq, bf);
|
|
|
|
/* Track outstanding buffer count to hardware */
|
|
/* aggregates are "one" buffer */
|
|
tid->hwq_depth++;
|
|
|
|
/*
|
|
* Break out if ath_tx_form_aggr() indicated
|
|
* there can't be any further progress (eg BAW is full.)
|
|
* Checking for an empty txq is done above.
|
|
*
|
|
* XXX locking on txq here?
|
|
*/
|
|
/* XXX TXQ locking */
|
|
if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr ||
|
|
(status == ATH_AGGR_BAW_CLOSED ||
|
|
status == ATH_AGGR_LEAK_CLOSED))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Schedule some packets from the given node/TID to the hardware.
|
|
*
|
|
* XXX TODO: this routine doesn't enforce the maximum TXQ depth.
|
|
* It just dumps frames into the TXQ. We should limit how deep
|
|
* the transmit queue can grow for frames dispatched to the given
|
|
* TXQ.
|
|
*
|
|
* To avoid locking issues, either we need to own the TXQ lock
|
|
* at this point, or we need to pass in the maximum frame count
|
|
* from the caller.
|
|
*/
|
|
void
|
|
ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
|
|
struct ath_tid *tid)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
|
|
__func__, an, tid->tid);
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/* Check - is AMPDU pending or running? then print out something */
|
|
if (ath_tx_ampdu_pending(sc, an, tid->tid))
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu pending?\n",
|
|
__func__, tid->tid);
|
|
if (ath_tx_ampdu_running(sc, an, tid->tid))
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu running?\n",
|
|
__func__, tid->tid);
|
|
|
|
for (;;) {
|
|
/*
|
|
* If the upper layers have paused the TID, don't
|
|
* queue any further packets.
|
|
*
|
|
* XXX if we are leaking frames, make sure we decrement
|
|
* that counter _and_ we continue here.
|
|
*/
|
|
if (! ath_tx_tid_can_tx_or_sched(sc, tid))
|
|
break;
|
|
|
|
bf = ATH_TID_FIRST(tid);
|
|
if (bf == NULL) {
|
|
break;
|
|
}
|
|
|
|
ATH_TID_REMOVE(tid, bf, bf_list);
|
|
|
|
/* Sanity check! */
|
|
if (tid->tid != bf->bf_state.bfs_tid) {
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bfs_tid %d !="
|
|
" tid %d\n", __func__, bf->bf_state.bfs_tid,
|
|
tid->tid);
|
|
}
|
|
/* Normal completion handler */
|
|
bf->bf_comp = ath_tx_normal_comp;
|
|
|
|
/*
|
|
* Override this for now, until the non-aggregate
|
|
* completion handler correctly handles software retransmits.
|
|
*/
|
|
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
|
|
|
|
/* Update CLRDMASK just before this frame is queued */
|
|
ath_tx_update_clrdmask(sc, tid, bf);
|
|
|
|
/* Program descriptors + rate control */
|
|
ath_tx_do_ratelookup(sc, bf, tid->tid,
|
|
bf->bf_state.bfs_pktlen, false);
|
|
ath_tx_calc_duration(sc, bf);
|
|
ath_tx_calc_protection(sc, bf);
|
|
ath_tx_set_rtscts(sc, bf);
|
|
ath_tx_rate_fill_rcflags(sc, bf);
|
|
ath_tx_setds(sc, bf);
|
|
|
|
/*
|
|
* Update the current leak count if
|
|
* we're leaking frames; and set the
|
|
* MORE flag as appropriate.
|
|
*/
|
|
ath_tx_leak_count_update(sc, tid, bf);
|
|
|
|
/* Track outstanding buffer count to hardware */
|
|
/* aggregates are "one" buffer */
|
|
tid->hwq_depth++;
|
|
|
|
/* Punt to hardware or software txq */
|
|
ath_tx_handoff(sc, txq, bf);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Schedule some packets to the given hardware queue.
|
|
*
|
|
* This function walks the list of TIDs (ie, ath_node TIDs
|
|
* with queued traffic) and attempts to schedule traffic
|
|
* from them.
|
|
*
|
|
* TID scheduling is implemented as a FIFO, with TIDs being
|
|
* added to the end of the queue after some frames have been
|
|
* scheduled.
|
|
*/
|
|
void
|
|
ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_tid *tid, *next, *last;
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* For non-EDMA chips, aggr frames that have been built are
|
|
* in axq_aggr_depth, whether they've been scheduled or not.
|
|
* There's no FIFO, so txq->axq_depth is what's been scheduled
|
|
* to the hardware.
|
|
*
|
|
* For EDMA chips, we do it in two stages. The existing code
|
|
* builds a list of frames to go to the hardware and the EDMA
|
|
* code turns it into a single entry to push into the FIFO.
|
|
* That way we don't take up one packet per FIFO slot.
|
|
* We do push one aggregate per FIFO slot though, just to keep
|
|
* things simple.
|
|
*
|
|
* The FIFO depth is what's in the hardware; the txq->axq_depth
|
|
* is what's been scheduled to the FIFO.
|
|
*
|
|
* fifo.axq_depth is the number of frames (or aggregates) pushed
|
|
* into the EDMA FIFO. For multi-frame lists, this is the number
|
|
* of frames pushed in.
|
|
* axq_fifo_depth is the number of FIFO slots currently busy.
|
|
*/
|
|
|
|
/* For EDMA and non-EDMA, check built/scheduled against aggr limit */
|
|
if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr) {
|
|
sc->sc_aggr_stats.aggr_sched_nopkt++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* For non-EDMA chips, axq_depth is the "what's scheduled to
|
|
* the hardware list". For EDMA it's "What's built for the hardware"
|
|
* and fifo.axq_depth is how many frames have been dispatched
|
|
* already to the hardware.
|
|
*/
|
|
if (txq->axq_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_nonaggr) {
|
|
sc->sc_aggr_stats.aggr_sched_nopkt++;
|
|
return;
|
|
}
|
|
|
|
last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
|
|
|
|
TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
|
|
/*
|
|
* Suspend paused queues here; they'll be resumed
|
|
* once the addba completes or times out.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
|
|
__func__, tid->tid, tid->paused);
|
|
ath_tx_tid_unsched(sc, tid);
|
|
/*
|
|
* This node may be in power-save and we're leaking
|
|
* a frame; be careful.
|
|
*/
|
|
if (! ath_tx_tid_can_tx_or_sched(sc, tid)) {
|
|
goto loop_done;
|
|
}
|
|
if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
|
|
ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
|
|
else
|
|
ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
|
|
|
|
/* Not empty? Re-schedule */
|
|
if (tid->axq_depth != 0)
|
|
ath_tx_tid_sched(sc, tid);
|
|
|
|
/*
|
|
* Give the software queue time to aggregate more
|
|
* packets. If we aren't running aggregation then
|
|
* we should still limit the hardware queue depth.
|
|
*/
|
|
/* XXX TXQ locking */
|
|
if (txq->axq_aggr_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_aggr) {
|
|
break;
|
|
}
|
|
if (txq->axq_depth >= sc->sc_hwq_limit_nonaggr) {
|
|
break;
|
|
}
|
|
loop_done:
|
|
/*
|
|
* If this was the last entry on the original list, stop.
|
|
* Otherwise nodes that have been rescheduled onto the end
|
|
* of the TID FIFO list will just keep being rescheduled.
|
|
*
|
|
* XXX What should we do about nodes that were paused
|
|
* but are pending a leaking frame in response to a ps-poll?
|
|
* They'll be put at the front of the list; so they'll
|
|
* prematurely trigger this condition! Ew.
|
|
*/
|
|
if (tid == last)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* TX addba handling
|
|
*/
|
|
|
|
/*
|
|
* Return net80211 TID struct pointer, or NULL for none
|
|
*/
|
|
struct ieee80211_tx_ampdu *
|
|
ath_tx_get_tx_tid(struct ath_node *an, int tid)
|
|
{
|
|
struct ieee80211_node *ni = &an->an_node;
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
if (tid == IEEE80211_NONQOS_TID)
|
|
return NULL;
|
|
|
|
tap = &ni->ni_tx_ampdu[tid];
|
|
return tap;
|
|
}
|
|
|
|
/*
|
|
* Is AMPDU-TX running?
|
|
*/
|
|
static int
|
|
ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
|
|
{
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
if (tid == IEEE80211_NONQOS_TID)
|
|
return 0;
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid);
|
|
if (tap == NULL)
|
|
return 0; /* Not valid; default to not running */
|
|
|
|
return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
|
|
}
|
|
|
|
/*
|
|
* Is AMPDU-TX negotiation pending?
|
|
*/
|
|
static int
|
|
ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
|
|
{
|
|
struct ieee80211_tx_ampdu *tap;
|
|
|
|
if (tid == IEEE80211_NONQOS_TID)
|
|
return 0;
|
|
|
|
tap = ath_tx_get_tx_tid(an, tid);
|
|
if (tap == NULL)
|
|
return 0; /* Not valid; default to not pending */
|
|
|
|
return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
|
|
}
|
|
|
|
/*
|
|
* Is AMPDU-TX pending for the given TID?
|
|
*/
|
|
|
|
/*
|
|
* Method to handle sending an ADDBA request.
|
|
*
|
|
* We tap this so the relevant flags can be set to pause the TID
|
|
* whilst waiting for the response.
|
|
*
|
|
* XXX there's no timeout handler we can override?
|
|
*/
|
|
int
|
|
ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
|
|
int dialogtoken, int baparamset, int batimeout)
|
|
{
|
|
struct ath_softc *sc = ni->ni_ic->ic_softc;
|
|
int tid = tap->txa_tid;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
/*
|
|
* XXX danger Will Robinson!
|
|
*
|
|
* Although the taskqueue may be running and scheduling some more
|
|
* packets, these should all be _before_ the addba sequence number.
|
|
* However, net80211 will keep self-assigning sequence numbers
|
|
* until addba has been negotiated.
|
|
*
|
|
* In the past, these packets would be "paused" (which still works
|
|
* fine, as they're being scheduled to the driver in the same
|
|
* serialised method which is calling the addba request routine)
|
|
* and when the aggregation session begins, they'll be dequeued
|
|
* as aggregate packets and added to the BAW. However, now there's
|
|
* a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
|
|
* packets. Thus they never get included in the BAW tracking and
|
|
* this can cause the initial burst of packets after the addba
|
|
* negotiation to "hang", as they quickly fall outside the BAW.
|
|
*
|
|
* The "eventual" solution should be to tag these packets with
|
|
* dobaw. Although net80211 has given us a sequence number,
|
|
* it'll be "after" the left edge of the BAW and thus it'll
|
|
* fall within it.
|
|
*/
|
|
ATH_TX_LOCK(sc);
|
|
/*
|
|
* This is a bit annoying. Until net80211 HT code inherits some
|
|
* (any) locking, we may have this called in parallel BUT only
|
|
* one response/timeout will be called. Grr.
|
|
*/
|
|
if (atid->addba_tx_pending == 0) {
|
|
ath_tx_tid_pause(sc, atid);
|
|
atid->addba_tx_pending = 1;
|
|
}
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: %6D: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
dialogtoken, baparamset, batimeout);
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: txa_start=%d, ni_txseqs=%d\n",
|
|
__func__, tap->txa_start, ni->ni_txseqs[tid]);
|
|
|
|
return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
|
|
batimeout);
|
|
}
|
|
|
|
/*
|
|
* Handle an ADDBA response.
|
|
*
|
|
* We unpause the queue so TX'ing can resume.
|
|
*
|
|
* Any packets TX'ed from this point should be "aggregate" (whether
|
|
* aggregate or not) so the BAW is updated.
|
|
*
|
|
* Note! net80211 keeps self-assigning sequence numbers until
|
|
* ampdu is negotiated. This means the initially-negotiated BAW left
|
|
* edge won't match the ni->ni_txseq.
|
|
*
|
|
* So, being very dirty, the BAW left edge is "slid" here to match
|
|
* ni->ni_txseq.
|
|
*
|
|
* What likely SHOULD happen is that all packets subsequent to the
|
|
* addba request should be tagged as aggregate and queued as non-aggregate
|
|
* frames; thus updating the BAW. For now though, I'll just slide the
|
|
* window.
|
|
*/
|
|
int
|
|
ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
|
|
int status, int code, int batimeout)
|
|
{
|
|
struct ath_softc *sc = ni->ni_ic->ic_softc;
|
|
int tid = tap->txa_tid;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
int r;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: %6D: called; status=%d, code=%d, batimeout=%d\n", __func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
status, code, batimeout);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: txa_start=%d, ni_txseqs=%d\n",
|
|
__func__, tap->txa_start, ni->ni_txseqs[tid]);
|
|
|
|
/*
|
|
* Call this first, so the interface flags get updated
|
|
* before the TID is unpaused. Otherwise a race condition
|
|
* exists where the unpaused TID still doesn't yet have
|
|
* IEEE80211_AGGR_RUNNING set.
|
|
*/
|
|
r = sc->sc_addba_response(ni, tap, status, code, batimeout);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
atid->addba_tx_pending = 0;
|
|
/*
|
|
* XXX dirty!
|
|
* Slide the BAW left edge to wherever net80211 left it for us.
|
|
* Read above for more information.
|
|
*/
|
|
tap->txa_start = ni->ni_txseqs[tid];
|
|
ath_tx_tid_resume(sc, atid);
|
|
ATH_TX_UNLOCK(sc);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Stop ADDBA on a queue.
|
|
*
|
|
* This can be called whilst BAR TX is currently active on the queue,
|
|
* so make sure this is unblocked before continuing.
|
|
*/
|
|
void
|
|
ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
|
|
{
|
|
struct ath_softc *sc = ni->ni_ic->ic_softc;
|
|
int tid = tap->txa_tid;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
ath_bufhead bf_cq;
|
|
struct ath_buf *bf;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: called\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":");
|
|
|
|
/*
|
|
* Pause TID traffic early, so there aren't any races
|
|
* Unblock the pending BAR held traffic, if it's currently paused.
|
|
*/
|
|
ATH_TX_LOCK(sc);
|
|
ath_tx_tid_pause(sc, atid);
|
|
if (atid->bar_wait) {
|
|
/*
|
|
* bar_unsuspend() expects bar_tx == 1, as it should be
|
|
* called from the TX completion path. This quietens
|
|
* the warning. It's cleared for us anyway.
|
|
*/
|
|
atid->bar_tx = 1;
|
|
ath_tx_tid_bar_unsuspend(sc, atid);
|
|
}
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/* There's no need to hold the TXQ lock here */
|
|
sc->sc_addba_stop(ni, tap);
|
|
|
|
/*
|
|
* ath_tx_tid_cleanup will resume the TID if possible, otherwise
|
|
* it'll set the cleanup flag, and it'll be unpaused once
|
|
* things have been cleaned up.
|
|
*/
|
|
TAILQ_INIT(&bf_cq);
|
|
ATH_TX_LOCK(sc);
|
|
|
|
/*
|
|
* In case there's a followup call to this, only call it
|
|
* if we don't have a cleanup in progress.
|
|
*
|
|
* Since we've paused the queue above, we need to make
|
|
* sure we unpause if there's already a cleanup in
|
|
* progress - it means something else is also doing
|
|
* this stuff, so we don't need to also keep it paused.
|
|
*/
|
|
if (atid->cleanup_inprogress) {
|
|
ath_tx_tid_resume(sc, atid);
|
|
} else {
|
|
ath_tx_tid_cleanup(sc, an, tid, &bf_cq);
|
|
/*
|
|
* Unpause the TID if no cleanup is required.
|
|
*/
|
|
if (! atid->cleanup_inprogress)
|
|
ath_tx_tid_resume(sc, atid);
|
|
}
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/* Handle completing frames and fail them */
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 1);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Handle a node reassociation.
|
|
*
|
|
* We may have a bunch of frames queued to the hardware; those need
|
|
* to be marked as cleanup.
|
|
*/
|
|
void
|
|
ath_tx_node_reassoc(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
struct ath_tid *tid;
|
|
int i;
|
|
ath_bufhead bf_cq;
|
|
struct ath_buf *bf;
|
|
|
|
TAILQ_INIT(&bf_cq);
|
|
|
|
ATH_TX_UNLOCK_ASSERT(sc);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
for (i = 0; i < IEEE80211_TID_SIZE; i++) {
|
|
tid = &an->an_tid[i];
|
|
if (tid->hwq_depth == 0)
|
|
continue;
|
|
DPRINTF(sc, ATH_DEBUG_NODE,
|
|
"%s: %6D: TID %d: cleaning up TID\n",
|
|
__func__,
|
|
an->an_node.ni_macaddr,
|
|
":",
|
|
i);
|
|
/*
|
|
* In case there's a followup call to this, only call it
|
|
* if we don't have a cleanup in progress.
|
|
*/
|
|
if (! tid->cleanup_inprogress) {
|
|
ath_tx_tid_pause(sc, tid);
|
|
ath_tx_tid_cleanup(sc, an, i, &bf_cq);
|
|
/*
|
|
* Unpause the TID if no cleanup is required.
|
|
*/
|
|
if (! tid->cleanup_inprogress)
|
|
ath_tx_tid_resume(sc, tid);
|
|
}
|
|
}
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/* Handle completing frames and fail them */
|
|
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
|
|
TAILQ_REMOVE(&bf_cq, bf, bf_list);
|
|
ath_tx_default_comp(sc, bf, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note: net80211 bar_timeout() doesn't call this function on BAR failure;
|
|
* it simply tears down the aggregation session. Ew.
|
|
*
|
|
* It however will call ieee80211_ampdu_stop() which will call
|
|
* ic->ic_addba_stop().
|
|
*
|
|
* XXX This uses a hard-coded max BAR count value; the whole
|
|
* XXX BAR TX success or failure should be better handled!
|
|
*/
|
|
void
|
|
ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
|
|
int status)
|
|
{
|
|
struct ath_softc *sc = ni->ni_ic->ic_softc;
|
|
int tid = tap->txa_tid;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
int attempts = tap->txa_attempts;
|
|
int old_txa_start;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: %6D: called; txa_tid=%d, atid->tid=%d, status=%d, attempts=%d, txa_start=%d, txa_seqpending=%d\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
tap->txa_tid,
|
|
atid->tid,
|
|
status,
|
|
attempts,
|
|
tap->txa_start,
|
|
tap->txa_seqpending);
|
|
|
|
/* Note: This may update the BAW details */
|
|
/*
|
|
* XXX What if this does slide the BAW along? We need to somehow
|
|
* XXX either fix things when it does happen, or prevent the
|
|
* XXX seqpending value to be anything other than exactly what
|
|
* XXX the hell we want!
|
|
*
|
|
* XXX So for now, how I do this inside the TX lock for now
|
|
* XXX and just correct it afterwards? The below condition should
|
|
* XXX never happen and if it does I need to fix all kinds of things.
|
|
*/
|
|
ATH_TX_LOCK(sc);
|
|
old_txa_start = tap->txa_start;
|
|
sc->sc_bar_response(ni, tap, status);
|
|
if (tap->txa_start != old_txa_start) {
|
|
device_printf(sc->sc_dev, "%s: tid=%d; txa_start=%d, old=%d, adjusting\n",
|
|
__func__,
|
|
tid,
|
|
tap->txa_start,
|
|
old_txa_start);
|
|
}
|
|
tap->txa_start = old_txa_start;
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/* Unpause the TID */
|
|
/*
|
|
* XXX if this is attempt=50, the TID will be downgraded
|
|
* XXX to a non-aggregate session. So we must unpause the
|
|
* XXX TID here or it'll never be done.
|
|
*
|
|
* Also, don't call it if bar_tx/bar_wait are 0; something
|
|
* has beaten us to the punch? (XXX figure out what?)
|
|
*/
|
|
if (status == 0 || attempts == 50) {
|
|
ATH_TX_LOCK(sc);
|
|
if (atid->bar_tx == 0 || atid->bar_wait == 0)
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
|
|
"%s: huh? bar_tx=%d, bar_wait=%d\n",
|
|
__func__,
|
|
atid->bar_tx, atid->bar_wait);
|
|
else
|
|
ath_tx_tid_bar_unsuspend(sc, atid);
|
|
ATH_TX_UNLOCK(sc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called whenever the pending ADDBA request times out.
|
|
* Unpause and reschedule the TID.
|
|
*/
|
|
void
|
|
ath_addba_response_timeout(struct ieee80211_node *ni,
|
|
struct ieee80211_tx_ampdu *tap)
|
|
{
|
|
struct ath_softc *sc = ni->ni_ic->ic_softc;
|
|
int tid = tap->txa_tid;
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ath_tid *atid = &an->an_tid[tid];
|
|
|
|
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
|
|
"%s: %6D: TID=%d, called; resuming\n",
|
|
__func__,
|
|
ni->ni_macaddr,
|
|
":",
|
|
tid);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
atid->addba_tx_pending = 0;
|
|
ATH_TX_UNLOCK(sc);
|
|
|
|
/* Note: This updates the aggregate state to (again) pending */
|
|
sc->sc_addba_response_timeout(ni, tap);
|
|
|
|
/* Unpause the TID; which reschedules it */
|
|
ATH_TX_LOCK(sc);
|
|
ath_tx_tid_resume(sc, atid);
|
|
ATH_TX_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Check if a node is asleep or not.
|
|
*/
|
|
int
|
|
ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
|
|
ATH_TX_LOCK_ASSERT(sc);
|
|
|
|
return (an->an_is_powersave);
|
|
}
|
|
|
|
/*
|
|
* Mark a node as currently "in powersaving."
|
|
* This suspends all traffic on the node.
|
|
*
|
|
* This must be called with the node/tx locks free.
|
|
*
|
|
* XXX TODO: the locking silliness below is due to how the node
|
|
* locking currently works. Right now, the node lock is grabbed
|
|
* to do rate control lookups and these are done with the TX
|
|
* queue lock held. This means the node lock can't be grabbed
|
|
* first here or a LOR will occur.
|
|
*
|
|
* Eventually (hopefully!) the TX path code will only grab
|
|
* the TXQ lock when transmitting and the ath_node lock when
|
|
* doing node/TID operations. There are other complications -
|
|
* the sched/unsched operations involve walking the per-txq
|
|
* 'active tid' list and this requires both locks to be held.
|
|
*/
|
|
void
|
|
ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
struct ath_tid *atid;
|
|
struct ath_txq *txq;
|
|
int tid;
|
|
|
|
ATH_TX_UNLOCK_ASSERT(sc);
|
|
|
|
/* Suspend all traffic on the node */
|
|
ATH_TX_LOCK(sc);
|
|
|
|
if (an->an_is_powersave) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: %6D: node was already asleep!\n",
|
|
__func__, an->an_node.ni_macaddr, ":");
|
|
ATH_TX_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
|
|
atid = &an->an_tid[tid];
|
|
txq = sc->sc_ac2q[atid->ac];
|
|
|
|
ath_tx_tid_pause(sc, atid);
|
|
}
|
|
|
|
/* Mark node as in powersaving */
|
|
an->an_is_powersave = 1;
|
|
|
|
ATH_TX_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Mark a node as currently "awake."
|
|
* This resumes all traffic to the node.
|
|
*/
|
|
void
|
|
ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
struct ath_tid *atid;
|
|
struct ath_txq *txq;
|
|
int tid;
|
|
|
|
ATH_TX_UNLOCK_ASSERT(sc);
|
|
|
|
ATH_TX_LOCK(sc);
|
|
|
|
/* !? */
|
|
if (an->an_is_powersave == 0) {
|
|
ATH_TX_UNLOCK(sc);
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: an=%p: node was already awake\n",
|
|
__func__, an);
|
|
return;
|
|
}
|
|
|
|
/* Mark node as awake */
|
|
an->an_is_powersave = 0;
|
|
/*
|
|
* Clear any pending leaked frame requests
|
|
*/
|
|
an->an_leak_count = 0;
|
|
|
|
for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
|
|
atid = &an->an_tid[tid];
|
|
txq = sc->sc_ac2q[atid->ac];
|
|
|
|
ath_tx_tid_resume(sc, atid);
|
|
}
|
|
ATH_TX_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
ath_legacy_dma_txsetup(struct ath_softc *sc)
|
|
{
|
|
|
|
/* nothing new needed */
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ath_legacy_dma_txteardown(struct ath_softc *sc)
|
|
{
|
|
|
|
/* nothing new needed */
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ath_xmit_setup_legacy(struct ath_softc *sc)
|
|
{
|
|
/*
|
|
* For now, just set the descriptor length to sizeof(ath_desc);
|
|
* worry about extracting the real length out of the HAL later.
|
|
*/
|
|
sc->sc_tx_desclen = sizeof(struct ath_desc);
|
|
sc->sc_tx_statuslen = sizeof(struct ath_desc);
|
|
sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */
|
|
|
|
sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup;
|
|
sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown;
|
|
sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func;
|
|
|
|
sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart;
|
|
sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff;
|
|
|
|
sc->sc_tx.xmit_drain = ath_legacy_tx_drain;
|
|
}
|