freebsd-dev/sys/pci/if_tl.c
Bill Paul 07997d60e7 Add a short delay in the read loop in tl_eeprom_getbyte(). On some
systems, you have to allow the delay or else you end up misreading
some of the bits.

Patch provided by: Yoshihiko Someya <zb9y-smy@asahi-net.or.jp>
1998-05-31 16:59:39 +00:00

2639 lines
69 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: if_tl.c,v 1.7 1998/05/29 16:58:46 wpaul Exp $
*/
/*
* Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
* Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
* the National Semiconductor DP83840A physical interface and the
* Microchip Technology 24Cxx series serial EEPROM.
*
* Written using the following three documents:
*
* Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
* National Semiconductor DP83840A data sheet (www.national.com)
* Microchip Technology 24C02C data sheet (www.microchip.com)
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* Some notes about the ThunderLAN:
*
* The ThunderLAN controller is a single chip containing PCI controller
* logic, approximately 3K of on-board SRAM, a LAN controller, and media
* independent interface (MII). The MII allows the ThunderLAN chip to
* control up to 32 different physical interfaces (PHYs). The ThunderLAN
* also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
* to act as a complete ethernet interface.
*
* Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
* use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
* in full or half duplex. Some of the Compaq Deskpro machines use a
* Level 1 LXT970 PHY with the same capabilities. A serial EEPROM is also
* attached to the ThunderLAN chip to provide power-up default register
* settings and for storing the adapter's stattion address. Although not
* supported by this driver, the ThunderLAN chip can also be connected
* to token ring PHYs.
*
* It is important to note that while it is possible to have multiple
* PHYs attached to the ThunderLAN's MII, only one PHY may be active at
* any time. (This makes me wonder exactly how the dual port Compaq
* adapter is supposed to work.) This driver attempts to compensate for
* this in the following way:
*
* When the ThunderLAN chip is probed, the probe routine attempts to
* locate all attached PHYs by checking all 32 possible PHY addresses
* (0x00 to 0x1F). Each PHY is attached as a separate logical interface.
* The driver allows any one interface to be brought up at any given
* time: if an attempt is made to bring up a second PHY while another
* PHY is already enabled, the driver will return an error.
*
* The ThunderLAN has a set of registers which can be used to issue
* command, acknowledge interrupts, and to manipulate other internal
* registers on its DIO bus. The primary registers can be accessed
* using either programmed I/O (inb/outb) or via PCI memory mapping,
* depending on how the card is configured during the PCI probing
* phase. It is even possible to have both PIO and memory mapped
* access turned on at the same time.
*
* Frame reception and transmission with the ThunderLAN chip is done
* using frame 'lists.' A list structure looks more or less like this:
*
* struct tl_frag {
* u_int32_t fragment_address;
* u_int32_t fragment_size;
* };
* struct tl_list {
* u_int32_t forward_pointer;
* u_int16_t cstat;
* u_int16_t frame_size;
* struct tl_frag fragments[10];
* };
*
* The forward pointer in the list header can be either a 0 or the address
* of another list, which allows several lists to be linked together. Each
* list contains up to 10 fragment descriptors. This means the chip allows
* ethernet frames to be broken up into up to 10 chunks for transfer to
* and from the SRAM. Note that the forward pointer and fragment buffer
* addresses are physical memory addresses, not virtual. Note also that
* a single ethernet frame can not span lists: if the host wants to
* transmit a frame and the frame data is split up over more than 10
* buffers, the frame has to collapsed before it can be transmitted.
*
* To receive frames, the driver sets up a number of lists and populates
* the fragment descriptors, then it sends an RX GO command to the chip.
* When a frame is received, the chip will DMA it into the memory regions
* specified by the fragment descriptors and then trigger an RX 'end of
* frame interrupt' when done. The driver may choose to use only one
* fragment per list; this may result is slighltly less efficient use
* of memory in exchange for improving performance.
*
* To transmit frames, the driver again sets up lists and fragment
* descriptors, only this time the buffers contain frame data that
* is to be DMA'ed into the chip instead of out of it. Once the chip
* has transfered the data into its on-board SRAM, it will trigger a
* TX 'end of frame' interrupt. It will also generate an 'end of channel'
* interrupt when it reaches the end of the list.
*/
/*
* Some notes about this driver:
*
* The ThunderLAN chip provides a couple of different ways to organize
* reception, transmission and interrupt handling. The simplest approach
* is to use one list each for transmission and reception. In this mode,
* the ThunderLAN will generate two interrupts for every received frame
* (one RX EOF and one RX EOC) and two for each transmitted frame (one
* TX EOF and one TX EOC). This may make the driver simpler but it hurts
* performance to have to handle so many interrupts.
*
* Initially I wanted to create a circular list of receive buffers so
* that the ThunderLAN chip would think there was an infinitely long
* receive channel and never deliver an RXEOC interrupt. However this
* doesn't work correctly under heavy load: while the manual says the
* chip will trigger an RXEOF interrupt each time a frame is copied into
* memory, you can't count on the chip waiting around for you to acknowledge
* the interrupt before it starts trying to DMA the next frame. The result
* is that the chip might traverse the entire circular list and then wrap
* around before you have a chance to do anything about it. Consequently,
* the receive list is terminated (with a 0 in the forward pointer in the
* last element). Each time an RXEOF interrupt arrives, the used list
* is shifted to the end of the list. This gives the appearance of an
* infinitely large RX chain so long as the driver doesn't fall behind
* the chip and allow all of the lists to be filled up.
*
* If all the lists are filled, the adapter will deliver an RX 'end of
* channel' interrupt when it hits the 0 forward pointer at the end of
* the chain. The RXEOC handler then cleans out the RX chain and resets
* the list head pointer in the ch_parm register and restarts the receiver.
*
* For frame transmission, it is possible to program the ThunderLAN's
* transmit interrupt threshold so that the chip can acknowledge multiple
* lists with only a single TX EOF interrupt. This allows the driver to
* queue several frames in one shot, and only have to handle a total
* two interrupts (one TX EOF and one TX EOC) no matter how many frames
* are transmitted. Frame transmission is done directly out of the
* mbufs passed to the tl_start() routine via the interface send queue.
* The driver simply sets up the fragment descriptors in the transmit
* lists to point to the mbuf data regions and sends a TX GO command.
*
* Note that since the RX and TX lists themselves are always used
* only by the driver, the are malloc()ed once at driver initialization
* time and never free()ed.
*
* Also, in order to remain as platform independent as possible, this
* driver uses memory mapped register access to manipulate the card
* as opposed to programmed I/O. This avoids the use of the inb/outb
* (and related) instructions which are specific to the i386 platform.
*
* Using these techniques, this driver achieves very high performance
* by minimizing the amount of interrupts generated during large
* transfers and by completely avoiding buffer copies. Frame transfer
* to and from the ThunderLAN chip is performed entirely by the chip
* itself thereby reducing the load on the host CPU.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_mib.h>
#include <net/if_media.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef IPX
#include <netipx/ipx.h>
#include <netipx/ipx_if.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/vm_param.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <pci/if_tlreg.h>
#ifndef lint
static char rcsid[] =
"$Id: if_tl.c,v 1.7 1998/05/29 16:58:46 wpaul Exp $";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct tl_type tl_devs[] = {
{ TI_VENDORID, TI_DEVICEID_THUNDERLAN,
"Texas Instruments ThunderLAN" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
"Compaq Netelligent 10" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
"Compaq Netelligent 10/100" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
"Compaq Netelligent 10/100 Proliant" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
"Compaq Netelligent 10/100 Dual Port" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
"Compaq NetFlex-3/P Integrated" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
"Compaq NetFlex-3/P" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
"Compaq NetFlex 3/P w/ BNC" },
{ COMPAQ_VENDORID, COMPAQ_DEVICEID_DESKPRO_4000_5233MMX,
"Compaq Deskpro 4000 5233MMX" },
{ 0, 0, NULL }
};
/*
* Various supported PHY vendors/types and their names. Note that
* this driver will work with pretty much any MII-compliant PHY,
* so failure to positively identify the chip is not a fatal error.
*/
static struct tl_type tl_phys[] = {
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
{ 0, 0, "<MII-compliant physical interface>" }
};
static struct tl_iflist *tl_iflist = NULL;
static unsigned long tl_count;
static char *tl_probe __P((pcici_t, pcidi_t));
static void tl_attach_ctlr __P((pcici_t, int));
static int tl_attach_phy __P((struct tl_csr *, int, char *,
int, struct tl_iflist *));
static int tl_intvec_invalid __P((void *, u_int32_t));
static int tl_intvec_dummy __P((void *, u_int32_t));
static int tl_intvec_rxeoc __P((void *, u_int32_t));
static int tl_intvec_txeoc __P((void *, u_int32_t));
static int tl_intvec_txeof __P((void *, u_int32_t));
static int tl_intvec_rxeof __P((void *, u_int32_t));
static int tl_intvec_adchk __P((void *, u_int32_t));
static int tl_intvec_netsts __P((void *, u_int32_t));
static int tl_intvec_statoflow __P((void *, u_int32_t));
static int tl_newbuf __P((struct tl_softc *, struct tl_chain *));
static void tl_stats_update __P((void *));
static int tl_encap __P((struct tl_softc *, struct tl_chain *,
struct mbuf *));
static void tl_intr __P((void *));
static void tl_start __P((struct ifnet *));
static int tl_ioctl __P((struct ifnet *, int, caddr_t));
static void tl_init __P((void *));
static void tl_stop __P((struct tl_softc *));
static void tl_watchdog __P((struct ifnet *));
static void tl_shutdown __P((int, void *));
static int tl_ifmedia_upd __P((struct ifnet *));
static void tl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static u_int8_t tl_eeprom_putbyte __P((struct tl_csr *, u_int8_t));
static u_int8_t tl_eeprom_getbyte __P((struct tl_csr *, u_int8_t ,
u_int8_t * ));
static int tl_read_eeprom __P((struct tl_csr *, caddr_t, int, int));
static void tl_mii_sync __P((struct tl_csr *));
static void tl_mii_send __P((struct tl_csr *, u_int32_t, int));
static int tl_mii_readreg __P((struct tl_csr *, struct tl_mii_frame *));
static int tl_mii_writereg __P((struct tl_csr *, struct tl_mii_frame *));
static u_int16_t tl_phy_readreg __P((struct tl_softc *, int));
static void tl_phy_writereg __P((struct tl_softc *, u_int16_t, u_int16_t));
static void tl_autoneg __P((struct tl_softc *, int, int));
static void tl_setmode __P((struct tl_softc *, int));
static int tl_calchash __P((unsigned char *));
static void tl_setmulti __P((struct tl_softc *));
static void tl_softreset __P((struct tl_csr *, int));
static int tl_list_rx_init __P((struct tl_softc *));
static int tl_list_tx_init __P((struct tl_softc *));
/*
* ThunderLAN adapters typically have a serial EEPROM containing
* configuration information. The main reason we're interested in
* it is because it also contains the adapters's station address.
*
* Access to the EEPROM is a bit goofy since it is a serial device:
* you have to do reads and writes one bit at a time. The state of
* the DATA bit can only change while the CLOCK line is held low.
* Transactions work basically like this:
*
* 1) Send the EEPROM_START sequence to prepare the EEPROM for
* accepting commands. This pulls the clock high, sets
* the data bit to 0, enables transmission to the EEPROM,
* pulls the data bit up to 1, then pulls the clock low.
* The idea is to do a 0 to 1 transition of the data bit
* while the clock pin is held high.
*
* 2) To write a bit to the EEPROM, set the TXENABLE bit, then
* set the EDATA bit to send a 1 or clear it to send a 0.
* Finally, set and then clear ECLOK. Strobing the clock
* transmits the bit. After 8 bits have been written, the
* EEPROM should respond with an ACK, which should be read.
*
* 3) To read a bit from the EEPROM, clear the TXENABLE bit,
* then set ECLOK. The bit can then be read by reading EDATA.
* ECLOCK should then be cleared again. This can be repeated
* 8 times to read a whole byte, after which the
*
* 4) We need to send the address byte to the EEPROM. For this
* we have to send the write control byte to the EEPROM to
* tell it to accept data. The byte is 0xA0. The EEPROM should
* ack this. The address byte can be send after that.
*
* 5) Now we have to tell the EEPROM to send us data. For that we
* have to transmit the read control byte, which is 0xA1. This
* byte should also be acked. We can then read the data bits
* from the EEPROM.
*
* 6) When we're all finished, send the EEPROM_STOP sequence.
*
* Note that we use the ThunderLAN's NetSio register to access the
* EEPROM, however there is an alternate method. There is a PCI NVRAM
* register at PCI offset 0xB4 which can also be used with minor changes.
* The difference is that access to PCI registers via pci_conf_read()
* and pci_conf_write() is done using programmed I/O, which we want to
* avoid.
*/
/*
* Note that EEPROM_START leaves transmission enabled.
*/
#define EEPROM_START \
DIO_SEL(TL_NETSIO); \
DIO_BYTE1_SET(TL_SIO_ECLOK); /* Pull clock pin high */ \
DIO_BYTE1_SET(TL_SIO_EDATA); /* Set DATA bit to 1 */ \
DIO_BYTE1_SET(TL_SIO_ETXEN); /* Enable xmit to write bit */ \
DIO_BYTE1_CLR(TL_SIO_EDATA); /* Pull DATA bit to 0 again */ \
DIO_BYTE1_CLR(TL_SIO_ECLOK); /* Pull clock low again */
/*
* EEPROM_STOP ends access to the EEPROM and clears the ETXEN bit so
* that no further data can be written to the EEPROM I/O pin.
*/
#define EEPROM_STOP \
DIO_SEL(TL_NETSIO); \
DIO_BYTE1_CLR(TL_SIO_ETXEN); /* Disable xmit */ \
DIO_BYTE1_CLR(TL_SIO_EDATA); /* Pull DATA to 0 */ \
DIO_BYTE1_SET(TL_SIO_ECLOK); /* Pull clock high */ \
DIO_BYTE1_SET(TL_SIO_ETXEN); /* Enable xmit */ \
DIO_BYTE1_SET(TL_SIO_EDATA); /* Toggle DATA to 1 */ \
DIO_BYTE1_CLR(TL_SIO_ETXEN); /* Disable xmit. */ \
DIO_BYTE1_CLR(TL_SIO_ECLOK); /* Pull clock low again */
/*
* Send an instruction or address to the EEPROM, check for ACK.
*/
static u_int8_t tl_eeprom_putbyte(csr, byte)
struct tl_csr *csr;
u_int8_t byte;
{
register int i, ack = 0;
/*
* Make sure we're in TX mode.
*/
DIO_SEL(TL_NETSIO);
DIO_BYTE1_SET(TL_SIO_ETXEN);
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x80; i; i >>= 1) {
DIO_SEL(TL_NETSIO);
if (byte & i) {
DIO_BYTE1_SET(TL_SIO_EDATA);
} else {
DIO_BYTE1_CLR(TL_SIO_EDATA);
}
DIO_BYTE1_SET(TL_SIO_ECLOK);
DIO_BYTE1_CLR(TL_SIO_ECLOK);
}
/*
* Turn off TX mode.
*/
DIO_BYTE1_CLR(TL_SIO_ETXEN);
/*
* Check for ack.
*/
DIO_BYTE1_SET(TL_SIO_ECLOK);
ack = DIO_BYTE1_GET(TL_SIO_EDATA);
DIO_BYTE1_CLR(TL_SIO_ECLOK);
return(ack);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.'
*/
static u_int8_t tl_eeprom_getbyte(csr, addr, dest)
struct tl_csr *csr;
u_int8_t addr;
u_int8_t *dest;
{
register int i;
u_int8_t byte = 0;
EEPROM_START;
/*
* Send write control code to EEPROM.
*/
if (tl_eeprom_putbyte(csr, EEPROM_CTL_WRITE))
return(1);
/*
* Send address of byte we want to read.
*/
if (tl_eeprom_putbyte(csr, addr))
return(1);
EEPROM_STOP;
EEPROM_START;
/*
* Send read control code to EEPROM.
*/
if (tl_eeprom_putbyte(csr, EEPROM_CTL_READ))
return(1);
/*
* Start reading bits from EEPROM.
*/
DIO_SEL(TL_NETSIO);
DIO_BYTE1_CLR(TL_SIO_ETXEN);
for (i = 0x80; i; i >>= 1) {
DIO_SEL(TL_NETSIO);
DIO_BYTE1_SET(TL_SIO_ECLOK);
if (DIO_BYTE1_GET(TL_SIO_EDATA))
byte |= i;
DIO_BYTE1_CLR(TL_SIO_ECLOK);
DELAY(1);
}
EEPROM_STOP;
/*
* No ACK generated for read, so just return byte.
*/
*dest = byte;
return(0);
}
static void tl_mii_sync(csr)
struct tl_csr *csr;
{
register int i;
DIO_SEL(TL_NETSIO);
DIO_BYTE1_CLR(TL_SIO_MTXEN);
for (i = 0; i < 32; i++) {
DIO_BYTE1_SET(TL_SIO_MCLK);
DIO_BYTE1_CLR(TL_SIO_MCLK);
}
return;
}
static void tl_mii_send(csr, bits, cnt)
struct tl_csr *csr;
u_int32_t bits;
int cnt;
{
int i;
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
DIO_BYTE1_CLR(TL_SIO_MCLK);
if (bits & i) {
DIO_BYTE1_SET(TL_SIO_MDATA);
} else {
DIO_BYTE1_CLR(TL_SIO_MDATA);
}
DIO_BYTE1_SET(TL_SIO_MCLK);
}
}
static int tl_mii_readreg(csr, frame)
struct tl_csr *csr;
struct tl_mii_frame *frame;
{
int i, ack, s;
int minten = 0;
s = splimp();
tl_mii_sync(csr);
/*
* Set up frame for RX.
*/
frame->mii_stdelim = TL_MII_STARTDELIM;
frame->mii_opcode = TL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Select the NETSIO register. We will be using it
* to communicate indirectly with the MII.
*/
DIO_SEL(TL_NETSIO);
/*
* Turn off MII interrupt by forcing MINTEN low.
*/
minten = DIO_BYTE1_GET(TL_SIO_MINTEN);
if (minten) {
DIO_BYTE1_CLR(TL_SIO_MINTEN);
}
/*
* Turn on data xmit.
*/
DIO_BYTE1_SET(TL_SIO_MTXEN);
/*
* Send command/address info.
*/
tl_mii_send(csr, frame->mii_stdelim, 2);
tl_mii_send(csr, frame->mii_opcode, 2);
tl_mii_send(csr, frame->mii_phyaddr, 5);
tl_mii_send(csr, frame->mii_regaddr, 5);
/*
* Turn off xmit.
*/
DIO_BYTE1_CLR(TL_SIO_MTXEN);
/* Idle bit */
DIO_BYTE1_CLR(TL_SIO_MCLK);
DIO_BYTE1_SET(TL_SIO_MCLK);
/* Check for ack */
DIO_BYTE1_CLR(TL_SIO_MCLK);
ack = DIO_BYTE1_GET(TL_SIO_MDATA);
/* Complete the cycle */
DIO_BYTE1_SET(TL_SIO_MCLK);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHYs in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
DIO_BYTE1_CLR(TL_SIO_MCLK);
DIO_BYTE1_SET(TL_SIO_MCLK);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
DIO_BYTE1_CLR(TL_SIO_MCLK);
if (!ack) {
if (DIO_BYTE1_GET(TL_SIO_MDATA))
frame->mii_data |= i;
}
DIO_BYTE1_SET(TL_SIO_MCLK);
}
fail:
DIO_BYTE1_CLR(TL_SIO_MCLK);
DIO_BYTE1_SET(TL_SIO_MCLK);
/* Reenable interrupts */
if (minten) {
DIO_BYTE1_SET(TL_SIO_MINTEN);
}
splx(s);
if (ack)
return(1);
return(0);
}
static int tl_mii_writereg(csr, frame)
struct tl_csr *csr;
struct tl_mii_frame *frame;
{
int s;
int minten;
tl_mii_sync(csr);
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = TL_MII_STARTDELIM;
frame->mii_opcode = TL_MII_WRITEOP;
frame->mii_turnaround = TL_MII_TURNAROUND;
/*
* Select the NETSIO register. We will be using it
* to communicate indirectly with the MII.
*/
DIO_SEL(TL_NETSIO);
/*
* Turn off MII interrupt by forcing MINTEN low.
*/
minten = DIO_BYTE1_GET(TL_SIO_MINTEN);
if (minten) {
DIO_BYTE1_CLR(TL_SIO_MINTEN);
}
/*
* Turn on data output.
*/
DIO_BYTE1_SET(TL_SIO_MTXEN);
tl_mii_send(csr, frame->mii_stdelim, 2);
tl_mii_send(csr, frame->mii_opcode, 2);
tl_mii_send(csr, frame->mii_phyaddr, 5);
tl_mii_send(csr, frame->mii_regaddr, 5);
tl_mii_send(csr, frame->mii_turnaround, 2);
tl_mii_send(csr, frame->mii_data, 16);
DIO_BYTE1_SET(TL_SIO_MCLK);
DIO_BYTE1_CLR(TL_SIO_MCLK);
/*
* Turn off xmit.
*/
DIO_BYTE1_CLR(TL_SIO_MTXEN);
/* Reenable interrupts */
if (minten)
DIO_BYTE1_SET(TL_SIO_MINTEN);
splx(s);
return(0);
}
static u_int16_t tl_phy_readreg(sc, reg)
struct tl_softc *sc;
int reg;
{
struct tl_mii_frame frame;
struct tl_csr *csr;
bzero((char *)&frame, sizeof(frame));
csr = sc->csr;
frame.mii_phyaddr = sc->tl_phy_addr;
frame.mii_regaddr = reg;
tl_mii_readreg(sc->csr, &frame);
/* Reenable MII interrupts, just in case. */
DIO_SEL(TL_NETSIO);
DIO_BYTE1_SET(TL_SIO_MINTEN);
return(frame.mii_data);
}
static void tl_phy_writereg(sc, reg, data)
struct tl_softc *sc;
u_int16_t reg;
u_int16_t data;
{
struct tl_mii_frame frame;
struct tl_csr *csr;
bzero((char *)&frame, sizeof(frame));
csr = sc->csr;
frame.mii_phyaddr = sc->tl_phy_addr;
frame.mii_regaddr = reg;
frame.mii_data = data;
tl_mii_writereg(sc->csr, &frame);
/* Reenable MII interrupts, just in case. */
DIO_SEL(TL_NETSIO);
DIO_BYTE1_SET(TL_SIO_MINTEN);
return;
}
/*
* Read a sequence of bytes from the EEPROM.
*/
static int tl_read_eeprom(csr, dest, off, cnt)
struct tl_csr *csr;
caddr_t dest;
int off;
int cnt;
{
int err = 0, i;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = tl_eeprom_getbyte(csr, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return(err ? 1 : 0);
}
/*
* Initiate autonegotiation with a link partner.
*
* Note that the Texas Instruments ThunderLAN programmer's guide
* fails to mention one very important point about autonegotiation.
* Autonegotiation is done largely by the PHY, independent of the
* ThunderLAN chip itself: the PHY sets the flags in the BMCR
* register to indicate what modes were selected and if link status
* is good. In fact, the PHY does pretty much all of the work itself,
* except for one small detail.
*
* The PHY may negotiate a full-duplex of half-duplex link, and set
* the PHY_BMCR_DUPLEX bit accordingly, but the ThunderLAN's 'NetCommand'
* register _also_ has a half-duplex/full-duplex bit, and you MUST ALSO
* SET THIS BIT MANUALLY TO CORRESPOND TO THE MODE SELECTED FOR THE PHY!
* In other words, both the ThunderLAN chip and the PHY have to be
* programmed for full-duplex mode in order for full-duplex to actually
* work. So in order for autonegotiation to really work right, we have
* to wait for the link to come up, check the BMCR register, then set
* the ThunderLAN for full or half-duplex as needed.
*
* I struggled for two days to figure this out, so I'm making a point
* of drawing attention to this fact. I think it's very strange that
* the ThunderLAN doesn't automagically track the duplex state of the
* PHY, but there you have it.
*
* Also when, using a National Semiconductor DP83840A PHY, we have to
* allow a full three seconds for autonegotiation to complete. So what
* we do is flip the autonegotiation restart bit, then set a timeout
* to wake us up in three seconds to check the link state.
*/
static void tl_autoneg(sc, flag, verbose)
struct tl_softc *sc;
int flag;
int verbose;
{
u_int16_t phy_sts = 0, media = 0;
struct ifnet *ifp;
struct ifmedia *ifm;
struct tl_csr *csr;
ifm = &sc->ifmedia;
ifp = &sc->arpcom.ac_if;
csr = sc->csr;
/*
* First, see if autoneg is supported. If not, there's
* no point in continuing.
*/
phy_sts = tl_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
printf("tl%d: autonegotiation not supported\n",
sc->tl_unit);
return;
}
switch (flag) {
case TL_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks
* for three whole seconds after we've gone multi-user
* is really bad manners.
*/
phy_sts = tl_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
tl_phy_writereg(sc, PHY_BMCR, phy_sts);
DELAY(3000000);
break;
case TL_FLAG_SCHEDDELAY:
phy_sts = tl_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
tl_phy_writereg(sc, PHY_BMCR, phy_sts);
ifp->if_timer = 3;
sc->tl_autoneg = 1;
return;
case TL_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->tl_autoneg = 0;
break;
default:
printf("tl%d: invalid autoneg flag: %d\n", flag, sc->tl_unit);
return;
}
/*
* Read the BMSR register twice: the LINKSTAT bit is a
* latching bit.
*/
tl_phy_readreg(sc, PHY_BMSR);
phy_sts = tl_phy_readreg(sc, PHY_BMSR);
if (phy_sts & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
printf("tl%d: autoneg complete, ", sc->tl_unit);
phy_sts = tl_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
printf("tl%d: autoneg not complete, ", sc->tl_unit);
}
/* Link is good. Report modes and set duplex mode. */
if (phy_sts & PHY_BMSR_LINKSTAT) {
if (verbose)
printf("link status good ");
media = tl_phy_readreg(sc, PHY_BMCR);
/* Set the DUPLEX bit in the NetCmd register accordingly. */
if (media & PHY_BMCR_DUPLEX) {
if (verbose)
printf("(full-duplex, ");
ifm->ifm_media |= IFM_FDX;
ifm->ifm_media &= ~IFM_HDX;
DIO_SEL(TL_NETCMD);
DIO_BYTE0_SET(TL_CMD_DUPLEX);
} else {
if (verbose)
printf("(half-duplex, ");
ifm->ifm_media &= ~IFM_FDX;
ifm->ifm_media |= IFM_HDX;
DIO_SEL(TL_NETCMD);
DIO_BYTE0_CLR(TL_CMD_DUPLEX);
}
if (media & PHY_BMCR_SPEEDSEL) {
if (verbose)
printf("100Mb/s)\n");
ifm->ifm_media |= IFM_100_TX;
ifm->ifm_media &= ~IFM_10_T;
} else {
if (verbose)
printf("10Mb/s)\n");
ifm->ifm_media &= ~IFM_100_TX;
ifm->ifm_media |= IFM_10_T;
}
/* Turn off autoneg */
media &= ~PHY_BMCR_AUTONEGENBL;
tl_phy_writereg(sc, PHY_BMCR, media);
} else {
if (verbose)
printf("no carrier\n");
}
return;
}
/*
* Set speed and duplex mode. Also program autoneg advertisements
* accordingly.
*/
static void tl_setmode(sc, media)
struct tl_softc *sc;
int media;
{
u_int16_t bmcr, anar, ctl;
struct tl_csr *csr;
csr = sc->csr;
bmcr = tl_phy_readreg(sc, PHY_BMCR);
anar = tl_phy_readreg(sc, PHY_ANAR);
ctl = tl_phy_readreg(sc, TL_PHY_CTL);
DIO_SEL(TL_NETCMD);
bmcr &= ~(PHY_BMCR_SPEEDSEL|PHY_BMCR_DUPLEX|PHY_BMCR_AUTONEGENBL|
PHY_BMCR_LOOPBK);
anar &= ~(PHY_ANAR_100BT4|PHY_ANAR_100BTXFULL|PHY_ANAR_100BTXHALF|
PHY_ANAR_10BTFULL|PHY_ANAR_10BTHALF);
ctl &= ~PHY_CTL_AUISEL;
if (IFM_SUBTYPE(media) == IFM_LOOP)
bmcr |= PHY_BMCR_LOOPBK;
if (IFM_SUBTYPE(media) == IFM_AUTO)
bmcr |= PHY_BMCR_AUTONEGENBL;
if (IFM_SUBTYPE(media) == IFM_10_5)
ctl |= PHY_CTL_AUISEL;
if (IFM_SUBTYPE(media) == IFM_100_TX) {
bmcr |= PHY_BMCR_SPEEDSEL;
if ((media & IFM_GMASK) == IFM_FDX) {
bmcr |= PHY_BMCR_DUPLEX;
anar |= PHY_ANAR_100BTXFULL;
DIO_BYTE0_SET(TL_CMD_DUPLEX);
} else if ((media & IFM_GMASK) == IFM_HDX) {
bmcr &= ~PHY_BMCR_DUPLEX;
anar |= PHY_ANAR_100BTXHALF;
DIO_BYTE0_CLR(TL_CMD_DUPLEX);
} else {
bmcr &= ~PHY_BMCR_DUPLEX;
anar |= PHY_ANAR_100BTXHALF;
DIO_BYTE0_CLR(TL_CMD_DUPLEX);
}
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
bmcr &= ~PHY_BMCR_SPEEDSEL;
if ((media & IFM_GMASK) == IFM_FDX) {
bmcr |= PHY_BMCR_DUPLEX;
anar |= PHY_ANAR_10BTFULL;
DIO_BYTE0_SET(TL_CMD_DUPLEX);
} else if ((media & IFM_GMASK) == IFM_HDX) {
bmcr &= ~PHY_BMCR_DUPLEX;
anar |= PHY_ANAR_10BTHALF;
DIO_BYTE0_CLR(TL_CMD_DUPLEX);
} else {
bmcr &= ~PHY_BMCR_DUPLEX;
anar |= PHY_ANAR_10BTHALF;
DIO_BYTE0_CLR(TL_CMD_DUPLEX);
}
}
tl_phy_writereg(sc, PHY_BMCR, bmcr);
#ifdef notyet
tl_phy_writereg(sc, PHY_ANAR, anar);
#endif
tl_phy_writereg(sc, TL_PHY_CTL, ctl);
return;
}
/*
* Calculate the hash of a MAC address for programming the multicast hash
* table. This hash is simply the address split into 6-bit chunks
* XOR'd, e.g.
* byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
* bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
* Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then
* the folded 24-bit value is split into 6-bit portions and XOR'd.
*/
static int tl_calchash(addr)
unsigned char *addr;
{
int t;
t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
(addr[2] ^ addr[5]);
return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
}
static void tl_setmulti(sc)
struct tl_softc *sc;
{
struct ifnet *ifp;
struct tl_csr *csr;
u_int32_t hashes[2] = { 0, 0 };
int h;
struct ifmultiaddr *ifma;
csr = sc->csr;
ifp = &sc->arpcom.ac_if;
if (sc->arpcom.ac_multicnt > 64 || ifp->if_flags & IFF_ALLMULTI) {
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = tl_calchash(
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
}
DIO_SEL(TL_HASH1);
DIO_LONG_PUT(hashes[0]);
DIO_SEL(TL_HASH2);
DIO_LONG_PUT(hashes[1]);
return;
}
static void tl_softreset(csr, internal)
struct tl_csr *csr;
int internal;
{
u_int32_t cmd, dummy;
/* Assert the adapter reset bit. */
csr->tl_host_cmd |= TL_CMD_ADRST;
/* Turn off interrupts */
csr->tl_host_cmd |= TL_CMD_INTSOFF;
/* First, clear the stats registers. */
DIO_SEL(TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
DIO_LONG_GET(dummy);
DIO_LONG_GET(dummy);
DIO_LONG_GET(dummy);
DIO_LONG_GET(dummy);
DIO_LONG_GET(dummy);
/* Clear Areg and Hash registers */
DIO_SEL(TL_AREG0_B5|TL_DIO_ADDR_INC);
DIO_LONG_PUT(0x00000000);
DIO_LONG_PUT(0x00000000);
DIO_LONG_PUT(0x00000000);
DIO_LONG_PUT(0x00000000);
DIO_LONG_PUT(0x00000000);
DIO_LONG_PUT(0x00000000);
DIO_LONG_PUT(0x00000000);
DIO_LONG_PUT(0x00000000);
/*
* Set up Netconfig register. Enable one channel and
* one fragment mode.
*/
DIO_SEL(TL_NETCONFIG);
DIO_WORD0_SET(TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
if (internal) {
DIO_SEL(TL_NETCONFIG);
DIO_WORD0_SET(TL_CFG_PHYEN);
} else {
DIO_SEL(TL_NETCONFIG);
DIO_WORD0_CLR(TL_CFG_PHYEN);
}
/* Set PCI burst size */
DIO_SEL(TL_BSIZEREG);
DIO_BYTE1_SET(0x33);
/*
* Load adapter irq pacing timer and tx threshold.
* We make the transmit threshold 1 initially but we may
* change that later.
*/
cmd = csr->tl_host_cmd;
cmd |= TL_CMD_NES;
cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
csr->tl_host_cmd = cmd | (TL_CMD_LDTHR | TX_THR);
csr->tl_host_cmd = cmd | (TL_CMD_LDTMR | 0x00000003);
/* Unreset the MII */
DIO_SEL(TL_NETSIO);
DIO_BYTE1_SET(TL_SIO_NMRST);
/* Clear status register */
DIO_SEL(TL_NETSTS);
DIO_BYTE2_SET(TL_STS_MIRQ);
DIO_BYTE2_SET(TL_STS_HBEAT);
DIO_BYTE2_SET(TL_STS_TXSTOP);
DIO_BYTE2_SET(TL_STS_RXSTOP);
/* Enable network status interrupts for everything. */
DIO_SEL(TL_NETMASK);
DIO_BYTE3_SET(TL_MASK_MASK7|TL_MASK_MASK6|
TL_MASK_MASK5|TL_MASK_MASK4);
/* Take the adapter out of reset */
DIO_SEL(TL_NETCMD);
DIO_BYTE0_SET(TL_CMD_NRESET|TL_CMD_NWRAP);
/* Wait for things to settle down a little. */
DELAY(500);
return;
}
/*
* Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match. Note that
* we also save a pointer to the tl_type struct for this card since we
* will need it for the softc struct and attach routine later.
*/
static char *
tl_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
struct tl_type *t;
struct tl_iflist *new;
t = tl_devs;
while(t->tl_name != NULL) {
if ((device_id & 0xFFFF) == t->tl_vid &&
((device_id >> 16) & 0xFFFF) == t->tl_did) {
new = malloc(sizeof(struct tl_iflist),
M_DEVBUF, M_NOWAIT);
if (new == NULL) {
printf("no memory for controller struct!\n");
break;
}
bzero(new, sizeof(struct tl_iflist));
new->tl_config_id = config_id;
new->tl_dinfo = t;
new->tl_next = tl_iflist;
tl_iflist = new;
return(t->tl_name);
}
t++;
}
return(NULL);
}
/*
* The ThunderLAN controller can support multiple PHYs. Logically,
* this means we have to be able to deal with each PHY as a separate
* interface. We therefore consider ThunderLAN devices as follows:
*
* o Each ThunderLAN controller device is assigned the name tlcX where
* X is the controller's unit number. Each ThunderLAN device found
* is assigned a different number.
*
* o Each PHY on each controller is assigned the name tlX. X starts at
* 0 and is incremented each time an additional PHY is found.
*
* So, if you had two dual-channel ThunderLAN cards, you'd have
* tlc0 and tlc1 (the controllers) and tl0, tl1, tl2, tl3 (the logical
* interfaces). I think. I'm still not sure how dual chanel controllers
* work as I've yet to see one.
*/
/*
* Do the interface setup and attach for a PHY on a particular
* ThunderLAN chip. Also also set up interrupt vectors.
*/
static int tl_attach_phy(csr, tl_unit, eaddr, tl_phy, ilist)
struct tl_csr *csr;
int tl_unit;
char *eaddr;
int tl_phy;
struct tl_iflist *ilist;
{
struct tl_softc *sc;
struct ifnet *ifp;
int phy_ctl;
struct tl_type *p = tl_phys;
struct tl_mii_frame frame;
int i, media = IFM_ETHER|IFM_100_TX|IFM_FDX;
unsigned int round;
caddr_t roundptr;
if (tl_phy != TL_PHYADDR_MAX)
tl_softreset(csr, 0);
/* Reset the PHY again, just in case. */
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = tl_phy;
frame.mii_regaddr = TL_PHY_GENCTL;
frame.mii_data = PHY_BMCR_RESET;
tl_mii_writereg(csr, &frame);
DELAY(500);
frame.mii_data = 0;
/* First, allocate memory for the softc struct. */
sc = malloc(sizeof(struct tl_softc), M_DEVBUF, M_NOWAIT);
if (sc == NULL) {
printf("tlc%d: no memory for softc struct!\n", ilist->tlc_unit);
return(1);
}
bzero(sc, sizeof(struct tl_softc));
/*
* Now allocate memory for the TX and RX lists. Note that
* we actually allocate 8 bytes more than we really need:
* this is because we need to adjust the final address to
* be aligned on a quadword (64-bit) boundary in order to
* make the chip happy. If the list structures aren't properly
* aligned, DMA fails and the chip generates an adapter check
* interrupt and has to be reset. If you set up the softc struct
* just right you can sort of obtain proper alignment 'by chance.'
* But I don't want to depend on this, so instead the alignment
* is forced here.
*/
sc->tl_ldata_ptr = malloc(sizeof(struct tl_list_data) + 8,
M_DEVBUF, M_NOWAIT);
if (sc->tl_ldata_ptr == NULL) {
free(sc, M_DEVBUF);
printf("tlc%d: no memory for list buffers!\n", ilist->tlc_unit);
return(1);
}
/*
* Convoluted but satisfies my ANSI sensibilities. GCC lets
* you do casts on the LHS of an assignment, but ANSI doesn't
* allow that.
*/
sc->tl_ldata = (struct tl_list_data *)sc->tl_ldata_ptr;
round = (unsigned int)sc->tl_ldata_ptr & 0xF;
roundptr = sc->tl_ldata_ptr;
for (i = 0; i < 8; i++) {
if (round % 8) {
round++;
roundptr++;
} else
break;
}
sc->tl_ldata = (struct tl_list_data *)roundptr;
bzero(sc->tl_ldata, sizeof(struct tl_list_data));
sc->csr = csr;
sc->tl_dinfo = ilist->tl_dinfo;
sc->tl_ctlr = ilist->tlc_unit;
sc->tl_unit = tl_unit;
sc->tl_phy_addr = tl_phy;
sc->tl_iflist = ilist;
callout_handle_init(&sc->tl_stat_ch);
frame.mii_regaddr = TL_PHY_VENID;
tl_mii_readreg(csr, &frame);
sc->tl_phy_vid = frame.mii_data;
frame.mii_regaddr = TL_PHY_DEVID;
tl_mii_readreg(csr, &frame);
sc->tl_phy_did = frame.mii_data;
frame.mii_regaddr = TL_PHY_GENSTS;
tl_mii_readreg(csr, &frame);
sc->tl_phy_sts = frame.mii_data;
frame.mii_regaddr = TL_PHY_GENCTL;
tl_mii_readreg(csr, &frame);
phy_ctl = frame.mii_data;
/*
* PHY revision numbers tend to vary a bit. Our algorithm here
* is to check everything but the 8 least significant bits.
*/
while(p->tl_vid) {
if (sc->tl_phy_vid == p->tl_vid &&
(sc->tl_phy_did | 0x000F) == p->tl_did) {
sc->tl_pinfo = p;
break;
}
p++;
}
if (sc->tl_pinfo == NULL) {
sc->tl_pinfo = &tl_phys[PHY_UNKNOWN];
}
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = tl_unit;
ifp->if_name = "tl";
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = tl_ioctl;
ifp->if_output = ether_output;
ifp->if_start = tl_start;
ifp->if_watchdog = tl_watchdog;
ifp->if_init = tl_init;
if (sc->tl_phy_sts & PHY_BMSR_100BT4 ||
sc->tl_phy_sts & PHY_BMSR_100BTXFULL ||
sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
ifp->if_baudrate = 100000000;
else
ifp->if_baudrate = 10000000;
ilist->tl_sc[tl_phy] = sc;
printf("tl%d at tlc%d physical interface %d\n", ifp->if_unit,
sc->tl_ctlr,
sc->tl_phy_addr);
printf("tl%d: %s ", ifp->if_unit, sc->tl_pinfo->tl_name);
if (sc->tl_phy_sts & PHY_BMSR_100BT4 ||
sc->tl_phy_sts & PHY_BMSR_100BTXHALF ||
sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
printf("10/100Mbps ");
else {
media &= ~IFM_100_TX;
media |= IFM_10_T;
printf("10Mbps ");
}
if (sc->tl_phy_sts & PHY_BMSR_100BTXFULL ||
sc->tl_phy_sts & PHY_BMSR_10BTFULL)
printf("full duplex ");
else {
printf("half duplex ");
media &= ~IFM_FDX;
}
if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG) {
media = IFM_ETHER|IFM_AUTO;
printf("autonegotiating\n");
} else
printf("\n");
/* If this isn't a known PHY, print the PHY indentifier info. */
if (sc->tl_pinfo->tl_vid == 0)
printf("tl%d: vendor id: %04x product id: %04x\n",
sc->tl_unit, sc->tl_phy_vid, sc->tl_phy_did);
/* Set up ifmedia data and callbacks. */
ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
/*
* All ThunderLANs support at least 10baseT half duplex.
* They also support AUI selection if used in 10Mb/s modes.
* They all also support a loopback mode.
*/
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_LOOP, 0, NULL);
/* Some ThunderLAN PHYs support autonegotiation. */
if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG)
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
/* Some support 10baseT full duplex. */
if (sc->tl_phy_sts & PHY_BMSR_10BTFULL)
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
/* Some support 100BaseTX half duplex. */
if (sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
if (sc->tl_phy_sts & PHY_BMSR_100BTXHALF)
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
/* Some support 100BaseTX full duplex. */
if (sc->tl_phy_sts & PHY_BMSR_100BTXFULL)
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
/* Some also support 100BaseT4. */
if (sc->tl_phy_sts & PHY_BMSR_100BT4)
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
/* Set default media. */
ifmedia_set(&sc->ifmedia, media);
/*
* Kick off an autonegotiation session if this PHY supports it.
* This is necessary to make sure the chip's duplex mode matches
* the PHY's duplex mode. It may not: once enabled, the PHY may
* autonegotiate full-duplex mode with its link partner, but the
* ThunderLAN chip defaults to half-duplex and stays there unless
* told otherwise.
*/
if (sc->tl_phy_sts & PHY_BMSR_CANAUTONEG)
tl_autoneg(sc, TL_FLAG_FORCEDELAY, 0);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPFILTER > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
return(0);
}
static void
tl_attach_ctlr(config_id, unit)
pcici_t config_id;
int unit;
{
int s, i, phys = 0;
vm_offset_t pbase, vbase;
struct tl_csr *csr;
char eaddr[ETHER_ADDR_LEN];
struct tl_mii_frame frame;
u_int32_t command;
struct tl_iflist *ilist;
s = splimp();
for (ilist = tl_iflist; ilist != NULL; ilist = ilist->tl_next)
if (ilist->tl_config_id == config_id)
break;
if (ilist == NULL) {
printf("couldn't match config id with controller struct\n");
goto fail;
}
/*
* Map control/status registers.
*/
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG,
PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
if (!(command & PCIM_CMD_MEMEN)) {
printf("tlc%d: failed to enable memory mapping!\n", unit);
goto fail;
}
if (!pci_map_mem(config_id, TL_PCI_LOMEM, &vbase, &pbase)) {
printf ("tlc%d: couldn't map memory\n", unit);
goto fail;
}
csr = (struct tl_csr *)vbase;
ilist->csr = csr;
ilist->tl_active_phy = TL_PHYS_IDLE;
ilist->tlc_unit = unit;
/* Allocate interrupt */
if (!pci_map_int(config_id, tl_intr, ilist, &net_imask)) {
printf("tlc%d: couldn't map interrupt\n", unit);
goto fail;
}
/* Reset the adapter. */
tl_softreset(csr, 1);
/*
* Get station address from the EEPROM.
*/
if (tl_read_eeprom(csr, (caddr_t)&eaddr,
TL_EEPROM_EADDR, ETHER_ADDR_LEN)) {
printf("tlc%d: failed to read station address\n", unit);
goto fail;
}
/*
* A ThunderLAN chip was detected. Inform the world.
*/
printf("tlc%d: Ethernet address: %6D\n", unit, eaddr, ":");
/*
* Now attach the ThunderLAN's PHYs. There will always
* be at least one PHY; if the PHY address is 0x1F, then
* it's the internal one. If we encounter a lower numbered
* PHY, we ignore the internal once since enabling the
* internal PHY disables the external one.
*/
bzero((char *)&frame, sizeof(frame));
for (i = TL_PHYADDR_MIN; i < TL_PHYADDR_MAX + 1; i++) {
frame.mii_phyaddr = i;
frame.mii_regaddr = TL_PHY_GENCTL;
frame.mii_data = PHY_BMCR_RESET;
tl_mii_writereg(csr, &frame);
DELAY(500);
while(frame.mii_data & PHY_BMCR_RESET)
tl_mii_readreg(csr, &frame);
frame.mii_regaddr = TL_PHY_VENID;
frame.mii_data = 0;
tl_mii_readreg(csr, &frame);
if (!frame.mii_data)
continue;
if (tl_attach_phy(csr, phys, eaddr, i, ilist)) {
printf("tlc%d: failed to attach interface %d\n",
unit, i);
goto fail;
}
phys++;
if (phys && i != TL_PHYADDR_MAX)
break;
}
if (!phys) {
printf("tlc%d: no physical interfaces attached!\n", unit);
goto fail;
}
at_shutdown(tl_shutdown, ilist, SHUTDOWN_POST_SYNC);
fail:
splx(s);
return;
}
/*
* Initialize the transmit lists.
*/
static int tl_list_tx_init(sc)
struct tl_softc *sc;
{
struct tl_chain_data *cd;
struct tl_list_data *ld;
int i;
cd = &sc->tl_cdata;
ld = sc->tl_ldata;
for (i = 0; i < TL_TX_LIST_CNT; i++) {
cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
if (i == (TL_TX_LIST_CNT - 1))
cd->tl_tx_chain[i].tl_next = NULL;
else
cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
}
cd->tl_tx_free = &cd->tl_tx_chain[0];
cd->tl_tx_tail = cd->tl_tx_head = NULL;
sc->tl_txeoc = 1;
return(0);
}
/*
* Initialize the RX lists and allocate mbufs for them.
*/
static int tl_list_rx_init(sc)
struct tl_softc *sc;
{
struct tl_chain_data *cd;
struct tl_list_data *ld;
int i;
cd = &sc->tl_cdata;
ld = sc->tl_ldata;
for (i = 0; i < TL_TX_LIST_CNT; i++) {
cd->tl_rx_chain[i].tl_ptr =
(struct tl_list *)&ld->tl_rx_list[i];
tl_newbuf(sc, &cd->tl_rx_chain[i]);
if (i == (TL_TX_LIST_CNT - 1)) {
cd->tl_rx_chain[i].tl_next = NULL;
ld->tl_rx_list[i].tlist_fptr = 0;
} else {
cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
ld->tl_rx_list[i].tlist_fptr =
vtophys(&ld->tl_rx_list[i + 1]);
}
}
cd->tl_rx_head = &cd->tl_rx_chain[0];
cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
return(0);
}
static int tl_newbuf(sc, c)
struct tl_softc *sc;
struct tl_chain *c;
{
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("tl%d: no memory for rx list",
sc->tl_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("tl%d: no memory for rx list", sc->tl_unit);
m_freem(m_new);
return(ENOBUFS);
}
c->tl_mbuf = m_new;
c->tl_next = NULL;
c->tl_ptr->tlist_frsize = MCLBYTES;
c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
c->tl_ptr->tlist_fptr = 0;
c->tl_ptr->tl_frag[0].tlist_dadr = vtophys(mtod(m_new, caddr_t));
c->tl_ptr->tl_frag[0].tlist_dcnt = MCLBYTES;
return(0);
}
/*
* Interrupt handler for RX 'end of frame' condition (EOF). This
* tells us that a full ethernet frame has been captured and we need
* to handle it.
*
* Reception is done using 'lists' which consist of a header and a
* series of 10 data count/data address pairs that point to buffers.
* Initially you're supposed to create a list, populate it with pointers
* to buffers, then load the physical address of the list into the
* ch_parm register. The adapter is then supposed to DMA the received
* frame into the buffers for you.
*
* To make things as fast as possible, we have the chip DMA directly
* into mbufs. This saves us from having to do a buffer copy: we can
* just hand the mbufs directly to ether_input(). Once the frame has
* been sent on its way, the 'list' structure is assigned a new buffer
* and moved to the end of the RX chain. As long we we stay ahead of
* the chip, it will always think it has an endless receive channel.
*
* If we happen to fall behind and the chip manages to fill up all of
* the buffers, it will generate an end of channel interrupt and wait
* for us to empty the chain and restart the receiver.
*/
static int tl_intvec_rxeof(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
int r = 0, total_len = 0;
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct tl_chain *cur_rx;
sc = xsc;
ifp = &sc->arpcom.ac_if;
while(sc->tl_cdata.tl_rx_head->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP){
r++;
cur_rx = sc->tl_cdata.tl_rx_head;
sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
m = cur_rx->tl_mbuf;
total_len = cur_rx->tl_ptr->tlist_frsize;
tl_newbuf(sc, cur_rx);
sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
vtophys(cur_rx->tl_ptr);
sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
sc->tl_cdata.tl_rx_tail = cur_rx;
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode. If we don't
* want the packet, just forget it. We leave the mbuf in place
* since it can be used again later.
*/
if (ifp->if_bpf) {
m->m_pkthdr.len = m->m_len = total_len;
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
/* Remove header from mbuf and pass it on. */
m->m_pkthdr.len = m->m_len =
total_len - sizeof(struct ether_header);
m->m_data += sizeof(struct ether_header);
ether_input(ifp, eh, m);
}
return(r);
}
/*
* The RX-EOC condition hits when the ch_parm address hasn't been
* initialized or the adapter reached a list with a forward pointer
* of 0 (which indicates the end of the chain). In our case, this means
* the card has hit the end of the receive buffer chain and we need to
* empty out the buffers and shift the pointer back to the beginning again.
*/
static int tl_intvec_rxeoc(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
int r;
sc = xsc;
/* Flush out the receive queue and ack RXEOF interrupts. */
r = tl_intvec_rxeof(xsc, type);
sc->csr->tl_host_cmd = TL_CMD_ACK | r | (type & ~(0x00100000));
r = 1;
sc->csr->tl_ch_parm = vtophys(sc->tl_cdata.tl_rx_head->tl_ptr);
r |= (TL_CMD_GO|TL_CMD_RT);
return(r);
}
/*
* Invalid interrupt handler. The manual says invalid interrupts
* are caused by a hardware error in other hardware and that they
* should just be ignored.
*/
static int tl_intvec_invalid(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
sc = xsc;
#ifdef DIAGNOSTIC
printf("tl%d: got an invalid interrupt!\n", sc->tl_unit);
#endif
/* Re-enable interrupts but don't ack this one. */
sc->csr->tl_host_cmd |= type;
return(0);
}
/*
* Dummy interrupt handler. Dummy interrupts are generated by setting
* the ReqInt bit in the host command register. They should only occur
* if we ask for them, and we never do, so if one magically appears,
* we should make some noise about it.
*/
static int tl_intvec_dummy(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
sc = xsc;
printf("tl%d: got a dummy interrupt\n", sc->tl_unit);
return(1);
}
/*
* Stats counter overflow interrupt. The chip delivers one of these
* if we don't poll the stats counters often enough.
*/
static int tl_intvec_statoflow(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
sc = xsc;
tl_stats_update(sc);
return(1);
}
static int tl_intvec_txeof(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
int r = 0;
struct tl_chain *cur_tx;
sc = xsc;
/*
* Go through our tx list and free mbufs for those
* frames that have been sent.
*/
while (sc->tl_cdata.tl_tx_head != NULL) {
cur_tx = sc->tl_cdata.tl_tx_head;
if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
break;
sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
r++;
m_freem(cur_tx->tl_mbuf);
cur_tx->tl_mbuf = NULL;
cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
sc->tl_cdata.tl_tx_free = cur_tx;
}
return(r);
}
/*
* The transmit end of channel interrupt. The adapter triggers this
* interrupt to tell us it hit the end of the current transmit list.
*
* A note about this: it's possible for a condition to arise where
* tl_start() may try to send frames between TXEOF and TXEOC interrupts.
* You have to avoid this since the chip expects things to go in a
* particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
* When the TXEOF handler is called, it will free all of the transmitted
* frames and reset the tx_head pointer to NULL. However, a TXEOC
* interrupt should be received and acknowledged before any more frames
* are queued for transmission. If tl_statrt() is called after TXEOF
* resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
* it could attempt to issue a transmit command prematurely.
*
* To guard against this, tl_start() will only issue transmit commands
* if the tl_txeoc flag is set, and only the TXEOC interrupt handler
* can set this flag once tl_start() has cleared it.
*/
static int tl_intvec_txeoc(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
struct ifnet *ifp;
u_int32_t cmd;
sc = xsc;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
if (sc->tl_cdata.tl_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->tl_cdata.tl_tx_tail = NULL;
sc->tl_txeoc = 1;
} else {
sc->tl_txeoc = 0;
/* First we have to ack the EOC interrupt. */
sc->csr->tl_host_cmd = TL_CMD_ACK | 0x00000001 | type;
/* Then load the address of the next TX list. */
sc->csr->tl_ch_parm = vtophys(sc->tl_cdata.tl_tx_head->tl_ptr);
/* Restart TX channel. */
cmd = sc->csr->tl_host_cmd;
cmd &= ~TL_CMD_RT;
cmd |= TL_CMD_GO|TL_CMD_INTSON;
sc->csr->tl_host_cmd = cmd;
return(0);
}
return(1);
}
static int tl_intvec_adchk(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
sc = xsc;
printf("tl%d: adapter check: %x\n", sc->tl_unit, sc->csr->tl_ch_parm);
tl_softreset(sc->csr, sc->tl_phy_addr == TL_PHYADDR_MAX ? 1 : 0);
tl_init(sc);
sc->csr->tl_host_cmd |= TL_CMD_INTSON;
return(0);
}
static int tl_intvec_netsts(xsc, type)
void *xsc;
u_int32_t type;
{
struct tl_softc *sc;
u_int16_t netsts;
struct tl_csr *csr;
sc = xsc;
csr = sc->csr;
DIO_SEL(TL_NETSTS);
netsts = DIO_BYTE2_GET(0xFF);
DIO_BYTE2_SET(netsts);
printf("tl%d: network status: %x\n", sc->tl_unit, netsts);
return(1);
}
static void tl_intr(xilist)
void *xilist;
{
struct tl_iflist *ilist;
struct tl_softc *sc;
struct tl_csr *csr;
struct ifnet *ifp;
int r = 0;
u_int32_t type = 0;
u_int16_t ints = 0;
u_int8_t ivec = 0;
ilist = xilist;
csr = ilist->csr;
/* Disable interrupts */
ints = csr->tl_host_int;
csr->tl_host_int = ints;
type = (ints << 16) & 0xFFFF0000;
ivec = (ints & TL_VEC_MASK) >> 5;
ints = (ints & TL_INT_MASK) >> 2;
/*
* An interrupt has been posted by the ThunderLAN, but we
* have to figure out which PHY generated it before we can
* do anything with it. If we receive an interrupt when we
* know none of the PHYs are turned on, then either there's
* a bug in the driver or we we handed an interrupt that
* doesn't actually belong to us.
*/
if (ilist->tl_active_phy == TL_PHYS_IDLE) {
/*
* Exception: if this is an invalid interrupt,
* just re-enable interrupts and ignore it. Probably
* what's happened is that we got an interrupt meant
* for another PCI device that's sharing our IRQ.
*/
if (ints == TL_INTR_INVALID) {
csr->tl_host_cmd |= type;
return;
}
printf("tlc%d: interrupt type %x with all phys idle\n",
ilist->tlc_unit, ints);
return;
}
sc = ilist->tl_sc[ilist->tl_active_phy];
csr = sc->csr;
ifp = &sc->arpcom.ac_if;
switch(ints) {
case (TL_INTR_INVALID):
r = tl_intvec_invalid((void *)sc, type);
break;
case (TL_INTR_TXEOF):
r = tl_intvec_txeof((void *)sc, type);
break;
case (TL_INTR_TXEOC):
r = tl_intvec_txeoc((void *)sc, type);
break;
case (TL_INTR_STATOFLOW):
r = tl_intvec_statoflow((void *)sc, type);
break;
case (TL_INTR_RXEOF):
r = tl_intvec_rxeof((void *)sc, type);
break;
case (TL_INTR_DUMMY):
r = tl_intvec_dummy((void *)sc, type);
break;
case (TL_INTR_ADCHK):
if (ivec)
r = tl_intvec_adchk((void *)sc, type);
else
r = tl_intvec_netsts((void *)sc, type);
break;
case (TL_INTR_RXEOC):
r = tl_intvec_rxeoc((void *)sc, type);
break;
default:
printf("tl%d: bogus interrupt type\n", ifp->if_unit);
break;
}
/* Re-enable interrupts */
if (r)
csr->tl_host_cmd = TL_CMD_ACK | r | type;
return;
}
static void tl_stats_update(xsc)
void *xsc;
{
struct tl_softc *sc;
struct ifnet *ifp;
struct tl_csr *csr;
struct tl_stats tl_stats;
u_int32_t *p;
bzero((char *)&tl_stats, sizeof(struct tl_stats));
sc = xsc;
csr = sc->csr;
ifp = &sc->arpcom.ac_if;
p = (u_int32_t *)&tl_stats;
DIO_SEL(TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
DIO_LONG_GET(*p++);
DIO_LONG_GET(*p++);
DIO_LONG_GET(*p++);
DIO_LONG_GET(*p++);
DIO_LONG_GET(*p++);
ifp->if_opackets += tl_tx_goodframes(tl_stats);
ifp->if_collisions += tl_stats.tl_tx_single_collision +
tl_stats.tl_tx_multi_collision;
ifp->if_ipackets += tl_rx_goodframes(tl_stats);
ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
tl_rx_overrun(tl_stats);
ifp->if_oerrors += tl_tx_underrun(tl_stats);
sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
return;
}
/*
* Encapsulate an mbuf chain in a list by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int tl_encap(sc, c, m_head)
struct tl_softc *sc;
struct tl_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct tl_frag *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == TL_MAXFRAGS)
break;
total_len+= m->m_len;
c->tl_ptr->tl_frag[frag].tlist_dadr =
vtophys(mtod(m, vm_offset_t));
c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
frag++;
}
}
/*
* Handle special cases.
* Special case #1: we used up all 10 fragments, but
* we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("tl%d: no memory for tx list", sc->tl_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("tl%d: no memory for tx list",
sc->tl_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->tl_ptr->tl_frag[0];
f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
f->tlist_dcnt = total_len = m_new->m_len;
frag = 1;
}
/*
* Special case #2: the frame is smaller than the minimum
* frame size. We have to pad it to make the chip happy.
*/
if (total_len < TL_MIN_FRAMELEN) {
if (frag == TL_MAXFRAGS)
printf("all frags filled but frame still to small!\n");
f = &c->tl_ptr->tl_frag[frag];
f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
total_len += f->tlist_dcnt;
frag++;
}
c->tl_mbuf = m_head;
c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
c->tl_ptr->tlist_frsize = total_len;
c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
c->tl_ptr->tlist_fptr = 0;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void tl_start(ifp)
struct ifnet *ifp;
{
struct tl_softc *sc;
struct tl_csr *csr;
struct mbuf *m_head = NULL;
u_int32_t cmd;
struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
csr = sc->csr;
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->tl_cdata.tl_tx_free == NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
start_tx = sc->tl_cdata.tl_tx_free;
while(sc->tl_cdata.tl_tx_free != NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a chain member off the free list. */
cur_tx = sc->tl_cdata.tl_tx_free;
sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
cur_tx->tl_next = NULL;
/* Pack the data into the list. */
tl_encap(sc, cur_tx, m_head);
/* Chain it together */
if (prev != NULL) {
prev->tl_next = cur_tx;
prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
}
prev = cur_tx;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->tl_mbuf);
#endif
}
/*
* That's all we can stands, we can't stands no more.
* If there are no other transfers pending, then issue the
* TX GO command to the adapter to start things moving.
* Otherwise, just leave the data in the queue and let
* the EOF/EOC interrupt handler send.
*/
if (sc->tl_cdata.tl_tx_head == NULL) {
sc->tl_cdata.tl_tx_head = start_tx;
sc->tl_cdata.tl_tx_tail = cur_tx;
if (sc->tl_txeoc) {
sc->tl_txeoc = 0;
sc->csr->tl_ch_parm = vtophys(start_tx->tl_ptr);
cmd = sc->csr->tl_host_cmd;
cmd &= ~TL_CMD_RT;
cmd |= TL_CMD_GO|TL_CMD_INTSON;
sc->csr->tl_host_cmd = cmd;
}
} else {
sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
sc->tl_cdata.tl_tx_tail->tl_ptr->tlist_fptr =
vtophys(start_tx->tl_ptr);
sc->tl_cdata.tl_tx_tail = start_tx;
}
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void tl_init(xsc)
void *xsc;
{
struct tl_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct tl_csr *csr = sc->csr;
int s;
u_int16_t phy_sts;
s = splimp();
ifp = &sc->arpcom.ac_if;
/*
* Cancel pending I/O.
*/
tl_stop(sc);
/*
* Set 'capture all frames' bit for promiscuous mode.
*/
if (ifp->if_flags & IFF_PROMISC) {
DIO_SEL(TL_NETCMD);
DIO_BYTE0_SET(TL_CMD_CAF);
} else {
DIO_SEL(TL_NETCMD);
DIO_BYTE0_CLR(TL_CMD_CAF);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
DIO_SEL(TL_NETCMD);
DIO_BYTE0_CLR(TL_CMD_NOBRX);
} else {
DIO_SEL(TL_NETCMD);
DIO_BYTE0_SET(TL_CMD_NOBRX);
}
/* Init our MAC address */
DIO_SEL(TL_AREG0_B5);
csr->u.tl_dio_bytes.byte0 = sc->arpcom.ac_enaddr[0];
csr->u.tl_dio_bytes.byte1 = sc->arpcom.ac_enaddr[1];
csr->u.tl_dio_bytes.byte2 = sc->arpcom.ac_enaddr[2];
csr->u.tl_dio_bytes.byte3 = sc->arpcom.ac_enaddr[3];
DIO_SEL(TL_AREG0_B1);
csr->u.tl_dio_bytes.byte0 = sc->arpcom.ac_enaddr[4];
csr->u.tl_dio_bytes.byte1 = sc->arpcom.ac_enaddr[5];
/* Init circular RX list. */
if (tl_list_rx_init(sc)) {
printf("tl%d: failed to set up rx lists\n", sc->tl_unit);
return;
}
/* Init TX pointers. */
tl_list_tx_init(sc);
/*
* Enable PHY interrupts.
*/
phy_sts = tl_phy_readreg(sc, TL_PHY_CTL);
phy_sts |= PHY_CTL_INTEN;
tl_phy_writereg(sc, TL_PHY_CTL, phy_sts);
/* Enable MII interrupts. */
DIO_SEL(TL_NETSIO);
DIO_BYTE1_SET(TL_SIO_MINTEN);
/* Enable PCI interrupts. */
csr->tl_host_cmd |= TL_CMD_INTSON;
/* Load the address of the rx list */
sc->csr->tl_host_cmd |= TL_CMD_RT;
sc->csr->tl_ch_parm = vtophys(&sc->tl_ldata->tl_rx_list[0]);
/* Send the RX go command */
sc->csr->tl_host_cmd |= (TL_CMD_GO|TL_CMD_RT);
sc->tl_iflist->tl_active_phy = sc->tl_phy_addr;
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
/* Start the stats update counter */
sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
return;
}
/*
* Set media options.
*/
static int tl_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct tl_softc *sc;
struct tl_csr *csr;
struct ifmedia *ifm;
sc = ifp->if_softc;
csr = sc->csr;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1);
else
tl_setmode(sc, ifm->ifm_media);
return(0);
}
/*
* Report current media status.
*/
static void tl_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
u_int16_t phy_ctl;
u_int16_t phy_sts;
struct tl_softc *sc;
struct tl_csr *csr;
sc = ifp->if_softc;
csr = sc->csr;
ifmr->ifm_active = IFM_ETHER;
phy_ctl = tl_phy_readreg(sc, PHY_BMCR);
phy_sts = tl_phy_readreg(sc, TL_PHY_CTL);
if (phy_sts & PHY_CTL_AUISEL)
ifmr->ifm_active |= IFM_10_5;
if (phy_ctl & PHY_BMCR_LOOPBK)
ifmr->ifm_active |= IFM_LOOP;
if (phy_ctl & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active |= IFM_100_TX;
else
ifmr->ifm_active |= IFM_10_T;
if (phy_ctl & PHY_BMCR_DUPLEX) {
ifmr->ifm_active |= IFM_FDX;
ifmr->ifm_active &= ~IFM_HDX;
} else {
ifmr->ifm_active &= ~IFM_FDX;
ifmr->ifm_active |= IFM_HDX;
}
if (phy_ctl & PHY_BMCR_AUTONEGENBL)
ifmr->ifm_active |= IFM_AUTO;
return;
}
static int tl_ioctl(ifp, command, data)
struct ifnet *ifp;
int command;
caddr_t data;
{
struct tl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
/*
* Make sure no more than one PHY is active
* at any one time.
*/
if (ifp->if_flags & IFF_UP) {
if (sc->tl_iflist->tl_active_phy != TL_PHYS_IDLE &&
sc->tl_iflist->tl_active_phy != sc->tl_phy_addr) {
error = EINVAL;
break;
}
sc->tl_iflist->tl_active_phy = sc->tl_phy_addr;
tl_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING) {
sc->tl_iflist->tl_active_phy = TL_PHYS_IDLE;
tl_stop(sc);
}
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
tl_setmulti(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void tl_watchdog(ifp)
struct ifnet *ifp;
{
struct tl_softc *sc;
u_int16_t bmsr;
sc = ifp->if_softc;
if (sc->tl_autoneg) {
tl_autoneg(sc, TL_FLAG_DELAYTIMEO, 1);
return;
}
/* Check that we're still connected. */
tl_phy_readreg(sc, PHY_BMSR);
bmsr = tl_phy_readreg(sc, PHY_BMSR);
if (!(bmsr & PHY_BMSR_LINKSTAT)) {
printf("tl%d: no carrier\n", sc->tl_unit);
tl_autoneg(sc, TL_FLAG_SCHEDDELAY, 1);
} else
printf("tl%d: device timeout\n", sc->tl_unit);
ifp->if_oerrors++;
tl_init(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void tl_stop(sc)
struct tl_softc *sc;
{
register int i;
struct ifnet *ifp;
struct tl_csr *csr;
struct tl_mii_frame frame;
csr = sc->csr;
ifp = &sc->arpcom.ac_if;
/* Stop the stats updater. */
untimeout(tl_stats_update, sc, sc->tl_stat_ch);
/* Stop the transmitter */
sc->csr->tl_host_cmd &= TL_CMD_RT;
sc->csr->tl_host_cmd |= TL_CMD_STOP;
/* Stop the receiver */
sc->csr->tl_host_cmd |= TL_CMD_RT;
sc->csr->tl_host_cmd |= TL_CMD_STOP;
/*
* Disable host interrupts.
*/
sc->csr->tl_host_cmd |= TL_CMD_INTSOFF;
/*
* Disable PHY interrupts.
*/
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->tl_phy_addr;
frame.mii_regaddr = TL_PHY_CTL;
tl_mii_readreg(csr, &frame);
frame.mii_data |= PHY_CTL_INTEN;
tl_mii_writereg(csr, &frame);
/*
* Disable MII interrupts.
*/
DIO_SEL(TL_NETSIO);
DIO_BYTE1_CLR(TL_SIO_MINTEN);
/*
* Clear list pointer.
*/
sc->csr->tl_ch_parm = 0;
/*
* Free the RX lists.
*/
for (i = 0; i < TL_RX_LIST_CNT; i++) {
if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
}
}
bzero((char *)&sc->tl_ldata->tl_rx_list,
sizeof(sc->tl_ldata->tl_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < TL_TX_LIST_CNT; i++) {
if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
}
}
bzero((char *)&sc->tl_ldata->tl_tx_list,
sizeof(sc->tl_ldata->tl_tx_list));
sc->tl_iflist->tl_active_phy = TL_PHYS_IDLE;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void tl_shutdown(howto, xilist)
int howto;
void *xilist;
{
struct tl_iflist *ilist = (struct tl_iflist *)xilist;
struct tl_csr *csr = ilist->csr;
struct tl_mii_frame frame;
int i;
/* Stop the transmitter */
csr->tl_host_cmd &= TL_CMD_RT;
csr->tl_host_cmd |= TL_CMD_STOP;
/* Stop the receiver */
csr->tl_host_cmd |= TL_CMD_RT;
csr->tl_host_cmd |= TL_CMD_STOP;
/*
* Disable host interrupts.
*/
csr->tl_host_cmd |= TL_CMD_INTSOFF;
/*
* Disable PHY interrupts.
*/
bzero((char *)&frame, sizeof(frame));
for (i = TL_PHYADDR_MIN; i < TL_PHYADDR_MAX + 1; i++) {
frame.mii_phyaddr = i;
frame.mii_regaddr = TL_PHY_CTL;
tl_mii_readreg(csr, &frame);
frame.mii_data |= PHY_CTL_INTEN;
tl_mii_writereg(csr, &frame);
};
/*
* Disable MII interrupts.
*/
DIO_SEL(TL_NETSIO);
DIO_BYTE1_CLR(TL_SIO_MINTEN);
return;
}
static struct pci_device tlc_device = {
"tlc",
tl_probe,
tl_attach_ctlr,
&tl_count,
NULL
};
DATA_SET(pcidevice_set, tlc_device);