163 lines
3.4 KiB
C
163 lines
3.4 KiB
C
/* $FreeBSD$ */
|
|
/*
|
|
* this is mixture of i386/bitops.h and asm/string.h
|
|
* taken from the Linux source tree
|
|
*
|
|
* XXX replace with Mach routines or reprogram in C
|
|
*/
|
|
#ifndef _SYS_GNU_EXT2FS_I386_BITOPS_H_
|
|
#define _SYS_GNU_EXT2FS_I386_BITOPS_H_
|
|
|
|
/*-
|
|
* Copyright 1992, Linus Torvalds.
|
|
*/
|
|
|
|
/*
|
|
* These have to be done with inline assembly: that way the bit-setting
|
|
* is guaranteed to be atomic. All bit operations return 0 if the bit
|
|
* was cleared before the operation and != 0 if it was not.
|
|
*
|
|
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
|
|
*/
|
|
|
|
/*
|
|
* Some hacks to defeat gcc over-optimizations..
|
|
*/
|
|
struct __dummy { unsigned long a[100]; };
|
|
#define ADDR (*(struct __dummy *) addr)
|
|
|
|
static __inline__ int set_bit(int nr, void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__("btsl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"ir" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
static __inline__ int clear_bit(int nr, void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__("btrl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"ir" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
static __inline__ int change_bit(int nr, void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__("btcl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit),"=m" (ADDR)
|
|
:"ir" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
/*
|
|
* This routine doesn't need to be atomic, but it's faster to code it
|
|
* this way.
|
|
*/
|
|
static __inline__ int test_bit(int nr, void * addr)
|
|
{
|
|
int oldbit;
|
|
|
|
__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
|
|
:"=r" (oldbit)
|
|
:"m" (ADDR),"ir" (nr));
|
|
return oldbit;
|
|
}
|
|
|
|
/*
|
|
* Find-bit routines..
|
|
*/
|
|
static __inline__ int find_first_zero_bit(void * addr, unsigned size)
|
|
{
|
|
int res;
|
|
int _count = (size + 31) >> 5;
|
|
|
|
if (!size)
|
|
return 0;
|
|
__asm__(" \n\
|
|
cld \n\
|
|
movl $-1,%%eax \n\
|
|
xorl %%edx,%%edx \n\
|
|
repe; scasl \n\
|
|
je 1f \n\
|
|
xorl -4(%%edi),%%eax \n\
|
|
subl $4,%%edi \n\
|
|
bsfl %%eax,%%edx \n\
|
|
1: subl %%ebx,%%edi \n\
|
|
shll $3,%%edi \n\
|
|
addl %%edi,%%edx"
|
|
: "=c" (_count), "=D" (addr), "=d" (res)
|
|
: "0" (_count), "1" (addr), "b" (addr)
|
|
: "ax");
|
|
return res;
|
|
}
|
|
|
|
static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
|
|
{
|
|
unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
|
|
int set = 0, bit = offset & 31, res;
|
|
|
|
if (bit) {
|
|
/*
|
|
* Look for zero in first byte
|
|
*/
|
|
__asm__(" \n\
|
|
bsfl %1,%0 \n\
|
|
jne 1f \n\
|
|
movl $32, %0 \n\
|
|
1: "
|
|
: "=r" (set)
|
|
: "r" (~(*p >> bit)));
|
|
if (set < (32 - bit))
|
|
return set + offset;
|
|
set = 32 - bit;
|
|
p++;
|
|
}
|
|
/*
|
|
* No zero yet, search remaining full bytes for a zero
|
|
*/
|
|
res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
|
|
return (offset + set + res);
|
|
}
|
|
|
|
/*
|
|
* ffz = Find First Zero in word. Undefined if no zero exists,
|
|
* so code should check against ~0UL first..
|
|
*/
|
|
static __inline__ unsigned long ffz(unsigned long word)
|
|
{
|
|
__asm__("bsfl %1,%0"
|
|
:"=r" (word)
|
|
:"r" (~word));
|
|
return word;
|
|
}
|
|
|
|
/*
|
|
* memscan() taken from linux asm/string.h
|
|
*/
|
|
/*
|
|
* find the first occurrence of byte 'c', or 1 past the area if none
|
|
*/
|
|
static __inline__ char * memscan(void * addr, unsigned char c, int size)
|
|
{
|
|
if (!size)
|
|
return addr;
|
|
__asm__(" \n\
|
|
cld \n\
|
|
repnz; scasb \n\
|
|
jnz 1f \n\
|
|
dec %%edi \n\
|
|
1: "
|
|
: "=D" (addr), "=c" (size)
|
|
: "0" (addr), "1" (size), "a" (c));
|
|
return addr;
|
|
}
|
|
|
|
#endif /* !_SYS_GNU_EXT2FS_I386_BITOPS_H_ */
|