freebsd-dev/contrib/ofed/opensm/complib/cl_vector.c
Hans Petter Selasky d6b92ffa99 OFED user-space import and update for use with Linux-4.9 compatible RDMA
kernel APIs.

List of sources used:

1) rdma-core was cloned from "https://github.com/linux-rdma/rdma-core.git"
Top commit d65138ef93af30b3ea249f3a84aa6a24ba7f8a75

2) OpenSM was cloned from git://git.openfabrics.org/~halr/opensm.git
Top commit 85f841cf209f791c89a075048a907020e924528d

3) libibmad was cloned from "git://git.openfabrics.org/~iraweiny/libibmad.git"
Tag 1.3.13 with some additional patches from Mellanox.

4) infiniband-diags was cloned from "git://git.openfabrics.org/~iraweiny/infiniband-diags.git"
Tag 1.6.7 with some additional patches from Mellanox.

Added the required Makefiles for building and installing.

Sponsored by:	Mellanox Technologies
2017-08-02 16:00:30 +00:00

549 lines
13 KiB
C

/*
* Copyright (c) 2004-2006 Voltaire, Inc. All rights reserved.
* Copyright (c) 2002-2005 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 1996-2003 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
/*
* Abstract:
* This file contains ivector and isvector implementations.
*
*/
#if HAVE_CONFIG_H
# include <config.h>
#endif /* HAVE_CONFIG_H */
#include <stdlib.h>
#include <string.h>
#include <complib/cl_vector.h>
/*
* Define the maximum size for array pages in an cl_vector_t.
* This size is in objects, not bytes.
*/
#define SVEC_MAX_PAGE_SIZE 0x1000
/*
* cl_vector_copy_general
*
* Description:
* copy operator used when size of the user object doesn't fit one of the
* other optimized copy functions.
*
* Inputs:
* p_src - source for copy
*
* Outputs:
* p_dest - destination for copy
*
* Returns:
* None
*
*/
static void cl_vector_copy_general(OUT void *const p_dest,
IN const void *const p_src,
IN const size_t size)
{
memcpy(p_dest, p_src, size);
}
/*
* cl_vector_copy8
*
* Description:
* copy operator used when the user structure is only 8 bits long.
*
* Inputs:
* p_src - source for copy
*
* Outputs:
* p_dest - destination for copy
*
* Returns:
* None
*
*/
static void cl_vector_copy8(OUT void *const p_dest,
IN const void *const p_src, IN const size_t size)
{
CL_ASSERT(size == sizeof(uint8_t));
UNUSED_PARAM(size);
*(uint8_t *) p_dest = *(uint8_t *) p_src;
}
/*
* cl_vector_copy16
*
* Description:
* copy operator used when the user structure is only 16 bits long.
*
* Inputs:
* p_src - source for copy
*
* Outputs:
* p_dest - destination for copy
*
* Returns:
* None
*
*/
void cl_vector_copy16(OUT void *const p_dest,
IN const void *const p_src, IN const size_t size)
{
CL_ASSERT(size == sizeof(uint16_t));
UNUSED_PARAM(size);
*(uint16_t *) p_dest = *(uint16_t *) p_src;
}
/*
* cl_vector_copy32
*
* Description:
* copy operator used when the user structure is only 32 bits long.
*
* Inputs:
* p_src - source for copy
*
* Outputs:
* p_dest - destination for copy
*
* Returns:
* None
*
*/
void cl_vector_copy32(OUT void *const p_dest,
IN const void *const p_src, IN const size_t size)
{
CL_ASSERT(size == sizeof(uint32_t));
UNUSED_PARAM(size);
*(uint32_t *) p_dest = *(uint32_t *) p_src;
}
/*
* cl_vector_copy64
*
* Description:
* copy operator used when the user structure is only 64 bits long.
*
* Inputs:
* p_src - source for copy
*
* Outputs:
* p_dest - destination for copy
*
* Returns:
* None
*
*/
void cl_vector_copy64(OUT void *const p_dest,
IN const void *const p_src, IN const size_t size)
{
CL_ASSERT(size == sizeof(uint64_t));
UNUSED_PARAM(size);
*(uint64_t *) p_dest = *(uint64_t *) p_src;
}
void cl_vector_construct(IN cl_vector_t * const p_vector)
{
CL_ASSERT(p_vector);
memset(p_vector, 0, sizeof(cl_vector_t));
p_vector->state = CL_UNINITIALIZED;
}
cl_status_t cl_vector_init(IN cl_vector_t * const p_vector,
IN const size_t min_size, IN const size_t grow_size,
IN const size_t element_size,
IN cl_pfn_vec_init_t pfn_init OPTIONAL,
IN cl_pfn_vec_dtor_t pfn_dtor OPTIONAL,
IN const void *const context)
{
cl_status_t status = CL_SUCCESS;
CL_ASSERT(p_vector);
CL_ASSERT(element_size);
cl_vector_construct(p_vector);
p_vector->grow_size = grow_size;
p_vector->element_size = element_size;
p_vector->pfn_init = pfn_init;
p_vector->pfn_dtor = pfn_dtor;
p_vector->context = context;
/*
* Try to choose a smart copy operator
* someday, we could simply let the users pass one in
*/
switch (element_size) {
case sizeof(uint8_t):
p_vector->pfn_copy = cl_vector_copy8;
break;
case sizeof(uint16_t):
p_vector->pfn_copy = cl_vector_copy16;
break;
case sizeof(uint32_t):
p_vector->pfn_copy = cl_vector_copy32;
break;
case sizeof(uint64_t):
p_vector->pfn_copy = cl_vector_copy64;
break;
default:
p_vector->pfn_copy = cl_vector_copy_general;
break;
}
/*
* Set the state to initialized so that the call to set_size
* doesn't assert.
*/
p_vector->state = CL_INITIALIZED;
/* Initialize the allocation list */
cl_qlist_init(&p_vector->alloc_list);
/* get the storage needed by the user */
if (min_size) {
status = cl_vector_set_size(p_vector, min_size);
if (status != CL_SUCCESS)
cl_vector_destroy(p_vector);
}
return (status);
}
void cl_vector_destroy(IN cl_vector_t * const p_vector)
{
size_t i;
void *p_element;
CL_ASSERT(p_vector);
CL_ASSERT(cl_is_state_valid(p_vector->state));
/* Call the user's destructor for each element in the array. */
if (p_vector->state == CL_INITIALIZED) {
if (p_vector->pfn_dtor) {
for (i = 0; i < p_vector->size; i++) {
p_element = p_vector->p_ptr_array[i];
/* Sanity check! */
CL_ASSERT(p_element);
p_vector->pfn_dtor(p_element,
(void *)p_vector->context);
}
}
/* Deallocate the pages */
while (!cl_is_qlist_empty(&p_vector->alloc_list))
free(cl_qlist_remove_head(&p_vector->alloc_list));
/* Destroy the page vector. */
if (p_vector->p_ptr_array) {
free(p_vector->p_ptr_array);
p_vector->p_ptr_array = NULL;
}
}
p_vector->state = CL_UNINITIALIZED;
}
cl_status_t cl_vector_at(IN const cl_vector_t * const p_vector,
IN const size_t index, OUT void *const p_element)
{
CL_ASSERT(p_vector);
CL_ASSERT(p_vector->state == CL_INITIALIZED);
/* Range check */
if (index >= p_vector->size)
return (CL_INVALID_PARAMETER);
cl_vector_get(p_vector, index, p_element);
return (CL_SUCCESS);
}
cl_status_t cl_vector_set(IN cl_vector_t * const p_vector,
IN const size_t index, IN void *const p_element)
{
cl_status_t status;
void *p_dest;
CL_ASSERT(p_vector);
CL_ASSERT(p_vector->state == CL_INITIALIZED);
CL_ASSERT(p_element);
/* Determine if the vector has room for this element. */
if (index >= p_vector->size) {
/* Resize to accomodate the given index. */
status = cl_vector_set_size(p_vector, index + 1);
/* Check for failure on or before the given index. */
if ((status != CL_SUCCESS) && (p_vector->size < index))
return (status);
}
/* At this point, the array is guaranteed to be big enough */
p_dest = cl_vector_get_ptr(p_vector, index);
/* Sanity check! */
CL_ASSERT(p_dest);
/* Copy the data into the array */
p_vector->pfn_copy(p_dest, p_element, p_vector->element_size);
return (CL_SUCCESS);
}
cl_status_t cl_vector_set_capacity(IN cl_vector_t * const p_vector,
IN const size_t new_capacity)
{
size_t new_elements;
size_t alloc_size;
size_t i;
cl_list_item_t *p_buf;
void *p_new_ptr_array;
CL_ASSERT(p_vector);
CL_ASSERT(p_vector->state == CL_INITIALIZED);
/* Do we have to do anything here? */
if (new_capacity <= p_vector->capacity) {
/* Nope */
return (CL_SUCCESS);
}
/* Allocate our pointer array. */
p_new_ptr_array = malloc(new_capacity * sizeof(void *));
if (!p_new_ptr_array)
return (CL_INSUFFICIENT_MEMORY);
else
memset(p_new_ptr_array, 0, new_capacity * sizeof(void *));
if (p_vector->p_ptr_array) {
/* Copy the old pointer array into the new. */
memcpy(p_new_ptr_array, p_vector->p_ptr_array,
p_vector->capacity * sizeof(void *));
/* Free the old pointer array. */
free(p_vector->p_ptr_array);
}
/* Set the new array. */
p_vector->p_ptr_array = p_new_ptr_array;
/*
* We have to add capacity to the array. Determine how many
* elements to add.
*/
new_elements = new_capacity - p_vector->capacity;
/* Determine the allocation size for the new array elements. */
alloc_size = new_elements * p_vector->element_size;
p_buf = (cl_list_item_t *) malloc(alloc_size + sizeof(cl_list_item_t));
if (!p_buf)
return (CL_INSUFFICIENT_MEMORY);
else
memset(p_buf, 0, alloc_size + sizeof(cl_list_item_t));
cl_qlist_insert_tail(&p_vector->alloc_list, p_buf);
/* Advance the buffer pointer past the list item. */
p_buf++;
for (i = p_vector->capacity; i < new_capacity; i++) {
p_vector->p_ptr_array[i] = p_buf;
/* Move the buffer pointer to the next element. */
p_buf = (void *)(((uint8_t *) p_buf) + p_vector->element_size);
}
/* Update the vector with the new capactity. */
p_vector->capacity = new_capacity;
return (CL_SUCCESS);
}
cl_status_t cl_vector_set_size(IN cl_vector_t * const p_vector,
IN const size_t size)
{
cl_status_t status;
size_t new_capacity;
size_t index;
void *p_element;
CL_ASSERT(p_vector);
CL_ASSERT(p_vector->state == CL_INITIALIZED);
/* Check to see if the requested size is the same as the existing size. */
if (size == p_vector->size)
return (CL_SUCCESS);
/* Determine if the vector has room for this element. */
if (size >= p_vector->capacity) {
if (!p_vector->grow_size)
return (CL_INSUFFICIENT_MEMORY);
/* Calculate the new capacity, taking into account the grow size. */
new_capacity = size;
if (size % p_vector->grow_size) {
/* Round up to nearest grow_size boundary. */
new_capacity += p_vector->grow_size -
(size % p_vector->grow_size);
}
status = cl_vector_set_capacity(p_vector, new_capacity);
if (status != CL_SUCCESS)
return (status);
}
/* Are we growing the array and need to invoke an initializer callback? */
if (size > p_vector->size && p_vector->pfn_init) {
for (index = p_vector->size; index < size; index++) {
/* Get a pointer to this element */
p_element = cl_vector_get_ptr(p_vector, index);
/* Call the user's initializer and trap failures. */
status =
p_vector->pfn_init(p_element,
(void *)p_vector->context);
if (status != CL_SUCCESS) {
/* Call the destructor for this object */
if (p_vector->pfn_dtor)
p_vector->pfn_dtor(p_element,
(void *)p_vector->
context);
/* Return the failure status to the caller. */
return (status);
}
/* The array just grew by one element */
p_vector->size++;
}
} else if (p_vector->pfn_dtor) {
/* The array is shrinking and there is a destructor to invoke. */
for (index = size; index < p_vector->size; index++) {
/* compute the address of the new elements */
p_element = cl_vector_get_ptr(p_vector, index);
/* call the user's destructor */
p_vector->pfn_dtor(p_element,
(void *)p_vector->context);
}
}
p_vector->size = size;
return (CL_SUCCESS);
}
cl_status_t cl_vector_set_min_size(IN cl_vector_t * const p_vector,
IN const size_t min_size)
{
CL_ASSERT(p_vector);
CL_ASSERT(p_vector->state == CL_INITIALIZED);
if (min_size > p_vector->size) {
/* We have to resize the array */
return (cl_vector_set_size(p_vector, min_size));
}
/* We didn't have to do anything */
return (CL_SUCCESS);
}
void cl_vector_apply_func(IN const cl_vector_t * const p_vector,
IN cl_pfn_vec_apply_t pfn_callback,
IN const void *const context)
{
size_t i;
void *p_element;
CL_ASSERT(p_vector);
CL_ASSERT(p_vector->state == CL_INITIALIZED);
CL_ASSERT(pfn_callback);
for (i = 0; i < p_vector->size; i++) {
p_element = cl_vector_get_ptr(p_vector, i);
pfn_callback(i, p_element, (void *)context);
}
}
size_t cl_vector_find_from_start(IN const cl_vector_t * const p_vector,
IN cl_pfn_vec_find_t pfn_callback,
IN const void *const context)
{
size_t i;
void *p_element;
CL_ASSERT(p_vector);
CL_ASSERT(p_vector->state == CL_INITIALIZED);
CL_ASSERT(pfn_callback);
for (i = 0; i < p_vector->size; i++) {
p_element = cl_vector_get_ptr(p_vector, i);
/* Invoke the callback */
if (pfn_callback(i, p_element, (void *)context) == CL_SUCCESS)
break;
}
return (i);
}
size_t cl_vector_find_from_end(IN const cl_vector_t * const p_vector,
IN cl_pfn_vec_find_t pfn_callback,
IN const void *const context)
{
size_t i;
void *p_element;
CL_ASSERT(p_vector);
CL_ASSERT(p_vector->state == CL_INITIALIZED);
CL_ASSERT(pfn_callback);
i = p_vector->size;
while (i) {
/* Get a pointer to the element in the array. */
p_element = cl_vector_get_ptr(p_vector, --i);
CL_ASSERT(p_element);
/* Invoke the callback for the current element. */
if (pfn_callback(i, p_element, (void *)context) == CL_SUCCESS)
return (i);
}
return (p_vector->size);
}