freebsd-dev/sys/dev/uart/uart_kbd_sun.c
John Baldwin e0f66ef861 Reorganize the interrupt handling code a bit to make a few things cleaner
and increase flexibility to allow various different approaches to be tried
in the future.
- Split struct ithd up into two pieces.  struct intr_event holds the list
  of interrupt handlers associated with interrupt sources.
  struct intr_thread contains the data relative to an interrupt thread.
  Currently we still provide a 1:1 relationship of events to threads
  with the exception that events only have an associated thread if there
  is at least one threaded interrupt handler attached to the event.  This
  means that on x86 we no longer have 4 bazillion interrupt threads with
  no handlers.  It also means that interrupt events with only INTR_FAST
  handlers no longer have an associated thread either.
- Renamed struct intrhand to struct intr_handler to follow the struct
  intr_foo naming convention.  This did require renaming the powerpc
  MD struct intr_handler to struct ppc_intr_handler.
- INTR_FAST no longer implies INTR_EXCL on all architectures except for
  powerpc.  This means that multiple INTR_FAST handlers can attach to the
  same interrupt and that INTR_FAST and non-INTR_FAST handlers can attach
  to the same interrupt.  Sharing INTR_FAST handlers may not always be
  desirable, but having sio(4) and uhci(4) fight over an IRQ isn't fun
  either.  Drivers can always still use INTR_EXCL to ask for an interrupt
  exclusively.  The way this sharing works is that when an interrupt
  comes in, all the INTR_FAST handlers are executed first, and if any
  threaded handlers exist, the interrupt thread is scheduled afterwards.
  This type of layout also makes it possible to investigate using interrupt
  filters ala OS X where the filter determines whether or not its companion
  threaded handler should run.
- Aside from the INTR_FAST changes above, the impact on MD interrupt code
  is mostly just 's/ithread/intr_event/'.
- A new MI ddb command 'show intrs' walks the list of interrupt events
  dumping their state.  It also has a '/v' verbose switch which dumps
  info about all of the handlers attached to each event.
- We currently don't destroy an interrupt thread when the last threaded
  handler is removed because it would suck for things like ppbus(8)'s
  braindead behavior.  The code is present, though, it is just under
  #if 0 for now.
- Move the code to actually execute the threaded handlers for an interrrupt
  event into a separate function so that ithread_loop() becomes more
  readable.  Previously this code was all in the middle of ithread_loop()
  and indented halfway across the screen.
- Made struct intr_thread private to kern_intr.c and replaced td_ithd
  with a thread private flag TDP_ITHREAD.
- In statclock, check curthread against idlethread directly rather than
  curthread's proc against idlethread's proc. (Not really related to intr
  changes)

Tested on:	alpha, amd64, i386, sparc64
Tested on:	arm, ia64 (older version of patch by cognet and marcel)
2005-10-25 19:48:48 +00:00

558 lines
13 KiB
C

/*-
* Copyright (c) 2003 Jake Burkholder.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_kbd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kbio.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/ktr.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/kbd/kbdreg.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_bus.h>
#include <dev/uart/uart_cpu.h>
#include <dev/uart/uart_kbd_sun.h>
#include <dev/uart/uart_kbd_sun_tables.h>
#include "uart_if.h"
#define SUNKBD_BUF_SIZE 128
#define TODO printf("%s: unimplemented", __func__)
struct sunkbd_softc {
keyboard_t sc_kbd;
struct uart_softc *sc_uart;
struct uart_devinfo *sc_sysdev;
struct callout sc_repeat_callout;
int sc_repeat_key;
int sc_accents;
int sc_mode;
int sc_polling;
int sc_repeating;
int sc_state;
};
static int sunkbd_configure(int flags);
static int sunkbd_probe_keyboard(struct uart_devinfo *di);
static int sunkbd_probe(int unit, void *arg, int flags);
static int sunkbd_init(int unit, keyboard_t **kbdp, void *arg, int flags);
static int sunkbd_term(keyboard_t *kbd);
static int sunkbd_intr(keyboard_t *kbd, void *arg);
static int sunkbd_test_if(keyboard_t *kbd);
static int sunkbd_enable(keyboard_t *kbd);
static int sunkbd_disable(keyboard_t *kbd);
static int sunkbd_read(keyboard_t *kbd, int wait);
static int sunkbd_check(keyboard_t *kbd);
static u_int sunkbd_read_char(keyboard_t *kbd, int wait);
static int sunkbd_check_char(keyboard_t *kbd);
static int sunkbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t data);
static int sunkbd_lock(keyboard_t *kbd, int lock);
static void sunkbd_clear_state(keyboard_t *kbd);
static int sunkbd_get_state(keyboard_t *kbd, void *buf, size_t len);
static int sunkbd_set_state(keyboard_t *kbd, void *buf, size_t len);
static int sunkbd_poll_mode(keyboard_t *kbd, int on);
static void sunkbd_diag(keyboard_t *kbd, int level);
static void sunkbd_repeat(void *v);
static keyboard_switch_t sunkbdsw = {
sunkbd_probe,
sunkbd_init,
sunkbd_term,
sunkbd_intr,
sunkbd_test_if,
sunkbd_enable,
sunkbd_disable,
sunkbd_read,
sunkbd_check,
sunkbd_read_char,
sunkbd_check_char,
sunkbd_ioctl,
sunkbd_lock,
sunkbd_clear_state,
sunkbd_get_state,
sunkbd_set_state,
genkbd_get_fkeystr,
sunkbd_poll_mode,
sunkbd_diag
};
KEYBOARD_DRIVER(sunkbd, sunkbdsw, sunkbd_configure);
static struct sunkbd_softc sunkbd_softc;
static struct uart_devinfo uart_keyboard;
static fkeytab_t fkey_tab[96] = {
/* 01-04 */ {"\033[M", 3}, {"\033[N", 3}, {"\033[O", 3}, {"\033[P", 3},
/* 05-08 */ {"\033[Q", 3}, {"\033[R", 3}, {"\033[S", 3}, {"\033[T", 3},
/* 09-12 */ {"\033[U", 3}, {"\033[V", 3}, {"\033[W", 3}, {"\033[X", 3},
/* 13-16 */ {"\033[Y", 3}, {"\033[Z", 3}, {"\033[a", 3}, {"\033[b", 3},
/* 17-20 */ {"\033[c", 3}, {"\033[d", 3}, {"\033[e", 3}, {"\033[f", 3},
/* 21-24 */ {"\033[g", 3}, {"\033[h", 3}, {"\033[i", 3}, {"\033[j", 3},
/* 25-28 */ {"\033[k", 3}, {"\033[l", 3}, {"\033[m", 3}, {"\033[n", 3},
/* 29-32 */ {"\033[o", 3}, {"\033[p", 3}, {"\033[q", 3}, {"\033[r", 3},
/* 33-36 */ {"\033[s", 3}, {"\033[t", 3}, {"\033[u", 3}, {"\033[v", 3},
/* 37-40 */ {"\033[w", 3}, {"\033[x", 3}, {"\033[y", 3}, {"\033[z", 3},
/* 41-44 */ {"\033[@", 3}, {"\033[[", 3}, {"\033[\\",3}, {"\033[]", 3},
/* 45-48 */ {"\033[^", 3}, {"\033[_", 3}, {"\033[`", 3}, {"\033[{", 3},
/* 49-52 */ {"\033[H", 3}, {"\033[A", 3}, {"\033[I", 3}, {"-" , 1},
/* 53-56 */ {"\033[D", 3}, {"\033[E", 3}, {"\033[C", 3}, {"+" , 1},
/* 57-60 */ {"\033[F", 3}, {"\033[B", 3}, {"\033[G", 3}, {"\033[L", 3},
/* 61-64 */ {"\177", 1}, {"\033[J", 3}, {"\033[~", 3}, {"\033[}", 3},
/* 65-68 */ {"", 0} , {"", 0} , {"", 0} , {"", 0} ,
/* 69-72 */ {"", 0} , {"", 0} , {"", 0} , {"", 0} ,
/* 73-76 */ {"", 0} , {"", 0} , {"", 0} , {"", 0} ,
/* 77-80 */ {"", 0} , {"", 0} , {"", 0} , {"", 0} ,
/* 81-84 */ {"", 0} , {"", 0} , {"", 0} , {"", 0} ,
/* 85-88 */ {"", 0} , {"", 0} , {"", 0} , {"", 0} ,
/* 89-92 */ {"", 0} , {"", 0} , {"", 0} , {"", 0} ,
/* 93-96 */ {"", 0} , {"", 0} , {"", 0} , {"", 0}
};
static int
sunkbd_probe_keyboard(struct uart_devinfo *di)
{
int tries;
for (tries = 5; tries != 0; tries--) {
int ltries;
uart_putc(di, SKBD_CMD_RESET);
for (ltries = 1000; ltries != 0; ltries--) {
if (uart_poll(di) == SKBD_RSP_RESET)
break;
DELAY(1000);
}
if (ltries == 0)
continue;
for (ltries = 1000; ltries != 0; ltries--) {
if (uart_poll(di) == SKBD_RSP_IDLE)
break;
DELAY(1000);
}
if (ltries == 0)
continue;
uart_putc(di, SKBD_CMD_LAYOUT);
if (uart_getc(di) != SKBD_RSP_LAYOUT)
break;
return (uart_getc(di));
}
return (-1);
}
static int sunkbd_attach(struct uart_softc *sc);
static void sunkbd_uart_intr(void *arg);
static int
sunkbd_configure(int flags)
{
struct sunkbd_softc *sc;
/*
* We are only prepared to be used for the high-level console
* when the keyboard is both configured and attached.
*/
if (!(flags & KB_CONF_PROBE_ONLY)) {
if (KBD_IS_INITIALIZED(&sunkbd_softc.sc_kbd))
goto found;
else
return (0);
}
if (uart_cpu_getdev(UART_DEV_KEYBOARD, &uart_keyboard))
return (0);
if (uart_probe(&uart_keyboard))
return (0);
uart_init(&uart_keyboard);
uart_keyboard.type = UART_DEV_KEYBOARD;
uart_keyboard.attach = sunkbd_attach;
uart_add_sysdev(&uart_keyboard);
if (sunkbd_probe_keyboard(&uart_keyboard) == -1)
return (0);
sc = &sunkbd_softc;
callout_init(&sc->sc_repeat_callout, 0);
sc->sc_repeat_key = -1;
sc->sc_repeating = 0;
kbd_init_struct(&sc->sc_kbd, "sunkbd", KB_OTHER, 0, 0, 0, 0);
kbd_set_maps(&sc->sc_kbd, &keymap_sun_us_unix_kbd,
&accentmap_sun_us_unix_kbd, fkey_tab,
sizeof(fkey_tab) / sizeof(fkey_tab[0]));
sc->sc_mode = K_XLATE;
kbd_register(&sc->sc_kbd);
sc->sc_sysdev = &uart_keyboard;
found:
/* Return number of found keyboards. */
return (1);
}
static int
sunkbd_attach(struct uart_softc *sc)
{
/*
* Don't attach if we didn't probe the keyboard. Note that
* the UART is still marked as a system device in that case.
*/
if (sunkbd_softc.sc_sysdev == NULL) {
device_printf(sc->sc_dev, "keyboard not present\n");
return (0);
}
if (sc->sc_sysdev != NULL) {
sunkbd_softc.sc_uart = sc;
#ifdef KBD_INSTALL_CDEV
kbd_attach(&sunkbd_softc.sc_kbd);
#endif
sunkbd_enable(&sunkbd_softc.sc_kbd);
swi_add(&tty_intr_event, uart_driver_name, sunkbd_uart_intr,
&sunkbd_softc, SWI_TTY, INTR_TYPE_TTY, &sc->sc_softih);
sc->sc_opened = 1;
KBD_INIT_DONE(&sunkbd_softc.sc_kbd);
}
return (0);
}
static void
sunkbd_uart_intr(void *arg)
{
struct sunkbd_softc *sc = arg;
int pend;
if (sc->sc_uart->sc_leaving)
return;
pend = atomic_readandclear_32(&sc->sc_uart->sc_ttypend);
if (!(pend & UART_IPEND_MASK))
return;
if (pend & UART_IPEND_RXREADY) {
if (KBD_IS_ACTIVE(&sc->sc_kbd) && KBD_IS_BUSY(&sc->sc_kbd)) {
sc->sc_kbd.kb_callback.kc_func(&sc->sc_kbd,
KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg);
}
}
}
static int
sunkbd_probe(int unit, void *arg, int flags)
{
TODO;
return (0);
}
static int
sunkbd_init(int unit, keyboard_t **kbdp, void *arg, int flags)
{
TODO;
return (0);
}
static int
sunkbd_term(keyboard_t *kbd)
{
TODO;
return (0);
}
static int
sunkbd_intr(keyboard_t *kbd, void *arg)
{
TODO;
return (0);
}
static int
sunkbd_test_if(keyboard_t *kbd)
{
TODO;
return (0);
}
static int
sunkbd_enable(keyboard_t *kbd)
{
KBD_ACTIVATE(kbd);
return (0);
}
static int
sunkbd_disable(keyboard_t *kbd)
{
KBD_DEACTIVATE(kbd);
return (0);
}
static int
sunkbd_read(keyboard_t *kbd, int wait)
{
TODO;
return (0);
}
static int
sunkbd_check(keyboard_t *kbd)
{
TODO;
return (0);
}
static u_int
sunkbd_read_char(keyboard_t *kbd, int wait)
{
struct sunkbd_softc *sc;
int action;
int key;
sc = (struct sunkbd_softc *)kbd;
if (sc->sc_repeating) {
sc->sc_repeating = 0;
callout_reset(&sc->sc_repeat_callout, hz / 10,
sunkbd_repeat, sc);
key = sc->sc_repeat_key;
if (sc->sc_mode == K_RAW)
return (key);
else
return genkbd_keyaction(kbd, key & 0x7f, key & 0x80,
&sc->sc_state, &sc->sc_accents);
}
for (;;) {
/* XXX compose */
if (sc->sc_uart != NULL && !uart_rx_empty(sc->sc_uart)) {
key = uart_rx_get(sc->sc_uart);
} else if (sc->sc_polling != 0 && sc->sc_sysdev != NULL) {
if (wait)
key = uart_getc(sc->sc_sysdev);
else if ((key = uart_poll(sc->sc_sysdev)) == -1)
return (NOKEY);
} else {
return (NOKEY);
}
switch (key) {
case SKBD_RSP_IDLE:
break;
default:
++kbd->kb_count;
if ((key & 0x80) == 0) {
callout_reset(&sc->sc_repeat_callout, hz / 2,
sunkbd_repeat, sc);
sc->sc_repeat_key = key;
} else {
if (sc->sc_repeat_key == (key & 0x7f)) {
callout_stop(&sc->sc_repeat_callout);
sc->sc_repeat_key = -1;
}
}
if (sc->sc_mode == K_RAW)
return (key);
action = genkbd_keyaction(kbd, key & 0x7f, key & 0x80,
&sc->sc_state, &sc->sc_accents);
if (action != NOKEY)
return (action);
break;
}
}
return (0);
}
static int
sunkbd_check_char(keyboard_t *kbd)
{
TODO;
return (0);
}
static int
sunkbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t data)
{
struct sunkbd_softc *sc;
int error;
sc = (struct sunkbd_softc *)kbd;
error = 0;
switch (cmd) {
case KDGKBMODE:
*(int *)data = sc->sc_mode;
break;
case KDSKBMODE:
switch (*(int *)data) {
case K_XLATE:
if (sc->sc_mode != K_XLATE) {
/* make lock key state and LED state match */
sc->sc_state &= ~LOCK_MASK;
sc->sc_state |= KBD_LED_VAL(kbd);
}
/* FALLTHROUGH */
case K_RAW:
case K_CODE:
if (sc->sc_mode != *(int *)data) {
sunkbd_clear_state(kbd);
sc->sc_mode = *(int *)data;
}
break;
default:
error = EINVAL;
break;
}
break;
case KDGETLED:
*(int *)data = KBD_LED_VAL(kbd);
break;
case KDSETLED:
if (*(int *)data & ~LOCK_MASK) {
error = EINVAL;
break;
}
if (sc->sc_uart == NULL)
break;
sc->sc_uart->sc_txdatasz = 2;
sc->sc_uart->sc_txbuf[0] = SKBD_CMD_SETLED;
sc->sc_uart->sc_txbuf[1] = 0;
if (*(int *)data & CLKED)
sc->sc_uart->sc_txbuf[1] |= SKBD_LED_CAPSLOCK;
if (*(int *)data & NLKED)
sc->sc_uart->sc_txbuf[1] |= SKBD_LED_NUMLOCK;
if (*(int *)data & SLKED)
sc->sc_uart->sc_txbuf[1] |= SKBD_LED_SCROLLLOCK;
UART_TRANSMIT(sc->sc_uart);
KBD_LED_VAL(kbd) = *(int *)data;
break;
case KDGKBSTATE:
*(int *)data = sc->sc_state & LOCK_MASK;
break;
case KDSKBSTATE:
if (*(int *)data & ~LOCK_MASK) {
error = EINVAL;
break;
}
sc->sc_state &= ~LOCK_MASK;
sc->sc_state |= *(int *)data;
break;
case KDSETREPEAT:
case KDSETRAD:
break;
case PIO_KEYMAP:
case PIO_KEYMAPENT:
case PIO_DEADKEYMAP:
default:
return (genkbd_commonioctl(kbd, cmd, data));
}
return (error);
}
static int
sunkbd_lock(keyboard_t *kbd, int lock)
{
TODO;
return (0);
}
static void
sunkbd_clear_state(keyboard_t *kbd)
{
/* TODO; */
}
static int
sunkbd_get_state(keyboard_t *kbd, void *buf, size_t len)
{
TODO;
return (0);
}
static int
sunkbd_set_state(keyboard_t *kbd, void *buf, size_t len)
{
TODO;
return (0);
}
static int
sunkbd_poll_mode(keyboard_t *kbd, int on)
{
struct sunkbd_softc *sc;
sc = (struct sunkbd_softc *)kbd;
if (on)
sc->sc_polling++;
else
sc->sc_polling--;
return (0);
}
static void
sunkbd_diag(keyboard_t *kbd, int level)
{
TODO;
}
static void
sunkbd_repeat(void *v)
{
struct sunkbd_softc *sc = v;
if (sc->sc_repeat_key != -1) {
sc->sc_repeating = 1;
sc->sc_kbd.kb_callback.kc_func(&sc->sc_kbd,
KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg);
}
}