af1f6e0673
and will bypass transfers for more than 8k. Blocks are invalidated after 2 seconds, so removable media should not confuse the cache. The 8k threshold is a compromise; all UFS transfers performed by libstand are 8k or less, so large file reads thrash the cache. However many filesystem metadata operations are also performed using 8k blocks, so using a lower threshold gives poor performance. Those of you with an eye for cache algorithms are welcome to tell me how badly this one sucks; you can start with the 'bcachestats' command which will print the contents of the cache and access statistics.
234 lines
6.9 KiB
C
234 lines
6.9 KiB
C
/*-
|
|
* Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $Id: main.c,v 1.13 1998/10/22 20:23:58 msmith Exp $
|
|
*/
|
|
|
|
/*
|
|
* MD bootstrap main() and assorted miscellaneous
|
|
* commands.
|
|
*/
|
|
|
|
#include <stand.h>
|
|
#include <string.h>
|
|
#include <machine/bootinfo.h>
|
|
#include <sys/reboot.h>
|
|
|
|
#include "bootstrap.h"
|
|
#include "libi386/libi386.h"
|
|
#include "btxv86.h"
|
|
|
|
/* Arguments passed in from the boot1/boot2 loader */
|
|
static struct
|
|
{
|
|
u_int32_t howto;
|
|
u_int32_t bootdev;
|
|
u_int32_t res0;
|
|
u_int32_t res1;
|
|
u_int32_t res2;
|
|
u_int32_t bootinfo;
|
|
} *kargs;
|
|
|
|
static u_int32_t initial_howto;
|
|
static u_int32_t initial_bootdev;
|
|
static struct bootinfo *initial_bootinfo;
|
|
|
|
struct arch_switch archsw; /* MI/MD interface boundary */
|
|
|
|
static void extract_currdev(void);
|
|
static int isa_inb(int port);
|
|
static void isa_outb(int port, int value);
|
|
|
|
/* from vers.c */
|
|
extern char bootprog_name[], bootprog_rev[], bootprog_date[], bootprog_maker[];
|
|
|
|
/* XXX debugging */
|
|
extern char end[];
|
|
|
|
void
|
|
main(void)
|
|
{
|
|
int i;
|
|
|
|
/* Pick up arguments */
|
|
kargs = (void *)__args;
|
|
initial_howto = kargs->howto;
|
|
initial_bootdev = kargs->bootdev;
|
|
initial_bootinfo = (struct bootinfo *)PTOV(kargs->bootinfo);
|
|
|
|
/*
|
|
* Initialise the heap as early as possible. Once this is done, malloc() is usable.
|
|
*
|
|
* XXX better to locate end of memory and use that
|
|
*/
|
|
setheap((void *)end, (void *)(end + (384 * 1024)));
|
|
|
|
/*
|
|
* XXX Chicken-and-egg problem; we want to have console output early, but some
|
|
* console attributes may depend on reading from eg. the boot device, which we
|
|
* can't do yet.
|
|
*
|
|
* We can use printf() etc. once this is done.
|
|
* If the previous boot stage has requested a serial console, prefer that.
|
|
*/
|
|
if (initial_howto & RB_SERIAL)
|
|
setenv("console", "comconsole", 1);
|
|
cons_probe();
|
|
|
|
/*
|
|
* Initialise the block cache
|
|
*/
|
|
bcache_init(32, 512); /* 16k cache XXX tune this */
|
|
|
|
/*
|
|
* March through the device switch probing for things.
|
|
*/
|
|
for (i = 0; devsw[i] != NULL; i++)
|
|
if (devsw[i]->dv_init != NULL)
|
|
(devsw[i]->dv_init)();
|
|
|
|
printf("\n");
|
|
printf("%s, Revision %s %d/%dkB\n", bootprog_name, bootprog_rev, getbasemem(), getextmem());
|
|
printf("(%s, %s)\n", bootprog_maker, bootprog_date);
|
|
|
|
extract_currdev(); /* set $currdev and $loaddev */
|
|
setenv("LINES", "24", 1); /* optional */
|
|
|
|
archsw.arch_autoload = i386_autoload;
|
|
archsw.arch_getdev = i386_getdev;
|
|
archsw.arch_copyin = i386_copyin;
|
|
archsw.arch_copyout = i386_copyout;
|
|
archsw.arch_readin = i386_readin;
|
|
archsw.arch_isainb = isa_inb;
|
|
archsw.arch_isaoutb = isa_outb;
|
|
|
|
interact(); /* doesn't return */
|
|
}
|
|
|
|
/*
|
|
* Set the 'current device' by (if possible) recovering the boot device as
|
|
* supplied by the initial bootstrap.
|
|
*
|
|
* XXX should be extended for netbooting.
|
|
*/
|
|
static void
|
|
extract_currdev(void)
|
|
{
|
|
struct i386_devdesc currdev;
|
|
int major, biosdev;
|
|
|
|
/* We're booting from a BIOS disk, try to spiff this */
|
|
currdev.d_dev = devsw[0]; /* XXX presumes that biosdisk is first in devsw */
|
|
currdev.d_type = currdev.d_dev->dv_type;
|
|
|
|
if ((initial_bootdev & B_MAGICMASK) != B_DEVMAGIC) {
|
|
/* The passed-in boot device is bad */
|
|
currdev.d_kind.biosdisk.slice = -1;
|
|
currdev.d_kind.biosdisk.partition = 0;
|
|
biosdev = -1;
|
|
} else {
|
|
currdev.d_kind.biosdisk.slice = (B_ADAPTOR(initial_bootdev) << 4) + B_CONTROLLER(initial_bootdev) - 1;
|
|
currdev.d_kind.biosdisk.partition = B_PARTITION(initial_bootdev);
|
|
biosdev = initial_bootinfo->bi_bios_dev;
|
|
major = B_TYPE(initial_bootdev);
|
|
|
|
/*
|
|
* If we are booted by an old bootstrap, we have to guess at the BIOS
|
|
* unit number. We will loose if there is more than one disk type
|
|
* and we are not booting from the lowest-numbered disk type
|
|
* (ie. SCSI when IDE also exists).
|
|
*/
|
|
if ((biosdev == 0) && (B_TYPE(initial_bootdev) != 2)) /* biosdev doesn't match major */
|
|
biosdev = 0x80 + B_UNIT(initial_bootdev); /* assume harddisk */
|
|
}
|
|
|
|
if ((currdev.d_kind.biosdisk.unit = bd_bios2unit(biosdev)) == -1) {
|
|
printf("Can't work out which disk we are booting from.\n"
|
|
"Guessed BIOS device 0x%x not found by probes, defaulting to disk0:\n", biosdev);
|
|
currdev.d_kind.biosdisk.unit = 0;
|
|
}
|
|
env_setenv("currdev", EV_VOLATILE, i386_fmtdev(&currdev), i386_setcurrdev, env_nounset);
|
|
env_setenv("loaddev", EV_VOLATILE, i386_fmtdev(&currdev), env_noset, env_nounset);
|
|
}
|
|
|
|
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
|
|
|
|
static int
|
|
command_reboot(int argc, char *argv[])
|
|
{
|
|
|
|
printf("Rebooting...\n");
|
|
delay(1000000);
|
|
__exit(0);
|
|
}
|
|
|
|
/* provide this for panic, as it's not in the startup code */
|
|
void
|
|
exit(int code)
|
|
{
|
|
__exit(code);
|
|
}
|
|
|
|
COMMAND_SET(heap, "heap", "show heap usage", command_heap);
|
|
|
|
static int
|
|
command_heap(int argc, char *argv[])
|
|
{
|
|
mallocstats();
|
|
printf("heap base at %p, top at %p\n", end, sbrk(0));
|
|
return(CMD_OK);
|
|
}
|
|
|
|
/* ISA bus access functions for PnP, derived from <machine/cpufunc.h> */
|
|
static int
|
|
isa_inb(int port)
|
|
{
|
|
u_char data;
|
|
|
|
if (__builtin_constant_p(port) &&
|
|
(((port) & 0xffff) < 0x100) &&
|
|
((port) < 0x10000)) {
|
|
__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
|
|
} else {
|
|
__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
|
|
}
|
|
return(data);
|
|
}
|
|
|
|
static void
|
|
isa_outb(int port, int value)
|
|
{
|
|
u_char al = value;
|
|
|
|
if (__builtin_constant_p(port) &&
|
|
(((port) & 0xffff) < 0x100) &&
|
|
((port) < 0x10000)) {
|
|
__asm __volatile("outb %0,%1" : : "a" (al), "id" ((u_short)(port)));
|
|
} else {
|
|
__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
|
|
}
|
|
}
|
|
|