d24ae19d0e
Noticed by: bde
1692 lines
37 KiB
C
1692 lines
37 KiB
C
/*-
|
|
* Copyright (c) 1997, 1998, 1999
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <vm/vm.h> /* for vtophys */
|
|
#include <vm/pmap.h> /* for vtophys */
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus_pio.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
/* "controller miibus0" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
#define STE_USEIOSPACE
|
|
|
|
#include <pci/if_stereg.h>
|
|
|
|
MODULE_DEPEND(ste, pci, 1, 1, 1);
|
|
MODULE_DEPEND(ste, ether, 1, 1, 1);
|
|
MODULE_DEPEND(ste, miibus, 1, 1, 1);
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static struct ste_type ste_devs[] = {
|
|
{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
|
|
{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int ste_probe(device_t);
|
|
static int ste_attach(device_t);
|
|
static int ste_detach(device_t);
|
|
static void ste_init(void *);
|
|
static void ste_intr(void *);
|
|
static void ste_rxeoc(struct ste_softc *);
|
|
static void ste_rxeof(struct ste_softc *);
|
|
static void ste_txeoc(struct ste_softc *);
|
|
static void ste_txeof(struct ste_softc *);
|
|
static void ste_stats_update(void *);
|
|
static void ste_stop(struct ste_softc *);
|
|
static void ste_reset(struct ste_softc *);
|
|
static int ste_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static int ste_encap(struct ste_softc *, struct ste_chain *, struct mbuf *);
|
|
static void ste_start(struct ifnet *);
|
|
static void ste_watchdog(struct ifnet *);
|
|
static void ste_shutdown(device_t);
|
|
static int ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *,
|
|
struct mbuf *);
|
|
static int ste_ifmedia_upd(struct ifnet *);
|
|
static void ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
|
|
static void ste_mii_sync(struct ste_softc *);
|
|
static void ste_mii_send(struct ste_softc *, u_int32_t, int);
|
|
static int ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
|
|
static int ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
|
|
static int ste_miibus_readreg(device_t, int, int);
|
|
static int ste_miibus_writereg(device_t, int, int, int);
|
|
static void ste_miibus_statchg(device_t);
|
|
|
|
static int ste_eeprom_wait(struct ste_softc *);
|
|
static int ste_read_eeprom(struct ste_softc *, caddr_t, int, int, int);
|
|
static void ste_wait(struct ste_softc *);
|
|
static void ste_setmulti(struct ste_softc *);
|
|
static int ste_init_rx_list(struct ste_softc *);
|
|
static void ste_init_tx_list(struct ste_softc *);
|
|
|
|
#ifdef STE_USEIOSPACE
|
|
#define STE_RES SYS_RES_IOPORT
|
|
#define STE_RID STE_PCI_LOIO
|
|
#else
|
|
#define STE_RES SYS_RES_MEMORY
|
|
#define STE_RID STE_PCI_LOMEM
|
|
#endif
|
|
|
|
static device_method_t ste_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, ste_probe),
|
|
DEVMETHOD(device_attach, ste_attach),
|
|
DEVMETHOD(device_detach, ste_detach),
|
|
DEVMETHOD(device_shutdown, ste_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, ste_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, ste_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, ste_miibus_statchg),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t ste_driver = {
|
|
"ste",
|
|
ste_methods,
|
|
sizeof(struct ste_softc)
|
|
};
|
|
|
|
static devclass_t ste_devclass;
|
|
|
|
DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
SYSCTL_NODE(_hw, OID_AUTO, ste, CTLFLAG_RD, 0, "if_ste parameters");
|
|
|
|
static int ste_rxsyncs;
|
|
SYSCTL_INT(_hw_ste, OID_AUTO, rxsyncs, CTLFLAG_RW, &ste_rxsyncs, 0, "");
|
|
|
|
#define STE_SETBIT4(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
|
|
|
|
#define STE_CLRBIT4(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
|
|
|
|
#define STE_SETBIT2(sc, reg, x) \
|
|
CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
|
|
|
|
#define STE_CLRBIT2(sc, reg, x) \
|
|
CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
|
|
|
|
#define STE_SETBIT1(sc, reg, x) \
|
|
CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
|
|
|
|
#define STE_CLRBIT1(sc, reg, x) \
|
|
CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
|
|
|
|
|
|
#define MII_SET(x) STE_SETBIT1(sc, STE_PHYCTL, x)
|
|
#define MII_CLR(x) STE_CLRBIT1(sc, STE_PHYCTL, x)
|
|
|
|
/*
|
|
* Sync the PHYs by setting data bit and strobing the clock 32 times.
|
|
*/
|
|
static void
|
|
ste_mii_sync(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
MII_SET(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
MII_CLR(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clock a series of bits through the MII.
|
|
*/
|
|
static void
|
|
ste_mii_send(sc, bits, cnt)
|
|
struct ste_softc *sc;
|
|
u_int32_t bits;
|
|
int cnt;
|
|
{
|
|
int i;
|
|
|
|
MII_CLR(STE_PHYCTL_MCLK);
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
|
|
if (bits & i) {
|
|
MII_SET(STE_PHYCTL_MDATA);
|
|
} else {
|
|
MII_CLR(STE_PHYCTL_MDATA);
|
|
}
|
|
DELAY(1);
|
|
MII_CLR(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
MII_SET(STE_PHYCTL_MCLK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read an PHY register through the MII.
|
|
*/
|
|
static int
|
|
ste_mii_readreg(sc, frame)
|
|
struct ste_softc *sc;
|
|
struct ste_mii_frame *frame;
|
|
|
|
{
|
|
int i, ack;
|
|
|
|
STE_LOCK(sc);
|
|
|
|
/*
|
|
* Set up frame for RX.
|
|
*/
|
|
frame->mii_stdelim = STE_MII_STARTDELIM;
|
|
frame->mii_opcode = STE_MII_READOP;
|
|
frame->mii_turnaround = 0;
|
|
frame->mii_data = 0;
|
|
|
|
CSR_WRITE_2(sc, STE_PHYCTL, 0);
|
|
/*
|
|
* Turn on data xmit.
|
|
*/
|
|
MII_SET(STE_PHYCTL_MDIR);
|
|
|
|
ste_mii_sync(sc);
|
|
|
|
/*
|
|
* Send command/address info.
|
|
*/
|
|
ste_mii_send(sc, frame->mii_stdelim, 2);
|
|
ste_mii_send(sc, frame->mii_opcode, 2);
|
|
ste_mii_send(sc, frame->mii_phyaddr, 5);
|
|
ste_mii_send(sc, frame->mii_regaddr, 5);
|
|
|
|
/* Turn off xmit. */
|
|
MII_CLR(STE_PHYCTL_MDIR);
|
|
|
|
/* Idle bit */
|
|
MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
|
|
DELAY(1);
|
|
MII_SET(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
|
|
/* Check for ack */
|
|
MII_CLR(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
|
|
MII_SET(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
|
|
/*
|
|
* Now try reading data bits. If the ack failed, we still
|
|
* need to clock through 16 cycles to keep the PHY(s) in sync.
|
|
*/
|
|
if (ack) {
|
|
for(i = 0; i < 16; i++) {
|
|
MII_CLR(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
MII_SET(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
MII_CLR(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
if (!ack) {
|
|
if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
|
|
frame->mii_data |= i;
|
|
DELAY(1);
|
|
}
|
|
MII_SET(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
}
|
|
|
|
fail:
|
|
|
|
MII_CLR(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
MII_SET(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
|
|
STE_UNLOCK(sc);
|
|
|
|
if (ack)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Write to a PHY register through the MII.
|
|
*/
|
|
static int
|
|
ste_mii_writereg(sc, frame)
|
|
struct ste_softc *sc;
|
|
struct ste_mii_frame *frame;
|
|
|
|
{
|
|
STE_LOCK(sc);
|
|
|
|
/*
|
|
* Set up frame for TX.
|
|
*/
|
|
|
|
frame->mii_stdelim = STE_MII_STARTDELIM;
|
|
frame->mii_opcode = STE_MII_WRITEOP;
|
|
frame->mii_turnaround = STE_MII_TURNAROUND;
|
|
|
|
/*
|
|
* Turn on data output.
|
|
*/
|
|
MII_SET(STE_PHYCTL_MDIR);
|
|
|
|
ste_mii_sync(sc);
|
|
|
|
ste_mii_send(sc, frame->mii_stdelim, 2);
|
|
ste_mii_send(sc, frame->mii_opcode, 2);
|
|
ste_mii_send(sc, frame->mii_phyaddr, 5);
|
|
ste_mii_send(sc, frame->mii_regaddr, 5);
|
|
ste_mii_send(sc, frame->mii_turnaround, 2);
|
|
ste_mii_send(sc, frame->mii_data, 16);
|
|
|
|
/* Idle bit. */
|
|
MII_SET(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
MII_CLR(STE_PHYCTL_MCLK);
|
|
DELAY(1);
|
|
|
|
/*
|
|
* Turn off xmit.
|
|
*/
|
|
MII_CLR(STE_PHYCTL_MDIR);
|
|
|
|
STE_UNLOCK(sc);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
ste_miibus_readreg(dev, phy, reg)
|
|
device_t dev;
|
|
int phy, reg;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct ste_mii_frame frame;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if ( sc->ste_one_phy && phy != 0 )
|
|
return (0);
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
frame.mii_phyaddr = phy;
|
|
frame.mii_regaddr = reg;
|
|
ste_mii_readreg(sc, &frame);
|
|
|
|
return(frame.mii_data);
|
|
}
|
|
|
|
static int
|
|
ste_miibus_writereg(dev, phy, reg, data)
|
|
device_t dev;
|
|
int phy, reg, data;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct ste_mii_frame frame;
|
|
|
|
sc = device_get_softc(dev);
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
frame.mii_phyaddr = phy;
|
|
frame.mii_regaddr = reg;
|
|
frame.mii_data = data;
|
|
|
|
ste_mii_writereg(sc, &frame);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
ste_miibus_statchg(dev)
|
|
device_t dev;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = device_get_softc(dev);
|
|
STE_LOCK(sc);
|
|
mii = device_get_softc(sc->ste_miibus);
|
|
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
|
|
STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
|
|
} else {
|
|
STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
|
|
}
|
|
STE_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
ste_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->ste_miibus);
|
|
sc->ste_link = 0;
|
|
if (mii->mii_instance) {
|
|
struct mii_softc *miisc;
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
mii_phy_reset(miisc);
|
|
}
|
|
mii_mediachg(mii);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
ste_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->ste_miibus);
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ste_wait(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
for (i = 0; i < STE_TIMEOUT; i++) {
|
|
if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
|
|
break;
|
|
}
|
|
|
|
if (i == STE_TIMEOUT)
|
|
printf("ste%d: command never completed!\n", sc->ste_unit);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The EEPROM is slow: give it time to come ready after issuing
|
|
* it a command.
|
|
*/
|
|
static int
|
|
ste_eeprom_wait(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
DELAY(1000);
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
|
|
DELAY(1000);
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (i == 100) {
|
|
printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
|
|
return(1);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM. Note that ethernet address
|
|
* data is stored in the EEPROM in network byte order.
|
|
*/
|
|
static int
|
|
ste_read_eeprom(sc, dest, off, cnt, swap)
|
|
struct ste_softc *sc;
|
|
caddr_t dest;
|
|
int off;
|
|
int cnt;
|
|
int swap;
|
|
{
|
|
int err = 0, i;
|
|
u_int16_t word = 0, *ptr;
|
|
|
|
if (ste_eeprom_wait(sc))
|
|
return(1);
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
|
|
err = ste_eeprom_wait(sc);
|
|
if (err)
|
|
break;
|
|
word = CSR_READ_2(sc, STE_EEPROM_DATA);
|
|
ptr = (u_int16_t *)(dest + (i * 2));
|
|
if (swap)
|
|
*ptr = ntohs(word);
|
|
else
|
|
*ptr = word;
|
|
}
|
|
|
|
return(err ? 1 : 0);
|
|
}
|
|
|
|
static void
|
|
ste_setmulti(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int h = 0;
|
|
u_int32_t hashes[2] = { 0, 0 };
|
|
struct ifmultiaddr *ifma;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
|
|
STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
|
|
return;
|
|
}
|
|
|
|
/* first, zot all the existing hash bits */
|
|
CSR_WRITE_2(sc, STE_MAR0, 0);
|
|
CSR_WRITE_2(sc, STE_MAR1, 0);
|
|
CSR_WRITE_2(sc, STE_MAR2, 0);
|
|
CSR_WRITE_2(sc, STE_MAR3, 0);
|
|
|
|
/* now program new ones */
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
}
|
|
|
|
CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
|
|
CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
|
|
CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
|
|
CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
|
|
STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
|
|
STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static poll_handler_t ste_poll;
|
|
|
|
static void
|
|
ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct ste_softc *sc = ifp->if_softc;
|
|
|
|
STE_LOCK(sc);
|
|
if (!(ifp->if_capenable & IFCAP_POLLING)) {
|
|
ether_poll_deregister(ifp);
|
|
cmd = POLL_DEREGISTER;
|
|
}
|
|
if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
|
|
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
|
|
goto done;
|
|
}
|
|
|
|
sc->rxcycles = count;
|
|
if (cmd == POLL_AND_CHECK_STATUS)
|
|
ste_rxeoc(sc);
|
|
ste_rxeof(sc);
|
|
ste_txeof(sc);
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
ste_start(ifp);
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
u_int16_t status;
|
|
|
|
status = CSR_READ_2(sc, STE_ISR_ACK);
|
|
|
|
if (status & STE_ISR_TX_DONE)
|
|
ste_txeoc(sc);
|
|
|
|
if (status & STE_ISR_STATS_OFLOW) {
|
|
untimeout(ste_stats_update, sc, sc->ste_stat_ch);
|
|
ste_stats_update(sc);
|
|
}
|
|
|
|
if (status & STE_ISR_LINKEVENT)
|
|
mii_pollstat(device_get_softc(sc->ste_miibus));
|
|
|
|
if (status & STE_ISR_HOSTERR) {
|
|
ste_reset(sc);
|
|
ste_init(sc);
|
|
}
|
|
}
|
|
done:
|
|
STE_UNLOCK(sc);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static void
|
|
ste_intr(xsc)
|
|
void *xsc;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int16_t status;
|
|
|
|
sc = xsc;
|
|
STE_LOCK(sc);
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_flags & IFF_POLLING)
|
|
goto done;
|
|
if ((ifp->if_capenable & IFCAP_POLLING) &&
|
|
ether_poll_register(ste_poll, ifp)) { /* ok, disable interrupts */
|
|
CSR_WRITE_2(sc, STE_IMR, 0);
|
|
ste_poll(ifp, 0, 1);
|
|
goto done;
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
/* See if this is really our interrupt. */
|
|
if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
|
|
STE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
for (;;) {
|
|
status = CSR_READ_2(sc, STE_ISR_ACK);
|
|
|
|
if (!(status & STE_INTRS))
|
|
break;
|
|
|
|
if (status & STE_ISR_RX_DMADONE) {
|
|
ste_rxeoc(sc);
|
|
ste_rxeof(sc);
|
|
}
|
|
|
|
if (status & STE_ISR_TX_DMADONE)
|
|
ste_txeof(sc);
|
|
|
|
if (status & STE_ISR_TX_DONE)
|
|
ste_txeoc(sc);
|
|
|
|
if (status & STE_ISR_STATS_OFLOW) {
|
|
untimeout(ste_stats_update, sc, sc->ste_stat_ch);
|
|
ste_stats_update(sc);
|
|
}
|
|
|
|
if (status & STE_ISR_LINKEVENT)
|
|
mii_pollstat(device_get_softc(sc->ste_miibus));
|
|
|
|
|
|
if (status & STE_ISR_HOSTERR) {
|
|
ste_reset(sc);
|
|
ste_init(sc);
|
|
}
|
|
}
|
|
|
|
/* Re-enable interrupts */
|
|
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
ste_start(ifp);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
done:
|
|
#endif /* DEVICE_POLLING */
|
|
STE_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ste_rxeoc(struct ste_softc *sc)
|
|
{
|
|
struct ste_chain_onefrag *cur_rx;
|
|
|
|
STE_LOCK_ASSERT(sc);
|
|
|
|
if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
|
|
cur_rx = sc->ste_cdata.ste_rx_head;
|
|
do {
|
|
cur_rx = cur_rx->ste_next;
|
|
/* If the ring is empty, just return. */
|
|
if (cur_rx == sc->ste_cdata.ste_rx_head)
|
|
return;
|
|
} while (cur_rx->ste_ptr->ste_status == 0);
|
|
if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
|
|
/* We've fallen behind the chip: catch it. */
|
|
sc->ste_cdata.ste_rx_head = cur_rx;
|
|
++ste_rxsyncs;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
static void
|
|
ste_rxeof(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct ste_chain_onefrag *cur_rx;
|
|
int total_len = 0, count=0;
|
|
u_int32_t rxstat;
|
|
|
|
STE_LOCK_ASSERT(sc);
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
|
|
& STE_RXSTAT_DMADONE) {
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_flags & IFF_POLLING) {
|
|
if (sc->rxcycles <= 0)
|
|
break;
|
|
sc->rxcycles--;
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
if ((STE_RX_LIST_CNT - count) < 3) {
|
|
break;
|
|
}
|
|
|
|
cur_rx = sc->ste_cdata.ste_rx_head;
|
|
sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
|
|
|
|
/*
|
|
* If an error occurs, update stats, clear the
|
|
* status word and leave the mbuf cluster in place:
|
|
* it should simply get re-used next time this descriptor
|
|
* comes up in the ring.
|
|
*/
|
|
if (rxstat & STE_RXSTAT_FRAME_ERR) {
|
|
ifp->if_ierrors++;
|
|
cur_rx->ste_ptr->ste_status = 0;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If there error bit was not set, the upload complete
|
|
* bit should be set which means we have a valid packet.
|
|
* If not, something truly strange has happened.
|
|
*/
|
|
if (!(rxstat & STE_RXSTAT_DMADONE)) {
|
|
printf("ste%d: bad receive status -- packet dropped\n",
|
|
sc->ste_unit);
|
|
ifp->if_ierrors++;
|
|
cur_rx->ste_ptr->ste_status = 0;
|
|
continue;
|
|
}
|
|
|
|
/* No errors; receive the packet. */
|
|
m = cur_rx->ste_mbuf;
|
|
total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
|
|
|
|
/*
|
|
* Try to conjure up a new mbuf cluster. If that
|
|
* fails, it means we have an out of memory condition and
|
|
* should leave the buffer in place and continue. This will
|
|
* result in a lost packet, but there's little else we
|
|
* can do in this situation.
|
|
*/
|
|
if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
|
|
ifp->if_ierrors++;
|
|
cur_rx->ste_ptr->ste_status = 0;
|
|
continue;
|
|
}
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
|
|
ifp->if_ipackets++;
|
|
STE_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
STE_LOCK(sc);
|
|
|
|
cur_rx->ste_ptr->ste_status = 0;
|
|
count++;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ste_txeoc(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
u_int8_t txstat;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
|
|
STE_TXSTATUS_TXDONE) {
|
|
if (txstat & STE_TXSTATUS_UNDERRUN ||
|
|
txstat & STE_TXSTATUS_EXCESSCOLLS ||
|
|
txstat & STE_TXSTATUS_RECLAIMERR) {
|
|
ifp->if_oerrors++;
|
|
printf("ste%d: transmission error: %x\n",
|
|
sc->ste_unit, txstat);
|
|
|
|
ste_reset(sc);
|
|
ste_init(sc);
|
|
|
|
if (txstat & STE_TXSTATUS_UNDERRUN &&
|
|
sc->ste_tx_thresh < STE_PACKET_SIZE) {
|
|
sc->ste_tx_thresh += STE_MIN_FRAMELEN;
|
|
printf("ste%d: tx underrun, increasing tx"
|
|
" start threshold to %d bytes\n",
|
|
sc->ste_unit, sc->ste_tx_thresh);
|
|
}
|
|
CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
|
|
CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
|
|
(STE_PACKET_SIZE >> 4));
|
|
}
|
|
ste_init(sc);
|
|
CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ste_txeof(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
struct ste_chain *cur_tx;
|
|
struct ifnet *ifp;
|
|
int idx;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
idx = sc->ste_cdata.ste_tx_cons;
|
|
while(idx != sc->ste_cdata.ste_tx_prod) {
|
|
cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
|
|
|
|
if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
|
|
break;
|
|
|
|
m_freem(cur_tx->ste_mbuf);
|
|
cur_tx->ste_mbuf = NULL;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
ifp->if_opackets++;
|
|
|
|
STE_INC(idx, STE_TX_LIST_CNT);
|
|
}
|
|
|
|
sc->ste_cdata.ste_tx_cons = idx;
|
|
if (idx == sc->ste_cdata.ste_tx_prod)
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
static void
|
|
ste_stats_update(xsc)
|
|
void *xsc;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
|
|
sc = xsc;
|
|
STE_LOCK(sc);
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
mii = device_get_softc(sc->ste_miibus);
|
|
|
|
ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
|
|
+ CSR_READ_1(sc, STE_MULTI_COLLS)
|
|
+ CSR_READ_1(sc, STE_SINGLE_COLLS);
|
|
|
|
if (!sc->ste_link) {
|
|
mii_pollstat(mii);
|
|
if (mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->ste_link++;
|
|
/*
|
|
* we don't get a call-back on re-init so do it
|
|
* otherwise we get stuck in the wrong link state
|
|
*/
|
|
ste_miibus_statchg(sc->ste_dev);
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
ste_start(ifp);
|
|
}
|
|
}
|
|
|
|
sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
|
|
STE_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Probe for a Sundance ST201 chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static int
|
|
ste_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct ste_type *t;
|
|
|
|
t = ste_devs;
|
|
|
|
while(t->ste_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->ste_vid) &&
|
|
(pci_get_device(dev) == t->ste_did)) {
|
|
device_set_desc(dev, t->ste_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
ste_attach(dev)
|
|
device_t dev;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct ifnet *ifp;
|
|
int unit, error = 0, rid;
|
|
|
|
sc = device_get_softc(dev);
|
|
unit = device_get_unit(dev);
|
|
sc->ste_dev = dev;
|
|
|
|
/*
|
|
* Only use one PHY since this chip reports multiple
|
|
* Note on the DFE-550 the PHY is at 1 on the DFE-580
|
|
* it is at 0 & 1. It is rev 0x12.
|
|
*/
|
|
if (pci_get_vendor(dev) == DL_VENDORID &&
|
|
pci_get_device(dev) == DL_DEVICEID_DL10050 &&
|
|
pci_get_revid(dev) == 0x12 )
|
|
sc->ste_one_phy = 1;
|
|
|
|
mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF | MTX_RECURSE);
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
rid = STE_RID;
|
|
sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
|
|
|
|
if (sc->ste_res == NULL) {
|
|
printf ("ste%d: couldn't map ports/memory\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
sc->ste_btag = rman_get_bustag(sc->ste_res);
|
|
sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
|
|
|
|
/* Allocate interrupt */
|
|
rid = 0;
|
|
sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->ste_irq == NULL) {
|
|
printf("ste%d: couldn't map interrupt\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
callout_handle_init(&sc->ste_stat_ch);
|
|
|
|
/* Reset the adapter. */
|
|
ste_reset(sc);
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
|
|
STE_EEADDR_NODE0, 3, 0)) {
|
|
printf("ste%d: failed to read station address\n", unit);
|
|
error = ENXIO;;
|
|
goto fail;
|
|
}
|
|
|
|
sc->ste_unit = unit;
|
|
|
|
/* Allocate the descriptor queues. */
|
|
sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
|
|
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
|
|
|
|
if (sc->ste_ldata == NULL) {
|
|
printf("ste%d: no memory for list buffers!\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
bzero(sc->ste_ldata, sizeof(struct ste_list_data));
|
|
|
|
/* Do MII setup. */
|
|
if (mii_phy_probe(dev, &sc->ste_miibus,
|
|
ste_ifmedia_upd, ste_ifmedia_sts)) {
|
|
printf("ste%d: MII without any phy!\n", sc->ste_unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
|
|
IFF_NEEDSGIANT;
|
|
ifp->if_ioctl = ste_ioctl;
|
|
ifp->if_start = ste_start;
|
|
ifp->if_watchdog = ste_watchdog;
|
|
ifp->if_init = ste_init;
|
|
ifp->if_baudrate = 10000000;
|
|
ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1;
|
|
|
|
sc->ste_tx_thresh = STE_TXSTART_THRESH;
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, sc->arpcom.ac_enaddr);
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
/* Hook interrupt last to avoid having to lock softc */
|
|
error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
|
|
ste_intr, sc, &sc->ste_intrhand);
|
|
|
|
if (error) {
|
|
printf("ste%d: couldn't set up irq\n", unit);
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
ste_detach(dev);
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
ste_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
|
|
STE_LOCK(sc);
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* These should only be active if attach succeeded */
|
|
if (device_is_attached(dev)) {
|
|
ste_stop(sc);
|
|
ether_ifdetach(ifp);
|
|
}
|
|
if (sc->ste_miibus)
|
|
device_delete_child(dev, sc->ste_miibus);
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->ste_intrhand)
|
|
bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
|
|
if (sc->ste_irq)
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
|
|
if (sc->ste_res)
|
|
bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
|
|
|
|
if (sc->ste_ldata) {
|
|
contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
|
|
M_DEVBUF);
|
|
}
|
|
|
|
STE_UNLOCK(sc);
|
|
mtx_destroy(&sc->ste_mtx);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
ste_newbuf(sc, c, m)
|
|
struct ste_softc *sc;
|
|
struct ste_chain_onefrag *c;
|
|
struct mbuf *m;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
|
|
if (m == NULL) {
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
return(ENOBUFS);
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
return(ENOBUFS);
|
|
}
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
} else {
|
|
m_new = m;
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
}
|
|
|
|
m_adj(m_new, ETHER_ALIGN);
|
|
|
|
c->ste_mbuf = m_new;
|
|
c->ste_ptr->ste_status = 0;
|
|
c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
|
|
c->ste_ptr->ste_frag.ste_len = (1536 + ETHER_VLAN_ENCAP_LEN) | STE_FRAG_LAST;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
ste_init_rx_list(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
struct ste_chain_data *cd;
|
|
struct ste_list_data *ld;
|
|
int i;
|
|
|
|
cd = &sc->ste_cdata;
|
|
ld = sc->ste_ldata;
|
|
|
|
for (i = 0; i < STE_RX_LIST_CNT; i++) {
|
|
cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
|
|
if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
|
|
return(ENOBUFS);
|
|
if (i == (STE_RX_LIST_CNT - 1)) {
|
|
cd->ste_rx_chain[i].ste_next =
|
|
&cd->ste_rx_chain[0];
|
|
ld->ste_rx_list[i].ste_next =
|
|
vtophys(&ld->ste_rx_list[0]);
|
|
} else {
|
|
cd->ste_rx_chain[i].ste_next =
|
|
&cd->ste_rx_chain[i + 1];
|
|
ld->ste_rx_list[i].ste_next =
|
|
vtophys(&ld->ste_rx_list[i + 1]);
|
|
}
|
|
ld->ste_rx_list[i].ste_status = 0;
|
|
}
|
|
|
|
cd->ste_rx_head = &cd->ste_rx_chain[0];
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
ste_init_tx_list(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
struct ste_chain_data *cd;
|
|
struct ste_list_data *ld;
|
|
int i;
|
|
|
|
cd = &sc->ste_cdata;
|
|
ld = sc->ste_ldata;
|
|
for (i = 0; i < STE_TX_LIST_CNT; i++) {
|
|
cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
|
|
cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
|
|
cd->ste_tx_chain[i].ste_ptr->ste_ctl = 0;
|
|
cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
|
|
if (i == (STE_TX_LIST_CNT - 1))
|
|
cd->ste_tx_chain[i].ste_next =
|
|
&cd->ste_tx_chain[0];
|
|
else
|
|
cd->ste_tx_chain[i].ste_next =
|
|
&cd->ste_tx_chain[i + 1];
|
|
}
|
|
|
|
cd->ste_tx_prod = 0;
|
|
cd->ste_tx_cons = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ste_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct ste_softc *sc;
|
|
int i;
|
|
struct ifnet *ifp;
|
|
|
|
sc = xsc;
|
|
STE_LOCK(sc);
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
ste_stop(sc);
|
|
|
|
/* Init our MAC address */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
|
|
}
|
|
|
|
/* Init RX list */
|
|
if (ste_init_rx_list(sc) == ENOBUFS) {
|
|
printf("ste%d: initialization failed: no "
|
|
"memory for RX buffers\n", sc->ste_unit);
|
|
ste_stop(sc);
|
|
STE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/* Set RX polling interval */
|
|
CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
|
|
|
|
/* Init TX descriptors */
|
|
ste_init_tx_list(sc);
|
|
|
|
/* Set the TX freethresh value */
|
|
CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
|
|
|
|
/* Set the TX start threshold for best performance. */
|
|
CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
|
|
|
|
/* Set the TX reclaim threshold. */
|
|
CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
|
|
|
|
/* Set up the RX filter. */
|
|
CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
|
|
} else {
|
|
STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
|
|
}
|
|
|
|
/* Set capture broadcast bit to accept broadcast frames. */
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
|
|
} else {
|
|
STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
|
|
}
|
|
|
|
ste_setmulti(sc);
|
|
|
|
/* Load the address of the RX list. */
|
|
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
|
|
ste_wait(sc);
|
|
CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
|
|
vtophys(&sc->ste_ldata->ste_rx_list[0]));
|
|
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
|
|
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
|
|
|
|
/* Set TX polling interval (defer until we TX first packet */
|
|
CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
|
|
|
|
/* Load address of the TX list */
|
|
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
|
|
ste_wait(sc);
|
|
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
|
|
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
|
|
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
|
|
ste_wait(sc);
|
|
sc->ste_tx_prev = NULL;
|
|
|
|
/* Enable receiver and transmitter */
|
|
CSR_WRITE_2(sc, STE_MACCTL0, 0);
|
|
CSR_WRITE_2(sc, STE_MACCTL1, 0);
|
|
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
|
|
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
|
|
|
|
/* Enable stats counters. */
|
|
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
|
|
|
|
CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
|
|
#ifdef DEVICE_POLLING
|
|
/* Disable interrupts if we are polling. */
|
|
if (ifp->if_flags & IFF_POLLING)
|
|
CSR_WRITE_2(sc, STE_IMR, 0);
|
|
else
|
|
#endif /* DEVICE_POLLING */
|
|
/* Enable interrupts. */
|
|
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
|
|
|
|
/* Accept VLAN length packets */
|
|
CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
|
|
|
|
ste_ifmedia_upd(ifp);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
sc->ste_stat_ch = timeout(ste_stats_update, sc, hz);
|
|
STE_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ste_stop(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
int i;
|
|
struct ifnet *ifp;
|
|
|
|
STE_LOCK(sc);
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
untimeout(ste_stats_update, sc, sc->ste_stat_ch);
|
|
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
|
|
#ifdef DEVICE_POLLING
|
|
ether_poll_deregister(ifp);
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
CSR_WRITE_2(sc, STE_IMR, 0);
|
|
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
|
|
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
|
|
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
|
|
STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
|
|
STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
|
|
ste_wait(sc);
|
|
/*
|
|
* Try really hard to stop the RX engine or under heavy RX
|
|
* data chip will write into de-allocated memory.
|
|
*/
|
|
ste_reset(sc);
|
|
|
|
sc->ste_link = 0;
|
|
|
|
for (i = 0; i < STE_RX_LIST_CNT; i++) {
|
|
if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
|
|
m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
|
|
sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < STE_TX_LIST_CNT; i++) {
|
|
if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
|
|
m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
|
|
sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
bzero(sc->ste_ldata, sizeof(struct ste_list_data));
|
|
STE_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ste_reset(sc)
|
|
struct ste_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
STE_SETBIT4(sc, STE_ASICCTL,
|
|
STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
|
|
STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
|
|
STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
|
|
STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
|
|
STE_ASICCTL_EXTRESET_RESET);
|
|
|
|
DELAY(100000);
|
|
|
|
for (i = 0; i < STE_TIMEOUT; i++) {
|
|
if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
|
|
break;
|
|
}
|
|
|
|
if (i == STE_TIMEOUT)
|
|
printf("ste%d: global reset never completed\n", sc->ste_unit);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
ste_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct ifreq *ifr;
|
|
struct mii_data *mii;
|
|
int error = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
STE_LOCK(sc);
|
|
ifr = (struct ifreq *)data;
|
|
|
|
switch(command) {
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING &&
|
|
ifp->if_flags & IFF_PROMISC &&
|
|
!(sc->ste_if_flags & IFF_PROMISC)) {
|
|
STE_SETBIT1(sc, STE_RX_MODE,
|
|
STE_RXMODE_PROMISC);
|
|
} else if (ifp->if_flags & IFF_RUNNING &&
|
|
!(ifp->if_flags & IFF_PROMISC) &&
|
|
sc->ste_if_flags & IFF_PROMISC) {
|
|
STE_CLRBIT1(sc, STE_RX_MODE,
|
|
STE_RXMODE_PROMISC);
|
|
}
|
|
if (ifp->if_flags & IFF_RUNNING &&
|
|
(ifp->if_flags ^ sc->ste_if_flags) & IFF_ALLMULTI)
|
|
ste_setmulti(sc);
|
|
if (!(ifp->if_flags & IFF_RUNNING)) {
|
|
sc->ste_tx_thresh = STE_TXSTART_THRESH;
|
|
ste_init(sc);
|
|
}
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
ste_stop(sc);
|
|
}
|
|
sc->ste_if_flags = ifp->if_flags;
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
ste_setmulti(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc->ste_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
STE_UNLOCK(sc);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static int
|
|
ste_encap(sc, c, m_head)
|
|
struct ste_softc *sc;
|
|
struct ste_chain *c;
|
|
struct mbuf *m_head;
|
|
{
|
|
int frag = 0;
|
|
struct ste_frag *f = NULL;
|
|
struct mbuf *m;
|
|
struct ste_desc *d;
|
|
|
|
d = c->ste_ptr;
|
|
d->ste_ctl = 0;
|
|
|
|
encap_retry:
|
|
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
|
|
if (m->m_len != 0) {
|
|
if (frag == STE_MAXFRAGS)
|
|
break;
|
|
f = &d->ste_frags[frag];
|
|
f->ste_addr = vtophys(mtod(m, vm_offset_t));
|
|
f->ste_len = m->m_len;
|
|
frag++;
|
|
}
|
|
}
|
|
|
|
if (m != NULL) {
|
|
struct mbuf *mn;
|
|
|
|
/*
|
|
* We ran out of segments. We have to recopy this
|
|
* mbuf chain first. Bail out if we can't get the
|
|
* new buffers.
|
|
*/
|
|
mn = m_defrag(m_head, M_DONTWAIT);
|
|
if (mn == NULL) {
|
|
m_freem(m_head);
|
|
return ENOMEM;
|
|
}
|
|
m_head = mn;
|
|
goto encap_retry;
|
|
}
|
|
|
|
c->ste_mbuf = m_head;
|
|
d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
|
|
d->ste_ctl = 1;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
ste_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct ste_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
struct ste_chain *cur_tx;
|
|
int idx;
|
|
|
|
sc = ifp->if_softc;
|
|
STE_LOCK(sc);
|
|
|
|
if (!sc->ste_link) {
|
|
STE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_OACTIVE) {
|
|
STE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
idx = sc->ste_cdata.ste_tx_prod;
|
|
|
|
while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
|
|
/*
|
|
* We cannot re-use the last (free) descriptor;
|
|
* the chip may not have read its ste_next yet.
|
|
*/
|
|
if (STE_NEXT(idx, STE_TX_LIST_CNT) ==
|
|
sc->ste_cdata.ste_tx_cons) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
|
|
|
|
if (ste_encap(sc, cur_tx, m_head) != 0)
|
|
break;
|
|
|
|
cur_tx->ste_ptr->ste_next = 0;
|
|
|
|
if (sc->ste_tx_prev == NULL) {
|
|
cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
|
|
/* Load address of the TX list */
|
|
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
|
|
ste_wait(sc);
|
|
|
|
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
|
|
vtophys(&sc->ste_ldata->ste_tx_list[0]));
|
|
|
|
/* Set TX polling interval to start TX engine */
|
|
CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
|
|
|
|
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
|
|
ste_wait(sc);
|
|
}else{
|
|
cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
|
|
sc->ste_tx_prev->ste_ptr->ste_next
|
|
= cur_tx->ste_phys;
|
|
}
|
|
|
|
sc->ste_tx_prev = cur_tx;
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
BPF_MTAP(ifp, cur_tx->ste_mbuf);
|
|
|
|
STE_INC(idx, STE_TX_LIST_CNT);
|
|
ifp->if_timer = 5;
|
|
}
|
|
sc->ste_cdata.ste_tx_prod = idx;
|
|
|
|
STE_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ste_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct ste_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
STE_LOCK(sc);
|
|
|
|
ifp->if_oerrors++;
|
|
printf("ste%d: watchdog timeout\n", sc->ste_unit);
|
|
|
|
ste_txeoc(sc);
|
|
ste_txeof(sc);
|
|
ste_rxeoc(sc);
|
|
ste_rxeof(sc);
|
|
ste_reset(sc);
|
|
ste_init(sc);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
ste_start(ifp);
|
|
STE_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ste_shutdown(dev)
|
|
device_t dev;
|
|
{
|
|
struct ste_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
ste_stop(sc);
|
|
|
|
return;
|
|
}
|