freebsd-dev/usr.sbin/ppp/ccp.c
Brian Somers f0cdd9c021 Decouple pap & chap output routines from the corresponding
input routines and take advantage of the new init/continue
interface in libradius.  This allows a timely response on
other links in an MP setup while RADIUS requests are in
progress as well as the ability to handle other data from
the peer in parallel.  It should also make the future addition
of PAM support trivial.

While I'm in there, validate pap & chap header IDs if
``idcheck'' is enabled (the default) for other FSM packet
types.

NOTE: This involved integrating the generation of chap
      challenges and the validation of chap responses
      (and commenting what's going on in those routines).
      I currently have no way of testing ppps ability
      to respond to M$Chap CHALLENGEs correctly, so if
      someone could do the honours, it'd be much
      appreciated (it *looks* ok!).

Sponsored by: Internet Business Solutions Ltd., Switzerland
1999-02-06 02:54:47 +00:00

614 lines
17 KiB
C

/*
* PPP Compression Control Protocol (CCP) Module
*
* Written by Toshiharu OHNO (tony-o@iij.ad.jp)
*
* Copyright (C) 1994, Internet Initiative Japan, Inc. All rights reserverd.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by the Internet Initiative Japan, Inc. The name of the
* IIJ may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* $Id: ccp.c,v 1.41 1999/01/28 01:56:30 brian Exp $
*
* TODO:
* o Support other compression protocols
*/
#include <sys/param.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <sys/un.h>
#include <stdio.h>
#include <stdlib.h>
#include <termios.h>
#include "defs.h"
#include "command.h"
#include "mbuf.h"
#include "log.h"
#include "timer.h"
#include "fsm.h"
#include "lcpproto.h"
#include "lcp.h"
#include "ccp.h"
#include "pred.h"
#include "deflate.h"
#include "throughput.h"
#include "iplist.h"
#include "slcompress.h"
#include "lqr.h"
#include "hdlc.h"
#include "ipcp.h"
#include "filter.h"
#include "descriptor.h"
#include "prompt.h"
#include "link.h"
#include "mp.h"
#include "async.h"
#include "physical.h"
#ifndef NORADIUS
#include "radius.h"
#endif
#include "bundle.h"
static void CcpSendConfigReq(struct fsm *);
static void CcpSentTerminateReq(struct fsm *);
static void CcpSendTerminateAck(struct fsm *, u_char);
static void CcpDecodeConfig(struct fsm *, u_char *, int, int,
struct fsm_decode *);
static void CcpLayerStart(struct fsm *);
static void CcpLayerFinish(struct fsm *);
static int CcpLayerUp(struct fsm *);
static void CcpLayerDown(struct fsm *);
static void CcpInitRestartCounter(struct fsm *);
static void CcpRecvResetReq(struct fsm *);
static void CcpRecvResetAck(struct fsm *, u_char);
static struct fsm_callbacks ccp_Callbacks = {
CcpLayerUp,
CcpLayerDown,
CcpLayerStart,
CcpLayerFinish,
CcpInitRestartCounter,
CcpSendConfigReq,
CcpSentTerminateReq,
CcpSendTerminateAck,
CcpDecodeConfig,
CcpRecvResetReq,
CcpRecvResetAck
};
static const char *ccp_TimerNames[] =
{"CCP restart", "CCP openmode", "CCP stopped"};
static char const *cftypes[] = {
/* Check out the latest ``Compression Control Protocol'' rfc (rfc1962.txt) */
"OUI", /* 0: OUI */
"PRED1", /* 1: Predictor type 1 */
"PRED2", /* 2: Predictor type 2 */
"PUDDLE", /* 3: Puddle Jumber */
"???", "???", "???", "???", "???", "???",
"???", "???", "???", "???", "???", "???",
"HWPPC", /* 16: Hewlett-Packard PPC */
"STAC", /* 17: Stac Electronics LZS (rfc1974) */
"MPPC", /* 18: Microsoft PPC (rfc2118) */
"GAND", /* 19: Gandalf FZA (rfc1993) */
"V42BIS", /* 20: ARG->DATA.42bis compression */
"BSD", /* 21: BSD LZW Compress */
"???",
"LZS-DCP", /* 23: LZS-DCP Compression Protocol (rfc1967) */
"MAGNALINK/DEFLATE", /* 24: Magnalink Variable Resource (rfc1975) */
/* 24: Deflate (according to pppd-2.3.*) */
"DCE", /* 25: Data Circuit-Terminating Equip (rfc1976) */
"DEFLATE", /* 26: Deflate (rfc1979) */
};
#define NCFTYPES (sizeof cftypes/sizeof cftypes[0])
static const char *
protoname(int proto)
{
if (proto < 0 || proto > NCFTYPES)
return "none";
return cftypes[proto];
}
/* We support these algorithms, and Req them in the given order */
static const struct ccp_algorithm *algorithm[] = {
&DeflateAlgorithm,
&Pred1Algorithm,
&PppdDeflateAlgorithm
};
#define NALGORITHMS (sizeof algorithm/sizeof algorithm[0])
int
ccp_ReportStatus(struct cmdargs const *arg)
{
struct link *l;
struct ccp *ccp;
l = command_ChooseLink(arg);
ccp = &l->ccp;
prompt_Printf(arg->prompt, "%s: %s [%s]\n", l->name, ccp->fsm.name,
State2Nam(ccp->fsm.state));
prompt_Printf(arg->prompt, " My protocol = %s, His protocol = %s\n",
protoname(ccp->my_proto), protoname(ccp->his_proto));
prompt_Printf(arg->prompt, " Output: %ld --> %ld, Input: %ld --> %ld\n",
ccp->uncompout, ccp->compout,
ccp->compin, ccp->uncompin);
prompt_Printf(arg->prompt, "\n Defaults: ");
prompt_Printf(arg->prompt, "FSM retry = %us\n", ccp->cfg.fsmretry);
prompt_Printf(arg->prompt, " deflate windows: ");
prompt_Printf(arg->prompt, "incoming = %d, ", ccp->cfg.deflate.in.winsize);
prompt_Printf(arg->prompt, "outgoing = %d\n", ccp->cfg.deflate.out.winsize);
prompt_Printf(arg->prompt, " DEFLATE: %s\n",
command_ShowNegval(ccp->cfg.neg[CCP_NEG_DEFLATE]));
prompt_Printf(arg->prompt, " PREDICTOR1: %s\n",
command_ShowNegval(ccp->cfg.neg[CCP_NEG_PRED1]));
prompt_Printf(arg->prompt, " DEFLATE24: %s\n",
command_ShowNegval(ccp->cfg.neg[CCP_NEG_DEFLATE24]));
return 0;
}
void
ccp_SetupCallbacks(struct ccp *ccp)
{
ccp->fsm.fn = &ccp_Callbacks;
ccp->fsm.FsmTimer.name = ccp_TimerNames[0];
ccp->fsm.OpenTimer.name = ccp_TimerNames[1];
ccp->fsm.StoppedTimer.name = ccp_TimerNames[2];
}
void
ccp_Init(struct ccp *ccp, struct bundle *bundle, struct link *l,
const struct fsm_parent *parent)
{
/* Initialise ourselves */
fsm_Init(&ccp->fsm, "CCP", PROTO_CCP, 1, CCP_MAXCODE, 10, LogCCP,
bundle, l, parent, &ccp_Callbacks, ccp_TimerNames);
ccp->cfg.deflate.in.winsize = 0;
ccp->cfg.deflate.out.winsize = 15;
ccp->cfg.fsmretry = DEF_FSMRETRY;
ccp->cfg.neg[CCP_NEG_DEFLATE] = NEG_ENABLED|NEG_ACCEPTED;
ccp->cfg.neg[CCP_NEG_PRED1] = NEG_ENABLED|NEG_ACCEPTED;
ccp->cfg.neg[CCP_NEG_DEFLATE24] = 0;
ccp_Setup(ccp);
}
void
ccp_Setup(struct ccp *ccp)
{
/* Set ourselves up for a startup */
ccp->fsm.open_mode = 0;
ccp->fsm.maxconfig = 10;
ccp->his_proto = ccp->my_proto = -1;
ccp->reset_sent = ccp->last_reset = -1;
ccp->in.algorithm = ccp->out.algorithm = -1;
ccp->in.state = ccp->out.state = NULL;
ccp->in.opt.id = -1;
ccp->out.opt = NULL;
ccp->his_reject = ccp->my_reject = 0;
ccp->uncompout = ccp->compout = 0;
ccp->uncompin = ccp->compin = 0;
}
static void
CcpInitRestartCounter(struct fsm *fp)
{
/* Set fsm timer load */
struct ccp *ccp = fsm2ccp(fp);
fp->FsmTimer.load = ccp->cfg.fsmretry * SECTICKS;
fp->restart = DEF_REQs;
}
static void
CcpSendConfigReq(struct fsm *fp)
{
/* Send config REQ please */
struct ccp *ccp = fsm2ccp(fp);
struct ccp_opt **o;
u_char *cp, buff[100];
int f, alloc;
cp = buff;
o = &ccp->out.opt;
alloc = ccp->his_reject == 0 && ccp->out.opt == NULL;
ccp->my_proto = -1;
ccp->out.algorithm = -1;
for (f = 0; f < NALGORITHMS; f++)
if (IsEnabled(ccp->cfg.neg[algorithm[f]->Neg]) &&
!REJECTED(ccp, algorithm[f]->id)) {
if (!alloc)
for (o = &ccp->out.opt; *o != NULL; o = &(*o)->next)
if ((*o)->val.id == algorithm[f]->id && (*o)->algorithm == f)
break;
if (alloc || *o == NULL) {
*o = (struct ccp_opt *)malloc(sizeof(struct ccp_opt));
(*o)->val.id = algorithm[f]->id;
(*o)->val.len = 2;
(*o)->next = NULL;
(*o)->algorithm = f;
(*algorithm[f]->o.OptInit)(&(*o)->val, &ccp->cfg);
}
if (cp + (*o)->val.len > buff + sizeof buff) {
log_Printf(LogERROR, "%s: CCP REQ buffer overrun !\n", fp->link->name);
break;
}
memcpy(cp, &(*o)->val, (*o)->val.len);
cp += (*o)->val.len;
ccp->my_proto = (*o)->val.id;
ccp->out.algorithm = f;
if (alloc)
o = &(*o)->next;
}
fsm_Output(fp, CODE_CONFIGREQ, fp->reqid, buff, cp - buff);
}
void
ccp_SendResetReq(struct fsm *fp)
{
/* We can't read our input - ask peer to reset */
struct ccp *ccp = fsm2ccp(fp);
ccp->reset_sent = fp->reqid;
ccp->last_reset = -1;
fsm_Output(fp, CODE_RESETREQ, fp->reqid, NULL, 0);
}
static void
CcpSentTerminateReq(struct fsm *fp)
{
/* Term REQ just sent by FSM */
}
static void
CcpSendTerminateAck(struct fsm *fp, u_char id)
{
/* Send Term ACK please */
fsm_Output(fp, CODE_TERMACK, id, NULL, 0);
}
static void
CcpRecvResetReq(struct fsm *fp)
{
/* Got a reset REQ, reset outgoing dictionary */
struct ccp *ccp = fsm2ccp(fp);
if (ccp->out.state != NULL)
(*algorithm[ccp->out.algorithm]->o.Reset)(ccp->out.state);
}
static void
CcpLayerStart(struct fsm *fp)
{
/* We're about to start up ! */
log_Printf(LogCCP, "%s: LayerStart.\n", fp->link->name);
}
static void
CcpLayerDown(struct fsm *fp)
{
/* About to come down */
struct ccp *ccp = fsm2ccp(fp);
struct ccp_opt *next;
log_Printf(LogCCP, "%s: LayerDown.\n", fp->link->name);
if (ccp->in.state != NULL) {
(*algorithm[ccp->in.algorithm]->i.Term)(ccp->in.state);
ccp->in.state = NULL;
ccp->in.algorithm = -1;
}
if (ccp->out.state != NULL) {
(*algorithm[ccp->out.algorithm]->o.Term)(ccp->out.state);
ccp->out.state = NULL;
ccp->out.algorithm = -1;
}
ccp->his_reject = ccp->my_reject = 0;
while (ccp->out.opt) {
next = ccp->out.opt->next;
free(ccp->out.opt);
ccp->out.opt = next;
}
ccp_Setup(ccp);
}
static void
CcpLayerFinish(struct fsm *fp)
{
/* We're now down */
log_Printf(LogCCP, "%s: LayerFinish.\n", fp->link->name);
}
/*
* Called when CCP has reached the OPEN state
*/
static int
CcpLayerUp(struct fsm *fp)
{
/* We're now up */
struct ccp *ccp = fsm2ccp(fp);
log_Printf(LogCCP, "%s: LayerUp.\n", fp->link->name);
if (ccp->in.state == NULL && ccp->in.algorithm >= 0 &&
ccp->in.algorithm < NALGORITHMS) {
ccp->in.state = (*algorithm[ccp->in.algorithm]->i.Init)(&ccp->in.opt);
if (ccp->in.state == NULL) {
log_Printf(LogERROR, "%s: %s (in) initialisation failure\n",
fp->link->name, protoname(ccp->his_proto));
ccp->his_proto = ccp->my_proto = -1;
fsm_Close(fp);
}
}
if (ccp->out.state == NULL && ccp->out.algorithm >= 0 &&
ccp->out.algorithm < NALGORITHMS) {
ccp->out.state = (*algorithm[ccp->out.algorithm]->o.Init)
(&ccp->out.opt->val);
if (ccp->out.state == NULL) {
log_Printf(LogERROR, "%s: %s (out) initialisation failure\n",
fp->link->name, protoname(ccp->my_proto));
ccp->his_proto = ccp->my_proto = -1;
fsm_Close(fp);
}
}
log_Printf(LogCCP, "%s: Out = %s[%d], In = %s[%d]\n",
fp->link->name, protoname(ccp->my_proto), ccp->my_proto,
protoname(ccp->his_proto), ccp->his_proto);
return 1;
}
static void
CcpDecodeConfig(struct fsm *fp, u_char *cp, int plen, int mode_type,
struct fsm_decode *dec)
{
/* Deal with incoming data */
struct ccp *ccp = fsm2ccp(fp);
int type, length;
int f;
const char *end;
while (plen >= sizeof(struct fsmconfig)) {
type = *cp;
length = cp[1];
if (length == 0) {
log_Printf(LogCCP, "%s: CCP size zero\n", fp->link->name);
break;
}
if (length > sizeof(struct lcp_opt)) {
length = sizeof(struct lcp_opt);
log_Printf(LogCCP, "%s: Warning: Truncating length to %d\n",
fp->link->name, length);
}
for (f = NALGORITHMS-1; f > -1; f--)
if (algorithm[f]->id == type)
break;
end = f == -1 ? "" : (*algorithm[f]->Disp)((struct lcp_opt *)cp);
if (end == NULL)
end = "";
if (type < NCFTYPES)
log_Printf(LogCCP, " %s[%d] %s\n", cftypes[type], length, end);
else
log_Printf(LogCCP, " ???[%d] %s\n", length, end);
if (f == -1) {
/* Don't understand that :-( */
if (mode_type == MODE_REQ) {
ccp->my_reject |= (1 << type);
memcpy(dec->rejend, cp, length);
dec->rejend += length;
}
} else {
struct ccp_opt *o;
switch (mode_type) {
case MODE_REQ:
if (IsAccepted(ccp->cfg.neg[algorithm[f]->Neg]) &&
ccp->in.algorithm == -1) {
memcpy(&ccp->in.opt, cp, length);
switch ((*algorithm[f]->i.Set)(&ccp->in.opt, &ccp->cfg)) {
case MODE_REJ:
memcpy(dec->rejend, &ccp->in.opt, ccp->in.opt.len);
dec->rejend += ccp->in.opt.len;
break;
case MODE_NAK:
memcpy(dec->nakend, &ccp->in.opt, ccp->in.opt.len);
dec->nakend += ccp->in.opt.len;
break;
case MODE_ACK:
memcpy(dec->ackend, cp, length);
dec->ackend += length;
ccp->his_proto = type;
ccp->in.algorithm = f; /* This one'll do :-) */
break;
}
} else {
memcpy(dec->rejend, cp, length);
dec->rejend += length;
}
break;
case MODE_NAK:
for (o = ccp->out.opt; o != NULL; o = o->next)
if (o->val.id == cp[0])
break;
if (o == NULL)
log_Printf(LogCCP, "%s: Warning: Ignoring peer NAK of unsent option\n",
fp->link->name);
else {
memcpy(&o->val, cp, length);
if ((*algorithm[f]->o.Set)(&o->val) == MODE_ACK)
ccp->my_proto = algorithm[f]->id;
else {
ccp->his_reject |= (1 << type);
ccp->my_proto = -1;
}
}
break;
case MODE_REJ:
ccp->his_reject |= (1 << type);
ccp->my_proto = -1;
break;
}
}
plen -= cp[1];
cp += cp[1];
}
if (mode_type != MODE_NOP) {
if (dec->rejend != dec->rej) {
/* rejects are preferred */
dec->ackend = dec->ack;
dec->nakend = dec->nak;
if (ccp->in.state == NULL) {
ccp->his_proto = -1;
ccp->in.algorithm = -1;
}
} else if (dec->nakend != dec->nak) {
/* then NAKs */
dec->ackend = dec->ack;
if (ccp->in.state == NULL) {
ccp->his_proto = -1;
ccp->in.algorithm = -1;
}
}
}
}
void
ccp_Input(struct ccp *ccp, struct bundle *bundle, struct mbuf *bp)
{
/* Got PROTO_CCP from link */
if (bundle_Phase(bundle) == PHASE_NETWORK)
fsm_Input(&ccp->fsm, bp);
else {
if (bundle_Phase(bundle) < PHASE_NETWORK)
log_Printf(LogCCP, "%s: Error: Unexpected CCP in phase %s (ignored)\n",
ccp->fsm.link->name, bundle_PhaseName(bundle));
mbuf_Free(bp);
}
}
static void
CcpRecvResetAck(struct fsm *fp, u_char id)
{
/* Got a reset ACK, reset incoming dictionary */
struct ccp *ccp = fsm2ccp(fp);
if (ccp->reset_sent != -1) {
if (id != ccp->reset_sent) {
log_Printf(LogWARN, "CCP: %s: Incorrect ResetAck (id %d, not %d)"
" ignored\n", fp->link->name, id, ccp->reset_sent);
return;
}
/* Whaddaya know - a correct reset ack */
} else if (id == ccp->last_reset)
log_Printf(LogCCP, "%s: Duplicate ResetAck (resetting again)\n",
fp->link->name);
else {
log_Printf(LogWARN, "CCP: %s: Unexpected ResetAck (id %d) ignored\n",
fp->link->name, id);
return;
}
ccp->last_reset = ccp->reset_sent;
ccp->reset_sent = -1;
if (ccp->in.state != NULL)
(*algorithm[ccp->in.algorithm]->i.Reset)(ccp->in.state);
}
int
ccp_Compress(struct ccp *ccp, struct link *l, int pri, u_short proto,
struct mbuf *m)
{
/*
* Compress outgoing data. It's already deemed to be suitable Network
* Layer data.
*/
if (ccp->fsm.state == ST_OPENED && ccp->out.state != NULL)
return (*algorithm[ccp->out.algorithm]->o.Write)
(ccp->out.state, ccp, l, pri, proto, m);
return 0;
}
struct mbuf *
ccp_Decompress(struct ccp *ccp, u_short *proto, struct mbuf *bp)
{
/*
* If proto isn't PROTO_[I]COMPD, we still want to pass it to the
* decompression routines so that the dictionary's updated
*/
if (ccp->fsm.state == ST_OPENED) {
if (*proto == PROTO_COMPD || *proto == PROTO_ICOMPD) {
/* Decompress incoming data */
if (ccp->reset_sent != -1)
/* Send another REQ and put the packet in the bit bucket */
fsm_Output(&ccp->fsm, CODE_RESETREQ, ccp->reset_sent, NULL, 0);
else if (ccp->in.state != NULL)
return (*algorithm[ccp->in.algorithm]->i.Read)
(ccp->in.state, ccp, proto, bp);
mbuf_Free(bp);
bp = NULL;
} else if (PROTO_COMPRESSIBLE(*proto) && ccp->in.state != NULL)
/* Add incoming Network Layer traffic to our dictionary */
(*algorithm[ccp->in.algorithm]->i.DictSetup)
(ccp->in.state, ccp, *proto, bp);
}
return bp;
}
u_short
ccp_Proto(struct ccp *ccp)
{
return !link2physical(ccp->fsm.link) || !ccp->fsm.bundle->ncp.mp.active ?
PROTO_COMPD : PROTO_ICOMPD;
}
int
ccp_SetOpenMode(struct ccp *ccp)
{
int f;
for (f = 0; f < CCP_NEG_TOTAL; f++)
if (IsEnabled(ccp->cfg.neg[f])) {
ccp->fsm.open_mode = 0;
return 1;
}
ccp->fsm.open_mode = OPEN_PASSIVE; /* Go straight to ST_STOPPED ? */
for (f = 0; f < CCP_NEG_TOTAL; f++)
if (IsAccepted(ccp->cfg.neg[f]))
return 1;
return 0; /* No CCP at all */
}