6627 lines
176 KiB
C
6627 lines
176 KiB
C
/* Subroutines used for code generation on IBM S/390 and zSeries
|
||
Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
|
||
Contributed by Hartmut Penner (hpenner@de.ibm.com) and
|
||
Ulrich Weigand (uweigand@de.ibm.com).
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "tm_p.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "output.h"
|
||
#include "insn-attr.h"
|
||
#include "flags.h"
|
||
#include "except.h"
|
||
#include "function.h"
|
||
#include "recog.h"
|
||
#include "expr.h"
|
||
#include "reload.h"
|
||
#include "toplev.h"
|
||
#include "basic-block.h"
|
||
#include "integrate.h"
|
||
#include "ggc.h"
|
||
#include "target.h"
|
||
#include "target-def.h"
|
||
#include "debug.h"
|
||
#include "langhooks.h"
|
||
#include "optabs.h"
|
||
|
||
static bool s390_assemble_integer PARAMS ((rtx, unsigned int, int));
|
||
static int s390_adjust_cost PARAMS ((rtx, rtx, rtx, int));
|
||
static int s390_adjust_priority PARAMS ((rtx, int));
|
||
static void s390_select_rtx_section PARAMS ((enum machine_mode, rtx,
|
||
unsigned HOST_WIDE_INT));
|
||
static void s390_encode_section_info PARAMS ((tree, int));
|
||
static const char *s390_strip_name_encoding PARAMS ((const char *));
|
||
static bool s390_cannot_force_const_mem PARAMS ((rtx));
|
||
static void s390_init_builtins PARAMS ((void));
|
||
static rtx s390_expand_builtin PARAMS ((tree, rtx, rtx,
|
||
enum machine_mode, int));
|
||
static void s390_output_mi_thunk PARAMS ((FILE *, tree, HOST_WIDE_INT,
|
||
HOST_WIDE_INT, tree));
|
||
|
||
#undef TARGET_ASM_ALIGNED_HI_OP
|
||
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
|
||
#undef TARGET_ASM_ALIGNED_DI_OP
|
||
#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
|
||
#undef TARGET_ASM_INTEGER
|
||
#define TARGET_ASM_INTEGER s390_assemble_integer
|
||
|
||
#undef TARGET_ASM_OPEN_PAREN
|
||
#define TARGET_ASM_OPEN_PAREN ""
|
||
|
||
#undef TARGET_ASM_CLOSE_PAREN
|
||
#define TARGET_ASM_CLOSE_PAREN ""
|
||
|
||
#undef TARGET_ASM_SELECT_RTX_SECTION
|
||
#define TARGET_ASM_SELECT_RTX_SECTION s390_select_rtx_section
|
||
|
||
#undef TARGET_SCHED_ADJUST_COST
|
||
#define TARGET_SCHED_ADJUST_COST s390_adjust_cost
|
||
|
||
#undef TARGET_SCHED_ADJUST_PRIORITY
|
||
#define TARGET_SCHED_ADJUST_PRIORITY s390_adjust_priority
|
||
|
||
#undef TARGET_ENCODE_SECTION_INFO
|
||
#define TARGET_ENCODE_SECTION_INFO s390_encode_section_info
|
||
#undef TARGET_STRIP_NAME_ENCODING
|
||
#define TARGET_STRIP_NAME_ENCODING s390_strip_name_encoding
|
||
|
||
#ifdef HAVE_AS_TLS
|
||
#undef TARGET_HAVE_TLS
|
||
#define TARGET_HAVE_TLS true
|
||
#endif
|
||
#undef TARGET_CANNOT_FORCE_CONST_MEM
|
||
#define TARGET_CANNOT_FORCE_CONST_MEM s390_cannot_force_const_mem
|
||
|
||
#undef TARGET_INIT_BUILTINS
|
||
#define TARGET_INIT_BUILTINS s390_init_builtins
|
||
#undef TARGET_EXPAND_BUILTIN
|
||
#define TARGET_EXPAND_BUILTIN s390_expand_builtin
|
||
|
||
#undef TARGET_ASM_OUTPUT_MI_THUNK
|
||
#define TARGET_ASM_OUTPUT_MI_THUNK s390_output_mi_thunk
|
||
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
|
||
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
|
||
|
||
struct gcc_target targetm = TARGET_INITIALIZER;
|
||
|
||
extern int reload_completed;
|
||
|
||
/* The alias set for prologue/epilogue register save/restore. */
|
||
static int s390_sr_alias_set = 0;
|
||
|
||
/* Save information from a "cmpxx" operation until the branch or scc is
|
||
emitted. */
|
||
rtx s390_compare_op0, s390_compare_op1;
|
||
|
||
/* The encoding characters for the four TLS models present in ELF. */
|
||
static char const tls_model_chars[] = " GLil";
|
||
|
||
/* Structure used to hold the components of a S/390 memory
|
||
address. A legitimate address on S/390 is of the general
|
||
form
|
||
base + index + displacement
|
||
where any of the components is optional.
|
||
|
||
base and index are registers of the class ADDR_REGS,
|
||
displacement is an unsigned 12-bit immediate constant. */
|
||
|
||
struct s390_address
|
||
{
|
||
rtx base;
|
||
rtx indx;
|
||
rtx disp;
|
||
int pointer;
|
||
};
|
||
|
||
/* Define the structure for the machine field in struct function. */
|
||
|
||
struct machine_function GTY(())
|
||
{
|
||
/* Label of start of initial literal pool. */
|
||
rtx literal_pool_label;
|
||
|
||
/* Set, if some of the fprs 8-15 need to be saved (64 bit abi). */
|
||
int save_fprs_p;
|
||
|
||
/* Number of first and last gpr to be saved, restored. */
|
||
int first_save_gpr;
|
||
int first_restore_gpr;
|
||
int last_save_gpr;
|
||
|
||
/* Size of stack frame. */
|
||
HOST_WIDE_INT frame_size;
|
||
|
||
/* Some local-dynamic TLS symbol name. */
|
||
const char *some_ld_name;
|
||
};
|
||
|
||
static int s390_match_ccmode_set PARAMS ((rtx, enum machine_mode));
|
||
static int s390_branch_condition_mask PARAMS ((rtx));
|
||
static const char *s390_branch_condition_mnemonic PARAMS ((rtx, int));
|
||
static int check_mode PARAMS ((rtx, enum machine_mode *));
|
||
static int general_s_operand PARAMS ((rtx, enum machine_mode, int));
|
||
static int s390_decompose_address PARAMS ((rtx, struct s390_address *));
|
||
static rtx get_thread_pointer PARAMS ((void));
|
||
static rtx legitimize_tls_address PARAMS ((rtx, rtx));
|
||
static const char *get_some_local_dynamic_name PARAMS ((void));
|
||
static int get_some_local_dynamic_name_1 PARAMS ((rtx *, void *));
|
||
static int reg_used_in_mem_p PARAMS ((int, rtx));
|
||
static int addr_generation_dependency_p PARAMS ((rtx, rtx));
|
||
static int s390_split_branches PARAMS ((rtx, bool *));
|
||
static void find_constant_pool_ref PARAMS ((rtx, rtx *));
|
||
static void replace_constant_pool_ref PARAMS ((rtx *, rtx, rtx));
|
||
static int find_base_register_in_addr PARAMS ((struct s390_address *));
|
||
static bool find_base_register_ref PARAMS ((rtx));
|
||
static void replace_base_register_ref PARAMS ((rtx *, rtx));
|
||
static void s390_optimize_prolog PARAMS ((int));
|
||
static bool s390_fixup_clobbered_return_reg PARAMS ((rtx));
|
||
static int find_unused_clobbered_reg PARAMS ((void));
|
||
static void s390_frame_info PARAMS ((void));
|
||
static rtx save_fpr PARAMS ((rtx, int, int));
|
||
static rtx restore_fpr PARAMS ((rtx, int, int));
|
||
static rtx save_gprs PARAMS ((rtx, int, int, int));
|
||
static rtx restore_gprs PARAMS ((rtx, int, int, int));
|
||
static int s390_function_arg_size PARAMS ((enum machine_mode, tree));
|
||
static struct machine_function * s390_init_machine_status PARAMS ((void));
|
||
|
||
/* Return true if SET either doesn't set the CC register, or else
|
||
the source and destination have matching CC modes and that
|
||
CC mode is at least as constrained as REQ_MODE. */
|
||
|
||
static int
|
||
s390_match_ccmode_set (set, req_mode)
|
||
rtx set;
|
||
enum machine_mode req_mode;
|
||
{
|
||
enum machine_mode set_mode;
|
||
|
||
if (GET_CODE (set) != SET)
|
||
abort ();
|
||
|
||
if (GET_CODE (SET_DEST (set)) != REG || !CC_REGNO_P (REGNO (SET_DEST (set))))
|
||
return 1;
|
||
|
||
set_mode = GET_MODE (SET_DEST (set));
|
||
switch (set_mode)
|
||
{
|
||
case CCSmode:
|
||
case CCSRmode:
|
||
case CCUmode:
|
||
case CCURmode:
|
||
case CCLmode:
|
||
case CCL1mode:
|
||
case CCL2mode:
|
||
case CCT1mode:
|
||
case CCT2mode:
|
||
case CCT3mode:
|
||
if (req_mode != set_mode)
|
||
return 0;
|
||
break;
|
||
|
||
case CCZmode:
|
||
if (req_mode != CCSmode && req_mode != CCUmode && req_mode != CCTmode
|
||
&& req_mode != CCSRmode && req_mode != CCURmode)
|
||
return 0;
|
||
break;
|
||
|
||
case CCAPmode:
|
||
case CCANmode:
|
||
if (req_mode != CCAmode)
|
||
return 0;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
return (GET_MODE (SET_SRC (set)) == set_mode);
|
||
}
|
||
|
||
/* Return true if every SET in INSN that sets the CC register
|
||
has source and destination with matching CC modes and that
|
||
CC mode is at least as constrained as REQ_MODE.
|
||
If REQ_MODE is VOIDmode, always return false. */
|
||
|
||
int
|
||
s390_match_ccmode (insn, req_mode)
|
||
rtx insn;
|
||
enum machine_mode req_mode;
|
||
{
|
||
int i;
|
||
|
||
/* s390_tm_ccmode returns VOIDmode to indicate failure. */
|
||
if (req_mode == VOIDmode)
|
||
return 0;
|
||
|
||
if (GET_CODE (PATTERN (insn)) == SET)
|
||
return s390_match_ccmode_set (PATTERN (insn), req_mode);
|
||
|
||
if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
||
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
{
|
||
rtx set = XVECEXP (PATTERN (insn), 0, i);
|
||
if (GET_CODE (set) == SET)
|
||
if (!s390_match_ccmode_set (set, req_mode))
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* If a test-under-mask instruction can be used to implement
|
||
(compare (and ... OP1) OP2), return the CC mode required
|
||
to do that. Otherwise, return VOIDmode.
|
||
MIXED is true if the instruction can distinguish between
|
||
CC1 and CC2 for mixed selected bits (TMxx), it is false
|
||
if the instruction cannot (TM). */
|
||
|
||
enum machine_mode
|
||
s390_tm_ccmode (op1, op2, mixed)
|
||
rtx op1;
|
||
rtx op2;
|
||
int mixed;
|
||
{
|
||
int bit0, bit1;
|
||
|
||
/* ??? Fixme: should work on CONST_DOUBLE as well. */
|
||
if (GET_CODE (op1) != CONST_INT || GET_CODE (op2) != CONST_INT)
|
||
return VOIDmode;
|
||
|
||
/* Selected bits all zero: CC0. */
|
||
if (INTVAL (op2) == 0)
|
||
return CCTmode;
|
||
|
||
/* Selected bits all one: CC3. */
|
||
if (INTVAL (op2) == INTVAL (op1))
|
||
return CCT3mode;
|
||
|
||
/* Exactly two bits selected, mixed zeroes and ones: CC1 or CC2. */
|
||
if (mixed)
|
||
{
|
||
bit1 = exact_log2 (INTVAL (op2));
|
||
bit0 = exact_log2 (INTVAL (op1) ^ INTVAL (op2));
|
||
if (bit0 != -1 && bit1 != -1)
|
||
return bit0 > bit1 ? CCT1mode : CCT2mode;
|
||
}
|
||
|
||
return VOIDmode;
|
||
}
|
||
|
||
/* Given a comparison code OP (EQ, NE, etc.) and the operands
|
||
OP0 and OP1 of a COMPARE, return the mode to be used for the
|
||
comparison. */
|
||
|
||
enum machine_mode
|
||
s390_select_ccmode (code, op0, op1)
|
||
enum rtx_code code;
|
||
rtx op0;
|
||
rtx op1;
|
||
{
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
case NE:
|
||
if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& CONST_OK_FOR_LETTER_P (INTVAL (XEXP (op0, 1)), 'K'))
|
||
return CCAPmode;
|
||
if (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
|
||
|| GET_CODE (op1) == NEG)
|
||
return CCLmode;
|
||
|
||
if (GET_CODE (op0) == AND)
|
||
{
|
||
/* Check whether we can potentially do it via TM. */
|
||
enum machine_mode ccmode;
|
||
ccmode = s390_tm_ccmode (XEXP (op0, 1), op1, 1);
|
||
if (ccmode != VOIDmode)
|
||
{
|
||
/* Relax CCTmode to CCZmode to allow fall-back to AND
|
||
if that turns out to be beneficial. */
|
||
return ccmode == CCTmode ? CCZmode : ccmode;
|
||
}
|
||
}
|
||
|
||
if (register_operand (op0, HImode)
|
||
&& GET_CODE (op1) == CONST_INT
|
||
&& (INTVAL (op1) == -1 || INTVAL (op1) == 65535))
|
||
return CCT3mode;
|
||
if (register_operand (op0, QImode)
|
||
&& GET_CODE (op1) == CONST_INT
|
||
&& (INTVAL (op1) == -1 || INTVAL (op1) == 255))
|
||
return CCT3mode;
|
||
|
||
return CCZmode;
|
||
|
||
case LE:
|
||
case LT:
|
||
case GE:
|
||
case GT:
|
||
if (GET_CODE (op0) == PLUS && GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& CONST_OK_FOR_LETTER_P (INTVAL (XEXP (op0, 1)), 'K'))
|
||
{
|
||
if (INTVAL (XEXP((op0), 1)) < 0)
|
||
return CCANmode;
|
||
else
|
||
return CCAPmode;
|
||
}
|
||
case UNORDERED:
|
||
case ORDERED:
|
||
case UNEQ:
|
||
case UNLE:
|
||
case UNLT:
|
||
case UNGE:
|
||
case UNGT:
|
||
case LTGT:
|
||
if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
|
||
&& GET_CODE (op1) != CONST_INT)
|
||
return CCSRmode;
|
||
return CCSmode;
|
||
|
||
case LTU:
|
||
case GEU:
|
||
if (GET_CODE (op0) == PLUS)
|
||
return CCL1mode;
|
||
|
||
if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
|
||
&& GET_CODE (op1) != CONST_INT)
|
||
return CCURmode;
|
||
return CCUmode;
|
||
|
||
case LEU:
|
||
case GTU:
|
||
if (GET_CODE (op0) == MINUS)
|
||
return CCL2mode;
|
||
|
||
if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND)
|
||
&& GET_CODE (op1) != CONST_INT)
|
||
return CCURmode;
|
||
return CCUmode;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Return branch condition mask to implement a branch
|
||
specified by CODE. */
|
||
|
||
static int
|
||
s390_branch_condition_mask (code)
|
||
rtx code;
|
||
{
|
||
const int CC0 = 1 << 3;
|
||
const int CC1 = 1 << 2;
|
||
const int CC2 = 1 << 1;
|
||
const int CC3 = 1 << 0;
|
||
|
||
if (GET_CODE (XEXP (code, 0)) != REG
|
||
|| REGNO (XEXP (code, 0)) != CC_REGNUM
|
||
|| XEXP (code, 1) != const0_rtx)
|
||
abort ();
|
||
|
||
switch (GET_MODE (XEXP (code, 0)))
|
||
{
|
||
case CCZmode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC0;
|
||
case NE: return CC1 | CC2 | CC3;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCT1mode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC1;
|
||
case NE: return CC0 | CC2 | CC3;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCT2mode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC2;
|
||
case NE: return CC0 | CC1 | CC3;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCT3mode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC3;
|
||
case NE: return CC0 | CC1 | CC2;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCLmode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC0 | CC2;
|
||
case NE: return CC1 | CC3;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCL1mode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case LTU: return CC2 | CC3; /* carry */
|
||
case GEU: return CC0 | CC1; /* no carry */
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCL2mode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case GTU: return CC0 | CC1; /* borrow */
|
||
case LEU: return CC2 | CC3; /* no borrow */
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCUmode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC0;
|
||
case NE: return CC1 | CC2 | CC3;
|
||
case LTU: return CC1;
|
||
case GTU: return CC2;
|
||
case LEU: return CC0 | CC1;
|
||
case GEU: return CC0 | CC2;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCURmode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC0;
|
||
case NE: return CC2 | CC1 | CC3;
|
||
case LTU: return CC2;
|
||
case GTU: return CC1;
|
||
case LEU: return CC0 | CC2;
|
||
case GEU: return CC0 | CC1;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCAPmode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC0;
|
||
case NE: return CC1 | CC2 | CC3;
|
||
case LT: return CC1 | CC3;
|
||
case GT: return CC2;
|
||
case LE: return CC0 | CC1 | CC3;
|
||
case GE: return CC0 | CC2;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCANmode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC0;
|
||
case NE: return CC1 | CC2 | CC3;
|
||
case LT: return CC1;
|
||
case GT: return CC2 | CC3;
|
||
case LE: return CC0 | CC1;
|
||
case GE: return CC0 | CC2 | CC3;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCSmode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC0;
|
||
case NE: return CC1 | CC2 | CC3;
|
||
case LT: return CC1;
|
||
case GT: return CC2;
|
||
case LE: return CC0 | CC1;
|
||
case GE: return CC0 | CC2;
|
||
case UNORDERED: return CC3;
|
||
case ORDERED: return CC0 | CC1 | CC2;
|
||
case UNEQ: return CC0 | CC3;
|
||
case UNLT: return CC1 | CC3;
|
||
case UNGT: return CC2 | CC3;
|
||
case UNLE: return CC0 | CC1 | CC3;
|
||
case UNGE: return CC0 | CC2 | CC3;
|
||
case LTGT: return CC1 | CC2;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case CCSRmode:
|
||
switch (GET_CODE (code))
|
||
{
|
||
case EQ: return CC0;
|
||
case NE: return CC2 | CC1 | CC3;
|
||
case LT: return CC2;
|
||
case GT: return CC1;
|
||
case LE: return CC0 | CC2;
|
||
case GE: return CC0 | CC1;
|
||
case UNORDERED: return CC3;
|
||
case ORDERED: return CC0 | CC2 | CC1;
|
||
case UNEQ: return CC0 | CC3;
|
||
case UNLT: return CC2 | CC3;
|
||
case UNGT: return CC1 | CC3;
|
||
case UNLE: return CC0 | CC2 | CC3;
|
||
case UNGE: return CC0 | CC1 | CC3;
|
||
case LTGT: return CC2 | CC1;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* If INV is false, return assembler mnemonic string to implement
|
||
a branch specified by CODE. If INV is true, return mnemonic
|
||
for the corresponding inverted branch. */
|
||
|
||
static const char *
|
||
s390_branch_condition_mnemonic (code, inv)
|
||
rtx code;
|
||
int inv;
|
||
{
|
||
static const char *const mnemonic[16] =
|
||
{
|
||
NULL, "o", "h", "nle",
|
||
"l", "nhe", "lh", "ne",
|
||
"e", "nlh", "he", "nl",
|
||
"le", "nh", "no", NULL
|
||
};
|
||
|
||
int mask = s390_branch_condition_mask (code);
|
||
|
||
if (inv)
|
||
mask ^= 15;
|
||
|
||
if (mask < 1 || mask > 14)
|
||
abort ();
|
||
|
||
return mnemonic[mask];
|
||
}
|
||
|
||
/* If OP is an integer constant of mode MODE with exactly one
|
||
HImode subpart unequal to DEF, return the number of that
|
||
subpart. As a special case, all HImode subparts of OP are
|
||
equal to DEF, return zero. Otherwise, return -1. */
|
||
|
||
int
|
||
s390_single_hi (op, mode, def)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
int def;
|
||
{
|
||
if (GET_CODE (op) == CONST_INT)
|
||
{
|
||
unsigned HOST_WIDE_INT value = 0;
|
||
int n_parts = GET_MODE_SIZE (mode) / 2;
|
||
int i, part = -1;
|
||
|
||
for (i = 0; i < n_parts; i++)
|
||
{
|
||
if (i == 0)
|
||
value = (unsigned HOST_WIDE_INT) INTVAL (op);
|
||
else
|
||
value >>= 16;
|
||
|
||
if ((value & 0xffff) != (unsigned)(def & 0xffff))
|
||
{
|
||
if (part != -1)
|
||
return -1;
|
||
else
|
||
part = i;
|
||
}
|
||
}
|
||
|
||
return part == -1 ? 0 : (n_parts - 1 - part);
|
||
}
|
||
|
||
else if (GET_CODE (op) == CONST_DOUBLE
|
||
&& GET_MODE (op) == VOIDmode)
|
||
{
|
||
unsigned HOST_WIDE_INT value = 0;
|
||
int n_parts = GET_MODE_SIZE (mode) / 2;
|
||
int i, part = -1;
|
||
|
||
for (i = 0; i < n_parts; i++)
|
||
{
|
||
if (i == 0)
|
||
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
|
||
else if (i == HOST_BITS_PER_WIDE_INT / 16)
|
||
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op);
|
||
else
|
||
value >>= 16;
|
||
|
||
if ((value & 0xffff) != (unsigned)(def & 0xffff))
|
||
{
|
||
if (part != -1)
|
||
return -1;
|
||
else
|
||
part = i;
|
||
}
|
||
}
|
||
|
||
return part == -1 ? 0 : (n_parts - 1 - part);
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Extract the HImode part number PART from integer
|
||
constant OP of mode MODE. */
|
||
|
||
int
|
||
s390_extract_hi (op, mode, part)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
int part;
|
||
{
|
||
int n_parts = GET_MODE_SIZE (mode) / 2;
|
||
if (part < 0 || part >= n_parts)
|
||
abort();
|
||
else
|
||
part = n_parts - 1 - part;
|
||
|
||
if (GET_CODE (op) == CONST_INT)
|
||
{
|
||
unsigned HOST_WIDE_INT value = (unsigned HOST_WIDE_INT) INTVAL (op);
|
||
return ((value >> (16 * part)) & 0xffff);
|
||
}
|
||
else if (GET_CODE (op) == CONST_DOUBLE
|
||
&& GET_MODE (op) == VOIDmode)
|
||
{
|
||
unsigned HOST_WIDE_INT value;
|
||
if (part < HOST_BITS_PER_WIDE_INT / 16)
|
||
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
|
||
else
|
||
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op),
|
||
part -= HOST_BITS_PER_WIDE_INT / 16;
|
||
|
||
return ((value >> (16 * part)) & 0xffff);
|
||
}
|
||
|
||
abort ();
|
||
}
|
||
|
||
/* If OP is an integer constant of mode MODE with exactly one
|
||
QImode subpart unequal to DEF, return the number of that
|
||
subpart. As a special case, all QImode subparts of OP are
|
||
equal to DEF, return zero. Otherwise, return -1. */
|
||
|
||
int
|
||
s390_single_qi (op, mode, def)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
int def;
|
||
{
|
||
if (GET_CODE (op) == CONST_INT)
|
||
{
|
||
unsigned HOST_WIDE_INT value = 0;
|
||
int n_parts = GET_MODE_SIZE (mode);
|
||
int i, part = -1;
|
||
|
||
for (i = 0; i < n_parts; i++)
|
||
{
|
||
if (i == 0)
|
||
value = (unsigned HOST_WIDE_INT) INTVAL (op);
|
||
else
|
||
value >>= 8;
|
||
|
||
if ((value & 0xff) != (unsigned)(def & 0xff))
|
||
{
|
||
if (part != -1)
|
||
return -1;
|
||
else
|
||
part = i;
|
||
}
|
||
}
|
||
|
||
return part == -1 ? 0 : (n_parts - 1 - part);
|
||
}
|
||
|
||
else if (GET_CODE (op) == CONST_DOUBLE
|
||
&& GET_MODE (op) == VOIDmode)
|
||
{
|
||
unsigned HOST_WIDE_INT value = 0;
|
||
int n_parts = GET_MODE_SIZE (mode);
|
||
int i, part = -1;
|
||
|
||
for (i = 0; i < n_parts; i++)
|
||
{
|
||
if (i == 0)
|
||
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
|
||
else if (i == HOST_BITS_PER_WIDE_INT / 8)
|
||
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op);
|
||
else
|
||
value >>= 8;
|
||
|
||
if ((value & 0xff) != (unsigned)(def & 0xff))
|
||
{
|
||
if (part != -1)
|
||
return -1;
|
||
else
|
||
part = i;
|
||
}
|
||
}
|
||
|
||
return part == -1 ? 0 : (n_parts - 1 - part);
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Extract the QImode part number PART from integer
|
||
constant OP of mode MODE. */
|
||
|
||
int
|
||
s390_extract_qi (op, mode, part)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
int part;
|
||
{
|
||
int n_parts = GET_MODE_SIZE (mode);
|
||
if (part < 0 || part >= n_parts)
|
||
abort();
|
||
else
|
||
part = n_parts - 1 - part;
|
||
|
||
if (GET_CODE (op) == CONST_INT)
|
||
{
|
||
unsigned HOST_WIDE_INT value = (unsigned HOST_WIDE_INT) INTVAL (op);
|
||
return ((value >> (8 * part)) & 0xff);
|
||
}
|
||
else if (GET_CODE (op) == CONST_DOUBLE
|
||
&& GET_MODE (op) == VOIDmode)
|
||
{
|
||
unsigned HOST_WIDE_INT value;
|
||
if (part < HOST_BITS_PER_WIDE_INT / 8)
|
||
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
|
||
else
|
||
value = (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (op),
|
||
part -= HOST_BITS_PER_WIDE_INT / 8;
|
||
|
||
return ((value >> (8 * part)) & 0xff);
|
||
}
|
||
|
||
abort ();
|
||
}
|
||
|
||
/* Check whether we can (and want to) split a double-word
|
||
move in mode MODE from SRC to DST into two single-word
|
||
moves, moving the subword FIRST_SUBWORD first. */
|
||
|
||
bool
|
||
s390_split_ok_p (dst, src, mode, first_subword)
|
||
rtx dst;
|
||
rtx src;
|
||
enum machine_mode mode;
|
||
int first_subword;
|
||
{
|
||
/* Floating point registers cannot be split. */
|
||
if (FP_REG_P (src) || FP_REG_P (dst))
|
||
return false;
|
||
|
||
/* We don't need to split if operands are directly accessable. */
|
||
if (s_operand (src, mode) || s_operand (dst, mode))
|
||
return false;
|
||
|
||
/* Non-offsettable memory references cannot be split. */
|
||
if ((GET_CODE (src) == MEM && !offsettable_memref_p (src))
|
||
|| (GET_CODE (dst) == MEM && !offsettable_memref_p (dst)))
|
||
return false;
|
||
|
||
/* Moving the first subword must not clobber a register
|
||
needed to move the second subword. */
|
||
if (register_operand (dst, mode))
|
||
{
|
||
rtx subreg = operand_subword (dst, first_subword, 0, mode);
|
||
if (reg_overlap_mentioned_p (subreg, src))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Change optimizations to be performed, depending on the
|
||
optimization level.
|
||
|
||
LEVEL is the optimization level specified; 2 if `-O2' is
|
||
specified, 1 if `-O' is specified, and 0 if neither is specified.
|
||
|
||
SIZE is nonzero if `-Os' is specified and zero otherwise. */
|
||
|
||
void
|
||
optimization_options (level, size)
|
||
int level ATTRIBUTE_UNUSED;
|
||
int size ATTRIBUTE_UNUSED;
|
||
{
|
||
/* ??? There are apparently still problems with -fcaller-saves. */
|
||
flag_caller_saves = 0;
|
||
|
||
/* By default, always emit DWARF-2 unwind info. This allows debugging
|
||
without maintaining a stack frame back-chain. */
|
||
flag_asynchronous_unwind_tables = 1;
|
||
}
|
||
|
||
void
|
||
override_options ()
|
||
{
|
||
/* Acquire a unique set number for our register saves and restores. */
|
||
s390_sr_alias_set = new_alias_set ();
|
||
|
||
/* Set up function hooks. */
|
||
init_machine_status = s390_init_machine_status;
|
||
}
|
||
|
||
/* Map for smallest class containing reg regno. */
|
||
|
||
const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER] =
|
||
{ GENERAL_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
|
||
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
|
||
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
|
||
ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
ADDR_REGS, NO_REGS, ADDR_REGS
|
||
};
|
||
|
||
|
||
/* Return true if OP a (const_int 0) operand.
|
||
OP is the current operation.
|
||
MODE is the current operation mode. */
|
||
|
||
int
|
||
const0_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return op == CONST0_RTX (mode);
|
||
}
|
||
|
||
/* Return true if OP is constant.
|
||
OP is the current operation.
|
||
MODE is the current operation mode. */
|
||
|
||
int
|
||
consttable_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return CONSTANT_P (op);
|
||
}
|
||
|
||
/* Return true if the mode of operand OP matches MODE.
|
||
If MODE is set to VOIDmode, set it to the mode of OP. */
|
||
|
||
static int
|
||
check_mode (op, mode)
|
||
register rtx op;
|
||
enum machine_mode *mode;
|
||
{
|
||
if (*mode == VOIDmode)
|
||
*mode = GET_MODE (op);
|
||
else
|
||
{
|
||
if (GET_MODE (op) != VOIDmode && GET_MODE (op) != *mode)
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Return true if OP a valid operand for the LARL instruction.
|
||
OP is the current operation.
|
||
MODE is the current operation mode. */
|
||
|
||
int
|
||
larl_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (! check_mode (op, &mode))
|
||
return 0;
|
||
|
||
/* Allow labels and local symbols. */
|
||
if (GET_CODE (op) == LABEL_REF)
|
||
return 1;
|
||
if (GET_CODE (op) == SYMBOL_REF
|
||
&& XSTR (op, 0)[0] != '@'
|
||
&& !tls_symbolic_operand (op)
|
||
&& (!flag_pic || SYMBOL_REF_FLAG (op)
|
||
|| CONSTANT_POOL_ADDRESS_P (op)))
|
||
return 1;
|
||
|
||
/* Everything else must have a CONST, so strip it. */
|
||
if (GET_CODE (op) != CONST)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
|
||
/* Allow adding *even* constants. */
|
||
if (GET_CODE (op) == PLUS)
|
||
{
|
||
if (GET_CODE (XEXP (op, 1)) != CONST_INT
|
||
|| (INTVAL (XEXP (op, 1)) & 1) != 0)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
}
|
||
|
||
/* Labels and local symbols allowed here as well. */
|
||
if (GET_CODE (op) == LABEL_REF)
|
||
return 1;
|
||
if (GET_CODE (op) == SYMBOL_REF
|
||
&& XSTR (op, 0)[0] != '@'
|
||
&& !tls_symbolic_operand (op)
|
||
&& (!flag_pic || SYMBOL_REF_FLAG (op)
|
||
|| CONSTANT_POOL_ADDRESS_P (op)))
|
||
return 1;
|
||
|
||
/* Now we must have a @GOTENT offset or @PLT stub
|
||
or an @INDNTPOFF TLS offset. */
|
||
if (GET_CODE (op) == UNSPEC
|
||
&& XINT (op, 1) == 111)
|
||
return 1;
|
||
if (GET_CODE (op) == UNSPEC
|
||
&& XINT (op, 1) == 113)
|
||
return 1;
|
||
if (GET_CODE (op) == UNSPEC
|
||
&& XINT (op, 1) == UNSPEC_INDNTPOFF)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Helper routine to implement s_operand and s_imm_operand.
|
||
OP is the current operation.
|
||
MODE is the current operation mode.
|
||
ALLOW_IMMEDIATE specifies whether immediate operands should
|
||
be accepted or not. */
|
||
|
||
static int
|
||
general_s_operand (op, mode, allow_immediate)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
int allow_immediate;
|
||
{
|
||
struct s390_address addr;
|
||
|
||
/* Call general_operand first, so that we don't have to
|
||
check for many special cases. */
|
||
if (!general_operand (op, mode))
|
||
return 0;
|
||
|
||
/* Just like memory_operand, allow (subreg (mem ...))
|
||
after reload. */
|
||
if (reload_completed
|
||
&& GET_CODE (op) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (op)) == MEM)
|
||
op = SUBREG_REG (op);
|
||
|
||
switch (GET_CODE (op))
|
||
{
|
||
/* Constants that we are sure will be forced to the
|
||
literal pool in reload are OK as s-operand. Note
|
||
that we cannot call s390_preferred_reload_class here
|
||
because it might not be known yet at this point
|
||
whether the current function is a leaf or not. */
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
if (!allow_immediate || reload_completed)
|
||
break;
|
||
if (!legitimate_reload_constant_p (op))
|
||
return 1;
|
||
if (!TARGET_64BIT)
|
||
return 1;
|
||
break;
|
||
|
||
/* Memory operands are OK unless they already use an
|
||
index register. */
|
||
case MEM:
|
||
if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
|
||
return 1;
|
||
if (s390_decompose_address (XEXP (op, 0), &addr)
|
||
&& !addr.indx)
|
||
return 1;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if OP is a valid S-type operand.
|
||
OP is the current operation.
|
||
MODE is the current operation mode. */
|
||
|
||
int
|
||
s_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return general_s_operand (op, mode, 0);
|
||
}
|
||
|
||
/* Return true if OP is a valid S-type operand or an immediate
|
||
operand that can be addressed as S-type operand by forcing
|
||
it into the literal pool.
|
||
OP is the current operation.
|
||
MODE is the current operation mode. */
|
||
|
||
int
|
||
s_imm_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return general_s_operand (op, mode, 1);
|
||
}
|
||
|
||
/* Return true if OP is a valid operand for a 'Q' constraint.
|
||
This differs from s_operand in that only memory operands
|
||
without index register are accepted, nothing else. */
|
||
|
||
int
|
||
q_constraint (op)
|
||
register rtx op;
|
||
{
|
||
struct s390_address addr;
|
||
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
|
||
if (!s390_decompose_address (XEXP (op, 0), &addr))
|
||
return 0;
|
||
|
||
if (addr.indx)
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return the cost of an address rtx ADDR. */
|
||
|
||
int
|
||
s390_address_cost (addr)
|
||
rtx addr;
|
||
{
|
||
struct s390_address ad;
|
||
if (!s390_decompose_address (addr, &ad))
|
||
return 1000;
|
||
|
||
return ad.indx? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (1);
|
||
}
|
||
|
||
/* Return true if OP is a valid operand for the BRAS instruction.
|
||
OP is the current operation.
|
||
MODE is the current operation mode. */
|
||
|
||
int
|
||
bras_sym_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
register enum rtx_code code = GET_CODE (op);
|
||
|
||
/* Allow SYMBOL_REFs. */
|
||
if (code == SYMBOL_REF)
|
||
return 1;
|
||
|
||
/* Allow @PLT stubs. */
|
||
if (code == CONST
|
||
&& GET_CODE (XEXP (op, 0)) == UNSPEC
|
||
&& XINT (XEXP (op, 0), 1) == 113)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* If OP is a SYMBOL_REF of a thread-local symbol, return its TLS mode,
|
||
otherwise return 0. */
|
||
|
||
int
|
||
tls_symbolic_operand (op)
|
||
register rtx op;
|
||
{
|
||
const char *symbol_str;
|
||
|
||
if (GET_CODE (op) != SYMBOL_REF)
|
||
return 0;
|
||
symbol_str = XSTR (op, 0);
|
||
|
||
if (symbol_str[0] != '%')
|
||
return 0;
|
||
return strchr (tls_model_chars, symbol_str[1]) - tls_model_chars;
|
||
}
|
||
|
||
/* Return true if OP is a load multiple operation. It is known to be a
|
||
PARALLEL and the first section will be tested.
|
||
OP is the current operation.
|
||
MODE is the current operation mode. */
|
||
|
||
int
|
||
load_multiple_operation (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
int count = XVECLEN (op, 0);
|
||
unsigned int dest_regno;
|
||
rtx src_addr;
|
||
int i, off;
|
||
|
||
|
||
/* Perform a quick check so we don't blow up below. */
|
||
if (count <= 1
|
||
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
||
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|
||
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
|
||
return 0;
|
||
|
||
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
|
||
src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
|
||
|
||
/* Check, is base, or base + displacement. */
|
||
|
||
if (GET_CODE (src_addr) == REG)
|
||
off = 0;
|
||
else if (GET_CODE (src_addr) == PLUS
|
||
&& GET_CODE (XEXP (src_addr, 0)) == REG
|
||
&& GET_CODE (XEXP (src_addr, 1)) == CONST_INT)
|
||
{
|
||
off = INTVAL (XEXP (src_addr, 1));
|
||
src_addr = XEXP (src_addr, 0);
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
if (src_addr == frame_pointer_rtx || src_addr == arg_pointer_rtx)
|
||
return 0;
|
||
|
||
for (i = 1; i < count; i++)
|
||
{
|
||
rtx elt = XVECEXP (op, 0, i);
|
||
|
||
if (GET_CODE (elt) != SET
|
||
|| GET_CODE (SET_DEST (elt)) != REG
|
||
|| GET_MODE (SET_DEST (elt)) != Pmode
|
||
|| REGNO (SET_DEST (elt)) != dest_regno + i
|
||
|| GET_CODE (SET_SRC (elt)) != MEM
|
||
|| GET_MODE (SET_SRC (elt)) != Pmode
|
||
|| GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
|
||
|| ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
|
||
|| GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
|
||
|| INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1))
|
||
!= off + i * UNITS_PER_WORD)
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return true if OP is a store multiple operation. It is known to be a
|
||
PARALLEL and the first section will be tested.
|
||
OP is the current operation.
|
||
MODE is the current operation mode. */
|
||
|
||
int
|
||
store_multiple_operation (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
int count = XVECLEN (op, 0);
|
||
unsigned int src_regno;
|
||
rtx dest_addr;
|
||
int i, off;
|
||
|
||
/* Perform a quick check so we don't blow up below. */
|
||
if (count <= 1
|
||
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
||
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
|
||
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
|
||
return 0;
|
||
|
||
src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
|
||
dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
|
||
|
||
/* Check, is base, or base + displacement. */
|
||
|
||
if (GET_CODE (dest_addr) == REG)
|
||
off = 0;
|
||
else if (GET_CODE (dest_addr) == PLUS
|
||
&& GET_CODE (XEXP (dest_addr, 0)) == REG
|
||
&& GET_CODE (XEXP (dest_addr, 1)) == CONST_INT)
|
||
{
|
||
off = INTVAL (XEXP (dest_addr, 1));
|
||
dest_addr = XEXP (dest_addr, 0);
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
if (dest_addr == frame_pointer_rtx || dest_addr == arg_pointer_rtx)
|
||
return 0;
|
||
|
||
for (i = 1; i < count; i++)
|
||
{
|
||
rtx elt = XVECEXP (op, 0, i);
|
||
|
||
if (GET_CODE (elt) != SET
|
||
|| GET_CODE (SET_SRC (elt)) != REG
|
||
|| GET_MODE (SET_SRC (elt)) != Pmode
|
||
|| REGNO (SET_SRC (elt)) != src_regno + i
|
||
|| GET_CODE (SET_DEST (elt)) != MEM
|
||
|| GET_MODE (SET_DEST (elt)) != Pmode
|
||
|| GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
|
||
|| ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
|
||
|| GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
|
||
|| INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1))
|
||
!= off + i * UNITS_PER_WORD)
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Return true if OP contains a symbol reference */
|
||
|
||
int
|
||
symbolic_reference_mentioned_p (op)
|
||
rtx op;
|
||
{
|
||
register const char *fmt;
|
||
register int i;
|
||
|
||
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
|
||
return 1;
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (op));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
|
||
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
|
||
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
|
||
return 1;
|
||
}
|
||
|
||
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if OP contains a reference to a thread-local symbol. */
|
||
|
||
int
|
||
tls_symbolic_reference_mentioned_p (op)
|
||
rtx op;
|
||
{
|
||
register const char *fmt;
|
||
register int i;
|
||
|
||
if (GET_CODE (op) == SYMBOL_REF)
|
||
return tls_symbolic_operand (op);
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (op));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
|
||
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
|
||
if (tls_symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
|
||
return 1;
|
||
}
|
||
|
||
else if (fmt[i] == 'e' && tls_symbolic_reference_mentioned_p (XEXP (op, i)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return true if OP is a legitimate general operand when
|
||
generating PIC code. It is given that flag_pic is on
|
||
and that OP satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
int
|
||
legitimate_pic_operand_p (op)
|
||
register rtx op;
|
||
{
|
||
/* Accept all non-symbolic constants. */
|
||
if (!SYMBOLIC_CONST (op))
|
||
return 1;
|
||
|
||
/* Reject everything else; must be handled
|
||
via emit_symbolic_move. */
|
||
return 0;
|
||
}
|
||
|
||
/* Returns true if the constant value OP is a legitimate general operand.
|
||
It is given that OP satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
int
|
||
legitimate_constant_p (op)
|
||
register rtx op;
|
||
{
|
||
/* Accept all non-symbolic constants. */
|
||
if (!SYMBOLIC_CONST (op))
|
||
return 1;
|
||
|
||
/* Accept immediate LARL operands. */
|
||
if (TARGET_64BIT && larl_operand (op, VOIDmode))
|
||
return 1;
|
||
|
||
/* Thread-local symbols are never legal constants. This is
|
||
so that emit_call knows that computing such addresses
|
||
might require a function call. */
|
||
if (TLS_SYMBOLIC_CONST (op))
|
||
return 0;
|
||
|
||
/* In the PIC case, symbolic constants must *not* be
|
||
forced into the literal pool. We accept them here,
|
||
so that they will be handled by emit_symbolic_move. */
|
||
if (flag_pic)
|
||
return 1;
|
||
|
||
/* All remaining non-PIC symbolic constants are
|
||
forced into the literal pool. */
|
||
return 0;
|
||
}
|
||
|
||
/* Determine if it's legal to put X into the constant pool. This
|
||
is not possible if X contains the address of a symbol that is
|
||
not constant (TLS) or not known at final link time (PIC). */
|
||
|
||
static bool
|
||
s390_cannot_force_const_mem (x)
|
||
rtx x;
|
||
{
|
||
switch (GET_CODE (x))
|
||
{
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
/* Accept all non-symbolic constants. */
|
||
return false;
|
||
|
||
case LABEL_REF:
|
||
/* Labels are OK iff we are non-PIC. */
|
||
return flag_pic != 0;
|
||
|
||
case SYMBOL_REF:
|
||
/* 'Naked' TLS symbol references are never OK,
|
||
non-TLS symbols are OK iff we are non-PIC. */
|
||
if (tls_symbolic_operand (x))
|
||
return true;
|
||
else
|
||
return flag_pic != 0;
|
||
|
||
case CONST:
|
||
return s390_cannot_force_const_mem (XEXP (x, 0));
|
||
case PLUS:
|
||
case MINUS:
|
||
return s390_cannot_force_const_mem (XEXP (x, 0))
|
||
|| s390_cannot_force_const_mem (XEXP (x, 1));
|
||
|
||
case UNSPEC:
|
||
switch (XINT (x, 1))
|
||
{
|
||
/* Only lt-relative or GOT-relative UNSPECs are OK. */
|
||
case 100:
|
||
case 104:
|
||
case 112:
|
||
case 114:
|
||
case UNSPEC_TLSGD:
|
||
case UNSPEC_TLSLDM:
|
||
case UNSPEC_NTPOFF:
|
||
case UNSPEC_DTPOFF:
|
||
case UNSPEC_GOTNTPOFF:
|
||
case UNSPEC_INDNTPOFF:
|
||
return false;
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Returns true if the constant value OP is a legitimate general
|
||
operand during and after reload. The difference to
|
||
legitimate_constant_p is that this function will not accept
|
||
a constant that would need to be forced to the literal pool
|
||
before it can be used as operand. */
|
||
|
||
int
|
||
legitimate_reload_constant_p (op)
|
||
register rtx op;
|
||
{
|
||
/* Accept l(g)hi operands. */
|
||
if (GET_CODE (op) == CONST_INT
|
||
&& CONST_OK_FOR_LETTER_P (INTVAL (op), 'K'))
|
||
return 1;
|
||
|
||
/* Accept lliXX operands. */
|
||
if (TARGET_64BIT
|
||
&& s390_single_hi (op, DImode, 0) >= 0)
|
||
return 1;
|
||
|
||
/* Accept larl operands. */
|
||
if (TARGET_64BIT
|
||
&& larl_operand (op, VOIDmode))
|
||
return 1;
|
||
|
||
/* Everything else cannot be handled without reload. */
|
||
return 0;
|
||
}
|
||
|
||
/* Given an rtx OP being reloaded into a reg required to be in class CLASS,
|
||
return the class of reg to actually use. */
|
||
|
||
enum reg_class
|
||
s390_preferred_reload_class (op, class)
|
||
rtx op;
|
||
enum reg_class class;
|
||
{
|
||
/* This can happen if a floating point constant is being
|
||
reloaded into an integer register. Leave well alone. */
|
||
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
|
||
&& class != FP_REGS)
|
||
return class;
|
||
|
||
switch (GET_CODE (op))
|
||
{
|
||
/* Constants we cannot reload must be forced into the
|
||
literal pool. */
|
||
|
||
case CONST_DOUBLE:
|
||
case CONST_INT:
|
||
if (legitimate_reload_constant_p (op))
|
||
return class;
|
||
else
|
||
return NO_REGS;
|
||
|
||
/* If a symbolic constant or a PLUS is reloaded,
|
||
it is most likely being used as an address, so
|
||
prefer ADDR_REGS. If 'class' is not a superset
|
||
of ADDR_REGS, e.g. FP_REGS, reject this reload. */
|
||
case PLUS:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST:
|
||
if (reg_class_subset_p (ADDR_REGS, class))
|
||
return ADDR_REGS;
|
||
else
|
||
return NO_REGS;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return class;
|
||
}
|
||
|
||
/* Return the register class of a scratch register needed to
|
||
load IN into a register of class CLASS in MODE.
|
||
|
||
We need a temporary when loading a PLUS expression which
|
||
is not a legitimate operand of the LOAD ADDRESS instruction. */
|
||
|
||
enum reg_class
|
||
s390_secondary_input_reload_class (class, mode, in)
|
||
enum reg_class class ATTRIBUTE_UNUSED;
|
||
enum machine_mode mode;
|
||
rtx in;
|
||
{
|
||
if (s390_plus_operand (in, mode))
|
||
return ADDR_REGS;
|
||
|
||
return NO_REGS;
|
||
}
|
||
|
||
/* Return the register class of a scratch register needed to
|
||
store a register of class CLASS in MODE into OUT:
|
||
|
||
We need a temporary when storing a double-word to a
|
||
non-offsettable memory address. */
|
||
|
||
enum reg_class
|
||
s390_secondary_output_reload_class (class, mode, out)
|
||
enum reg_class class;
|
||
enum machine_mode mode;
|
||
rtx out;
|
||
{
|
||
if ((TARGET_64BIT ? mode == TImode
|
||
: (mode == DImode || mode == DFmode))
|
||
&& reg_classes_intersect_p (GENERAL_REGS, class)
|
||
&& GET_CODE (out) == MEM
|
||
&& !offsettable_memref_p (out)
|
||
&& !s_operand (out, VOIDmode))
|
||
return ADDR_REGS;
|
||
|
||
return NO_REGS;
|
||
}
|
||
|
||
/* Return true if OP is a PLUS that is not a legitimate
|
||
operand for the LA instruction.
|
||
OP is the current operation.
|
||
MODE is the current operation mode. */
|
||
|
||
int
|
||
s390_plus_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (!check_mode (op, &mode) || mode != Pmode)
|
||
return FALSE;
|
||
|
||
if (GET_CODE (op) != PLUS)
|
||
return FALSE;
|
||
|
||
if (legitimate_la_operand_p (op))
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Generate code to load SRC, which is PLUS that is not a
|
||
legitimate operand for the LA instruction, into TARGET.
|
||
SCRATCH may be used as scratch register. */
|
||
|
||
void
|
||
s390_expand_plus_operand (target, src, scratch)
|
||
register rtx target;
|
||
register rtx src;
|
||
register rtx scratch;
|
||
{
|
||
rtx sum1, sum2;
|
||
struct s390_address ad;
|
||
|
||
/* src must be a PLUS; get its two operands. */
|
||
if (GET_CODE (src) != PLUS || GET_MODE (src) != Pmode)
|
||
abort ();
|
||
|
||
/* Check if any of the two operands is already scheduled
|
||
for replacement by reload. This can happen e.g. when
|
||
float registers occur in an address. */
|
||
sum1 = find_replacement (&XEXP (src, 0));
|
||
sum2 = find_replacement (&XEXP (src, 1));
|
||
src = gen_rtx_PLUS (Pmode, sum1, sum2);
|
||
|
||
/* If the address is already strictly valid, there's nothing to do. */
|
||
if (!s390_decompose_address (src, &ad)
|
||
|| (ad.base && !REG_OK_FOR_BASE_STRICT_P (ad.base))
|
||
|| (ad.indx && !REG_OK_FOR_INDEX_STRICT_P (ad.indx)))
|
||
{
|
||
/* Otherwise, one of the operands cannot be an address register;
|
||
we reload its value into the scratch register. */
|
||
if (true_regnum (sum1) < 1 || true_regnum (sum1) > 15)
|
||
{
|
||
emit_move_insn (scratch, sum1);
|
||
sum1 = scratch;
|
||
}
|
||
if (true_regnum (sum2) < 1 || true_regnum (sum2) > 15)
|
||
{
|
||
emit_move_insn (scratch, sum2);
|
||
sum2 = scratch;
|
||
}
|
||
|
||
/* According to the way these invalid addresses are generated
|
||
in reload.c, it should never happen (at least on s390) that
|
||
*neither* of the PLUS components, after find_replacements
|
||
was applied, is an address register. */
|
||
if (sum1 == scratch && sum2 == scratch)
|
||
{
|
||
debug_rtx (src);
|
||
abort ();
|
||
}
|
||
|
||
src = gen_rtx_PLUS (Pmode, sum1, sum2);
|
||
}
|
||
|
||
/* Emit the LOAD ADDRESS pattern. Note that reload of PLUS
|
||
is only ever performed on addresses, so we can mark the
|
||
sum as legitimate for LA in any case. */
|
||
s390_load_address (target, src);
|
||
}
|
||
|
||
|
||
/* Decompose a RTL expression ADDR for a memory address into
|
||
its components, returned in OUT.
|
||
|
||
Returns 0 if ADDR is not a valid memory address, nonzero
|
||
otherwise. If OUT is NULL, don't return the components,
|
||
but check for validity only.
|
||
|
||
Note: Only addresses in canonical form are recognized.
|
||
LEGITIMIZE_ADDRESS should convert non-canonical forms to the
|
||
canonical form so that they will be recognized. */
|
||
|
||
static int
|
||
s390_decompose_address (addr, out)
|
||
register rtx addr;
|
||
struct s390_address *out;
|
||
{
|
||
rtx base = NULL_RTX;
|
||
rtx indx = NULL_RTX;
|
||
rtx disp = NULL_RTX;
|
||
int pointer = FALSE;
|
||
|
||
/* Decompose address into base + index + displacement. */
|
||
|
||
if (GET_CODE (addr) == REG || GET_CODE (addr) == UNSPEC)
|
||
base = addr;
|
||
|
||
else if (GET_CODE (addr) == PLUS)
|
||
{
|
||
rtx op0 = XEXP (addr, 0);
|
||
rtx op1 = XEXP (addr, 1);
|
||
enum rtx_code code0 = GET_CODE (op0);
|
||
enum rtx_code code1 = GET_CODE (op1);
|
||
|
||
if (code0 == REG || code0 == UNSPEC)
|
||
{
|
||
if (code1 == REG || code1 == UNSPEC)
|
||
{
|
||
indx = op0; /* index + base */
|
||
base = op1;
|
||
}
|
||
|
||
else
|
||
{
|
||
base = op0; /* base + displacement */
|
||
disp = op1;
|
||
}
|
||
}
|
||
|
||
else if (code0 == PLUS)
|
||
{
|
||
indx = XEXP (op0, 0); /* index + base + disp */
|
||
base = XEXP (op0, 1);
|
||
disp = op1;
|
||
}
|
||
|
||
else
|
||
{
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
else
|
||
disp = addr; /* displacement */
|
||
|
||
|
||
/* Prefer to use pointer as base, not index. */
|
||
if (base && indx)
|
||
{
|
||
int base_ptr = GET_CODE (base) == UNSPEC
|
||
|| (REG_P (base) && REG_POINTER (base));
|
||
int indx_ptr = GET_CODE (indx) == UNSPEC
|
||
|| (REG_P (indx) && REG_POINTER (indx));
|
||
|
||
if (!base_ptr && indx_ptr)
|
||
{
|
||
rtx tmp = base;
|
||
base = indx;
|
||
indx = tmp;
|
||
}
|
||
}
|
||
|
||
/* Validate base register. */
|
||
if (base)
|
||
{
|
||
if (GET_CODE (base) == UNSPEC)
|
||
{
|
||
if (XVECLEN (base, 0) != 1 || XINT (base, 1) != 101)
|
||
return FALSE;
|
||
base = XVECEXP (base, 0, 0);
|
||
pointer = TRUE;
|
||
}
|
||
|
||
if (GET_CODE (base) != REG || GET_MODE (base) != Pmode)
|
||
return FALSE;
|
||
|
||
if (REGNO (base) == BASE_REGISTER
|
||
|| REGNO (base) == STACK_POINTER_REGNUM
|
||
|| REGNO (base) == FRAME_POINTER_REGNUM
|
||
|| ((reload_completed || reload_in_progress)
|
||
&& frame_pointer_needed
|
||
&& REGNO (base) == HARD_FRAME_POINTER_REGNUM)
|
||
|| REGNO (base) == ARG_POINTER_REGNUM
|
||
|| (REGNO (base) >= FIRST_VIRTUAL_REGISTER
|
||
&& REGNO (base) <= LAST_VIRTUAL_REGISTER)
|
||
|| (flag_pic
|
||
&& REGNO (base) == PIC_OFFSET_TABLE_REGNUM))
|
||
pointer = TRUE;
|
||
}
|
||
|
||
/* Validate index register. */
|
||
if (indx)
|
||
{
|
||
if (GET_CODE (indx) == UNSPEC)
|
||
{
|
||
if (XVECLEN (indx, 0) != 1 || XINT (indx, 1) != 101)
|
||
return FALSE;
|
||
indx = XVECEXP (indx, 0, 0);
|
||
pointer = TRUE;
|
||
}
|
||
|
||
if (GET_CODE (indx) != REG || GET_MODE (indx) != Pmode)
|
||
return FALSE;
|
||
|
||
if (REGNO (indx) == BASE_REGISTER
|
||
|| REGNO (indx) == STACK_POINTER_REGNUM
|
||
|| REGNO (indx) == FRAME_POINTER_REGNUM
|
||
|| ((reload_completed || reload_in_progress)
|
||
&& frame_pointer_needed
|
||
&& REGNO (indx) == HARD_FRAME_POINTER_REGNUM)
|
||
|| REGNO (indx) == ARG_POINTER_REGNUM
|
||
|| (REGNO (indx) >= FIRST_VIRTUAL_REGISTER
|
||
&& REGNO (indx) <= LAST_VIRTUAL_REGISTER)
|
||
|| (flag_pic
|
||
&& REGNO (indx) == PIC_OFFSET_TABLE_REGNUM))
|
||
pointer = TRUE;
|
||
}
|
||
|
||
/* Validate displacement. */
|
||
if (disp)
|
||
{
|
||
/* Allow integer constant in range. */
|
||
if (GET_CODE (disp) == CONST_INT)
|
||
{
|
||
/* If the argument pointer is involved, the displacement will change
|
||
later anyway as the argument pointer gets eliminated. This could
|
||
make a valid displacement invalid, but it is more likely to make
|
||
an invalid displacement valid, because we sometimes access the
|
||
register save area via negative offsets to the arg pointer.
|
||
Thus we don't check the displacement for validity here. If after
|
||
elimination the displacement turns out to be invalid after all,
|
||
this is fixed up by reload in any case. */
|
||
if (base != arg_pointer_rtx && indx != arg_pointer_rtx)
|
||
{
|
||
if (INTVAL (disp) < 0 || INTVAL (disp) >= 4096)
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* In the small-PIC case, the linker converts @GOT12
|
||
and @GOTNTPOFF offsets to possible displacements. */
|
||
else if (GET_CODE (disp) == CONST
|
||
&& GET_CODE (XEXP (disp, 0)) == UNSPEC
|
||
&& (XINT (XEXP (disp, 0), 1) == 110
|
||
|| XINT (XEXP (disp, 0), 1) == UNSPEC_GOTNTPOFF))
|
||
{
|
||
if (flag_pic != 1)
|
||
return FALSE;
|
||
|
||
pointer = TRUE;
|
||
}
|
||
|
||
/* Accept chunkfied literal pool symbol references. */
|
||
else if (GET_CODE (disp) == CONST
|
||
&& GET_CODE (XEXP (disp, 0)) == MINUS
|
||
&& GET_CODE (XEXP (XEXP (disp, 0), 0)) == LABEL_REF
|
||
&& GET_CODE (XEXP (XEXP (disp, 0), 1)) == LABEL_REF)
|
||
{
|
||
pointer = TRUE;
|
||
}
|
||
|
||
/* Likewise if a constant offset is present. */
|
||
else if (GET_CODE (disp) == CONST
|
||
&& GET_CODE (XEXP (disp, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (XEXP (disp, 0), 0)) == MINUS
|
||
&& GET_CODE (XEXP (XEXP (XEXP (disp, 0), 0), 0)) == LABEL_REF
|
||
&& GET_CODE (XEXP (XEXP (XEXP (disp, 0), 0), 1)) == LABEL_REF)
|
||
{
|
||
pointer = TRUE;
|
||
}
|
||
|
||
/* We can convert literal pool addresses to
|
||
displacements by basing them off the base register. */
|
||
else
|
||
{
|
||
/* In some cases, we can accept an additional
|
||
small constant offset. Split these off here. */
|
||
|
||
unsigned int offset = 0;
|
||
|
||
if (GET_CODE (disp) == CONST
|
||
&& GET_CODE (XEXP (disp, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT)
|
||
{
|
||
offset = INTVAL (XEXP (XEXP (disp, 0), 1));
|
||
disp = XEXP (XEXP (disp, 0), 0);
|
||
}
|
||
|
||
/* Now we must have a literal pool address. */
|
||
if (GET_CODE (disp) != SYMBOL_REF
|
||
|| !CONSTANT_POOL_ADDRESS_P (disp))
|
||
return FALSE;
|
||
|
||
/* If we have an offset, make sure it does not
|
||
exceed the size of the constant pool entry. */
|
||
if (offset && offset >= GET_MODE_SIZE (get_pool_mode (disp)))
|
||
return FALSE;
|
||
|
||
/* Either base or index must be free to
|
||
hold the base register. */
|
||
if (base && indx)
|
||
return FALSE;
|
||
|
||
/* Convert the address. */
|
||
if (base)
|
||
indx = gen_rtx_REG (Pmode, BASE_REGISTER);
|
||
else
|
||
base = gen_rtx_REG (Pmode, BASE_REGISTER);
|
||
|
||
disp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, disp), 100);
|
||
disp = gen_rtx_CONST (Pmode, disp);
|
||
|
||
if (offset)
|
||
disp = plus_constant (disp, offset);
|
||
|
||
pointer = TRUE;
|
||
}
|
||
}
|
||
|
||
if (!base && !indx)
|
||
pointer = TRUE;
|
||
|
||
if (out)
|
||
{
|
||
out->base = base;
|
||
out->indx = indx;
|
||
out->disp = disp;
|
||
out->pointer = pointer;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return nonzero if ADDR is a valid memory address.
|
||
STRICT specifies whether strict register checking applies. */
|
||
|
||
int
|
||
legitimate_address_p (mode, addr, strict)
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
register rtx addr;
|
||
int strict;
|
||
{
|
||
struct s390_address ad;
|
||
if (!s390_decompose_address (addr, &ad))
|
||
return FALSE;
|
||
|
||
if (strict)
|
||
{
|
||
if (ad.base && !REG_OK_FOR_BASE_STRICT_P (ad.base))
|
||
return FALSE;
|
||
if (ad.indx && !REG_OK_FOR_INDEX_STRICT_P (ad.indx))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
if (ad.base && !REG_OK_FOR_BASE_NONSTRICT_P (ad.base))
|
||
return FALSE;
|
||
if (ad.indx && !REG_OK_FOR_INDEX_NONSTRICT_P (ad.indx))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return 1 if OP is a valid operand for the LA instruction.
|
||
In 31-bit, we need to prove that the result is used as an
|
||
address, as LA performs only a 31-bit addition. */
|
||
|
||
int
|
||
legitimate_la_operand_p (op)
|
||
register rtx op;
|
||
{
|
||
struct s390_address addr;
|
||
if (!s390_decompose_address (op, &addr))
|
||
return FALSE;
|
||
|
||
if (TARGET_64BIT || addr.pointer)
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Return 1 if OP is a valid operand for the LA instruction,
|
||
and we prefer to use LA over addition to compute it. */
|
||
|
||
int
|
||
preferred_la_operand_p (op)
|
||
register rtx op;
|
||
{
|
||
struct s390_address addr;
|
||
if (!s390_decompose_address (op, &addr))
|
||
return FALSE;
|
||
|
||
if (!TARGET_64BIT && !addr.pointer)
|
||
return FALSE;
|
||
|
||
if (addr.pointer)
|
||
return TRUE;
|
||
|
||
if ((addr.base && REG_P (addr.base) && REG_POINTER (addr.base))
|
||
|| (addr.indx && REG_P (addr.indx) && REG_POINTER (addr.indx)))
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Emit a forced load-address operation to load SRC into DST.
|
||
This will use the LOAD ADDRESS instruction even in situations
|
||
where legitimate_la_operand_p (SRC) returns false. */
|
||
|
||
void
|
||
s390_load_address (dst, src)
|
||
rtx dst;
|
||
rtx src;
|
||
{
|
||
if (TARGET_64BIT)
|
||
emit_move_insn (dst, src);
|
||
else
|
||
emit_insn (gen_force_la_31 (dst, src));
|
||
}
|
||
|
||
/* Return a legitimate reference for ORIG (an address) using the
|
||
register REG. If REG is 0, a new pseudo is generated.
|
||
|
||
There are two types of references that must be handled:
|
||
|
||
1. Global data references must load the address from the GOT, via
|
||
the PIC reg. An insn is emitted to do this load, and the reg is
|
||
returned.
|
||
|
||
2. Static data references, constant pool addresses, and code labels
|
||
compute the address as an offset from the GOT, whose base is in
|
||
the PIC reg. Static data objects have SYMBOL_REF_FLAG set to
|
||
differentiate them from global data objects. The returned
|
||
address is the PIC reg + an unspec constant.
|
||
|
||
GO_IF_LEGITIMATE_ADDRESS rejects symbolic references unless the PIC
|
||
reg also appears in the address. */
|
||
|
||
rtx
|
||
legitimize_pic_address (orig, reg)
|
||
rtx orig;
|
||
rtx reg;
|
||
{
|
||
rtx addr = orig;
|
||
rtx new = orig;
|
||
rtx base;
|
||
|
||
if (GET_CODE (addr) == LABEL_REF
|
||
|| (GET_CODE (addr) == SYMBOL_REF
|
||
&& (SYMBOL_REF_FLAG (addr)
|
||
|| CONSTANT_POOL_ADDRESS_P (addr))))
|
||
{
|
||
/* This is a local symbol. */
|
||
if (TARGET_64BIT && larl_operand (addr, VOIDmode))
|
||
{
|
||
/* Access local symbols PC-relative via LARL.
|
||
This is the same as in the non-PIC case, so it is
|
||
handled automatically ... */
|
||
}
|
||
else
|
||
{
|
||
/* Access local symbols relative to the literal pool. */
|
||
|
||
rtx temp = reg? reg : gen_reg_rtx (Pmode);
|
||
|
||
addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 100);
|
||
addr = gen_rtx_CONST (Pmode, addr);
|
||
addr = force_const_mem (Pmode, addr);
|
||
emit_move_insn (temp, addr);
|
||
|
||
base = gen_rtx_REG (Pmode, BASE_REGISTER);
|
||
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), 101);
|
||
new = gen_rtx_PLUS (Pmode, base, temp);
|
||
|
||
if (reg != 0)
|
||
{
|
||
emit_move_insn (reg, new);
|
||
new = reg;
|
||
}
|
||
}
|
||
}
|
||
else if (GET_CODE (addr) == SYMBOL_REF)
|
||
{
|
||
if (reg == 0)
|
||
reg = gen_reg_rtx (Pmode);
|
||
|
||
if (flag_pic == 1)
|
||
{
|
||
/* Assume GOT offset < 4k. This is handled the same way
|
||
in both 31- and 64-bit code (@GOT12). */
|
||
|
||
if (reload_in_progress || reload_completed)
|
||
regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1;
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 110);
|
||
new = gen_rtx_CONST (Pmode, new);
|
||
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
|
||
new = gen_rtx_MEM (Pmode, new);
|
||
RTX_UNCHANGING_P (new) = 1;
|
||
emit_move_insn (reg, new);
|
||
new = reg;
|
||
}
|
||
else if (TARGET_64BIT)
|
||
{
|
||
/* If the GOT offset might be >= 4k, we determine the position
|
||
of the GOT entry via a PC-relative LARL (@GOTENT). */
|
||
|
||
rtx temp = gen_reg_rtx (Pmode);
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 111);
|
||
new = gen_rtx_CONST (Pmode, new);
|
||
emit_move_insn (temp, new);
|
||
|
||
new = gen_rtx_MEM (Pmode, temp);
|
||
RTX_UNCHANGING_P (new) = 1;
|
||
emit_move_insn (reg, new);
|
||
new = reg;
|
||
}
|
||
else
|
||
{
|
||
/* If the GOT offset might be >= 4k, we have to load it
|
||
from the literal pool (@GOT). */
|
||
|
||
rtx temp = gen_reg_rtx (Pmode);
|
||
|
||
if (reload_in_progress || reload_completed)
|
||
regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1;
|
||
|
||
addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 112);
|
||
addr = gen_rtx_CONST (Pmode, addr);
|
||
addr = force_const_mem (Pmode, addr);
|
||
emit_move_insn (temp, addr);
|
||
|
||
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp);
|
||
new = gen_rtx_MEM (Pmode, new);
|
||
RTX_UNCHANGING_P (new) = 1;
|
||
emit_move_insn (reg, new);
|
||
new = reg;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (GET_CODE (addr) == CONST)
|
||
{
|
||
addr = XEXP (addr, 0);
|
||
if (GET_CODE (addr) == UNSPEC)
|
||
{
|
||
if (XVECLEN (addr, 0) != 1)
|
||
abort ();
|
||
switch (XINT (addr, 1))
|
||
{
|
||
/* If someone moved an @GOT or lt-relative UNSPEC
|
||
out of the literal pool, force them back in. */
|
||
case 100:
|
||
case 112:
|
||
case 114:
|
||
new = force_const_mem (Pmode, orig);
|
||
break;
|
||
|
||
/* @GOTENT is OK as is. */
|
||
case 111:
|
||
break;
|
||
|
||
/* @PLT is OK as is on 64-bit, must be converted to
|
||
lt-relative PLT on 31-bit. */
|
||
case 113:
|
||
if (!TARGET_64BIT)
|
||
{
|
||
rtx temp = reg? reg : gen_reg_rtx (Pmode);
|
||
|
||
addr = XVECEXP (addr, 0, 0);
|
||
addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 114);
|
||
addr = gen_rtx_CONST (Pmode, addr);
|
||
addr = force_const_mem (Pmode, addr);
|
||
emit_move_insn (temp, addr);
|
||
|
||
base = gen_rtx_REG (Pmode, BASE_REGISTER);
|
||
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), 101);
|
||
new = gen_rtx_PLUS (Pmode, base, temp);
|
||
|
||
if (reg != 0)
|
||
{
|
||
emit_move_insn (reg, new);
|
||
new = reg;
|
||
}
|
||
}
|
||
break;
|
||
|
||
/* Everything else cannot happen. */
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
else if (GET_CODE (addr) != PLUS)
|
||
abort ();
|
||
}
|
||
if (GET_CODE (addr) == PLUS)
|
||
{
|
||
rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1);
|
||
/* Check first to see if this is a constant offset
|
||
from a local symbol reference. */
|
||
if ((GET_CODE (op0) == LABEL_REF
|
||
|| (GET_CODE (op0) == SYMBOL_REF
|
||
&& (SYMBOL_REF_FLAG (op0)
|
||
|| CONSTANT_POOL_ADDRESS_P (op0))))
|
||
&& GET_CODE (op1) == CONST_INT)
|
||
{
|
||
if (TARGET_64BIT && larl_operand (op0, VOIDmode))
|
||
{
|
||
if (INTVAL (op1) & 1)
|
||
{
|
||
/* LARL can't handle odd offsets, so emit a
|
||
pair of LARL and LA. */
|
||
rtx temp = reg? reg : gen_reg_rtx (Pmode);
|
||
|
||
if (INTVAL (op1) < 0 || INTVAL (op1) >= 4096)
|
||
{
|
||
int even = INTVAL (op1) - 1;
|
||
op0 = gen_rtx_PLUS (Pmode, op0, GEN_INT (even));
|
||
op0 = gen_rtx_CONST (Pmode, op0);
|
||
op1 = GEN_INT (1);
|
||
}
|
||
|
||
emit_move_insn (temp, op0);
|
||
new = gen_rtx_PLUS (Pmode, temp, op1);
|
||
|
||
if (reg != 0)
|
||
{
|
||
emit_move_insn (reg, new);
|
||
new = reg;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If the offset is even, we can just use LARL.
|
||
This will happen automatically. */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Access local symbols relative to the literal pool. */
|
||
|
||
rtx temp = reg? reg : gen_reg_rtx (Pmode);
|
||
|
||
addr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), 100);
|
||
addr = gen_rtx_PLUS (Pmode, addr, op1);
|
||
addr = gen_rtx_CONST (Pmode, addr);
|
||
addr = force_const_mem (Pmode, addr);
|
||
emit_move_insn (temp, addr);
|
||
|
||
base = gen_rtx_REG (Pmode, BASE_REGISTER);
|
||
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), 101);
|
||
new = gen_rtx_PLUS (Pmode, base, temp);
|
||
|
||
if (reg != 0)
|
||
{
|
||
emit_move_insn (reg, new);
|
||
new = reg;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now, check whether it is an LT-relative symbol plus offset
|
||
that was pulled out of the literal pool. Force it back in. */
|
||
|
||
else if (GET_CODE (op0) == UNSPEC
|
||
&& GET_CODE (op1) == CONST_INT)
|
||
{
|
||
if (XVECLEN (op0, 0) != 1)
|
||
abort ();
|
||
if (XINT (op0, 1) != 100)
|
||
abort ();
|
||
|
||
new = force_const_mem (Pmode, orig);
|
||
}
|
||
|
||
/* Otherwise, compute the sum. */
|
||
else
|
||
{
|
||
base = legitimize_pic_address (XEXP (addr, 0), reg);
|
||
new = legitimize_pic_address (XEXP (addr, 1),
|
||
base == reg ? NULL_RTX : reg);
|
||
if (GET_CODE (new) == CONST_INT)
|
||
new = plus_constant (base, INTVAL (new));
|
||
else
|
||
{
|
||
if (GET_CODE (new) == PLUS && CONSTANT_P (XEXP (new, 1)))
|
||
{
|
||
base = gen_rtx_PLUS (Pmode, base, XEXP (new, 0));
|
||
new = XEXP (new, 1);
|
||
}
|
||
new = gen_rtx_PLUS (Pmode, base, new);
|
||
}
|
||
|
||
if (GET_CODE (new) == CONST)
|
||
new = XEXP (new, 0);
|
||
new = force_operand (new, 0);
|
||
}
|
||
}
|
||
}
|
||
return new;
|
||
}
|
||
|
||
/* Load the thread pointer into a register. */
|
||
|
||
static rtx
|
||
get_thread_pointer ()
|
||
{
|
||
rtx tp;
|
||
|
||
tp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TP);
|
||
tp = force_reg (Pmode, tp);
|
||
mark_reg_pointer (tp, BITS_PER_WORD);
|
||
|
||
return tp;
|
||
}
|
||
|
||
/* Construct the SYMBOL_REF for the tls_get_offset function. */
|
||
|
||
static GTY(()) rtx s390_tls_symbol;
|
||
rtx
|
||
s390_tls_get_offset ()
|
||
{
|
||
if (!s390_tls_symbol)
|
||
s390_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_offset");
|
||
|
||
return s390_tls_symbol;
|
||
}
|
||
|
||
/* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
|
||
this (thread-local) address. REG may be used as temporary. */
|
||
|
||
static rtx
|
||
legitimize_tls_address (addr, reg)
|
||
rtx addr;
|
||
rtx reg;
|
||
{
|
||
rtx new, tls_call, temp, base, r2, insn;
|
||
|
||
if (GET_CODE (addr) == SYMBOL_REF)
|
||
switch (tls_symbolic_operand (addr))
|
||
{
|
||
case TLS_MODEL_GLOBAL_DYNAMIC:
|
||
start_sequence ();
|
||
r2 = gen_rtx_REG (Pmode, 2);
|
||
tls_call = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_TLSGD);
|
||
new = gen_rtx_CONST (Pmode, tls_call);
|
||
new = force_const_mem (Pmode, new);
|
||
emit_move_insn (r2, new);
|
||
emit_call_insn (gen_call_value_tls (r2, tls_call));
|
||
insn = get_insns ();
|
||
end_sequence ();
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_NTPOFF);
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_libcall_block (insn, temp, r2, new);
|
||
|
||
new = gen_rtx_PLUS (Pmode, get_thread_pointer (), temp);
|
||
if (reg != 0)
|
||
{
|
||
s390_load_address (reg, new);
|
||
new = reg;
|
||
}
|
||
break;
|
||
|
||
case TLS_MODEL_LOCAL_DYNAMIC:
|
||
start_sequence ();
|
||
r2 = gen_rtx_REG (Pmode, 2);
|
||
tls_call = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLSLDM);
|
||
new = gen_rtx_CONST (Pmode, tls_call);
|
||
new = force_const_mem (Pmode, new);
|
||
emit_move_insn (r2, new);
|
||
emit_call_insn (gen_call_value_tls (r2, tls_call));
|
||
insn = get_insns ();
|
||
end_sequence ();
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLSLDM_NTPOFF);
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_libcall_block (insn, temp, r2, new);
|
||
|
||
new = gen_rtx_PLUS (Pmode, get_thread_pointer (), temp);
|
||
base = gen_reg_rtx (Pmode);
|
||
s390_load_address (base, new);
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_DTPOFF);
|
||
new = gen_rtx_CONST (Pmode, new);
|
||
new = force_const_mem (Pmode, new);
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_move_insn (temp, new);
|
||
|
||
new = gen_rtx_PLUS (Pmode, base, temp);
|
||
if (reg != 0)
|
||
{
|
||
s390_load_address (reg, new);
|
||
new = reg;
|
||
}
|
||
break;
|
||
|
||
case TLS_MODEL_INITIAL_EXEC:
|
||
if (flag_pic == 1)
|
||
{
|
||
/* Assume GOT offset < 4k. This is handled the same way
|
||
in both 31- and 64-bit code. */
|
||
|
||
if (reload_in_progress || reload_completed)
|
||
regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1;
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTNTPOFF);
|
||
new = gen_rtx_CONST (Pmode, new);
|
||
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
|
||
new = gen_rtx_MEM (Pmode, new);
|
||
RTX_UNCHANGING_P (new) = 1;
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_move_insn (temp, new);
|
||
}
|
||
else if (TARGET_64BIT)
|
||
{
|
||
/* If the GOT offset might be >= 4k, we determine the position
|
||
of the GOT entry via a PC-relative LARL. */
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_INDNTPOFF);
|
||
new = gen_rtx_CONST (Pmode, new);
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_move_insn (temp, new);
|
||
|
||
new = gen_rtx_MEM (Pmode, temp);
|
||
RTX_UNCHANGING_P (new) = 1;
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_move_insn (temp, new);
|
||
}
|
||
else if (flag_pic)
|
||
{
|
||
/* If the GOT offset might be >= 4k, we have to load it
|
||
from the literal pool. */
|
||
|
||
if (reload_in_progress || reload_completed)
|
||
regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1;
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTNTPOFF);
|
||
new = gen_rtx_CONST (Pmode, new);
|
||
new = force_const_mem (Pmode, new);
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_move_insn (temp, new);
|
||
|
||
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, temp);
|
||
new = gen_rtx_MEM (Pmode, new);
|
||
RTX_UNCHANGING_P (new) = 1;
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, new, addr), UNSPEC_TLS_LOAD);
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_insn (gen_rtx_SET (Pmode, temp, new));
|
||
}
|
||
else
|
||
{
|
||
/* In position-dependent code, load the absolute address of
|
||
the GOT entry from the literal pool. */
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_INDNTPOFF);
|
||
new = gen_rtx_CONST (Pmode, new);
|
||
new = force_const_mem (Pmode, new);
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_move_insn (temp, new);
|
||
|
||
new = temp;
|
||
new = gen_rtx_MEM (Pmode, new);
|
||
RTX_UNCHANGING_P (new) = 1;
|
||
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, new, addr), UNSPEC_TLS_LOAD);
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_insn (gen_rtx_SET (Pmode, temp, new));
|
||
}
|
||
|
||
new = gen_rtx_PLUS (Pmode, get_thread_pointer (), temp);
|
||
if (reg != 0)
|
||
{
|
||
s390_load_address (reg, new);
|
||
new = reg;
|
||
}
|
||
break;
|
||
|
||
case TLS_MODEL_LOCAL_EXEC:
|
||
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_NTPOFF);
|
||
new = gen_rtx_CONST (Pmode, new);
|
||
new = force_const_mem (Pmode, new);
|
||
temp = gen_reg_rtx (Pmode);
|
||
emit_move_insn (temp, new);
|
||
|
||
new = gen_rtx_PLUS (Pmode, get_thread_pointer (), temp);
|
||
if (reg != 0)
|
||
{
|
||
s390_load_address (reg, new);
|
||
new = reg;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == UNSPEC)
|
||
{
|
||
switch (XINT (XEXP (addr, 0), 1))
|
||
{
|
||
case UNSPEC_INDNTPOFF:
|
||
if (TARGET_64BIT)
|
||
new = addr;
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
else
|
||
abort (); /* for now ... */
|
||
|
||
return new;
|
||
}
|
||
|
||
/* Emit insns to move operands[1] into operands[0]. */
|
||
|
||
void
|
||
emit_symbolic_move (operands)
|
||
rtx *operands;
|
||
{
|
||
rtx temp = no_new_pseudos ? operands[0] : gen_reg_rtx (Pmode);
|
||
|
||
if (GET_CODE (operands[0]) == MEM)
|
||
operands[1] = force_reg (Pmode, operands[1]);
|
||
else if (TLS_SYMBOLIC_CONST (operands[1]))
|
||
operands[1] = legitimize_tls_address (operands[1], temp);
|
||
else if (flag_pic)
|
||
operands[1] = legitimize_pic_address (operands[1], temp);
|
||
}
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address X
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE is the mode of the operand pointed to by X.
|
||
|
||
When -fpic is used, special handling is needed for symbolic references.
|
||
See comments by legitimize_pic_address for details. */
|
||
|
||
rtx
|
||
legitimize_address (x, oldx, mode)
|
||
register rtx x;
|
||
register rtx oldx ATTRIBUTE_UNUSED;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
rtx constant_term = const0_rtx;
|
||
|
||
if (TLS_SYMBOLIC_CONST (x))
|
||
{
|
||
x = legitimize_tls_address (x, 0);
|
||
|
||
if (legitimate_address_p (mode, x, FALSE))
|
||
return x;
|
||
}
|
||
else if (flag_pic)
|
||
{
|
||
if (SYMBOLIC_CONST (x)
|
||
|| (GET_CODE (x) == PLUS
|
||
&& (SYMBOLIC_CONST (XEXP (x, 0))
|
||
|| SYMBOLIC_CONST (XEXP (x, 1)))))
|
||
x = legitimize_pic_address (x, 0);
|
||
|
||
if (legitimate_address_p (mode, x, FALSE))
|
||
return x;
|
||
}
|
||
|
||
x = eliminate_constant_term (x, &constant_term);
|
||
|
||
/* Optimize loading of large displacements by splitting them
|
||
into the multiple of 4K and the rest; this allows the
|
||
former to be CSE'd if possible.
|
||
|
||
Don't do this if the displacement is added to a register
|
||
pointing into the stack frame, as the offsets will
|
||
change later anyway. */
|
||
|
||
if (GET_CODE (constant_term) == CONST_INT
|
||
&& (INTVAL (constant_term) < 0
|
||
|| INTVAL (constant_term) >= 4096)
|
||
&& !(REG_P (x) && REGNO_PTR_FRAME_P (REGNO (x))))
|
||
{
|
||
HOST_WIDE_INT lower = INTVAL (constant_term) & 0xfff;
|
||
HOST_WIDE_INT upper = INTVAL (constant_term) ^ lower;
|
||
|
||
rtx temp = gen_reg_rtx (Pmode);
|
||
rtx val = force_operand (GEN_INT (upper), temp);
|
||
if (val != temp)
|
||
emit_move_insn (temp, val);
|
||
|
||
x = gen_rtx_PLUS (Pmode, x, temp);
|
||
constant_term = GEN_INT (lower);
|
||
}
|
||
|
||
if (GET_CODE (x) == PLUS)
|
||
{
|
||
if (GET_CODE (XEXP (x, 0)) == REG)
|
||
{
|
||
register rtx temp = gen_reg_rtx (Pmode);
|
||
register rtx val = force_operand (XEXP (x, 1), temp);
|
||
if (val != temp)
|
||
emit_move_insn (temp, val);
|
||
|
||
x = gen_rtx_PLUS (Pmode, XEXP (x, 0), temp);
|
||
}
|
||
|
||
else if (GET_CODE (XEXP (x, 1)) == REG)
|
||
{
|
||
register rtx temp = gen_reg_rtx (Pmode);
|
||
register rtx val = force_operand (XEXP (x, 0), temp);
|
||
if (val != temp)
|
||
emit_move_insn (temp, val);
|
||
|
||
x = gen_rtx_PLUS (Pmode, temp, XEXP (x, 1));
|
||
}
|
||
}
|
||
|
||
if (constant_term != const0_rtx)
|
||
x = gen_rtx_PLUS (Pmode, x, constant_term);
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Emit code to move LEN bytes from DST to SRC. */
|
||
|
||
void
|
||
s390_expand_movstr (dst, src, len)
|
||
rtx dst;
|
||
rtx src;
|
||
rtx len;
|
||
{
|
||
rtx (*gen_short) PARAMS ((rtx, rtx, rtx)) =
|
||
TARGET_64BIT ? gen_movstr_short_64 : gen_movstr_short_31;
|
||
rtx (*gen_long) PARAMS ((rtx, rtx, rtx, rtx)) =
|
||
TARGET_64BIT ? gen_movstr_long_64 : gen_movstr_long_31;
|
||
|
||
|
||
if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256)
|
||
{
|
||
if (INTVAL (len) > 0)
|
||
emit_insn ((*gen_short) (dst, src, GEN_INT (INTVAL (len) - 1)));
|
||
}
|
||
|
||
else if (TARGET_MVCLE)
|
||
{
|
||
enum machine_mode double_mode = TARGET_64BIT ? TImode : DImode;
|
||
enum machine_mode single_mode = TARGET_64BIT ? DImode : SImode;
|
||
rtx reg0 = gen_reg_rtx (double_mode);
|
||
rtx reg1 = gen_reg_rtx (double_mode);
|
||
|
||
emit_move_insn (gen_highpart (single_mode, reg0),
|
||
force_operand (XEXP (dst, 0), NULL_RTX));
|
||
emit_move_insn (gen_highpart (single_mode, reg1),
|
||
force_operand (XEXP (src, 0), NULL_RTX));
|
||
|
||
convert_move (gen_lowpart (single_mode, reg0), len, 1);
|
||
convert_move (gen_lowpart (single_mode, reg1), len, 1);
|
||
|
||
emit_insn ((*gen_long) (reg0, reg1, reg0, reg1));
|
||
}
|
||
|
||
else
|
||
{
|
||
rtx dst_addr, src_addr, count, blocks, temp;
|
||
rtx end_label = gen_label_rtx ();
|
||
enum machine_mode mode;
|
||
tree type;
|
||
|
||
mode = GET_MODE (len);
|
||
if (mode == VOIDmode)
|
||
mode = word_mode;
|
||
|
||
type = (*lang_hooks.types.type_for_mode) (mode, 1);
|
||
if (!type)
|
||
abort ();
|
||
|
||
dst_addr = gen_reg_rtx (Pmode);
|
||
src_addr = gen_reg_rtx (Pmode);
|
||
count = gen_reg_rtx (mode);
|
||
blocks = gen_reg_rtx (mode);
|
||
|
||
convert_move (count, len, 1);
|
||
emit_cmp_and_jump_insns (count, const0_rtx,
|
||
EQ, NULL_RTX, mode, 1, end_label);
|
||
|
||
emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX));
|
||
emit_move_insn (src_addr, force_operand (XEXP (src, 0), NULL_RTX));
|
||
dst = change_address (dst, VOIDmode, dst_addr);
|
||
src = change_address (src, VOIDmode, src_addr);
|
||
|
||
temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1, 0);
|
||
if (temp != count)
|
||
emit_move_insn (count, temp);
|
||
|
||
temp = expand_binop (mode, ashr_optab, count, GEN_INT (8), blocks, 1, 0);
|
||
if (temp != blocks)
|
||
emit_move_insn (blocks, temp);
|
||
|
||
expand_start_loop (1);
|
||
expand_exit_loop_top_cond (0, build (NE_EXPR, type,
|
||
make_tree (type, blocks),
|
||
make_tree (type, const0_rtx)));
|
||
|
||
emit_insn ((*gen_short) (dst, src, GEN_INT (255)));
|
||
s390_load_address (dst_addr,
|
||
gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (256)));
|
||
s390_load_address (src_addr,
|
||
gen_rtx_PLUS (Pmode, src_addr, GEN_INT (256)));
|
||
|
||
temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1, 0);
|
||
if (temp != blocks)
|
||
emit_move_insn (blocks, temp);
|
||
|
||
expand_end_loop ();
|
||
|
||
emit_insn ((*gen_short) (dst, src, convert_to_mode (word_mode, count, 1)));
|
||
emit_label (end_label);
|
||
}
|
||
}
|
||
|
||
/* Emit code to clear LEN bytes at DST. */
|
||
|
||
void
|
||
s390_expand_clrstr (dst, len)
|
||
rtx dst;
|
||
rtx len;
|
||
{
|
||
rtx (*gen_short) PARAMS ((rtx, rtx)) =
|
||
TARGET_64BIT ? gen_clrstr_short_64 : gen_clrstr_short_31;
|
||
rtx (*gen_long) PARAMS ((rtx, rtx, rtx)) =
|
||
TARGET_64BIT ? gen_clrstr_long_64 : gen_clrstr_long_31;
|
||
|
||
|
||
if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256)
|
||
{
|
||
if (INTVAL (len) > 0)
|
||
emit_insn ((*gen_short) (dst, GEN_INT (INTVAL (len) - 1)));
|
||
}
|
||
|
||
else if (TARGET_MVCLE)
|
||
{
|
||
enum machine_mode double_mode = TARGET_64BIT ? TImode : DImode;
|
||
enum machine_mode single_mode = TARGET_64BIT ? DImode : SImode;
|
||
rtx reg0 = gen_reg_rtx (double_mode);
|
||
rtx reg1 = gen_reg_rtx (double_mode);
|
||
|
||
emit_move_insn (gen_highpart (single_mode, reg0),
|
||
force_operand (XEXP (dst, 0), NULL_RTX));
|
||
convert_move (gen_lowpart (single_mode, reg0), len, 1);
|
||
|
||
emit_move_insn (gen_highpart (single_mode, reg1), const0_rtx);
|
||
emit_move_insn (gen_lowpart (single_mode, reg1), const0_rtx);
|
||
|
||
emit_insn ((*gen_long) (reg0, reg1, reg0));
|
||
}
|
||
|
||
else
|
||
{
|
||
rtx dst_addr, src_addr, count, blocks, temp;
|
||
rtx end_label = gen_label_rtx ();
|
||
enum machine_mode mode;
|
||
tree type;
|
||
|
||
mode = GET_MODE (len);
|
||
if (mode == VOIDmode)
|
||
mode = word_mode;
|
||
|
||
type = (*lang_hooks.types.type_for_mode) (mode, 1);
|
||
if (!type)
|
||
abort ();
|
||
|
||
dst_addr = gen_reg_rtx (Pmode);
|
||
src_addr = gen_reg_rtx (Pmode);
|
||
count = gen_reg_rtx (mode);
|
||
blocks = gen_reg_rtx (mode);
|
||
|
||
convert_move (count, len, 1);
|
||
emit_cmp_and_jump_insns (count, const0_rtx,
|
||
EQ, NULL_RTX, mode, 1, end_label);
|
||
|
||
emit_move_insn (dst_addr, force_operand (XEXP (dst, 0), NULL_RTX));
|
||
dst = change_address (dst, VOIDmode, dst_addr);
|
||
|
||
temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1, 0);
|
||
if (temp != count)
|
||
emit_move_insn (count, temp);
|
||
|
||
temp = expand_binop (mode, ashr_optab, count, GEN_INT (8), blocks, 1, 0);
|
||
if (temp != blocks)
|
||
emit_move_insn (blocks, temp);
|
||
|
||
expand_start_loop (1);
|
||
expand_exit_loop_top_cond (0, build (NE_EXPR, type,
|
||
make_tree (type, blocks),
|
||
make_tree (type, const0_rtx)));
|
||
|
||
emit_insn ((*gen_short) (dst, GEN_INT (255)));
|
||
s390_load_address (dst_addr,
|
||
gen_rtx_PLUS (Pmode, dst_addr, GEN_INT (256)));
|
||
|
||
temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1, 0);
|
||
if (temp != blocks)
|
||
emit_move_insn (blocks, temp);
|
||
|
||
expand_end_loop ();
|
||
|
||
emit_insn ((*gen_short) (dst, convert_to_mode (word_mode, count, 1)));
|
||
emit_label (end_label);
|
||
}
|
||
}
|
||
|
||
/* Emit code to compare LEN bytes at OP0 with those at OP1,
|
||
and return the result in TARGET. */
|
||
|
||
void
|
||
s390_expand_cmpstr (target, op0, op1, len)
|
||
rtx target;
|
||
rtx op0;
|
||
rtx op1;
|
||
rtx len;
|
||
{
|
||
rtx (*gen_short) PARAMS ((rtx, rtx, rtx)) =
|
||
TARGET_64BIT ? gen_cmpstr_short_64 : gen_cmpstr_short_31;
|
||
rtx (*gen_long) PARAMS ((rtx, rtx, rtx, rtx)) =
|
||
TARGET_64BIT ? gen_cmpstr_long_64 : gen_cmpstr_long_31;
|
||
rtx (*gen_result) PARAMS ((rtx)) =
|
||
GET_MODE (target) == DImode ? gen_cmpint_di : gen_cmpint_si;
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
op1 = protect_from_queue (op1, 0);
|
||
len = protect_from_queue (len, 0);
|
||
|
||
if (GET_CODE (len) == CONST_INT && INTVAL (len) >= 0 && INTVAL (len) <= 256)
|
||
{
|
||
if (INTVAL (len) > 0)
|
||
{
|
||
emit_insn ((*gen_short) (op0, op1, GEN_INT (INTVAL (len) - 1)));
|
||
emit_insn ((*gen_result) (target));
|
||
}
|
||
else
|
||
emit_move_insn (target, const0_rtx);
|
||
}
|
||
|
||
else /* if (TARGET_MVCLE) */
|
||
{
|
||
enum machine_mode double_mode = TARGET_64BIT ? TImode : DImode;
|
||
enum machine_mode single_mode = TARGET_64BIT ? DImode : SImode;
|
||
rtx reg0 = gen_reg_rtx (double_mode);
|
||
rtx reg1 = gen_reg_rtx (double_mode);
|
||
|
||
emit_move_insn (gen_highpart (single_mode, reg0),
|
||
force_operand (XEXP (op0, 0), NULL_RTX));
|
||
emit_move_insn (gen_highpart (single_mode, reg1),
|
||
force_operand (XEXP (op1, 0), NULL_RTX));
|
||
|
||
convert_move (gen_lowpart (single_mode, reg0), len, 1);
|
||
convert_move (gen_lowpart (single_mode, reg1), len, 1);
|
||
|
||
emit_insn ((*gen_long) (reg0, reg1, reg0, reg1));
|
||
emit_insn ((*gen_result) (target));
|
||
}
|
||
|
||
#if 0
|
||
/* Deactivate for now as profile code cannot cope with
|
||
CC being live across basic block boundaries. */
|
||
else
|
||
{
|
||
rtx addr0, addr1, count, blocks, temp;
|
||
rtx end_label = gen_label_rtx ();
|
||
enum machine_mode mode;
|
||
tree type;
|
||
|
||
mode = GET_MODE (len);
|
||
if (mode == VOIDmode)
|
||
mode = word_mode;
|
||
|
||
type = (*lang_hooks.types.type_for_mode) (mode, 1);
|
||
if (!type)
|
||
abort ();
|
||
|
||
addr0 = gen_reg_rtx (Pmode);
|
||
addr1 = gen_reg_rtx (Pmode);
|
||
count = gen_reg_rtx (mode);
|
||
blocks = gen_reg_rtx (mode);
|
||
|
||
convert_move (count, len, 1);
|
||
emit_cmp_and_jump_insns (count, const0_rtx,
|
||
EQ, NULL_RTX, mode, 1, end_label);
|
||
|
||
emit_move_insn (addr0, force_operand (XEXP (op0, 0), NULL_RTX));
|
||
emit_move_insn (addr1, force_operand (XEXP (op1, 0), NULL_RTX));
|
||
op0 = change_address (op0, VOIDmode, addr0);
|
||
op1 = change_address (op1, VOIDmode, addr1);
|
||
|
||
temp = expand_binop (mode, add_optab, count, constm1_rtx, count, 1, 0);
|
||
if (temp != count)
|
||
emit_move_insn (count, temp);
|
||
|
||
temp = expand_binop (mode, ashr_optab, count, GEN_INT (8), blocks, 1, 0);
|
||
if (temp != blocks)
|
||
emit_move_insn (blocks, temp);
|
||
|
||
expand_start_loop (1);
|
||
expand_exit_loop_top_cond (0, build (NE_EXPR, type,
|
||
make_tree (type, blocks),
|
||
make_tree (type, const0_rtx)));
|
||
|
||
emit_insn ((*gen_short) (op0, op1, GEN_INT (255)));
|
||
temp = gen_rtx_NE (VOIDmode, gen_rtx_REG (CCSmode, 33), const0_rtx);
|
||
temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp,
|
||
gen_rtx_LABEL_REF (VOIDmode, end_label), pc_rtx);
|
||
temp = gen_rtx_SET (VOIDmode, pc_rtx, temp);
|
||
emit_jump_insn (temp);
|
||
|
||
s390_load_address (addr0,
|
||
gen_rtx_PLUS (Pmode, addr0, GEN_INT (256)));
|
||
s390_load_address (addr1,
|
||
gen_rtx_PLUS (Pmode, addr1, GEN_INT (256)));
|
||
|
||
temp = expand_binop (mode, add_optab, blocks, constm1_rtx, blocks, 1, 0);
|
||
if (temp != blocks)
|
||
emit_move_insn (blocks, temp);
|
||
|
||
expand_end_loop ();
|
||
|
||
emit_insn ((*gen_short) (op0, op1, convert_to_mode (word_mode, count, 1)));
|
||
emit_label (end_label);
|
||
|
||
emit_insn ((*gen_result) (target));
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* In the name of slightly smaller debug output, and to cater to
|
||
general assembler losage, recognize various UNSPEC sequences
|
||
and turn them back into a direct symbol reference. */
|
||
|
||
rtx
|
||
s390_simplify_dwarf_addr (orig_x)
|
||
rtx orig_x;
|
||
{
|
||
rtx x = orig_x, y;
|
||
|
||
if (GET_CODE (x) != MEM)
|
||
return orig_x;
|
||
|
||
x = XEXP (x, 0);
|
||
if (GET_CODE (x) == PLUS
|
||
&& GET_CODE (XEXP (x, 1)) == CONST
|
||
&& GET_CODE (XEXP (x, 0)) == REG
|
||
&& REGNO (XEXP (x, 0)) == PIC_OFFSET_TABLE_REGNUM)
|
||
{
|
||
y = XEXP (XEXP (x, 1), 0);
|
||
if (GET_CODE (y) == UNSPEC
|
||
&& XINT (y, 1) == 110)
|
||
return XVECEXP (y, 0, 0);
|
||
return orig_x;
|
||
}
|
||
|
||
if (GET_CODE (x) == CONST)
|
||
{
|
||
y = XEXP (x, 0);
|
||
if (GET_CODE (y) == UNSPEC
|
||
&& XINT (y, 1) == 111)
|
||
return XVECEXP (y, 0, 0);
|
||
return orig_x;
|
||
}
|
||
|
||
return orig_x;
|
||
}
|
||
|
||
/* Locate some local-dynamic symbol still in use by this function
|
||
so that we can print its name in local-dynamic base patterns. */
|
||
|
||
static const char *
|
||
get_some_local_dynamic_name ()
|
||
{
|
||
rtx insn;
|
||
|
||
if (cfun->machine->some_ld_name)
|
||
return cfun->machine->some_ld_name;
|
||
|
||
for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn)
|
||
&& for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0))
|
||
return cfun->machine->some_ld_name;
|
||
|
||
abort ();
|
||
}
|
||
|
||
static int
|
||
get_some_local_dynamic_name_1 (px, data)
|
||
rtx *px;
|
||
void *data ATTRIBUTE_UNUSED;
|
||
{
|
||
rtx x = *px;
|
||
|
||
if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
|
||
{
|
||
x = get_pool_constant (x);
|
||
return for_each_rtx (&x, get_some_local_dynamic_name_1, 0);
|
||
}
|
||
|
||
if (GET_CODE (x) == SYMBOL_REF
|
||
&& tls_symbolic_operand (x) == TLS_MODEL_LOCAL_DYNAMIC)
|
||
{
|
||
cfun->machine->some_ld_name = XSTR (x, 0);
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Output symbolic constant X in assembler syntax to
|
||
stdio stream FILE. */
|
||
|
||
void
|
||
s390_output_symbolic_const (file, x)
|
||
FILE *file;
|
||
rtx x;
|
||
{
|
||
switch (GET_CODE (x))
|
||
{
|
||
case CONST:
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTEND:
|
||
s390_output_symbolic_const (file, XEXP (x, 0));
|
||
break;
|
||
|
||
case PLUS:
|
||
s390_output_symbolic_const (file, XEXP (x, 0));
|
||
fprintf (file, "+");
|
||
s390_output_symbolic_const (file, XEXP (x, 1));
|
||
break;
|
||
|
||
case MINUS:
|
||
s390_output_symbolic_const (file, XEXP (x, 0));
|
||
fprintf (file, "-");
|
||
s390_output_symbolic_const (file, XEXP (x, 1));
|
||
break;
|
||
|
||
case CONST_INT:
|
||
case LABEL_REF:
|
||
case CODE_LABEL:
|
||
case SYMBOL_REF:
|
||
output_addr_const (file, x);
|
||
break;
|
||
|
||
case UNSPEC:
|
||
if (XVECLEN (x, 0) != 1)
|
||
output_operand_lossage ("invalid UNSPEC as operand (1)");
|
||
switch (XINT (x, 1))
|
||
{
|
||
case 100:
|
||
case 104:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "-");
|
||
s390_output_symbolic_const (file, cfun->machine->literal_pool_label);
|
||
break;
|
||
case 105:
|
||
s390_output_symbolic_const (file, cfun->machine->literal_pool_label);
|
||
fprintf (file, "-");
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
break;
|
||
case 110:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "@GOT12");
|
||
break;
|
||
case 111:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "@GOTENT");
|
||
break;
|
||
case 112:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "@GOT");
|
||
break;
|
||
case 113:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "@PLT");
|
||
break;
|
||
case 114:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "@PLT-");
|
||
s390_output_symbolic_const (file, cfun->machine->literal_pool_label);
|
||
break;
|
||
case UNSPEC_TLSGD:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "@TLSGD");
|
||
break;
|
||
case UNSPEC_TLSLDM:
|
||
assemble_name (file, get_some_local_dynamic_name ());
|
||
fprintf (file, "@TLSLDM");
|
||
break;
|
||
case UNSPEC_DTPOFF:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "@DTPOFF");
|
||
break;
|
||
case UNSPEC_NTPOFF:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "@NTPOFF");
|
||
break;
|
||
case UNSPEC_GOTNTPOFF:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "@GOTNTPOFF");
|
||
break;
|
||
case UNSPEC_INDNTPOFF:
|
||
s390_output_symbolic_const (file, XVECEXP (x, 0, 0));
|
||
fprintf (file, "@INDNTPOFF");
|
||
break;
|
||
default:
|
||
output_operand_lossage ("invalid UNSPEC as operand (2)");
|
||
break;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
fatal_insn ("UNKNOWN in s390_output_symbolic_const !?", x);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Output address operand ADDR in assembler syntax to
|
||
stdio stream FILE. */
|
||
|
||
void
|
||
print_operand_address (file, addr)
|
||
FILE *file;
|
||
rtx addr;
|
||
{
|
||
struct s390_address ad;
|
||
|
||
if (!s390_decompose_address (addr, &ad)
|
||
|| (ad.base && !REG_OK_FOR_BASE_STRICT_P (ad.base))
|
||
|| (ad.indx && !REG_OK_FOR_INDEX_STRICT_P (ad.indx)))
|
||
output_operand_lossage ("Cannot decompose address.");
|
||
|
||
if (ad.disp)
|
||
s390_output_symbolic_const (file, ad.disp);
|
||
else
|
||
fprintf (file, "0");
|
||
|
||
if (ad.base && ad.indx)
|
||
fprintf (file, "(%s,%s)", reg_names[REGNO (ad.indx)],
|
||
reg_names[REGNO (ad.base)]);
|
||
else if (ad.base)
|
||
fprintf (file, "(%s)", reg_names[REGNO (ad.base)]);
|
||
}
|
||
|
||
/* Output operand X in assembler syntax to stdio stream FILE.
|
||
CODE specified the format flag. The following format flags
|
||
are recognized:
|
||
|
||
'C': print opcode suffix for branch condition.
|
||
'D': print opcode suffix for inverse branch condition.
|
||
'J': print tls_load/tls_gdcall/tls_ldcall suffix
|
||
'O': print only the displacement of a memory reference.
|
||
'R': print only the base register of a memory reference.
|
||
'N': print the second word of a DImode operand.
|
||
'M': print the second word of a TImode operand.
|
||
|
||
'b': print integer X as if it's an unsigned byte.
|
||
'x': print integer X as if it's an unsigned word.
|
||
'h': print integer X as if it's a signed word. */
|
||
|
||
void
|
||
print_operand (file, x, code)
|
||
FILE *file;
|
||
rtx x;
|
||
int code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case 'C':
|
||
fprintf (file, s390_branch_condition_mnemonic (x, FALSE));
|
||
return;
|
||
|
||
case 'D':
|
||
fprintf (file, s390_branch_condition_mnemonic (x, TRUE));
|
||
return;
|
||
|
||
case 'J':
|
||
if (GET_CODE (x) == SYMBOL_REF)
|
||
{
|
||
fprintf (file, "%s", ":tls_load:");
|
||
output_addr_const (file, x);
|
||
}
|
||
else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD)
|
||
{
|
||
fprintf (file, "%s", ":tls_gdcall:");
|
||
output_addr_const (file, XVECEXP (x, 0, 0));
|
||
}
|
||
else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM)
|
||
{
|
||
fprintf (file, "%s", ":tls_ldcall:");
|
||
assemble_name (file, get_some_local_dynamic_name ());
|
||
}
|
||
else
|
||
abort ();
|
||
return;
|
||
|
||
case 'O':
|
||
{
|
||
struct s390_address ad;
|
||
|
||
if (GET_CODE (x) != MEM
|
||
|| !s390_decompose_address (XEXP (x, 0), &ad)
|
||
|| (ad.base && !REG_OK_FOR_BASE_STRICT_P (ad.base))
|
||
|| ad.indx)
|
||
abort ();
|
||
|
||
if (ad.disp)
|
||
s390_output_symbolic_const (file, ad.disp);
|
||
else
|
||
fprintf (file, "0");
|
||
}
|
||
return;
|
||
|
||
case 'R':
|
||
{
|
||
struct s390_address ad;
|
||
|
||
if (GET_CODE (x) != MEM
|
||
|| !s390_decompose_address (XEXP (x, 0), &ad)
|
||
|| (ad.base && !REG_OK_FOR_BASE_STRICT_P (ad.base))
|
||
|| ad.indx)
|
||
abort ();
|
||
|
||
if (ad.base)
|
||
fprintf (file, "%s", reg_names[REGNO (ad.base)]);
|
||
else
|
||
fprintf (file, "0");
|
||
}
|
||
return;
|
||
|
||
case 'N':
|
||
if (GET_CODE (x) == REG)
|
||
x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1);
|
||
else if (GET_CODE (x) == MEM)
|
||
x = change_address (x, VOIDmode, plus_constant (XEXP (x, 0), 4));
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
case 'M':
|
||
if (GET_CODE (x) == REG)
|
||
x = gen_rtx_REG (GET_MODE (x), REGNO (x) + 1);
|
||
else if (GET_CODE (x) == MEM)
|
||
x = change_address (x, VOIDmode, plus_constant (XEXP (x, 0), 8));
|
||
else
|
||
abort ();
|
||
break;
|
||
}
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG:
|
||
fprintf (file, "%s", reg_names[REGNO (x)]);
|
||
break;
|
||
|
||
case MEM:
|
||
output_address (XEXP (x, 0));
|
||
break;
|
||
|
||
case CONST:
|
||
case CODE_LABEL:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
s390_output_symbolic_const (file, x);
|
||
break;
|
||
|
||
case CONST_INT:
|
||
if (code == 'b')
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0xff);
|
||
else if (code == 'x')
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0xffff);
|
||
else if (code == 'h')
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ((INTVAL (x) & 0xffff) ^ 0x8000) - 0x8000);
|
||
else
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
|
||
break;
|
||
|
||
case CONST_DOUBLE:
|
||
if (GET_MODE (x) != VOIDmode)
|
||
abort ();
|
||
if (code == 'b')
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x) & 0xff);
|
||
else if (code == 'x')
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x) & 0xffff);
|
||
else if (code == 'h')
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ((CONST_DOUBLE_LOW (x) & 0xffff) ^ 0x8000) - 0x8000);
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
default:
|
||
fatal_insn ("UNKNOWN in print_operand !?", x);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Target hook for assembling integer objects. We need to define it
|
||
here to work a round a bug in some versions of GAS, which couldn't
|
||
handle values smaller than INT_MIN when printed in decimal. */
|
||
|
||
static bool
|
||
s390_assemble_integer (x, size, aligned_p)
|
||
rtx x;
|
||
unsigned int size;
|
||
int aligned_p;
|
||
{
|
||
if (size == 8 && aligned_p
|
||
&& GET_CODE (x) == CONST_INT && INTVAL (x) < INT_MIN)
|
||
{
|
||
fputs ("\t.quad\t", asm_out_file);
|
||
fprintf (asm_out_file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
|
||
putc ('\n', asm_out_file);
|
||
return true;
|
||
}
|
||
return default_assemble_integer (x, size, aligned_p);
|
||
}
|
||
|
||
|
||
#define DEBUG_SCHED 0
|
||
|
||
/* Returns true if register REGNO is used for forming
|
||
a memory address in expression X. */
|
||
|
||
static int
|
||
reg_used_in_mem_p (regno, x)
|
||
int regno;
|
||
rtx x;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
if (code == MEM)
|
||
{
|
||
if (refers_to_regno_p (regno, regno+1,
|
||
XEXP (x, 0), 0))
|
||
return 1;
|
||
}
|
||
else if (code == SET
|
||
&& GET_CODE (SET_DEST (x)) == PC)
|
||
{
|
||
if (refers_to_regno_p (regno, regno+1,
|
||
SET_SRC (x), 0))
|
||
return 1;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e'
|
||
&& reg_used_in_mem_p (regno, XEXP (x, i)))
|
||
return 1;
|
||
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (reg_used_in_mem_p (regno, XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Returns true if expression DEP_RTX sets an address register
|
||
used by instruction INSN to address memory. */
|
||
|
||
static int
|
||
addr_generation_dependency_p (dep_rtx, insn)
|
||
rtx dep_rtx;
|
||
rtx insn;
|
||
{
|
||
rtx target, pat;
|
||
|
||
if (GET_CODE (dep_rtx) == SET)
|
||
{
|
||
target = SET_DEST (dep_rtx);
|
||
if (GET_CODE (target) == STRICT_LOW_PART)
|
||
target = XEXP (target, 0);
|
||
while (GET_CODE (target) == SUBREG)
|
||
target = SUBREG_REG (target);
|
||
|
||
if (GET_CODE (target) == REG)
|
||
{
|
||
int regno = REGNO (target);
|
||
|
||
if (get_attr_type (insn) == TYPE_LA)
|
||
{
|
||
pat = PATTERN (insn);
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
if (XVECLEN (pat, 0) != 2)
|
||
abort();
|
||
pat = XVECEXP (pat, 0, 0);
|
||
}
|
||
if (GET_CODE (pat) == SET)
|
||
return refers_to_regno_p (regno, regno+1, SET_SRC (pat), 0);
|
||
else
|
||
abort();
|
||
}
|
||
else if (get_attr_atype (insn) == ATYPE_MEM)
|
||
return reg_used_in_mem_p (regno, PATTERN (insn));
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return the modified cost of the dependency of instruction INSN
|
||
on instruction DEP_INSN through the link LINK. COST is the
|
||
default cost of that dependency.
|
||
|
||
Data dependencies are all handled without delay. However, if a
|
||
register is modified and subsequently used as base or index
|
||
register of a memory reference, at least 4 cycles need to pass
|
||
between setting and using the register to avoid pipeline stalls.
|
||
An exception is the LA instruction. An address generated by LA can
|
||
be used by introducing only a one cycle stall on the pipeline. */
|
||
|
||
static int
|
||
s390_adjust_cost (insn, link, dep_insn, cost)
|
||
rtx insn;
|
||
rtx link;
|
||
rtx dep_insn;
|
||
int cost;
|
||
{
|
||
rtx dep_rtx;
|
||
int i;
|
||
|
||
/* If the dependence is an anti-dependence, there is no cost. For an
|
||
output dependence, there is sometimes a cost, but it doesn't seem
|
||
worth handling those few cases. */
|
||
|
||
if (REG_NOTE_KIND (link) != 0)
|
||
return 0;
|
||
|
||
/* If we can't recognize the insns, we can't really do anything. */
|
||
if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
|
||
return cost;
|
||
|
||
dep_rtx = PATTERN (dep_insn);
|
||
|
||
if (GET_CODE (dep_rtx) == SET)
|
||
{
|
||
if (addr_generation_dependency_p (dep_rtx, insn))
|
||
{
|
||
cost += (get_attr_type (dep_insn) == TYPE_LA) ? 1 : 4;
|
||
if (DEBUG_SCHED)
|
||
{
|
||
fprintf (stderr, "\n\nAddress dependency detected: cost %d\n",
|
||
cost);
|
||
debug_rtx (dep_insn);
|
||
debug_rtx (insn);
|
||
}
|
||
}
|
||
}
|
||
else if (GET_CODE (dep_rtx) == PARALLEL)
|
||
{
|
||
for (i = 0; i < XVECLEN (dep_rtx, 0); i++)
|
||
{
|
||
if (addr_generation_dependency_p (XVECEXP (dep_rtx, 0, i),
|
||
insn))
|
||
{
|
||
cost += (get_attr_type (dep_insn) == TYPE_LA) ? 1 : 4;
|
||
if (DEBUG_SCHED)
|
||
{
|
||
fprintf (stderr, "\n\nAddress dependency detected: cost %d\n"
|
||
,cost);
|
||
debug_rtx (dep_insn);
|
||
debug_rtx (insn);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return cost;
|
||
}
|
||
|
||
|
||
/* A C statement (sans semicolon) to update the integer scheduling priority
|
||
INSN_PRIORITY (INSN). Reduce the priority to execute the INSN earlier,
|
||
increase the priority to execute INSN later. Do not define this macro if
|
||
you do not need to adjust the scheduling priorities of insns.
|
||
|
||
A LA instruction maybe scheduled later, since the pipeline bypasses the
|
||
calculated value. */
|
||
|
||
static int
|
||
s390_adjust_priority (insn, priority)
|
||
rtx insn ATTRIBUTE_UNUSED;
|
||
int priority;
|
||
{
|
||
if (! INSN_P (insn))
|
||
return priority;
|
||
|
||
if (GET_CODE (PATTERN (insn)) == USE
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
||
return priority;
|
||
|
||
switch (get_attr_type (insn))
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case TYPE_LA:
|
||
if (priority >= 0 && priority < 0x01000000)
|
||
priority <<= 3;
|
||
break;
|
||
case TYPE_LM:
|
||
/* LM in epilogue should never be scheduled. This
|
||
is due to literal access done in function body.
|
||
The usage of register 13 is not mentioned explicitly,
|
||
leading to scheduling 'LM' accross this instructions.
|
||
*/
|
||
priority = 0x7fffffff;
|
||
break;
|
||
}
|
||
|
||
return priority;
|
||
}
|
||
|
||
|
||
/* Split all branches that exceed the maximum distance.
|
||
Returns true if this created a new literal pool entry.
|
||
|
||
Code generated by this routine is allowed to use
|
||
TEMP_REG as temporary scratch register. If this is
|
||
done, TEMP_USED is set to true. */
|
||
|
||
static int
|
||
s390_split_branches (temp_reg, temp_used)
|
||
rtx temp_reg;
|
||
bool *temp_used;
|
||
{
|
||
int new_literal = 0;
|
||
rtx insn, pat, tmp, target;
|
||
rtx *label;
|
||
|
||
/* We need correct insn addresses. */
|
||
|
||
shorten_branches (get_insns ());
|
||
|
||
/* Find all branches that exceed 64KB, and split them. */
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (GET_CODE (insn) != JUMP_INSN)
|
||
continue;
|
||
|
||
pat = PATTERN (insn);
|
||
if (GET_CODE (pat) == PARALLEL && XVECLEN (pat, 0) > 2)
|
||
pat = XVECEXP (pat, 0, 0);
|
||
if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
|
||
continue;
|
||
|
||
if (GET_CODE (SET_SRC (pat)) == LABEL_REF)
|
||
{
|
||
label = &SET_SRC (pat);
|
||
}
|
||
else if (GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE)
|
||
{
|
||
if (GET_CODE (XEXP (SET_SRC (pat), 1)) == LABEL_REF)
|
||
label = &XEXP (SET_SRC (pat), 1);
|
||
else if (GET_CODE (XEXP (SET_SRC (pat), 2)) == LABEL_REF)
|
||
label = &XEXP (SET_SRC (pat), 2);
|
||
else
|
||
continue;
|
||
}
|
||
else
|
||
continue;
|
||
|
||
if (get_attr_length (insn) <= (TARGET_64BIT ? 6 : 4))
|
||
continue;
|
||
|
||
*temp_used = 1;
|
||
|
||
if (TARGET_64BIT)
|
||
{
|
||
tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, *label), insn);
|
||
INSN_ADDRESSES_NEW (tmp, -1);
|
||
|
||
target = temp_reg;
|
||
}
|
||
else if (!flag_pic)
|
||
{
|
||
new_literal = 1;
|
||
tmp = force_const_mem (Pmode, *label);
|
||
tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, tmp), insn);
|
||
INSN_ADDRESSES_NEW (tmp, -1);
|
||
|
||
target = temp_reg;
|
||
}
|
||
else
|
||
{
|
||
new_literal = 1;
|
||
tmp = gen_rtx_UNSPEC (SImode, gen_rtvec (1, *label), 104);
|
||
tmp = gen_rtx_CONST (SImode, tmp);
|
||
tmp = force_const_mem (SImode, tmp);
|
||
tmp = emit_insn_before (gen_rtx_SET (Pmode, temp_reg, tmp), insn);
|
||
INSN_ADDRESSES_NEW (tmp, -1);
|
||
|
||
target = gen_rtx_REG (Pmode, BASE_REGISTER);
|
||
target = gen_rtx_PLUS (Pmode, target, temp_reg);
|
||
}
|
||
|
||
if (!validate_change (insn, label, target, 0))
|
||
abort ();
|
||
}
|
||
|
||
return new_literal;
|
||
}
|
||
|
||
|
||
/* Find a literal pool symbol referenced in RTX X, and store
|
||
it at REF. Will abort if X contains references to more than
|
||
one such pool symbol; multiple references to the same symbol
|
||
are allowed, however.
|
||
|
||
The rtx pointed to by REF must be initialized to NULL_RTX
|
||
by the caller before calling this routine. */
|
||
|
||
static void
|
||
find_constant_pool_ref (x, ref)
|
||
rtx x;
|
||
rtx *ref;
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
if (GET_CODE (x) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (x))
|
||
{
|
||
if (*ref == NULL_RTX)
|
||
*ref = x;
|
||
else if (*ref != x)
|
||
abort();
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
find_constant_pool_ref (XEXP (x, i), ref);
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
find_constant_pool_ref (XVECEXP (x, i, j), ref);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Replace every reference to the literal pool symbol REF
|
||
in X by the address ADDR. Fix up MEMs as required. */
|
||
|
||
static void
|
||
replace_constant_pool_ref (x, ref, addr)
|
||
rtx *x;
|
||
rtx ref;
|
||
rtx addr;
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
if (*x == ref)
|
||
abort ();
|
||
|
||
/* Literal pool references can only occur inside a MEM ... */
|
||
if (GET_CODE (*x) == MEM)
|
||
{
|
||
rtx memref = XEXP (*x, 0);
|
||
|
||
if (memref == ref)
|
||
{
|
||
*x = replace_equiv_address (*x, addr);
|
||
return;
|
||
}
|
||
|
||
if (GET_CODE (memref) == CONST
|
||
&& GET_CODE (XEXP (memref, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (memref, 0), 1)) == CONST_INT
|
||
&& XEXP (XEXP (memref, 0), 0) == ref)
|
||
{
|
||
HOST_WIDE_INT off = INTVAL (XEXP (XEXP (memref, 0), 1));
|
||
*x = replace_equiv_address (*x, plus_constant (addr, off));
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* ... or a load-address type pattern. */
|
||
if (GET_CODE (*x) == SET)
|
||
{
|
||
rtx addrref = SET_SRC (*x);
|
||
|
||
if (addrref == ref)
|
||
{
|
||
SET_SRC (*x) = addr;
|
||
return;
|
||
}
|
||
|
||
if (GET_CODE (addrref) == CONST
|
||
&& GET_CODE (XEXP (addrref, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (addrref, 0), 1)) == CONST_INT
|
||
&& XEXP (XEXP (addrref, 0), 0) == ref)
|
||
{
|
||
HOST_WIDE_INT off = INTVAL (XEXP (XEXP (addrref, 0), 1));
|
||
SET_SRC (*x) = plus_constant (addr, off);
|
||
return;
|
||
}
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (*x));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
replace_constant_pool_ref (&XEXP (*x, i), ref, addr);
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = 0; j < XVECLEN (*x, i); j++)
|
||
replace_constant_pool_ref (&XVECEXP (*x, i, j), ref, addr);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check whether ADDR is an address that uses the base register,
|
||
without actually constituting a literal pool access. (This happens
|
||
in 31-bit PIC mode, where the base register is used as anchor for
|
||
relative addressing of local symbols.)
|
||
|
||
Returns 1 if the base register occupies the base slot,
|
||
returns 2 if the base register occupies the index slot,
|
||
returns 0 if the address is not of this form. */
|
||
|
||
static int
|
||
find_base_register_in_addr (addr)
|
||
struct s390_address *addr;
|
||
{
|
||
/* If DISP is complex, we might have a literal pool reference. */
|
||
if (addr->disp && GET_CODE (addr->disp) != CONST_INT)
|
||
return 0;
|
||
|
||
if (addr->base && REG_P (addr->base) && REGNO (addr->base) == BASE_REGISTER)
|
||
return 1;
|
||
|
||
if (addr->indx && REG_P (addr->indx) && REGNO (addr->indx) == BASE_REGISTER)
|
||
return 2;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if X contains an address that uses the base register,
|
||
without actually constituting a literal pool access. */
|
||
|
||
static bool
|
||
find_base_register_ref (x)
|
||
rtx x;
|
||
{
|
||
bool retv = FALSE;
|
||
struct s390_address addr;
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
/* Addresses can only occur inside a MEM ... */
|
||
if (GET_CODE (x) == MEM)
|
||
{
|
||
if (s390_decompose_address (XEXP (x, 0), &addr)
|
||
&& find_base_register_in_addr (&addr))
|
||
return TRUE;
|
||
}
|
||
|
||
/* ... or a load-address type pattern. */
|
||
if (GET_CODE (x) == SET && GET_CODE (SET_DEST (x)) == REG)
|
||
{
|
||
if (s390_decompose_address (SET_SRC (x), &addr)
|
||
&& find_base_register_in_addr (&addr))
|
||
return TRUE;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
retv |= find_base_register_ref (XEXP (x, i));
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
retv |= find_base_register_ref (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
|
||
return retv;
|
||
}
|
||
|
||
/* If X contains an address that uses the base register,
|
||
without actually constituting a literal pool access,
|
||
replace the base register with REPL in all such cases.
|
||
|
||
Handles both MEMs and load address patterns. */
|
||
|
||
static void
|
||
replace_base_register_ref (x, repl)
|
||
rtx *x;
|
||
rtx repl;
|
||
{
|
||
struct s390_address addr;
|
||
rtx new_addr;
|
||
int i, j, pos;
|
||
const char *fmt;
|
||
|
||
/* Addresses can only occur inside a MEM ... */
|
||
if (GET_CODE (*x) == MEM)
|
||
{
|
||
if (s390_decompose_address (XEXP (*x, 0), &addr)
|
||
&& (pos = find_base_register_in_addr (&addr)))
|
||
{
|
||
if (pos == 1)
|
||
addr.base = repl;
|
||
else
|
||
addr.indx = repl;
|
||
|
||
new_addr = addr.base;
|
||
if (addr.indx)
|
||
new_addr = gen_rtx_PLUS (Pmode, new_addr, addr.indx);
|
||
if (addr.disp)
|
||
new_addr = gen_rtx_PLUS (Pmode, new_addr, addr.disp);
|
||
|
||
*x = replace_equiv_address (*x, new_addr);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* ... or a load-address type pattern. */
|
||
if (GET_CODE (*x) == SET && GET_CODE (SET_DEST (*x)) == REG)
|
||
{
|
||
if (s390_decompose_address (SET_SRC (*x), &addr)
|
||
&& (pos = find_base_register_in_addr (&addr)))
|
||
{
|
||
if (pos == 1)
|
||
addr.base = repl;
|
||
else
|
||
addr.indx = repl;
|
||
|
||
new_addr = addr.base;
|
||
if (addr.indx)
|
||
new_addr = gen_rtx_PLUS (Pmode, new_addr, addr.indx);
|
||
if (addr.disp)
|
||
new_addr = gen_rtx_PLUS (Pmode, new_addr, addr.disp);
|
||
|
||
SET_SRC (*x) = new_addr;
|
||
return;
|
||
}
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (*x));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (*x)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
replace_base_register_ref (&XEXP (*x, i), repl);
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = 0; j < XVECLEN (*x, i); j++)
|
||
replace_base_register_ref (&XVECEXP (*x, i, j), repl);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* We keep a list of constants we which we have to add to internal
|
||
constant tables in the middle of large functions. */
|
||
|
||
#define NR_C_MODES 6
|
||
enum machine_mode constant_modes[NR_C_MODES] =
|
||
{
|
||
DFmode, DImode,
|
||
SFmode, SImode,
|
||
HImode,
|
||
QImode
|
||
};
|
||
|
||
rtx (*gen_consttable[NR_C_MODES])(rtx) =
|
||
{
|
||
gen_consttable_df, gen_consttable_di,
|
||
gen_consttable_sf, gen_consttable_si,
|
||
gen_consttable_hi,
|
||
gen_consttable_qi
|
||
};
|
||
|
||
struct constant
|
||
{
|
||
struct constant *next;
|
||
rtx value;
|
||
rtx label;
|
||
};
|
||
|
||
struct constant_pool
|
||
{
|
||
struct constant_pool *next;
|
||
rtx first_insn;
|
||
rtx pool_insn;
|
||
bitmap insns;
|
||
|
||
struct constant *constants[NR_C_MODES];
|
||
rtx label;
|
||
int size;
|
||
bool anchor;
|
||
};
|
||
|
||
static struct constant_pool * s390_chunkify_start PARAMS ((rtx, bool *));
|
||
static void s390_chunkify_finish PARAMS ((struct constant_pool *, rtx));
|
||
static void s390_chunkify_cancel PARAMS ((struct constant_pool *));
|
||
|
||
static struct constant_pool *s390_start_pool PARAMS ((struct constant_pool **, rtx));
|
||
static void s390_end_pool PARAMS ((struct constant_pool *, rtx));
|
||
static void s390_add_pool_insn PARAMS ((struct constant_pool *, rtx));
|
||
static struct constant_pool *s390_find_pool PARAMS ((struct constant_pool *, rtx));
|
||
static void s390_add_constant PARAMS ((struct constant_pool *, rtx, enum machine_mode));
|
||
static rtx s390_find_constant PARAMS ((struct constant_pool *, rtx, enum machine_mode));
|
||
static void s390_add_anchor PARAMS ((struct constant_pool *));
|
||
static rtx s390_dump_pool PARAMS ((struct constant_pool *));
|
||
static void s390_free_pool PARAMS ((struct constant_pool *));
|
||
|
||
/* Create new constant pool covering instructions starting at INSN
|
||
and chain it to the end of POOL_LIST. */
|
||
|
||
static struct constant_pool *
|
||
s390_start_pool (pool_list, insn)
|
||
struct constant_pool **pool_list;
|
||
rtx insn;
|
||
{
|
||
struct constant_pool *pool, **prev;
|
||
int i;
|
||
|
||
pool = (struct constant_pool *) xmalloc (sizeof *pool);
|
||
pool->next = NULL;
|
||
for (i = 0; i < NR_C_MODES; i++)
|
||
pool->constants[i] = NULL;
|
||
|
||
pool->label = gen_label_rtx ();
|
||
pool->first_insn = insn;
|
||
pool->pool_insn = NULL_RTX;
|
||
pool->insns = BITMAP_XMALLOC ();
|
||
pool->size = 0;
|
||
pool->anchor = FALSE;
|
||
|
||
for (prev = pool_list; *prev; prev = &(*prev)->next)
|
||
;
|
||
*prev = pool;
|
||
|
||
return pool;
|
||
}
|
||
|
||
/* End range of instructions covered by POOL at INSN and emit
|
||
placeholder insn representing the pool. */
|
||
|
||
static void
|
||
s390_end_pool (pool, insn)
|
||
struct constant_pool *pool;
|
||
rtx insn;
|
||
{
|
||
rtx pool_size = GEN_INT (pool->size + 8 /* alignment slop */);
|
||
|
||
if (!insn)
|
||
insn = get_last_insn ();
|
||
|
||
pool->pool_insn = emit_insn_after (gen_pool (pool_size), insn);
|
||
INSN_ADDRESSES_NEW (pool->pool_insn, -1);
|
||
}
|
||
|
||
/* Add INSN to the list of insns covered by POOL. */
|
||
|
||
static void
|
||
s390_add_pool_insn (pool, insn)
|
||
struct constant_pool *pool;
|
||
rtx insn;
|
||
{
|
||
bitmap_set_bit (pool->insns, INSN_UID (insn));
|
||
}
|
||
|
||
/* Return pool out of POOL_LIST that covers INSN. */
|
||
|
||
static struct constant_pool *
|
||
s390_find_pool (pool_list, insn)
|
||
struct constant_pool *pool_list;
|
||
rtx insn;
|
||
{
|
||
struct constant_pool *pool;
|
||
|
||
for (pool = pool_list; pool; pool = pool->next)
|
||
if (bitmap_bit_p (pool->insns, INSN_UID (insn)))
|
||
break;
|
||
|
||
return pool;
|
||
}
|
||
|
||
/* Add constant VAL of mode MODE to the constant pool POOL. */
|
||
|
||
static void
|
||
s390_add_constant (pool, val, mode)
|
||
struct constant_pool *pool;
|
||
rtx val;
|
||
enum machine_mode mode;
|
||
{
|
||
struct constant *c;
|
||
int i;
|
||
|
||
for (i = 0; i < NR_C_MODES; i++)
|
||
if (constant_modes[i] == mode)
|
||
break;
|
||
if (i == NR_C_MODES)
|
||
abort ();
|
||
|
||
for (c = pool->constants[i]; c != NULL; c = c->next)
|
||
if (rtx_equal_p (val, c->value))
|
||
break;
|
||
|
||
if (c == NULL)
|
||
{
|
||
c = (struct constant *) xmalloc (sizeof *c);
|
||
c->value = val;
|
||
c->label = gen_label_rtx ();
|
||
c->next = pool->constants[i];
|
||
pool->constants[i] = c;
|
||
pool->size += GET_MODE_SIZE (mode);
|
||
}
|
||
}
|
||
|
||
/* Find constant VAL of mode MODE in the constant pool POOL.
|
||
Return an RTX describing the distance from the start of
|
||
the pool to the location of the new constant. */
|
||
|
||
static rtx
|
||
s390_find_constant (pool, val, mode)
|
||
struct constant_pool *pool;
|
||
rtx val;
|
||
enum machine_mode mode;
|
||
{
|
||
struct constant *c;
|
||
rtx offset;
|
||
int i;
|
||
|
||
for (i = 0; i < NR_C_MODES; i++)
|
||
if (constant_modes[i] == mode)
|
||
break;
|
||
if (i == NR_C_MODES)
|
||
abort ();
|
||
|
||
for (c = pool->constants[i]; c != NULL; c = c->next)
|
||
if (rtx_equal_p (val, c->value))
|
||
break;
|
||
|
||
if (c == NULL)
|
||
abort ();
|
||
|
||
offset = gen_rtx_MINUS (Pmode, gen_rtx_LABEL_REF (Pmode, c->label),
|
||
gen_rtx_LABEL_REF (Pmode, pool->label));
|
||
offset = gen_rtx_CONST (Pmode, offset);
|
||
return offset;
|
||
}
|
||
|
||
/* Set 'anchor' flag in POOL. */
|
||
|
||
static void
|
||
s390_add_anchor (pool)
|
||
struct constant_pool *pool;
|
||
{
|
||
if (!pool->anchor)
|
||
{
|
||
pool->anchor = TRUE;
|
||
pool->size += 4;
|
||
}
|
||
}
|
||
|
||
/* Dump out the constants in POOL. */
|
||
|
||
static rtx
|
||
s390_dump_pool (pool)
|
||
struct constant_pool *pool;
|
||
{
|
||
struct constant *c;
|
||
rtx insn;
|
||
int i;
|
||
|
||
/* Pool start insn switches to proper section
|
||
and guarantees necessary alignment. */
|
||
if (TARGET_64BIT)
|
||
insn = emit_insn_after (gen_pool_start_64 (), pool->pool_insn);
|
||
else
|
||
insn = emit_insn_after (gen_pool_start_31 (), pool->pool_insn);
|
||
INSN_ADDRESSES_NEW (insn, -1);
|
||
|
||
insn = emit_label_after (pool->label, insn);
|
||
INSN_ADDRESSES_NEW (insn, -1);
|
||
|
||
/* Emit anchor if we need one. */
|
||
if (pool->anchor)
|
||
{
|
||
rtx anchor = gen_rtx_LABEL_REF (VOIDmode, pool->label);
|
||
anchor = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, anchor), 105);
|
||
anchor = gen_rtx_CONST (VOIDmode, anchor);
|
||
insn = emit_insn_after (gen_consttable_si (anchor), insn);
|
||
INSN_ADDRESSES_NEW (insn, -1);
|
||
}
|
||
|
||
/* Dump constants in descending alignment requirement order,
|
||
ensuring proper alignment for every constant. */
|
||
for (i = 0; i < NR_C_MODES; i++)
|
||
for (c = pool->constants[i]; c; c = c->next)
|
||
{
|
||
/* Convert 104 unspecs to pool-relative references. */
|
||
rtx value = c->value;
|
||
if (GET_CODE (value) == CONST
|
||
&& GET_CODE (XEXP (value, 0)) == UNSPEC
|
||
&& XINT (XEXP (value, 0), 1) == 104
|
||
&& XVECLEN (XEXP (value, 0), 0) == 1)
|
||
{
|
||
value = gen_rtx_MINUS (Pmode, XVECEXP (XEXP (value, 0), 0, 0),
|
||
gen_rtx_LABEL_REF (VOIDmode, pool->label));
|
||
value = gen_rtx_CONST (VOIDmode, value);
|
||
}
|
||
|
||
insn = emit_label_after (c->label, insn);
|
||
INSN_ADDRESSES_NEW (insn, -1);
|
||
insn = emit_insn_after (gen_consttable[i] (value), insn);
|
||
INSN_ADDRESSES_NEW (insn, -1);
|
||
}
|
||
|
||
/* Pool end insn switches back to previous section
|
||
and guarantees necessary alignment. */
|
||
if (TARGET_64BIT)
|
||
insn = emit_insn_after (gen_pool_end_64 (), insn);
|
||
else
|
||
insn = emit_insn_after (gen_pool_end_31 (), insn);
|
||
INSN_ADDRESSES_NEW (insn, -1);
|
||
|
||
insn = emit_barrier_after (insn);
|
||
INSN_ADDRESSES_NEW (insn, -1);
|
||
|
||
/* Remove placeholder insn. */
|
||
remove_insn (pool->pool_insn);
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Free all memory used by POOL. */
|
||
|
||
static void
|
||
s390_free_pool (pool)
|
||
struct constant_pool *pool;
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < NR_C_MODES; i++)
|
||
{
|
||
struct constant *c = pool->constants[i];
|
||
while (c != NULL)
|
||
{
|
||
struct constant *next = c->next;
|
||
free (c);
|
||
c = next;
|
||
}
|
||
}
|
||
|
||
BITMAP_XFREE (pool->insns);
|
||
free (pool);
|
||
}
|
||
|
||
|
||
/* Chunkify the literal pool if required.
|
||
|
||
Code generated by this routine is allowed to use
|
||
TEMP_REG as temporary scratch register. If this is
|
||
done, TEMP_USED is set to true. */
|
||
|
||
#define S390_POOL_CHUNK_MIN 0xc00
|
||
#define S390_POOL_CHUNK_MAX 0xe00
|
||
|
||
static struct constant_pool *
|
||
s390_chunkify_start (temp_reg, temp_used)
|
||
rtx temp_reg;
|
||
bool *temp_used;
|
||
{
|
||
rtx base_reg = gen_rtx_REG (Pmode, BASE_REGISTER);
|
||
|
||
struct constant_pool *curr_pool = NULL, *pool_list = NULL;
|
||
int extra_size = 0;
|
||
bitmap far_labels;
|
||
rtx insn;
|
||
|
||
rtx (*gen_reload_base) PARAMS ((rtx, rtx)) =
|
||
TARGET_64BIT? gen_reload_base_64 : gen_reload_base_31;
|
||
|
||
|
||
/* Do we need to chunkify the literal pool? */
|
||
|
||
if (get_pool_size () < S390_POOL_CHUNK_MAX)
|
||
return NULL;
|
||
|
||
/* We need correct insn addresses. */
|
||
|
||
shorten_branches (get_insns ());
|
||
|
||
/* Scan all insns and move literals to pool chunks.
|
||
Also, emit anchor reload insns before every insn that uses
|
||
the literal pool base register as anchor pointer. */
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
rtx pool_ref = NULL_RTX;
|
||
find_constant_pool_ref (PATTERN (insn), &pool_ref);
|
||
if (pool_ref)
|
||
{
|
||
if (!curr_pool)
|
||
curr_pool = s390_start_pool (&pool_list, insn);
|
||
|
||
s390_add_constant (curr_pool, get_pool_constant (pool_ref),
|
||
get_pool_mode (pool_ref));
|
||
s390_add_pool_insn (curr_pool, insn);
|
||
}
|
||
|
||
else if (!TARGET_64BIT && flag_pic
|
||
&& find_base_register_ref (PATTERN (insn)))
|
||
{
|
||
rtx new = gen_reload_anchor (temp_reg, base_reg);
|
||
new = emit_insn_before (new, insn);
|
||
INSN_ADDRESSES_NEW (new, INSN_ADDRESSES (INSN_UID (insn)));
|
||
extra_size += 8;
|
||
*temp_used = 1;
|
||
|
||
if (!curr_pool)
|
||
curr_pool = s390_start_pool (&pool_list, new);
|
||
|
||
s390_add_anchor (curr_pool);
|
||
s390_add_pool_insn (curr_pool, insn);
|
||
}
|
||
}
|
||
|
||
if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CODE_LABEL)
|
||
if (curr_pool)
|
||
s390_add_pool_insn (curr_pool, insn);
|
||
|
||
if (!curr_pool
|
||
|| INSN_ADDRESSES_SIZE () <= (size_t) INSN_UID (insn)
|
||
|| INSN_ADDRESSES (INSN_UID (insn)) == -1)
|
||
continue;
|
||
|
||
if (TARGET_64BIT)
|
||
{
|
||
if (curr_pool->size < S390_POOL_CHUNK_MAX)
|
||
continue;
|
||
|
||
s390_end_pool (curr_pool, NULL_RTX);
|
||
curr_pool = NULL;
|
||
}
|
||
else
|
||
{
|
||
int chunk_size = INSN_ADDRESSES (INSN_UID (insn))
|
||
- INSN_ADDRESSES (INSN_UID (curr_pool->first_insn))
|
||
+ extra_size;
|
||
|
||
/* We will later have to insert base register reload insns.
|
||
Those will have an effect on code size, which we need to
|
||
consider here. This calculation makes rather pessimistic
|
||
worst-case assumptions. */
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
extra_size += 6;
|
||
|
||
if (chunk_size < S390_POOL_CHUNK_MIN
|
||
&& curr_pool->size < S390_POOL_CHUNK_MIN)
|
||
continue;
|
||
|
||
/* Pool chunks can only be inserted after BARRIERs ... */
|
||
if (GET_CODE (insn) == BARRIER)
|
||
{
|
||
s390_end_pool (curr_pool, insn);
|
||
curr_pool = NULL;
|
||
extra_size = 0;
|
||
}
|
||
|
||
/* ... so if we don't find one in time, create one. */
|
||
else if ((chunk_size > S390_POOL_CHUNK_MAX
|
||
|| curr_pool->size > S390_POOL_CHUNK_MAX))
|
||
{
|
||
rtx label, jump, barrier;
|
||
|
||
/* We can insert the barrier only after a 'real' insn. */
|
||
if (GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN)
|
||
continue;
|
||
if (get_attr_length (insn) == 0)
|
||
continue;
|
||
|
||
/* Don't separate insns created by s390_split_branches. */
|
||
if (GET_CODE (insn) == INSN
|
||
&& GET_CODE (PATTERN (insn)) == SET
|
||
&& rtx_equal_p (SET_DEST (PATTERN (insn)), temp_reg))
|
||
continue;
|
||
|
||
label = gen_label_rtx ();
|
||
jump = emit_jump_insn_after (gen_jump (label), insn);
|
||
barrier = emit_barrier_after (jump);
|
||
insn = emit_label_after (label, barrier);
|
||
JUMP_LABEL (jump) = label;
|
||
LABEL_NUSES (label) = 1;
|
||
|
||
INSN_ADDRESSES_NEW (jump, -1);
|
||
INSN_ADDRESSES_NEW (barrier, -1);
|
||
INSN_ADDRESSES_NEW (insn, -1);
|
||
|
||
s390_end_pool (curr_pool, barrier);
|
||
curr_pool = NULL;
|
||
extra_size = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (curr_pool)
|
||
s390_end_pool (curr_pool, NULL_RTX);
|
||
|
||
|
||
/* Find all labels that are branched into
|
||
from an insn belonging to a different chunk. */
|
||
|
||
far_labels = BITMAP_XMALLOC ();
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
{
|
||
/* Labels marked with LABEL_PRESERVE_P can be target
|
||
of non-local jumps, so we have to mark them.
|
||
The same holds for named labels.
|
||
|
||
Don't do that, however, if it is the label before
|
||
a jump table. */
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL
|
||
&& (LABEL_PRESERVE_P (insn) || LABEL_NAME (insn)))
|
||
{
|
||
rtx vec_insn = next_real_insn (insn);
|
||
rtx vec_pat = vec_insn && GET_CODE (vec_insn) == JUMP_INSN ?
|
||
PATTERN (vec_insn) : NULL_RTX;
|
||
if (!vec_pat
|
||
|| !(GET_CODE (vec_pat) == ADDR_VEC
|
||
|| GET_CODE (vec_pat) == ADDR_DIFF_VEC))
|
||
bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (insn));
|
||
}
|
||
|
||
/* If we have a direct jump (conditional or unconditional)
|
||
or a casesi jump, check all potential targets. */
|
||
else if (GET_CODE (insn) == JUMP_INSN)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
if (GET_CODE (pat) == PARALLEL && XVECLEN (pat, 0) > 2)
|
||
pat = XVECEXP (pat, 0, 0);
|
||
|
||
if (GET_CODE (pat) == SET)
|
||
{
|
||
rtx label = JUMP_LABEL (insn);
|
||
if (label)
|
||
{
|
||
if (s390_find_pool (pool_list, label)
|
||
!= s390_find_pool (pool_list, insn))
|
||
bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label));
|
||
}
|
||
}
|
||
else if (GET_CODE (pat) == PARALLEL
|
||
&& XVECLEN (pat, 0) == 2
|
||
&& GET_CODE (XVECEXP (pat, 0, 0)) == SET
|
||
&& GET_CODE (XVECEXP (pat, 0, 1)) == USE
|
||
&& GET_CODE (XEXP (XVECEXP (pat, 0, 1), 0)) == LABEL_REF)
|
||
{
|
||
/* Find the jump table used by this casesi jump. */
|
||
rtx vec_label = XEXP (XEXP (XVECEXP (pat, 0, 1), 0), 0);
|
||
rtx vec_insn = next_real_insn (vec_label);
|
||
rtx vec_pat = vec_insn && GET_CODE (vec_insn) == JUMP_INSN ?
|
||
PATTERN (vec_insn) : NULL_RTX;
|
||
if (vec_pat
|
||
&& (GET_CODE (vec_pat) == ADDR_VEC
|
||
|| GET_CODE (vec_pat) == ADDR_DIFF_VEC))
|
||
{
|
||
int i, diff_p = GET_CODE (vec_pat) == ADDR_DIFF_VEC;
|
||
|
||
for (i = 0; i < XVECLEN (vec_pat, diff_p); i++)
|
||
{
|
||
rtx label = XEXP (XVECEXP (vec_pat, diff_p, i), 0);
|
||
|
||
if (s390_find_pool (pool_list, label)
|
||
!= s390_find_pool (pool_list, insn))
|
||
bitmap_set_bit (far_labels, CODE_LABEL_NUMBER (label));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Insert base register reload insns before every pool. */
|
||
|
||
for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next)
|
||
{
|
||
rtx new_insn = gen_reload_base (base_reg, curr_pool->label);
|
||
rtx insn = curr_pool->first_insn;
|
||
INSN_ADDRESSES_NEW (emit_insn_before (new_insn, insn), -1);
|
||
}
|
||
|
||
/* Insert base register reload insns at every far label. */
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == CODE_LABEL
|
||
&& bitmap_bit_p (far_labels, CODE_LABEL_NUMBER (insn)))
|
||
{
|
||
struct constant_pool *pool = s390_find_pool (pool_list, insn);
|
||
if (pool)
|
||
{
|
||
rtx new_insn = gen_reload_base (base_reg, pool->label);
|
||
INSN_ADDRESSES_NEW (emit_insn_after (new_insn, insn), -1);
|
||
}
|
||
}
|
||
|
||
|
||
BITMAP_XFREE (far_labels);
|
||
|
||
|
||
/* Recompute insn addresses. */
|
||
|
||
init_insn_lengths ();
|
||
shorten_branches (get_insns ());
|
||
|
||
return pool_list;
|
||
}
|
||
|
||
/* POOL_LIST is a chunk list as prepared by s390_chunkify_start.
|
||
After we have decided to use this list, finish implementing
|
||
all changes to the current function as required.
|
||
|
||
Code generated by this routine is allowed to use
|
||
TEMP_REG as temporary scratch register. */
|
||
|
||
static void
|
||
s390_chunkify_finish (pool_list, temp_reg)
|
||
struct constant_pool *pool_list;
|
||
rtx temp_reg;
|
||
{
|
||
rtx base_reg = gen_rtx_REG (Pmode, BASE_REGISTER);
|
||
struct constant_pool *curr_pool = NULL;
|
||
rtx insn;
|
||
|
||
|
||
/* Replace all literal pool references. */
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
{
|
||
curr_pool = s390_find_pool (pool_list, insn);
|
||
if (!curr_pool)
|
||
continue;
|
||
|
||
if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
rtx addr, pool_ref = NULL_RTX;
|
||
find_constant_pool_ref (PATTERN (insn), &pool_ref);
|
||
if (pool_ref)
|
||
{
|
||
addr = s390_find_constant (curr_pool, get_pool_constant (pool_ref),
|
||
get_pool_mode (pool_ref));
|
||
addr = gen_rtx_PLUS (Pmode, base_reg, addr);
|
||
replace_constant_pool_ref (&PATTERN (insn), pool_ref, addr);
|
||
INSN_CODE (insn) = -1;
|
||
}
|
||
|
||
else if (!TARGET_64BIT && flag_pic
|
||
&& find_base_register_ref (PATTERN (insn)))
|
||
{
|
||
replace_base_register_ref (&PATTERN (insn), temp_reg);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Dump out all literal pools. */
|
||
|
||
for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next)
|
||
s390_dump_pool (curr_pool);
|
||
|
||
/* Free pool list. */
|
||
|
||
while (pool_list)
|
||
{
|
||
struct constant_pool *next = pool_list->next;
|
||
s390_free_pool (pool_list);
|
||
pool_list = next;
|
||
}
|
||
}
|
||
|
||
/* POOL_LIST is a chunk list as prepared by s390_chunkify_start.
|
||
We have decided we cannot use this list, so revert all changes
|
||
to the current function that were done by s390_chunkify_start. */
|
||
|
||
static void
|
||
s390_chunkify_cancel (pool_list)
|
||
struct constant_pool *pool_list;
|
||
{
|
||
struct constant_pool *curr_pool = NULL;
|
||
rtx insn;
|
||
|
||
/* Remove all pool placeholder insns. */
|
||
|
||
for (curr_pool = pool_list; curr_pool; curr_pool = curr_pool->next)
|
||
{
|
||
/* Did we insert an extra barrier? Remove it. */
|
||
rtx barrier = PREV_INSN (curr_pool->pool_insn);
|
||
rtx jump = barrier? PREV_INSN (barrier) : NULL_RTX;
|
||
rtx label = NEXT_INSN (curr_pool->pool_insn);
|
||
|
||
if (jump && GET_CODE (jump) == JUMP_INSN
|
||
&& barrier && GET_CODE (barrier) == BARRIER
|
||
&& label && GET_CODE (label) == CODE_LABEL
|
||
&& GET_CODE (PATTERN (jump)) == SET
|
||
&& SET_DEST (PATTERN (jump)) == pc_rtx
|
||
&& GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF
|
||
&& XEXP (SET_SRC (PATTERN (jump)), 0) == label)
|
||
{
|
||
remove_insn (jump);
|
||
remove_insn (barrier);
|
||
remove_insn (label);
|
||
}
|
||
|
||
remove_insn (curr_pool->pool_insn);
|
||
}
|
||
|
||
/* Remove all base/anchor register reload insns. */
|
||
|
||
for (insn = get_insns (); insn; )
|
||
{
|
||
rtx next_insn = NEXT_INSN (insn);
|
||
|
||
if (GET_CODE (insn) == INSN
|
||
&& GET_CODE (PATTERN (insn)) == SET
|
||
&& GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC
|
||
&& (XINT (SET_SRC (PATTERN (insn)), 1) == 210
|
||
|| XINT (SET_SRC (PATTERN (insn)), 1) == 211))
|
||
remove_insn (insn);
|
||
|
||
insn = next_insn;
|
||
}
|
||
|
||
/* Free pool list. */
|
||
|
||
while (pool_list)
|
||
{
|
||
struct constant_pool *next = pool_list->next;
|
||
s390_free_pool (pool_list);
|
||
pool_list = next;
|
||
}
|
||
}
|
||
|
||
|
||
/* Index of constant pool chunk that is currently being processed.
|
||
Set to -1 before function output has started. */
|
||
int s390_pool_count = -1;
|
||
|
||
/* Number of elements of current constant pool. */
|
||
int s390_nr_constants;
|
||
|
||
/* Output main constant pool to stdio stream FILE. */
|
||
|
||
void
|
||
s390_output_constant_pool (start_label, end_label)
|
||
rtx start_label;
|
||
rtx end_label;
|
||
{
|
||
if (TARGET_64BIT)
|
||
{
|
||
readonly_data_section ();
|
||
ASM_OUTPUT_ALIGN (asm_out_file, 3);
|
||
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
|
||
CODE_LABEL_NUMBER (start_label));
|
||
}
|
||
else
|
||
{
|
||
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
|
||
CODE_LABEL_NUMBER (start_label));
|
||
ASM_OUTPUT_ALIGN (asm_out_file, 2);
|
||
}
|
||
|
||
s390_pool_count = 0;
|
||
output_constant_pool (current_function_name, current_function_decl);
|
||
s390_pool_count = -1;
|
||
if (TARGET_64BIT)
|
||
function_section (current_function_decl);
|
||
else
|
||
{
|
||
ASM_OUTPUT_ALIGN (asm_out_file, 1);
|
||
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (end_label));
|
||
}
|
||
}
|
||
|
||
/* Rework the prolog/epilog to avoid saving/restoring
|
||
registers unnecessarily. If TEMP_REGNO is nonnegative,
|
||
it specifies the number of a caller-saved register used
|
||
as temporary scratch register by code emitted during
|
||
machine dependent reorg. */
|
||
|
||
static void
|
||
s390_optimize_prolog (temp_regno)
|
||
int temp_regno;
|
||
{
|
||
int save_first, save_last, restore_first, restore_last;
|
||
int i, j;
|
||
rtx insn, new_insn, next_insn;
|
||
|
||
/* Recompute regs_ever_live data for special registers. */
|
||
regs_ever_live[BASE_REGISTER] = 0;
|
||
regs_ever_live[RETURN_REGNUM] = 0;
|
||
regs_ever_live[STACK_POINTER_REGNUM] = cfun->machine->frame_size > 0;
|
||
|
||
/* If there is (possibly) any pool entry, we need to
|
||
load the base register.
|
||
??? FIXME: this should be more precise. */
|
||
if (get_pool_size ())
|
||
regs_ever_live[BASE_REGISTER] = 1;
|
||
|
||
/* In non-leaf functions, the prolog/epilog code relies
|
||
on RETURN_REGNUM being saved in any case. */
|
||
if (!current_function_is_leaf)
|
||
regs_ever_live[RETURN_REGNUM] = 1;
|
||
|
||
/* We need to save/restore the temporary register. */
|
||
if (temp_regno >= 0)
|
||
regs_ever_live[temp_regno] = 1;
|
||
|
||
|
||
/* Find first and last gpr to be saved. */
|
||
|
||
for (i = 6; i < 16; i++)
|
||
if (regs_ever_live[i])
|
||
if (!global_regs[i]
|
||
|| i == STACK_POINTER_REGNUM
|
||
|| i == RETURN_REGNUM
|
||
|| i == BASE_REGISTER
|
||
|| (flag_pic && i == (int)PIC_OFFSET_TABLE_REGNUM))
|
||
break;
|
||
|
||
for (j = 15; j > i; j--)
|
||
if (regs_ever_live[j])
|
||
if (!global_regs[j]
|
||
|| j == STACK_POINTER_REGNUM
|
||
|| j == RETURN_REGNUM
|
||
|| j == BASE_REGISTER
|
||
|| (flag_pic && j == (int)PIC_OFFSET_TABLE_REGNUM))
|
||
break;
|
||
|
||
if (i == 16)
|
||
{
|
||
/* Nothing to save/restore. */
|
||
save_first = restore_first = -1;
|
||
save_last = restore_last = -1;
|
||
}
|
||
else
|
||
{
|
||
/* Save/restore from i to j. */
|
||
save_first = restore_first = i;
|
||
save_last = restore_last = j;
|
||
}
|
||
|
||
/* Varargs functions need to save gprs 2 to 6. */
|
||
if (current_function_stdarg)
|
||
{
|
||
save_first = 2;
|
||
if (save_last < 6)
|
||
save_last = 6;
|
||
}
|
||
|
||
|
||
/* If all special registers are in fact used, there's nothing we
|
||
can do, so no point in walking the insn list. */
|
||
if (i <= BASE_REGISTER && j >= BASE_REGISTER
|
||
&& i <= RETURN_REGNUM && j >= RETURN_REGNUM)
|
||
return;
|
||
|
||
|
||
/* Search for prolog/epilog insns and replace them. */
|
||
|
||
for (insn = get_insns (); insn; insn = next_insn)
|
||
{
|
||
int first, last, off;
|
||
rtx set, base, offset;
|
||
|
||
next_insn = NEXT_INSN (insn);
|
||
|
||
if (GET_CODE (insn) != INSN)
|
||
continue;
|
||
if (GET_CODE (PATTERN (insn)) != PARALLEL)
|
||
continue;
|
||
|
||
if (store_multiple_operation (PATTERN (insn), VOIDmode))
|
||
{
|
||
set = XVECEXP (PATTERN (insn), 0, 0);
|
||
first = REGNO (SET_SRC (set));
|
||
last = first + XVECLEN (PATTERN (insn), 0) - 1;
|
||
offset = const0_rtx;
|
||
base = eliminate_constant_term (XEXP (SET_DEST (set), 0), &offset);
|
||
off = INTVAL (offset) - first * UNITS_PER_WORD;
|
||
|
||
if (GET_CODE (base) != REG || off < 0)
|
||
continue;
|
||
if (first > BASE_REGISTER && first > RETURN_REGNUM)
|
||
continue;
|
||
if (last < BASE_REGISTER && last < RETURN_REGNUM)
|
||
continue;
|
||
|
||
if (save_first != -1)
|
||
{
|
||
new_insn = save_gprs (base, off, save_first, save_last);
|
||
new_insn = emit_insn_before (new_insn, insn);
|
||
INSN_ADDRESSES_NEW (new_insn, -1);
|
||
}
|
||
|
||
remove_insn (insn);
|
||
}
|
||
|
||
if (load_multiple_operation (PATTERN (insn), VOIDmode))
|
||
{
|
||
set = XVECEXP (PATTERN (insn), 0, 0);
|
||
first = REGNO (SET_DEST (set));
|
||
last = first + XVECLEN (PATTERN (insn), 0) - 1;
|
||
offset = const0_rtx;
|
||
base = eliminate_constant_term (XEXP (SET_SRC (set), 0), &offset);
|
||
off = INTVAL (offset) - first * UNITS_PER_WORD;
|
||
|
||
if (GET_CODE (base) != REG || off < 0)
|
||
continue;
|
||
if (first > BASE_REGISTER && first > RETURN_REGNUM)
|
||
continue;
|
||
if (last < BASE_REGISTER && last < RETURN_REGNUM)
|
||
continue;
|
||
|
||
if (restore_first != -1)
|
||
{
|
||
new_insn = restore_gprs (base, off, restore_first, restore_last);
|
||
new_insn = emit_insn_before (new_insn, insn);
|
||
INSN_ADDRESSES_NEW (new_insn, -1);
|
||
}
|
||
|
||
remove_insn (insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check whether any insn in the function makes use of the original
|
||
value of RETURN_REG (e.g. for __builtin_return_address).
|
||
If so, insert an insn reloading that value.
|
||
|
||
Return true if any such insn was found. */
|
||
|
||
static bool
|
||
s390_fixup_clobbered_return_reg (return_reg)
|
||
rtx return_reg;
|
||
{
|
||
bool replacement_done = 0;
|
||
rtx insn;
|
||
|
||
/* If we never called __builtin_return_address, register 14
|
||
might have been used as temp during the prolog; we do
|
||
not want to touch those uses. */
|
||
if (!has_hard_reg_initial_val (Pmode, REGNO (return_reg)))
|
||
return false;
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
{
|
||
rtx reg, off, new_insn;
|
||
|
||
if (GET_CODE (insn) != INSN)
|
||
continue;
|
||
if (!reg_referenced_p (return_reg, PATTERN (insn)))
|
||
continue;
|
||
if (GET_CODE (PATTERN (insn)) == PARALLEL
|
||
&& store_multiple_operation (PATTERN (insn), VOIDmode))
|
||
continue;
|
||
|
||
if (frame_pointer_needed)
|
||
reg = hard_frame_pointer_rtx;
|
||
else
|
||
reg = stack_pointer_rtx;
|
||
|
||
off = GEN_INT (cfun->machine->frame_size + REGNO (return_reg) * UNITS_PER_WORD);
|
||
if (INTVAL (off) >= 4096)
|
||
{
|
||
off = force_const_mem (Pmode, off);
|
||
new_insn = gen_rtx_SET (Pmode, return_reg, off);
|
||
new_insn = emit_insn_before (new_insn, insn);
|
||
INSN_ADDRESSES_NEW (new_insn, -1);
|
||
off = return_reg;
|
||
}
|
||
|
||
new_insn = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, reg, off));
|
||
new_insn = gen_rtx_SET (Pmode, return_reg, new_insn);
|
||
new_insn = emit_insn_before (new_insn, insn);
|
||
INSN_ADDRESSES_NEW (new_insn, -1);
|
||
|
||
replacement_done = 1;
|
||
}
|
||
|
||
return replacement_done;
|
||
}
|
||
|
||
/* Perform machine-dependent processing. */
|
||
|
||
void
|
||
s390_machine_dependent_reorg (first)
|
||
rtx first ATTRIBUTE_UNUSED;
|
||
{
|
||
bool fixed_up_clobbered_return_reg = 0;
|
||
rtx temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
|
||
bool temp_used = 0;
|
||
|
||
/* Make sure all splits have been performed; splits after
|
||
machine_dependent_reorg might confuse insn length counts. */
|
||
split_all_insns_noflow ();
|
||
|
||
|
||
/* There are two problematic situations we need to correct:
|
||
|
||
- the literal pool might be > 4096 bytes in size, so that
|
||
some of its elements cannot be directly accessed
|
||
|
||
- a branch target might be > 64K away from the branch, so that
|
||
it is not possible to use a PC-relative instruction.
|
||
|
||
To fix those, we split the single literal pool into multiple
|
||
pool chunks, reloading the pool base register at various
|
||
points throughout the function to ensure it always points to
|
||
the pool chunk the following code expects, and / or replace
|
||
PC-relative branches by absolute branches.
|
||
|
||
However, the two problems are interdependent: splitting the
|
||
literal pool can move a branch further away from its target,
|
||
causing the 64K limit to overflow, and on the other hand,
|
||
replacing a PC-relative branch by an absolute branch means
|
||
we need to put the branch target address into the literal
|
||
pool, possibly causing it to overflow.
|
||
|
||
So, we loop trying to fix up both problems until we manage
|
||
to satisfy both conditions at the same time. Note that the
|
||
loop is guaranteed to terminate as every pass of the loop
|
||
strictly decreases the total number of PC-relative branches
|
||
in the function. (This is not completely true as there
|
||
might be branch-over-pool insns introduced by chunkify_start.
|
||
Those never need to be split however.) */
|
||
|
||
for (;;)
|
||
{
|
||
struct constant_pool *pool_list;
|
||
|
||
/* Try to chunkify the literal pool. */
|
||
pool_list = s390_chunkify_start (temp_reg, &temp_used);
|
||
|
||
/* Split out-of-range branches. If this has created new
|
||
literal pool entries, cancel current chunk list and
|
||
recompute it. */
|
||
if (s390_split_branches (temp_reg, &temp_used))
|
||
{
|
||
if (pool_list)
|
||
s390_chunkify_cancel (pool_list);
|
||
|
||
continue;
|
||
}
|
||
|
||
/* Check whether we have clobbered a use of the return
|
||
register (e.g. for __builtin_return_address). If so,
|
||
add insns reloading the register where necessary. */
|
||
if (temp_used && !fixed_up_clobbered_return_reg
|
||
&& s390_fixup_clobbered_return_reg (temp_reg))
|
||
{
|
||
fixed_up_clobbered_return_reg = 1;
|
||
|
||
/* The fixup insns might have caused a jump to overflow. */
|
||
if (pool_list)
|
||
s390_chunkify_cancel (pool_list);
|
||
|
||
continue;
|
||
}
|
||
|
||
/* If we made it up to here, both conditions are satisfied.
|
||
Finish up pool chunkification if required. */
|
||
if (pool_list)
|
||
s390_chunkify_finish (pool_list, temp_reg);
|
||
|
||
break;
|
||
}
|
||
|
||
s390_optimize_prolog (temp_used? RETURN_REGNUM : -1);
|
||
}
|
||
|
||
|
||
/* Return an RTL expression representing the value of the return address
|
||
for the frame COUNT steps up from the current frame. FRAME is the
|
||
frame pointer of that frame. */
|
||
|
||
rtx
|
||
s390_return_addr_rtx (count, frame)
|
||
int count;
|
||
rtx frame;
|
||
{
|
||
rtx addr;
|
||
|
||
/* For the current frame, we use the initial value of RETURN_REGNUM.
|
||
This works both in leaf and non-leaf functions. */
|
||
|
||
if (count == 0)
|
||
return get_hard_reg_initial_val (Pmode, RETURN_REGNUM);
|
||
|
||
/* For frames farther back, we read the stack slot where the
|
||
corresponding RETURN_REGNUM value was saved. */
|
||
|
||
addr = plus_constant (frame, RETURN_REGNUM * UNITS_PER_WORD);
|
||
addr = memory_address (Pmode, addr);
|
||
return gen_rtx_MEM (Pmode, addr);
|
||
}
|
||
|
||
/* Find first call clobbered register unsused in a function.
|
||
This could be used as base register in a leaf function
|
||
or for holding the return address before epilogue. */
|
||
|
||
static int
|
||
find_unused_clobbered_reg ()
|
||
{
|
||
int i;
|
||
for (i = 0; i < 6; i++)
|
||
if (!regs_ever_live[i])
|
||
return i;
|
||
return 0;
|
||
}
|
||
|
||
/* Fill FRAME with info about frame of current function. */
|
||
|
||
static void
|
||
s390_frame_info ()
|
||
{
|
||
char gprs_ever_live[16];
|
||
int i, j;
|
||
HOST_WIDE_INT fsize = get_frame_size ();
|
||
|
||
if (fsize > 0x7fff0000)
|
||
fatal_error ("Total size of local variables exceeds architecture limit.");
|
||
|
||
/* fprs 8 - 15 are caller saved for 64 Bit ABI. */
|
||
cfun->machine->save_fprs_p = 0;
|
||
if (TARGET_64BIT)
|
||
for (i = 24; i < 32; i++)
|
||
if (regs_ever_live[i] && !global_regs[i])
|
||
{
|
||
cfun->machine->save_fprs_p = 1;
|
||
break;
|
||
}
|
||
|
||
cfun->machine->frame_size = fsize + cfun->machine->save_fprs_p * 64;
|
||
|
||
/* Does function need to setup frame and save area. */
|
||
|
||
if (! current_function_is_leaf
|
||
|| cfun->machine->frame_size > 0
|
||
|| current_function_calls_alloca
|
||
|| current_function_stdarg)
|
||
cfun->machine->frame_size += STARTING_FRAME_OFFSET;
|
||
|
||
/* Find first and last gpr to be saved. Note that at this point,
|
||
we assume the return register and the base register always
|
||
need to be saved. This is done because the usage of these
|
||
register might change even after the prolog was emitted.
|
||
If it turns out later that we really don't need them, the
|
||
prolog/epilog code is modified again. */
|
||
|
||
for (i = 0; i < 16; i++)
|
||
gprs_ever_live[i] = regs_ever_live[i] && !global_regs[i];
|
||
|
||
if (flag_pic)
|
||
gprs_ever_live[PIC_OFFSET_TABLE_REGNUM] =
|
||
regs_ever_live[PIC_OFFSET_TABLE_REGNUM];
|
||
gprs_ever_live[BASE_REGISTER] = 1;
|
||
gprs_ever_live[RETURN_REGNUM] = 1;
|
||
gprs_ever_live[STACK_POINTER_REGNUM] = cfun->machine->frame_size > 0;
|
||
|
||
for (i = 6; i < 16; i++)
|
||
if (gprs_ever_live[i])
|
||
break;
|
||
|
||
for (j = 15; j > i; j--)
|
||
if (gprs_ever_live[j])
|
||
break;
|
||
|
||
|
||
/* Save / Restore from gpr i to j. */
|
||
cfun->machine->first_save_gpr = i;
|
||
cfun->machine->first_restore_gpr = i;
|
||
cfun->machine->last_save_gpr = j;
|
||
|
||
/* Varargs functions need to save gprs 2 to 6. */
|
||
if (current_function_stdarg)
|
||
cfun->machine->first_save_gpr = 2;
|
||
}
|
||
|
||
/* Return offset between argument pointer and frame pointer
|
||
initially after prologue. */
|
||
|
||
int
|
||
s390_arg_frame_offset ()
|
||
{
|
||
HOST_WIDE_INT fsize = get_frame_size ();
|
||
int save_fprs_p, i;
|
||
|
||
/* fprs 8 - 15 are caller saved for 64 Bit ABI. */
|
||
save_fprs_p = 0;
|
||
if (TARGET_64BIT)
|
||
for (i = 24; i < 32; i++)
|
||
if (regs_ever_live[i] && !global_regs[i])
|
||
{
|
||
save_fprs_p = 1;
|
||
break;
|
||
}
|
||
|
||
fsize = fsize + save_fprs_p * 64;
|
||
|
||
/* Does function need to setup frame and save area. */
|
||
|
||
if (! current_function_is_leaf
|
||
|| fsize > 0
|
||
|| current_function_calls_alloca
|
||
|| current_function_stdarg)
|
||
fsize += STARTING_FRAME_OFFSET;
|
||
return fsize + STACK_POINTER_OFFSET;
|
||
}
|
||
|
||
/* Emit insn to save fpr REGNUM at offset OFFSET relative
|
||
to register BASE. Return generated insn. */
|
||
|
||
static rtx
|
||
save_fpr (base, offset, regnum)
|
||
rtx base;
|
||
int offset;
|
||
int regnum;
|
||
{
|
||
rtx addr;
|
||
addr = gen_rtx_MEM (DFmode, plus_constant (base, offset));
|
||
set_mem_alias_set (addr, s390_sr_alias_set);
|
||
|
||
return emit_move_insn (addr, gen_rtx_REG (DFmode, regnum));
|
||
}
|
||
|
||
/* Emit insn to restore fpr REGNUM from offset OFFSET relative
|
||
to register BASE. Return generated insn. */
|
||
|
||
static rtx
|
||
restore_fpr (base, offset, regnum)
|
||
rtx base;
|
||
int offset;
|
||
int regnum;
|
||
{
|
||
rtx addr;
|
||
addr = gen_rtx_MEM (DFmode, plus_constant (base, offset));
|
||
set_mem_alias_set (addr, s390_sr_alias_set);
|
||
|
||
return emit_move_insn (gen_rtx_REG (DFmode, regnum), addr);
|
||
}
|
||
|
||
/* Generate insn to save registers FIRST to LAST into
|
||
the register save area located at offset OFFSET
|
||
relative to register BASE. */
|
||
|
||
static rtx
|
||
save_gprs (base, offset, first, last)
|
||
rtx base;
|
||
int offset;
|
||
int first;
|
||
int last;
|
||
{
|
||
rtx addr, insn, note;
|
||
int i;
|
||
|
||
addr = plus_constant (base, offset + first * UNITS_PER_WORD);
|
||
addr = gen_rtx_MEM (Pmode, addr);
|
||
set_mem_alias_set (addr, s390_sr_alias_set);
|
||
|
||
/* Special-case single register. */
|
||
if (first == last)
|
||
{
|
||
if (TARGET_64BIT)
|
||
insn = gen_movdi (addr, gen_rtx_REG (Pmode, first));
|
||
else
|
||
insn = gen_movsi (addr, gen_rtx_REG (Pmode, first));
|
||
|
||
RTX_FRAME_RELATED_P (insn) = 1;
|
||
return insn;
|
||
}
|
||
|
||
|
||
insn = gen_store_multiple (addr,
|
||
gen_rtx_REG (Pmode, first),
|
||
GEN_INT (last - first + 1));
|
||
|
||
|
||
/* We need to set the FRAME_RELATED flag on all SETs
|
||
inside the store-multiple pattern.
|
||
|
||
However, we must not emit DWARF records for registers 2..5
|
||
if they are stored for use by variable arguments ...
|
||
|
||
??? Unfortunately, it is not enough to simply not the the
|
||
FRAME_RELATED flags for those SETs, because the first SET
|
||
of the PARALLEL is always treated as if it had the flag
|
||
set, even if it does not. Therefore we emit a new pattern
|
||
without those registers as REG_FRAME_RELATED_EXPR note. */
|
||
|
||
if (first >= 6)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
|
||
RTX_FRAME_RELATED_P (XVECEXP (pat, 0, i)) = 1;
|
||
|
||
RTX_FRAME_RELATED_P (insn) = 1;
|
||
}
|
||
else if (last >= 6)
|
||
{
|
||
addr = plus_constant (base, offset + 6 * UNITS_PER_WORD);
|
||
note = gen_store_multiple (gen_rtx_MEM (Pmode, addr),
|
||
gen_rtx_REG (Pmode, 6),
|
||
GEN_INT (last - 6 + 1));
|
||
note = PATTERN (note);
|
||
|
||
REG_NOTES (insn) =
|
||
gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
||
note, REG_NOTES (insn));
|
||
|
||
for (i = 0; i < XVECLEN (note, 0); i++)
|
||
if (GET_CODE (XVECEXP (note, 0, i)) == SET)
|
||
RTX_FRAME_RELATED_P (XVECEXP (note, 0, i)) = 1;
|
||
|
||
RTX_FRAME_RELATED_P (insn) = 1;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Generate insn to restore registers FIRST to LAST from
|
||
the register save area located at offset OFFSET
|
||
relative to register BASE. */
|
||
|
||
static rtx
|
||
restore_gprs (base, offset, first, last)
|
||
rtx base;
|
||
int offset;
|
||
int first;
|
||
int last;
|
||
{
|
||
rtx addr, insn;
|
||
|
||
addr = plus_constant (base, offset + first * UNITS_PER_WORD);
|
||
addr = gen_rtx_MEM (Pmode, addr);
|
||
set_mem_alias_set (addr, s390_sr_alias_set);
|
||
|
||
/* Special-case single register. */
|
||
if (first == last)
|
||
{
|
||
if (TARGET_64BIT)
|
||
insn = gen_movdi (gen_rtx_REG (Pmode, first), addr);
|
||
else
|
||
insn = gen_movsi (gen_rtx_REG (Pmode, first), addr);
|
||
|
||
return insn;
|
||
}
|
||
|
||
insn = gen_load_multiple (gen_rtx_REG (Pmode, first),
|
||
addr,
|
||
GEN_INT (last - first + 1));
|
||
return insn;
|
||
}
|
||
|
||
/* Expand the prologue into a bunch of separate insns. */
|
||
|
||
void
|
||
s390_emit_prologue ()
|
||
{
|
||
rtx insn, addr;
|
||
rtx temp_reg;
|
||
rtx pool_start_label, pool_end_label;
|
||
int i;
|
||
|
||
/* Compute frame_info. */
|
||
|
||
s390_frame_info ();
|
||
|
||
/* Choose best register to use for temp use within prologue. */
|
||
|
||
if (!current_function_is_leaf
|
||
&& !has_hard_reg_initial_val (Pmode, RETURN_REGNUM)
|
||
&& get_pool_size () < S390_POOL_CHUNK_MAX / 2)
|
||
temp_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
|
||
else
|
||
temp_reg = gen_rtx_REG (Pmode, 1);
|
||
|
||
/* Save call saved gprs. */
|
||
|
||
insn = save_gprs (stack_pointer_rtx, 0,
|
||
cfun->machine->first_save_gpr, cfun->machine->last_save_gpr);
|
||
emit_insn (insn);
|
||
|
||
/* Dump constant pool and set constant pool register. */
|
||
|
||
pool_start_label = gen_label_rtx();
|
||
pool_end_label = gen_label_rtx();
|
||
cfun->machine->literal_pool_label = pool_start_label;
|
||
|
||
if (TARGET_64BIT)
|
||
insn = emit_insn (gen_literal_pool_64 (gen_rtx_REG (Pmode, BASE_REGISTER),
|
||
pool_start_label, pool_end_label));
|
||
else
|
||
insn = emit_insn (gen_literal_pool_31 (gen_rtx_REG (Pmode, BASE_REGISTER),
|
||
pool_start_label, pool_end_label));
|
||
|
||
/* Save fprs for variable args. */
|
||
|
||
if (current_function_stdarg)
|
||
{
|
||
/* Save fpr 0 and 2. */
|
||
|
||
save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 32, 16);
|
||
save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 24, 17);
|
||
|
||
if (TARGET_64BIT)
|
||
{
|
||
/* Save fpr 4 and 6. */
|
||
|
||
save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 16, 18);
|
||
save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 8, 19);
|
||
}
|
||
}
|
||
|
||
/* Save fprs 4 and 6 if used (31 bit ABI). */
|
||
|
||
if (!TARGET_64BIT)
|
||
{
|
||
/* Save fpr 4 and 6. */
|
||
if (regs_ever_live[18] && !global_regs[18])
|
||
{
|
||
insn = save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 16, 18);
|
||
RTX_FRAME_RELATED_P (insn) = 1;
|
||
}
|
||
if (regs_ever_live[19] && !global_regs[19])
|
||
{
|
||
insn = save_fpr (stack_pointer_rtx, STACK_POINTER_OFFSET - 8, 19);
|
||
RTX_FRAME_RELATED_P (insn) = 1;
|
||
}
|
||
}
|
||
|
||
/* Decrement stack pointer. */
|
||
|
||
if (cfun->machine->frame_size > 0)
|
||
{
|
||
rtx frame_off = GEN_INT (-cfun->machine->frame_size);
|
||
|
||
/* Save incoming stack pointer into temp reg. */
|
||
|
||
if (TARGET_BACKCHAIN || cfun->machine->save_fprs_p)
|
||
{
|
||
insn = emit_insn (gen_move_insn (temp_reg, stack_pointer_rtx));
|
||
}
|
||
|
||
/* Substract frame size from stack pointer. */
|
||
|
||
frame_off = GEN_INT (-cfun->machine->frame_size);
|
||
if (!CONST_OK_FOR_LETTER_P (-cfun->machine->frame_size, 'K'))
|
||
frame_off = force_const_mem (Pmode, frame_off);
|
||
|
||
insn = emit_insn (gen_add2_insn (stack_pointer_rtx, frame_off));
|
||
RTX_FRAME_RELATED_P (insn) = 1;
|
||
REG_NOTES (insn) =
|
||
gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
||
gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
||
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
||
GEN_INT (-cfun->machine->frame_size))),
|
||
REG_NOTES (insn));
|
||
|
||
/* Set backchain. */
|
||
|
||
if (TARGET_BACKCHAIN)
|
||
{
|
||
addr = gen_rtx_MEM (Pmode, stack_pointer_rtx);
|
||
set_mem_alias_set (addr, s390_sr_alias_set);
|
||
insn = emit_insn (gen_move_insn (addr, temp_reg));
|
||
}
|
||
|
||
/* If we support asynchronous exceptions (e.g. for Java),
|
||
we need to make sure the backchain pointer is set up
|
||
before any possibly trapping memory access. */
|
||
|
||
if (TARGET_BACKCHAIN && flag_non_call_exceptions)
|
||
{
|
||
addr = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, addr));
|
||
}
|
||
}
|
||
|
||
/* Save fprs 8 - 15 (64 bit ABI). */
|
||
|
||
if (cfun->machine->save_fprs_p)
|
||
{
|
||
insn = emit_insn (gen_add2_insn (temp_reg, GEN_INT(-64)));
|
||
|
||
for (i = 24; i < 32; i++)
|
||
if (regs_ever_live[i] && !global_regs[i])
|
||
{
|
||
rtx addr = plus_constant (stack_pointer_rtx,
|
||
cfun->machine->frame_size - 64 + (i-24)*8);
|
||
|
||
insn = save_fpr (temp_reg, (i-24)*8, i);
|
||
RTX_FRAME_RELATED_P (insn) = 1;
|
||
REG_NOTES (insn) =
|
||
gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
||
gen_rtx_SET (VOIDmode,
|
||
gen_rtx_MEM (DFmode, addr),
|
||
gen_rtx_REG (DFmode, i)),
|
||
REG_NOTES (insn));
|
||
}
|
||
}
|
||
|
||
/* Set frame pointer, if needed. */
|
||
|
||
if (frame_pointer_needed)
|
||
{
|
||
insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
|
||
RTX_FRAME_RELATED_P (insn) = 1;
|
||
}
|
||
|
||
/* Set up got pointer, if needed. */
|
||
|
||
if (flag_pic && regs_ever_live[PIC_OFFSET_TABLE_REGNUM])
|
||
{
|
||
rtx got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
|
||
SYMBOL_REF_FLAG (got_symbol) = 1;
|
||
|
||
if (TARGET_64BIT)
|
||
{
|
||
insn = emit_insn (gen_movdi (pic_offset_table_rtx,
|
||
got_symbol));
|
||
|
||
/* It can happen that the GOT pointer isn't really needed ... */
|
||
REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX,
|
||
REG_NOTES (insn));
|
||
}
|
||
else
|
||
{
|
||
got_symbol = gen_rtx_UNSPEC (VOIDmode,
|
||
gen_rtvec (1, got_symbol), 100);
|
||
got_symbol = gen_rtx_CONST (VOIDmode, got_symbol);
|
||
got_symbol = force_const_mem (Pmode, got_symbol);
|
||
insn = emit_move_insn (pic_offset_table_rtx,
|
||
got_symbol);
|
||
REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX,
|
||
REG_NOTES (insn));
|
||
|
||
got_symbol = gen_rtx_REG (Pmode, BASE_REGISTER);
|
||
got_symbol = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, got_symbol), 101);
|
||
got_symbol = gen_rtx_PLUS (Pmode, got_symbol, pic_offset_table_rtx);
|
||
insn = emit_move_insn (pic_offset_table_rtx, got_symbol);
|
||
REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX,
|
||
REG_NOTES (insn));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Expand the epilogue into a bunch of separate insns. */
|
||
|
||
void
|
||
s390_emit_epilogue ()
|
||
{
|
||
rtx frame_pointer, return_reg;
|
||
int area_bottom, area_top, offset = 0;
|
||
rtvec p;
|
||
|
||
/* Check whether to use frame or stack pointer for restore. */
|
||
|
||
frame_pointer = frame_pointer_needed ?
|
||
hard_frame_pointer_rtx : stack_pointer_rtx;
|
||
|
||
/* Compute which parts of the save area we need to access. */
|
||
|
||
if (cfun->machine->first_restore_gpr != -1)
|
||
{
|
||
area_bottom = cfun->machine->first_restore_gpr * UNITS_PER_WORD;
|
||
area_top = (cfun->machine->last_save_gpr + 1) * UNITS_PER_WORD;
|
||
}
|
||
else
|
||
{
|
||
area_bottom = INT_MAX;
|
||
area_top = INT_MIN;
|
||
}
|
||
|
||
if (TARGET_64BIT)
|
||
{
|
||
if (cfun->machine->save_fprs_p)
|
||
{
|
||
if (area_bottom > -64)
|
||
area_bottom = -64;
|
||
if (area_top < 0)
|
||
area_top = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (regs_ever_live[18] && !global_regs[18])
|
||
{
|
||
if (area_bottom > STACK_POINTER_OFFSET - 16)
|
||
area_bottom = STACK_POINTER_OFFSET - 16;
|
||
if (area_top < STACK_POINTER_OFFSET - 8)
|
||
area_top = STACK_POINTER_OFFSET - 8;
|
||
}
|
||
if (regs_ever_live[19] && !global_regs[19])
|
||
{
|
||
if (area_bottom > STACK_POINTER_OFFSET - 8)
|
||
area_bottom = STACK_POINTER_OFFSET - 8;
|
||
if (area_top < STACK_POINTER_OFFSET)
|
||
area_top = STACK_POINTER_OFFSET;
|
||
}
|
||
}
|
||
|
||
/* Check whether we can access the register save area.
|
||
If not, increment the frame pointer as required. */
|
||
|
||
if (area_top <= area_bottom)
|
||
{
|
||
/* Nothing to restore. */
|
||
}
|
||
else if (cfun->machine->frame_size + area_bottom >= 0
|
||
&& cfun->machine->frame_size + area_top <= 4096)
|
||
{
|
||
/* Area is in range. */
|
||
offset = cfun->machine->frame_size;
|
||
}
|
||
else
|
||
{
|
||
rtx insn, frame_off;
|
||
|
||
offset = area_bottom < 0 ? -area_bottom : 0;
|
||
frame_off = GEN_INT (cfun->machine->frame_size - offset);
|
||
|
||
if (!CONST_OK_FOR_LETTER_P (INTVAL (frame_off), 'K'))
|
||
frame_off = force_const_mem (Pmode, frame_off);
|
||
|
||
insn = emit_insn (gen_add2_insn (frame_pointer, frame_off));
|
||
}
|
||
|
||
/* Restore call saved fprs. */
|
||
|
||
if (TARGET_64BIT)
|
||
{
|
||
int i;
|
||
|
||
if (cfun->machine->save_fprs_p)
|
||
for (i = 24; i < 32; i++)
|
||
if (regs_ever_live[i] && !global_regs[i])
|
||
restore_fpr (frame_pointer,
|
||
offset - 64 + (i-24) * 8, i);
|
||
}
|
||
else
|
||
{
|
||
if (regs_ever_live[18] && !global_regs[18])
|
||
restore_fpr (frame_pointer, offset + STACK_POINTER_OFFSET - 16, 18);
|
||
if (regs_ever_live[19] && !global_regs[19])
|
||
restore_fpr (frame_pointer, offset + STACK_POINTER_OFFSET - 8, 19);
|
||
}
|
||
|
||
/* Return register. */
|
||
|
||
return_reg = gen_rtx_REG (Pmode, RETURN_REGNUM);
|
||
|
||
/* Restore call saved gprs. */
|
||
|
||
if (cfun->machine->first_restore_gpr != -1)
|
||
{
|
||
rtx insn, addr;
|
||
int i;
|
||
|
||
/* Check for global register and save them
|
||
to stack location from where they get restored. */
|
||
|
||
for (i = cfun->machine->first_restore_gpr;
|
||
i <= cfun->machine->last_save_gpr;
|
||
i++)
|
||
{
|
||
/* These registers are special and need to be
|
||
restored in any case. */
|
||
if (i == STACK_POINTER_REGNUM
|
||
|| i == RETURN_REGNUM
|
||
|| i == BASE_REGISTER
|
||
|| (flag_pic && i == (int)PIC_OFFSET_TABLE_REGNUM))
|
||
continue;
|
||
|
||
if (global_regs[i])
|
||
{
|
||
addr = plus_constant (frame_pointer,
|
||
offset + i * UNITS_PER_WORD);
|
||
addr = gen_rtx_MEM (Pmode, addr);
|
||
set_mem_alias_set (addr, s390_sr_alias_set);
|
||
emit_move_insn (addr, gen_rtx_REG (Pmode, i));
|
||
}
|
||
}
|
||
|
||
/* Fetch return address from stack before load multiple,
|
||
this will do good for scheduling. */
|
||
|
||
if (!current_function_is_leaf)
|
||
{
|
||
int return_regnum = find_unused_clobbered_reg();
|
||
if (!return_regnum)
|
||
return_regnum = 4;
|
||
return_reg = gen_rtx_REG (Pmode, return_regnum);
|
||
|
||
addr = plus_constant (frame_pointer,
|
||
offset + RETURN_REGNUM * UNITS_PER_WORD);
|
||
addr = gen_rtx_MEM (Pmode, addr);
|
||
set_mem_alias_set (addr, s390_sr_alias_set);
|
||
emit_move_insn (return_reg, addr);
|
||
}
|
||
|
||
/* ??? As references to the base register are not made
|
||
explicit in insn RTX code, we have to add a barrier here
|
||
to prevent incorrect scheduling. */
|
||
|
||
emit_insn (gen_blockage());
|
||
|
||
insn = restore_gprs (frame_pointer, offset,
|
||
cfun->machine->first_restore_gpr,
|
||
cfun->machine->last_save_gpr);
|
||
emit_insn (insn);
|
||
}
|
||
|
||
/* Return to caller. */
|
||
|
||
p = rtvec_alloc (2);
|
||
|
||
RTVEC_ELT (p, 0) = gen_rtx_RETURN (VOIDmode);
|
||
RTVEC_ELT (p, 1) = gen_rtx_USE (VOIDmode, return_reg);
|
||
emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
|
||
}
|
||
|
||
|
||
/* Return the size in bytes of a function argument of
|
||
type TYPE and/or mode MODE. At least one of TYPE or
|
||
MODE must be specified. */
|
||
|
||
static int
|
||
s390_function_arg_size (mode, type)
|
||
enum machine_mode mode;
|
||
tree type;
|
||
{
|
||
if (type)
|
||
return int_size_in_bytes (type);
|
||
|
||
/* No type info available for some library calls ... */
|
||
if (mode != BLKmode)
|
||
return GET_MODE_SIZE (mode);
|
||
|
||
/* If we have neither type nor mode, abort */
|
||
abort ();
|
||
}
|
||
|
||
/* Return 1 if a function argument of type TYPE and mode MODE
|
||
is to be passed by reference. The ABI specifies that only
|
||
structures of size 1, 2, 4, or 8 bytes are passed by value,
|
||
all other structures (and complex numbers) are passed by
|
||
reference. */
|
||
|
||
int
|
||
s390_function_arg_pass_by_reference (mode, type)
|
||
enum machine_mode mode;
|
||
tree type;
|
||
{
|
||
int size = s390_function_arg_size (mode, type);
|
||
|
||
if (type)
|
||
{
|
||
if (AGGREGATE_TYPE_P (type) &&
|
||
size != 1 && size != 2 && size != 4 && size != 8)
|
||
return 1;
|
||
|
||
if (TREE_CODE (type) == COMPLEX_TYPE)
|
||
return 1;
|
||
}
|
||
return 0;
|
||
|
||
}
|
||
|
||
/* Update the data in CUM to advance over an argument of mode MODE and
|
||
data type TYPE. (TYPE is null for libcalls where that information
|
||
may not be available.). The boolean NAMED specifies whether the
|
||
argument is a named argument (as opposed to an unnamed argument
|
||
matching an ellipsis). */
|
||
|
||
void
|
||
s390_function_arg_advance (cum, mode, type, named)
|
||
CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named ATTRIBUTE_UNUSED;
|
||
{
|
||
if (! TARGET_SOFT_FLOAT && (mode == DFmode || mode == SFmode))
|
||
{
|
||
cum->fprs++;
|
||
}
|
||
else if (s390_function_arg_pass_by_reference (mode, type))
|
||
{
|
||
cum->gprs += 1;
|
||
}
|
||
else
|
||
{
|
||
int size = s390_function_arg_size (mode, type);
|
||
cum->gprs += ((size + UNITS_PER_WORD-1) / UNITS_PER_WORD);
|
||
}
|
||
}
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis).
|
||
|
||
On S/390, we use general purpose registers 2 through 6 to
|
||
pass integer, pointer, and certain structure arguments, and
|
||
floating point registers 0 and 2 (0, 2, 4, and 6 on 64-bit)
|
||
to pass floating point arguments. All remaining arguments
|
||
are pushed to the stack. */
|
||
|
||
rtx
|
||
s390_function_arg (cum, mode, type, named)
|
||
CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named ATTRIBUTE_UNUSED;
|
||
{
|
||
if (s390_function_arg_pass_by_reference (mode, type))
|
||
return 0;
|
||
|
||
if (! TARGET_SOFT_FLOAT && (mode == DFmode || mode == SFmode))
|
||
{
|
||
if (cum->fprs + 1 > (TARGET_64BIT? 4 : 2))
|
||
return 0;
|
||
else
|
||
return gen_rtx (REG, mode, cum->fprs + 16);
|
||
}
|
||
else
|
||
{
|
||
int size = s390_function_arg_size (mode, type);
|
||
int n_gprs = (size + UNITS_PER_WORD-1) / UNITS_PER_WORD;
|
||
|
||
if (cum->gprs + n_gprs > 5)
|
||
return 0;
|
||
else
|
||
return gen_rtx (REG, mode, cum->gprs + 2);
|
||
}
|
||
}
|
||
|
||
|
||
/* Create and return the va_list datatype.
|
||
|
||
On S/390, va_list is an array type equivalent to
|
||
|
||
typedef struct __va_list_tag
|
||
{
|
||
long __gpr;
|
||
long __fpr;
|
||
void *__overflow_arg_area;
|
||
void *__reg_save_area;
|
||
|
||
} va_list[1];
|
||
|
||
where __gpr and __fpr hold the number of general purpose
|
||
or floating point arguments used up to now, respectively,
|
||
__overflow_arg_area points to the stack location of the
|
||
next argument passed on the stack, and __reg_save_area
|
||
always points to the start of the register area in the
|
||
call frame of the current function. The function prologue
|
||
saves all registers used for argument passing into this
|
||
area if the function uses variable arguments. */
|
||
|
||
tree
|
||
s390_build_va_list ()
|
||
{
|
||
tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl;
|
||
|
||
record = (*lang_hooks.types.make_type) (RECORD_TYPE);
|
||
|
||
type_decl =
|
||
build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
|
||
|
||
f_gpr = build_decl (FIELD_DECL, get_identifier ("__gpr"),
|
||
long_integer_type_node);
|
||
f_fpr = build_decl (FIELD_DECL, get_identifier ("__fpr"),
|
||
long_integer_type_node);
|
||
f_ovf = build_decl (FIELD_DECL, get_identifier ("__overflow_arg_area"),
|
||
ptr_type_node);
|
||
f_sav = build_decl (FIELD_DECL, get_identifier ("__reg_save_area"),
|
||
ptr_type_node);
|
||
|
||
DECL_FIELD_CONTEXT (f_gpr) = record;
|
||
DECL_FIELD_CONTEXT (f_fpr) = record;
|
||
DECL_FIELD_CONTEXT (f_ovf) = record;
|
||
DECL_FIELD_CONTEXT (f_sav) = record;
|
||
|
||
TREE_CHAIN (record) = type_decl;
|
||
TYPE_NAME (record) = type_decl;
|
||
TYPE_FIELDS (record) = f_gpr;
|
||
TREE_CHAIN (f_gpr) = f_fpr;
|
||
TREE_CHAIN (f_fpr) = f_ovf;
|
||
TREE_CHAIN (f_ovf) = f_sav;
|
||
|
||
layout_type (record);
|
||
|
||
/* The correct type is an array type of one element. */
|
||
return build_array_type (record, build_index_type (size_zero_node));
|
||
}
|
||
|
||
/* Implement va_start by filling the va_list structure VALIST.
|
||
STDARG_P is always true, and ignored.
|
||
NEXTARG points to the first anonymous stack argument.
|
||
|
||
The following global variables are used to initialize
|
||
the va_list structure:
|
||
|
||
current_function_args_info:
|
||
holds number of gprs and fprs used for named arguments.
|
||
current_function_arg_offset_rtx:
|
||
holds the offset of the first anonymous stack argument
|
||
(relative to the virtual arg pointer). */
|
||
|
||
void
|
||
s390_va_start (valist, nextarg)
|
||
tree valist;
|
||
rtx nextarg ATTRIBUTE_UNUSED;
|
||
{
|
||
HOST_WIDE_INT n_gpr, n_fpr;
|
||
int off;
|
||
tree f_gpr, f_fpr, f_ovf, f_sav;
|
||
tree gpr, fpr, ovf, sav, t;
|
||
|
||
f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
|
||
f_fpr = TREE_CHAIN (f_gpr);
|
||
f_ovf = TREE_CHAIN (f_fpr);
|
||
f_sav = TREE_CHAIN (f_ovf);
|
||
|
||
valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist);
|
||
gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr);
|
||
fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr);
|
||
ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf);
|
||
sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav);
|
||
|
||
/* Count number of gp and fp argument registers used. */
|
||
|
||
n_gpr = current_function_args_info.gprs;
|
||
n_fpr = current_function_args_info.fprs;
|
||
|
||
t = build (MODIFY_EXPR, TREE_TYPE (gpr), gpr, build_int_2 (n_gpr, 0));
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
|
||
t = build (MODIFY_EXPR, TREE_TYPE (fpr), fpr, build_int_2 (n_fpr, 0));
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
|
||
/* Find the overflow area. */
|
||
t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx);
|
||
|
||
off = INTVAL (current_function_arg_offset_rtx);
|
||
off = off < 0 ? 0 : off;
|
||
if (TARGET_DEBUG_ARG)
|
||
fprintf (stderr, "va_start: n_gpr = %d, n_fpr = %d off %d\n",
|
||
(int)n_gpr, (int)n_fpr, off);
|
||
|
||
t = build (PLUS_EXPR, TREE_TYPE (ovf), t, build_int_2 (off, 0));
|
||
|
||
t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
|
||
/* Find the register save area. */
|
||
t = make_tree (TREE_TYPE (sav), virtual_incoming_args_rtx);
|
||
t = build (PLUS_EXPR, TREE_TYPE (sav), t,
|
||
build_int_2 (-STACK_POINTER_OFFSET, -1));
|
||
t = build (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
}
|
||
|
||
/* Implement va_arg by updating the va_list structure
|
||
VALIST as required to retrieve an argument of type
|
||
TYPE, and returning that argument.
|
||
|
||
Generates code equivalent to:
|
||
|
||
if (integral value) {
|
||
if (size <= 4 && args.gpr < 5 ||
|
||
size > 4 && args.gpr < 4 )
|
||
ret = args.reg_save_area[args.gpr+8]
|
||
else
|
||
ret = *args.overflow_arg_area++;
|
||
} else if (float value) {
|
||
if (args.fgpr < 2)
|
||
ret = args.reg_save_area[args.fpr+64]
|
||
else
|
||
ret = *args.overflow_arg_area++;
|
||
} else if (aggregate value) {
|
||
if (args.gpr < 5)
|
||
ret = *args.reg_save_area[args.gpr]
|
||
else
|
||
ret = **args.overflow_arg_area++;
|
||
} */
|
||
|
||
rtx
|
||
s390_va_arg (valist, type)
|
||
tree valist;
|
||
tree type;
|
||
{
|
||
tree f_gpr, f_fpr, f_ovf, f_sav;
|
||
tree gpr, fpr, ovf, sav, reg, t, u;
|
||
int indirect_p, size, n_reg, sav_ofs, sav_scale, max_reg;
|
||
rtx lab_false, lab_over, addr_rtx, r;
|
||
|
||
f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
|
||
f_fpr = TREE_CHAIN (f_gpr);
|
||
f_ovf = TREE_CHAIN (f_fpr);
|
||
f_sav = TREE_CHAIN (f_ovf);
|
||
|
||
valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist);
|
||
gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr);
|
||
fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr);
|
||
ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf);
|
||
sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav);
|
||
|
||
size = int_size_in_bytes (type);
|
||
|
||
if (s390_function_arg_pass_by_reference (TYPE_MODE (type), type))
|
||
{
|
||
if (TARGET_DEBUG_ARG)
|
||
{
|
||
fprintf (stderr, "va_arg: aggregate type");
|
||
debug_tree (type);
|
||
}
|
||
|
||
/* Aggregates are passed by reference. */
|
||
indirect_p = 1;
|
||
reg = gpr;
|
||
n_reg = 1;
|
||
sav_ofs = 2 * UNITS_PER_WORD;
|
||
sav_scale = UNITS_PER_WORD;
|
||
size = UNITS_PER_WORD;
|
||
max_reg = 4;
|
||
}
|
||
else if (FLOAT_TYPE_P (type) && ! TARGET_SOFT_FLOAT)
|
||
{
|
||
if (TARGET_DEBUG_ARG)
|
||
{
|
||
fprintf (stderr, "va_arg: float type");
|
||
debug_tree (type);
|
||
}
|
||
|
||
/* FP args go in FP registers, if present. */
|
||
indirect_p = 0;
|
||
reg = fpr;
|
||
n_reg = 1;
|
||
sav_ofs = 16 * UNITS_PER_WORD;
|
||
sav_scale = 8;
|
||
/* TARGET_64BIT has up to 4 parameter in fprs */
|
||
max_reg = TARGET_64BIT ? 3 : 1;
|
||
}
|
||
else
|
||
{
|
||
if (TARGET_DEBUG_ARG)
|
||
{
|
||
fprintf (stderr, "va_arg: other type");
|
||
debug_tree (type);
|
||
}
|
||
|
||
/* Otherwise into GP registers. */
|
||
indirect_p = 0;
|
||
reg = gpr;
|
||
n_reg = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
sav_ofs = 2 * UNITS_PER_WORD;
|
||
if (TARGET_64BIT)
|
||
sav_ofs += TYPE_MODE (type) == SImode ? 4 :
|
||
TYPE_MODE (type) == HImode ? 6 :
|
||
TYPE_MODE (type) == QImode ? 7 : 0;
|
||
else
|
||
sav_ofs += TYPE_MODE (type) == HImode ? 2 :
|
||
TYPE_MODE (type) == QImode ? 3 : 0;
|
||
|
||
sav_scale = UNITS_PER_WORD;
|
||
if (n_reg > 1)
|
||
max_reg = 3;
|
||
else
|
||
max_reg = 4;
|
||
}
|
||
|
||
/* Pull the value out of the saved registers ... */
|
||
|
||
lab_false = gen_label_rtx ();
|
||
lab_over = gen_label_rtx ();
|
||
addr_rtx = gen_reg_rtx (Pmode);
|
||
|
||
emit_cmp_and_jump_insns (expand_expr (reg, NULL_RTX, Pmode, EXPAND_NORMAL),
|
||
GEN_INT (max_reg),
|
||
GT, const1_rtx, Pmode, 0, lab_false);
|
||
|
||
if (sav_ofs)
|
||
t = build (PLUS_EXPR, ptr_type_node, sav, build_int_2 (sav_ofs, 0));
|
||
else
|
||
t = sav;
|
||
|
||
u = build (MULT_EXPR, long_integer_type_node,
|
||
reg, build_int_2 (sav_scale, 0));
|
||
TREE_SIDE_EFFECTS (u) = 1;
|
||
|
||
t = build (PLUS_EXPR, ptr_type_node, t, u);
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
|
||
r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
|
||
if (r != addr_rtx)
|
||
emit_move_insn (addr_rtx, r);
|
||
|
||
|
||
emit_jump_insn (gen_jump (lab_over));
|
||
emit_barrier ();
|
||
emit_label (lab_false);
|
||
|
||
/* ... Otherwise out of the overflow area. */
|
||
|
||
t = save_expr (ovf);
|
||
|
||
|
||
/* In 64 BIT for each argument on stack, a full 64 bit slot is allocated. */
|
||
if (size < UNITS_PER_WORD)
|
||
{
|
||
t = build (PLUS_EXPR, TREE_TYPE (t), t, build_int_2 (UNITS_PER_WORD-size, 0));
|
||
t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
|
||
t = save_expr (ovf);
|
||
}
|
||
|
||
r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
|
||
if (r != addr_rtx)
|
||
emit_move_insn (addr_rtx, r);
|
||
|
||
t = build (PLUS_EXPR, TREE_TYPE (t), t, build_int_2 (size, 0));
|
||
t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
|
||
emit_label (lab_over);
|
||
|
||
/* If less than max_regs a registers are retrieved out
|
||
of register save area, increment. */
|
||
|
||
u = build (PREINCREMENT_EXPR, TREE_TYPE (reg), reg,
|
||
build_int_2 (n_reg, 0));
|
||
TREE_SIDE_EFFECTS (u) = 1;
|
||
expand_expr (u, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
|
||
if (indirect_p)
|
||
{
|
||
r = gen_rtx_MEM (Pmode, addr_rtx);
|
||
set_mem_alias_set (r, get_varargs_alias_set ());
|
||
emit_move_insn (addr_rtx, r);
|
||
}
|
||
|
||
|
||
return addr_rtx;
|
||
}
|
||
|
||
|
||
/* Builtins. */
|
||
|
||
enum s390_builtin
|
||
{
|
||
S390_BUILTIN_THREAD_POINTER,
|
||
S390_BUILTIN_SET_THREAD_POINTER,
|
||
|
||
S390_BUILTIN_max
|
||
};
|
||
|
||
static unsigned int const code_for_builtin_64[S390_BUILTIN_max] = {
|
||
CODE_FOR_get_tp_64,
|
||
CODE_FOR_set_tp_64
|
||
};
|
||
|
||
static unsigned int const code_for_builtin_31[S390_BUILTIN_max] = {
|
||
CODE_FOR_get_tp_31,
|
||
CODE_FOR_set_tp_31
|
||
};
|
||
|
||
static void
|
||
s390_init_builtins ()
|
||
{
|
||
tree ftype;
|
||
|
||
ftype = build_function_type (ptr_type_node, void_list_node);
|
||
builtin_function ("__builtin_thread_pointer", ftype,
|
||
S390_BUILTIN_THREAD_POINTER, BUILT_IN_MD,
|
||
NULL, NULL_TREE);
|
||
|
||
ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
||
builtin_function ("__builtin_set_thread_pointer", ftype,
|
||
S390_BUILTIN_SET_THREAD_POINTER, BUILT_IN_MD,
|
||
NULL, NULL_TREE);
|
||
}
|
||
|
||
/* Expand an expression EXP that calls a built-in function,
|
||
with result going to TARGET if that's convenient
|
||
(and in mode MODE if that's convenient).
|
||
SUBTARGET may be used as the target for computing one of EXP's operands.
|
||
IGNORE is nonzero if the value is to be ignored. */
|
||
|
||
static rtx
|
||
s390_expand_builtin (exp, target, subtarget, mode, ignore)
|
||
tree exp;
|
||
rtx target;
|
||
rtx subtarget ATTRIBUTE_UNUSED;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
int ignore ATTRIBUTE_UNUSED;
|
||
{
|
||
#define MAX_ARGS 2
|
||
|
||
unsigned int const *code_for_builtin =
|
||
TARGET_64BIT ? code_for_builtin_64 : code_for_builtin_31;
|
||
|
||
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
||
unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
|
||
tree arglist = TREE_OPERAND (exp, 1);
|
||
enum insn_code icode;
|
||
rtx op[MAX_ARGS], pat;
|
||
int arity;
|
||
bool nonvoid;
|
||
|
||
if (fcode >= S390_BUILTIN_max)
|
||
internal_error ("bad builtin fcode");
|
||
icode = code_for_builtin[fcode];
|
||
if (icode == 0)
|
||
internal_error ("bad builtin fcode");
|
||
|
||
nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
|
||
|
||
for (arglist = TREE_OPERAND (exp, 1), arity = 0;
|
||
arglist;
|
||
arglist = TREE_CHAIN (arglist), arity++)
|
||
{
|
||
const struct insn_operand_data *insn_op;
|
||
|
||
tree arg = TREE_VALUE (arglist);
|
||
if (arg == error_mark_node)
|
||
return NULL_RTX;
|
||
if (arity > MAX_ARGS)
|
||
return NULL_RTX;
|
||
|
||
insn_op = &insn_data[icode].operand[arity + nonvoid];
|
||
|
||
op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, 0);
|
||
|
||
if (!(*insn_op->predicate) (op[arity], insn_op->mode))
|
||
op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]);
|
||
}
|
||
|
||
if (nonvoid)
|
||
{
|
||
enum machine_mode tmode = insn_data[icode].operand[0].mode;
|
||
if (!target
|
||
|| GET_MODE (target) != tmode
|
||
|| !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
target = gen_reg_rtx (tmode);
|
||
}
|
||
|
||
switch (arity)
|
||
{
|
||
case 0:
|
||
pat = GEN_FCN (icode) (target);
|
||
break;
|
||
case 1:
|
||
if (nonvoid)
|
||
pat = GEN_FCN (icode) (target, op[0]);
|
||
else
|
||
pat = GEN_FCN (icode) (op[0]);
|
||
break;
|
||
case 2:
|
||
pat = GEN_FCN (icode) (target, op[0], op[1]);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
if (!pat)
|
||
return NULL_RTX;
|
||
emit_insn (pat);
|
||
|
||
if (nonvoid)
|
||
return target;
|
||
else
|
||
return const0_rtx;
|
||
}
|
||
|
||
|
||
/* Output assembly code for the trampoline template to
|
||
stdio stream FILE.
|
||
|
||
On S/390, we use gpr 1 internally in the trampoline code;
|
||
gpr 0 is used to hold the static chain. */
|
||
|
||
void
|
||
s390_trampoline_template (file)
|
||
FILE *file;
|
||
{
|
||
if (TARGET_64BIT)
|
||
{
|
||
fprintf (file, "larl\t%s,0f\n", reg_names[1]);
|
||
fprintf (file, "lg\t%s,0(%s)\n", reg_names[0], reg_names[1]);
|
||
fprintf (file, "lg\t%s,8(%s)\n", reg_names[1], reg_names[1]);
|
||
fprintf (file, "br\t%s\n", reg_names[1]);
|
||
fprintf (file, "0:\t.quad\t0\n");
|
||
fprintf (file, ".quad\t0\n");
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "basr\t%s,0\n", reg_names[1]);
|
||
fprintf (file, "l\t%s,10(%s)\n", reg_names[0], reg_names[1]);
|
||
fprintf (file, "l\t%s,14(%s)\n", reg_names[1], reg_names[1]);
|
||
fprintf (file, "br\t%s\n", reg_names[1]);
|
||
fprintf (file, ".long\t0\n");
|
||
fprintf (file, ".long\t0\n");
|
||
}
|
||
}
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
void
|
||
s390_initialize_trampoline (addr, fnaddr, cxt)
|
||
rtx addr;
|
||
rtx fnaddr;
|
||
rtx cxt;
|
||
{
|
||
emit_move_insn (gen_rtx
|
||
(MEM, Pmode,
|
||
memory_address (Pmode,
|
||
plus_constant (addr, (TARGET_64BIT ? 20 : 12) ))), cxt);
|
||
emit_move_insn (gen_rtx
|
||
(MEM, Pmode,
|
||
memory_address (Pmode,
|
||
plus_constant (addr, (TARGET_64BIT ? 28 : 16) ))), fnaddr);
|
||
}
|
||
|
||
/* Return rtx for 64-bit constant formed from the 32-bit subwords
|
||
LOW and HIGH, independent of the host word size. */
|
||
|
||
rtx
|
||
s390_gen_rtx_const_DI (high, low)
|
||
int high;
|
||
int low;
|
||
{
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
HOST_WIDE_INT val;
|
||
val = (HOST_WIDE_INT)high;
|
||
val <<= 32;
|
||
val |= (HOST_WIDE_INT)low;
|
||
|
||
return GEN_INT (val);
|
||
#else
|
||
#if HOST_BITS_PER_WIDE_INT >= 32
|
||
return immed_double_const ((HOST_WIDE_INT)low, (HOST_WIDE_INT)high, DImode);
|
||
#else
|
||
abort ();
|
||
#endif
|
||
#endif
|
||
}
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
void
|
||
s390_function_profiler (file, labelno)
|
||
FILE *file;
|
||
int labelno;
|
||
{
|
||
rtx op[7];
|
||
|
||
char label[128];
|
||
ASM_GENERATE_INTERNAL_LABEL (label, "LP", labelno);
|
||
|
||
fprintf (file, "# function profiler \n");
|
||
|
||
op[0] = gen_rtx_REG (Pmode, RETURN_REGNUM);
|
||
op[1] = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
|
||
op[1] = gen_rtx_MEM (Pmode, plus_constant (op[1], UNITS_PER_WORD));
|
||
|
||
op[2] = gen_rtx_REG (Pmode, 1);
|
||
op[3] = gen_rtx_SYMBOL_REF (Pmode, label);
|
||
SYMBOL_REF_FLAG (op[3]) = 1;
|
||
|
||
op[4] = gen_rtx_SYMBOL_REF (Pmode, "_mcount");
|
||
if (flag_pic)
|
||
{
|
||
op[4] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[4]), 113);
|
||
op[4] = gen_rtx_CONST (Pmode, op[4]);
|
||
}
|
||
|
||
if (TARGET_64BIT)
|
||
{
|
||
output_asm_insn ("stg\t%0,%1", op);
|
||
output_asm_insn ("larl\t%2,%3", op);
|
||
output_asm_insn ("brasl\t%0,%4", op);
|
||
output_asm_insn ("lg\t%0,%1", op);
|
||
}
|
||
else if (!flag_pic)
|
||
{
|
||
op[6] = gen_label_rtx ();
|
||
|
||
output_asm_insn ("st\t%0,%1", op);
|
||
output_asm_insn ("bras\t%2,%l6", op);
|
||
output_asm_insn (".long\t%4", op);
|
||
output_asm_insn (".long\t%3", op);
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[6]));
|
||
output_asm_insn ("l\t%0,0(%2)", op);
|
||
output_asm_insn ("l\t%2,4(%2)", op);
|
||
output_asm_insn ("basr\t%0,%0", op);
|
||
output_asm_insn ("l\t%0,%1", op);
|
||
}
|
||
else
|
||
{
|
||
op[5] = gen_label_rtx ();
|
||
op[6] = gen_label_rtx ();
|
||
|
||
output_asm_insn ("st\t%0,%1", op);
|
||
output_asm_insn ("bras\t%2,%l6", op);
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[5]));
|
||
output_asm_insn (".long\t%4-%l5", op);
|
||
output_asm_insn (".long\t%3-%l5", op);
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[6]));
|
||
output_asm_insn ("lr\t%0,%2", op);
|
||
output_asm_insn ("a\t%0,0(%2)", op);
|
||
output_asm_insn ("a\t%2,4(%2)", op);
|
||
output_asm_insn ("basr\t%0,%0", op);
|
||
output_asm_insn ("l\t%0,%1", op);
|
||
}
|
||
}
|
||
|
||
/* Select section for constant in constant pool. In 32-bit mode,
|
||
constants go in the function section; in 64-bit mode in .rodata. */
|
||
|
||
static void
|
||
s390_select_rtx_section (mode, x, align)
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
rtx x ATTRIBUTE_UNUSED;
|
||
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED;
|
||
{
|
||
if (TARGET_64BIT)
|
||
readonly_data_section ();
|
||
else
|
||
function_section (current_function_decl);
|
||
}
|
||
|
||
/* Encode symbol attributes (local vs. global, tls model) of a SYMBOL_REF
|
||
into its name and SYMBOL_REF_FLAG. */
|
||
|
||
static void
|
||
s390_encode_section_info (decl, first)
|
||
tree decl;
|
||
int first ATTRIBUTE_UNUSED;
|
||
{
|
||
bool local_p = (*targetm.binds_local_p) (decl);
|
||
rtx rtl, symbol;
|
||
|
||
rtl = DECL_P (decl) ? DECL_RTL (decl) : TREE_CST_RTL (decl);
|
||
if (GET_CODE (rtl) != MEM)
|
||
return;
|
||
symbol = XEXP (rtl, 0);
|
||
if (GET_CODE (symbol) != SYMBOL_REF)
|
||
return;
|
||
|
||
/* When using PIC, SYMBOL_REF_FLAG marks non-global symbols
|
||
that can be accessed directly. */
|
||
if (flag_pic)
|
||
SYMBOL_REF_FLAG (symbol) = local_p;
|
||
|
||
/* Encode thread-local data with %[GLil] for "global dynamic",
|
||
"local dynamic", "initial exec" or "local exec" TLS models,
|
||
respectively. */
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
|
||
{
|
||
const char *symbol_str = XSTR (symbol, 0);
|
||
char *newstr;
|
||
size_t len;
|
||
enum tls_model kind = decl_tls_model (decl);
|
||
|
||
if (!flag_pic)
|
||
{
|
||
/* We don't allow non-pic code for shared libraries,
|
||
so don't generate GD/LD TLS models for non-pic code. */
|
||
switch (kind)
|
||
{
|
||
case TLS_MODEL_GLOBAL_DYNAMIC:
|
||
kind = TLS_MODEL_INITIAL_EXEC; break;
|
||
case TLS_MODEL_LOCAL_DYNAMIC:
|
||
kind = TLS_MODEL_LOCAL_EXEC; break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (symbol_str[0] == '%')
|
||
{
|
||
if (symbol_str[1] == tls_model_chars[kind])
|
||
return;
|
||
symbol_str += 2;
|
||
}
|
||
len = strlen (symbol_str) + 1;
|
||
newstr = alloca (len + 2);
|
||
|
||
newstr[0] = '%';
|
||
newstr[1] = tls_model_chars[kind];
|
||
memcpy (newstr + 2, symbol_str, len);
|
||
|
||
XSTR (symbol, 0) = ggc_alloc_string (newstr, len + 2 - 1);
|
||
}
|
||
|
||
/* If a variable has a forced alignment to < 2 bytes, mark it
|
||
with '@' to prevent it from being used as LARL operand. */
|
||
|
||
else if (TREE_CODE (decl) == VAR_DECL
|
||
&& DECL_USER_ALIGN (decl) && DECL_ALIGN (decl) < 16
|
||
&& XSTR (symbol, 0)[0] != '@')
|
||
{
|
||
const char *symbol_str = XSTR (symbol, 0);
|
||
size_t len = strlen (symbol_str) + 1;
|
||
char *newstr = alloca (len + 1);
|
||
|
||
newstr[0] = '@';
|
||
memcpy (newstr + 1, symbol_str, len);
|
||
|
||
XSTR (symbol, 0) = ggc_alloc_string (newstr, len + 1 - 1);
|
||
}
|
||
}
|
||
|
||
/* Undo the above when printing symbol names. */
|
||
|
||
static const char *
|
||
s390_strip_name_encoding (str)
|
||
const char *str;
|
||
{
|
||
if (str[0] == '%')
|
||
str += 2;
|
||
if (str[0] == '@')
|
||
str += 1;
|
||
if (str[0] == '*')
|
||
str += 1;
|
||
return str;
|
||
}
|
||
|
||
/* Output thunk to FILE that implements a C++ virtual function call (with
|
||
multiple inheritance) to FUNCTION. The thunk adjusts the this pointer
|
||
by DELTA, and unless VCALL_OFFSET is zero, applies an additional adjustment
|
||
stored at VCALL_OFFSET in the vtable whose address is located at offset 0
|
||
relative to the resulting this pointer. */
|
||
|
||
static void
|
||
s390_output_mi_thunk (file, thunk, delta, vcall_offset, function)
|
||
FILE *file;
|
||
tree thunk ATTRIBUTE_UNUSED;
|
||
HOST_WIDE_INT delta;
|
||
HOST_WIDE_INT vcall_offset;
|
||
tree function;
|
||
{
|
||
rtx op[10];
|
||
int nonlocal = 0;
|
||
|
||
/* Operand 0 is the target function. */
|
||
op[0] = XEXP (DECL_RTL (function), 0);
|
||
if (flag_pic && !SYMBOL_REF_FLAG (op[0]))
|
||
{
|
||
nonlocal = 1;
|
||
op[0] = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op[0]),
|
||
TARGET_64BIT ? 113 : flag_pic == 2 ? 112 : 110);
|
||
op[0] = gen_rtx_CONST (Pmode, op[0]);
|
||
}
|
||
|
||
/* Operand 1 is the 'this' pointer. */
|
||
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function))))
|
||
op[1] = gen_rtx_REG (Pmode, 3);
|
||
else
|
||
op[1] = gen_rtx_REG (Pmode, 2);
|
||
|
||
/* Operand 2 is the delta. */
|
||
op[2] = GEN_INT (delta);
|
||
|
||
/* Operand 3 is the vcall_offset. */
|
||
op[3] = GEN_INT (vcall_offset);
|
||
|
||
/* Operand 4 is the temporary register. */
|
||
op[4] = gen_rtx_REG (Pmode, 1);
|
||
|
||
/* Operands 5 to 8 can be used as labels. */
|
||
op[5] = NULL_RTX;
|
||
op[6] = NULL_RTX;
|
||
op[7] = NULL_RTX;
|
||
op[8] = NULL_RTX;
|
||
|
||
/* Operand 9 can be used for temporary register. */
|
||
op[9] = NULL_RTX;
|
||
|
||
/* Generate code. */
|
||
if (TARGET_64BIT)
|
||
{
|
||
/* Setup literal pool pointer if required. */
|
||
if (!CONST_OK_FOR_LETTER_P (delta, 'K')
|
||
|| !CONST_OK_FOR_LETTER_P (vcall_offset, 'K'))
|
||
{
|
||
op[5] = gen_label_rtx ();
|
||
output_asm_insn ("larl\t%4,%5", op);
|
||
}
|
||
|
||
/* Add DELTA to this pointer. */
|
||
if (delta)
|
||
{
|
||
if (CONST_OK_FOR_LETTER_P (delta, 'J'))
|
||
output_asm_insn ("la\t%1,%2(%1)", op);
|
||
else if (CONST_OK_FOR_LETTER_P (delta, 'K'))
|
||
output_asm_insn ("aghi\t%1,%2", op);
|
||
else
|
||
{
|
||
op[6] = gen_label_rtx ();
|
||
output_asm_insn ("agf\t%1,%6-%5(%4)", op);
|
||
}
|
||
}
|
||
|
||
/* Perform vcall adjustment. */
|
||
if (vcall_offset)
|
||
{
|
||
if (CONST_OK_FOR_LETTER_P (vcall_offset, 'J'))
|
||
{
|
||
output_asm_insn ("lg\t%4,0(%1)", op);
|
||
output_asm_insn ("ag\t%1,%3(%4)", op);
|
||
}
|
||
else if (CONST_OK_FOR_LETTER_P (vcall_offset, 'K'))
|
||
{
|
||
output_asm_insn ("lghi\t%4,%3", op);
|
||
output_asm_insn ("ag\t%4,0(%1)", op);
|
||
output_asm_insn ("ag\t%1,0(%4)", op);
|
||
}
|
||
else
|
||
{
|
||
op[7] = gen_label_rtx ();
|
||
output_asm_insn ("llgf\t%4,%7-%5(%4)", op);
|
||
output_asm_insn ("ag\t%4,0(%1)", op);
|
||
output_asm_insn ("ag\t%1,0(%4)", op);
|
||
}
|
||
}
|
||
|
||
/* Jump to target. */
|
||
output_asm_insn ("jg\t%0", op);
|
||
|
||
/* Output literal pool if required. */
|
||
if (op[5])
|
||
{
|
||
output_asm_insn (".align\t4", op);
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[5]));
|
||
}
|
||
if (op[6])
|
||
{
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[6]));
|
||
output_asm_insn (".long\t%2", op);
|
||
}
|
||
if (op[7])
|
||
{
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[7]));
|
||
output_asm_insn (".long\t%3", op);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Setup base pointer if required. */
|
||
if (!vcall_offset
|
||
|| !CONST_OK_FOR_LETTER_P (delta, 'K')
|
||
|| !CONST_OK_FOR_LETTER_P (vcall_offset, 'K'))
|
||
{
|
||
op[5] = gen_label_rtx ();
|
||
output_asm_insn ("basr\t%4,0", op);
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[5]));
|
||
}
|
||
|
||
/* Add DELTA to this pointer. */
|
||
if (delta)
|
||
{
|
||
if (CONST_OK_FOR_LETTER_P (delta, 'J'))
|
||
output_asm_insn ("la\t%1,%2(%1)", op);
|
||
else if (CONST_OK_FOR_LETTER_P (delta, 'K'))
|
||
output_asm_insn ("ahi\t%1,%2", op);
|
||
else
|
||
{
|
||
op[6] = gen_label_rtx ();
|
||
output_asm_insn ("a\t%1,%6-%5(%4)", op);
|
||
}
|
||
}
|
||
|
||
/* Perform vcall adjustment. */
|
||
if (vcall_offset)
|
||
{
|
||
if (CONST_OK_FOR_LETTER_P (vcall_offset, 'J'))
|
||
{
|
||
output_asm_insn ("lg\t%4,0(%1)", op);
|
||
output_asm_insn ("a\t%1,%3(%4)", op);
|
||
}
|
||
else if (CONST_OK_FOR_LETTER_P (vcall_offset, 'K'))
|
||
{
|
||
output_asm_insn ("lhi\t%4,%3", op);
|
||
output_asm_insn ("a\t%4,0(%1)", op);
|
||
output_asm_insn ("a\t%1,0(%4)", op);
|
||
}
|
||
else
|
||
{
|
||
op[7] = gen_label_rtx ();
|
||
output_asm_insn ("l\t%4,%7-%5(%4)", op);
|
||
output_asm_insn ("a\t%4,0(%1)", op);
|
||
output_asm_insn ("a\t%1,0(%4)", op);
|
||
}
|
||
|
||
/* We had to clobber the base pointer register.
|
||
Re-setup the base pointer (with a different base). */
|
||
op[5] = gen_label_rtx ();
|
||
output_asm_insn ("basr\t%4,0", op);
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[5]));
|
||
}
|
||
|
||
/* Jump to target. */
|
||
op[8] = gen_label_rtx ();
|
||
|
||
if (!flag_pic)
|
||
output_asm_insn ("l\t%4,%8-%5(%4)", op);
|
||
else if (!nonlocal)
|
||
output_asm_insn ("a\t%4,%8-%5(%4)", op);
|
||
/* We cannot call through .plt, since .plt requires %r12 loaded. */
|
||
else if (flag_pic == 1)
|
||
{
|
||
output_asm_insn ("a\t%4,%8-%5(%4)", op);
|
||
output_asm_insn ("l\t%4,%0(%4)", op);
|
||
}
|
||
else if (flag_pic == 2)
|
||
{
|
||
op[9] = gen_rtx_REG (Pmode, 0);
|
||
output_asm_insn ("l\t%9,%8-4-%5(%4)", op);
|
||
output_asm_insn ("a\t%4,%8-%5(%4)", op);
|
||
output_asm_insn ("ar\t%4,%9", op);
|
||
output_asm_insn ("l\t%4,0(%4)", op);
|
||
}
|
||
|
||
output_asm_insn ("br\t%4", op);
|
||
|
||
/* Output literal pool. */
|
||
output_asm_insn (".align\t4", op);
|
||
|
||
if (nonlocal && flag_pic == 2)
|
||
output_asm_insn (".long\t%0", op);
|
||
if (nonlocal)
|
||
{
|
||
op[0] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
|
||
SYMBOL_REF_FLAG (op[0]) = 1;
|
||
}
|
||
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[8]));
|
||
if (!flag_pic)
|
||
output_asm_insn (".long\t%0", op);
|
||
else
|
||
output_asm_insn (".long\t%0-%5", op);
|
||
|
||
if (op[6])
|
||
{
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[6]));
|
||
output_asm_insn (".long\t%2", op);
|
||
}
|
||
if (op[7])
|
||
{
|
||
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (op[7]));
|
||
output_asm_insn (".long\t%3", op);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* How to allocate a 'struct machine_function'. */
|
||
|
||
static struct machine_function *
|
||
s390_init_machine_status ()
|
||
{
|
||
return ggc_alloc_cleared (sizeof (struct machine_function));
|
||
}
|
||
|
||
#include "gt-s390.h"
|