5377a72618
(rev. 127959 of gcc-4_2-branch). Resolved GCC bugs: c++: 17763, 29365, 30535, 30917, 31337, 31941, 32108, 32112, 32346, 32898, 32992 debug: 32610, 32914 libstdc++: 33084, 33128 middle-end: 32563 rtl-optimization: 33148 tree-optimization: 25413, 32723 target: 32218 Tested by: pointyhat (miwi) Obtained from: gcc (gcc-4_2-branch up to rev. 127959) PR: gnu/153298, gnu/153959, gnu/154385 MFC after: 1 month
6486 lines
188 KiB
C
6486 lines
188 KiB
C
/* Tree lowering pass. This pass converts the GENERIC functions-as-trees
|
||
tree representation into the GIMPLE form.
|
||
Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
|
||
Major work done by Sebastian Pop <s.pop@laposte.net>,
|
||
Diego Novillo <dnovillo@redhat.com> and Jason Merrill <jason@redhat.com>.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "varray.h"
|
||
#include "tree-gimple.h"
|
||
#include "tree-inline.h"
|
||
#include "diagnostic.h"
|
||
#include "langhooks.h"
|
||
#include "langhooks-def.h"
|
||
#include "tree-flow.h"
|
||
#include "cgraph.h"
|
||
#include "timevar.h"
|
||
#include "except.h"
|
||
#include "hashtab.h"
|
||
#include "flags.h"
|
||
#include "real.h"
|
||
#include "function.h"
|
||
#include "output.h"
|
||
#include "expr.h"
|
||
#include "ggc.h"
|
||
#include "toplev.h"
|
||
#include "target.h"
|
||
#include "optabs.h"
|
||
#include "pointer-set.h"
|
||
|
||
|
||
enum gimplify_omp_var_data
|
||
{
|
||
GOVD_SEEN = 1,
|
||
GOVD_EXPLICIT = 2,
|
||
GOVD_SHARED = 4,
|
||
GOVD_PRIVATE = 8,
|
||
GOVD_FIRSTPRIVATE = 16,
|
||
GOVD_LASTPRIVATE = 32,
|
||
GOVD_REDUCTION = 64,
|
||
GOVD_LOCAL = 128,
|
||
GOVD_DEBUG_PRIVATE = 256,
|
||
GOVD_DATA_SHARE_CLASS = (GOVD_SHARED | GOVD_PRIVATE | GOVD_FIRSTPRIVATE
|
||
| GOVD_LASTPRIVATE | GOVD_REDUCTION | GOVD_LOCAL)
|
||
};
|
||
|
||
struct gimplify_omp_ctx
|
||
{
|
||
struct gimplify_omp_ctx *outer_context;
|
||
splay_tree variables;
|
||
struct pointer_set_t *privatized_types;
|
||
location_t location;
|
||
enum omp_clause_default_kind default_kind;
|
||
bool is_parallel;
|
||
bool is_combined_parallel;
|
||
};
|
||
|
||
struct gimplify_ctx
|
||
{
|
||
struct gimplify_ctx *prev_context;
|
||
|
||
tree current_bind_expr;
|
||
tree temps;
|
||
tree conditional_cleanups;
|
||
tree exit_label;
|
||
tree return_temp;
|
||
|
||
VEC(tree,heap) *case_labels;
|
||
/* The formal temporary table. Should this be persistent? */
|
||
htab_t temp_htab;
|
||
|
||
int conditions;
|
||
bool save_stack;
|
||
bool into_ssa;
|
||
};
|
||
|
||
static struct gimplify_ctx *gimplify_ctxp;
|
||
static struct gimplify_omp_ctx *gimplify_omp_ctxp;
|
||
|
||
|
||
|
||
/* Formal (expression) temporary table handling: Multiple occurrences of
|
||
the same scalar expression are evaluated into the same temporary. */
|
||
|
||
typedef struct gimple_temp_hash_elt
|
||
{
|
||
tree val; /* Key */
|
||
tree temp; /* Value */
|
||
} elt_t;
|
||
|
||
/* Forward declarations. */
|
||
static enum gimplify_status gimplify_compound_expr (tree *, tree *, bool);
|
||
#ifdef ENABLE_CHECKING
|
||
static bool cpt_same_type (tree a, tree b);
|
||
#endif
|
||
|
||
|
||
/* Return a hash value for a formal temporary table entry. */
|
||
|
||
static hashval_t
|
||
gimple_tree_hash (const void *p)
|
||
{
|
||
tree t = ((const elt_t *) p)->val;
|
||
return iterative_hash_expr (t, 0);
|
||
}
|
||
|
||
/* Compare two formal temporary table entries. */
|
||
|
||
static int
|
||
gimple_tree_eq (const void *p1, const void *p2)
|
||
{
|
||
tree t1 = ((const elt_t *) p1)->val;
|
||
tree t2 = ((const elt_t *) p2)->val;
|
||
enum tree_code code = TREE_CODE (t1);
|
||
|
||
if (TREE_CODE (t2) != code
|
||
|| TREE_TYPE (t1) != TREE_TYPE (t2))
|
||
return 0;
|
||
|
||
if (!operand_equal_p (t1, t2, 0))
|
||
return 0;
|
||
|
||
/* Only allow them to compare equal if they also hash equal; otherwise
|
||
results are nondeterminate, and we fail bootstrap comparison. */
|
||
gcc_assert (gimple_tree_hash (p1) == gimple_tree_hash (p2));
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Set up a context for the gimplifier. */
|
||
|
||
void
|
||
push_gimplify_context (void)
|
||
{
|
||
struct gimplify_ctx *c;
|
||
|
||
c = (struct gimplify_ctx *) xcalloc (1, sizeof (struct gimplify_ctx));
|
||
c->prev_context = gimplify_ctxp;
|
||
if (optimize)
|
||
c->temp_htab = htab_create (1000, gimple_tree_hash, gimple_tree_eq, free);
|
||
|
||
gimplify_ctxp = c;
|
||
}
|
||
|
||
/* Tear down a context for the gimplifier. If BODY is non-null, then
|
||
put the temporaries into the outer BIND_EXPR. Otherwise, put them
|
||
in the unexpanded_var_list. */
|
||
|
||
void
|
||
pop_gimplify_context (tree body)
|
||
{
|
||
struct gimplify_ctx *c = gimplify_ctxp;
|
||
tree t;
|
||
|
||
gcc_assert (c && !c->current_bind_expr);
|
||
gimplify_ctxp = c->prev_context;
|
||
|
||
for (t = c->temps; t ; t = TREE_CHAIN (t))
|
||
DECL_GIMPLE_FORMAL_TEMP_P (t) = 0;
|
||
|
||
if (body)
|
||
declare_vars (c->temps, body, false);
|
||
else
|
||
record_vars (c->temps);
|
||
|
||
if (optimize)
|
||
htab_delete (c->temp_htab);
|
||
free (c);
|
||
}
|
||
|
||
static void
|
||
gimple_push_bind_expr (tree bind)
|
||
{
|
||
TREE_CHAIN (bind) = gimplify_ctxp->current_bind_expr;
|
||
gimplify_ctxp->current_bind_expr = bind;
|
||
}
|
||
|
||
static void
|
||
gimple_pop_bind_expr (void)
|
||
{
|
||
gimplify_ctxp->current_bind_expr
|
||
= TREE_CHAIN (gimplify_ctxp->current_bind_expr);
|
||
}
|
||
|
||
tree
|
||
gimple_current_bind_expr (void)
|
||
{
|
||
return gimplify_ctxp->current_bind_expr;
|
||
}
|
||
|
||
/* Returns true iff there is a COND_EXPR between us and the innermost
|
||
CLEANUP_POINT_EXPR. This info is used by gimple_push_cleanup. */
|
||
|
||
static bool
|
||
gimple_conditional_context (void)
|
||
{
|
||
return gimplify_ctxp->conditions > 0;
|
||
}
|
||
|
||
/* Note that we've entered a COND_EXPR. */
|
||
|
||
static void
|
||
gimple_push_condition (void)
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
if (gimplify_ctxp->conditions == 0)
|
||
gcc_assert (!gimplify_ctxp->conditional_cleanups);
|
||
#endif
|
||
++(gimplify_ctxp->conditions);
|
||
}
|
||
|
||
/* Note that we've left a COND_EXPR. If we're back at unconditional scope
|
||
now, add any conditional cleanups we've seen to the prequeue. */
|
||
|
||
static void
|
||
gimple_pop_condition (tree *pre_p)
|
||
{
|
||
int conds = --(gimplify_ctxp->conditions);
|
||
|
||
gcc_assert (conds >= 0);
|
||
if (conds == 0)
|
||
{
|
||
append_to_statement_list (gimplify_ctxp->conditional_cleanups, pre_p);
|
||
gimplify_ctxp->conditional_cleanups = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* A stable comparison routine for use with splay trees and DECLs. */
|
||
|
||
static int
|
||
splay_tree_compare_decl_uid (splay_tree_key xa, splay_tree_key xb)
|
||
{
|
||
tree a = (tree) xa;
|
||
tree b = (tree) xb;
|
||
|
||
return DECL_UID (a) - DECL_UID (b);
|
||
}
|
||
|
||
/* Create a new omp construct that deals with variable remapping. */
|
||
|
||
static struct gimplify_omp_ctx *
|
||
new_omp_context (bool is_parallel, bool is_combined_parallel)
|
||
{
|
||
struct gimplify_omp_ctx *c;
|
||
|
||
c = XCNEW (struct gimplify_omp_ctx);
|
||
c->outer_context = gimplify_omp_ctxp;
|
||
c->variables = splay_tree_new (splay_tree_compare_decl_uid, 0, 0);
|
||
c->privatized_types = pointer_set_create ();
|
||
c->location = input_location;
|
||
c->is_parallel = is_parallel;
|
||
c->is_combined_parallel = is_combined_parallel;
|
||
c->default_kind = OMP_CLAUSE_DEFAULT_SHARED;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* Destroy an omp construct that deals with variable remapping. */
|
||
|
||
static void
|
||
delete_omp_context (struct gimplify_omp_ctx *c)
|
||
{
|
||
splay_tree_delete (c->variables);
|
||
pointer_set_destroy (c->privatized_types);
|
||
XDELETE (c);
|
||
}
|
||
|
||
static void omp_add_variable (struct gimplify_omp_ctx *, tree, unsigned int);
|
||
static bool omp_notice_variable (struct gimplify_omp_ctx *, tree, bool);
|
||
|
||
/* A subroutine of append_to_statement_list{,_force}. T is not NULL. */
|
||
|
||
static void
|
||
append_to_statement_list_1 (tree t, tree *list_p)
|
||
{
|
||
tree list = *list_p;
|
||
tree_stmt_iterator i;
|
||
|
||
if (!list)
|
||
{
|
||
if (t && TREE_CODE (t) == STATEMENT_LIST)
|
||
{
|
||
*list_p = t;
|
||
return;
|
||
}
|
||
*list_p = list = alloc_stmt_list ();
|
||
}
|
||
|
||
i = tsi_last (list);
|
||
tsi_link_after (&i, t, TSI_CONTINUE_LINKING);
|
||
}
|
||
|
||
/* Add T to the end of the list container pointed to by LIST_P.
|
||
If T is an expression with no effects, it is ignored. */
|
||
|
||
void
|
||
append_to_statement_list (tree t, tree *list_p)
|
||
{
|
||
if (t && TREE_SIDE_EFFECTS (t))
|
||
append_to_statement_list_1 (t, list_p);
|
||
}
|
||
|
||
/* Similar, but the statement is always added, regardless of side effects. */
|
||
|
||
void
|
||
append_to_statement_list_force (tree t, tree *list_p)
|
||
{
|
||
if (t != NULL_TREE)
|
||
append_to_statement_list_1 (t, list_p);
|
||
}
|
||
|
||
/* Both gimplify the statement T and append it to LIST_P. */
|
||
|
||
void
|
||
gimplify_and_add (tree t, tree *list_p)
|
||
{
|
||
gimplify_stmt (&t);
|
||
append_to_statement_list (t, list_p);
|
||
}
|
||
|
||
/* Strip off a legitimate source ending from the input string NAME of
|
||
length LEN. Rather than having to know the names used by all of
|
||
our front ends, we strip off an ending of a period followed by
|
||
up to five characters. (Java uses ".class".) */
|
||
|
||
static inline void
|
||
remove_suffix (char *name, int len)
|
||
{
|
||
int i;
|
||
|
||
for (i = 2; i < 8 && len > i; i++)
|
||
{
|
||
if (name[len - i] == '.')
|
||
{
|
||
name[len - i] = '\0';
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Create a nameless artificial label and put it in the current function
|
||
context. Returns the newly created label. */
|
||
|
||
tree
|
||
create_artificial_label (void)
|
||
{
|
||
tree lab = build_decl (LABEL_DECL, NULL_TREE, void_type_node);
|
||
|
||
DECL_ARTIFICIAL (lab) = 1;
|
||
DECL_IGNORED_P (lab) = 1;
|
||
DECL_CONTEXT (lab) = current_function_decl;
|
||
return lab;
|
||
}
|
||
|
||
/* Subroutine for find_single_pointer_decl. */
|
||
|
||
static tree
|
||
find_single_pointer_decl_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
|
||
void *data)
|
||
{
|
||
tree *pdecl = (tree *) data;
|
||
|
||
if (DECL_P (*tp) && POINTER_TYPE_P (TREE_TYPE (*tp)))
|
||
{
|
||
if (*pdecl)
|
||
{
|
||
/* We already found a pointer decl; return anything other
|
||
than NULL_TREE to unwind from walk_tree signalling that
|
||
we have a duplicate. */
|
||
return *tp;
|
||
}
|
||
*pdecl = *tp;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Find the single DECL of pointer type in the tree T and return it.
|
||
If there are zero or more than one such DECLs, return NULL. */
|
||
|
||
static tree
|
||
find_single_pointer_decl (tree t)
|
||
{
|
||
tree decl = NULL_TREE;
|
||
|
||
if (walk_tree (&t, find_single_pointer_decl_1, &decl, NULL))
|
||
{
|
||
/* find_single_pointer_decl_1 returns a nonzero value, causing
|
||
walk_tree to return a nonzero value, to indicate that it
|
||
found more than one pointer DECL. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Create a new temporary name with PREFIX. Returns an identifier. */
|
||
|
||
static GTY(()) unsigned int tmp_var_id_num;
|
||
|
||
tree
|
||
create_tmp_var_name (const char *prefix)
|
||
{
|
||
char *tmp_name;
|
||
|
||
if (prefix)
|
||
{
|
||
char *preftmp = ASTRDUP (prefix);
|
||
|
||
remove_suffix (preftmp, strlen (preftmp));
|
||
prefix = preftmp;
|
||
}
|
||
|
||
ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++);
|
||
return get_identifier (tmp_name);
|
||
}
|
||
|
||
|
||
/* Create a new temporary variable declaration of type TYPE.
|
||
Does NOT push it into the current binding. */
|
||
|
||
tree
|
||
create_tmp_var_raw (tree type, const char *prefix)
|
||
{
|
||
tree tmp_var;
|
||
tree new_type;
|
||
|
||
/* Make the type of the variable writable. */
|
||
new_type = build_type_variant (type, 0, 0);
|
||
TYPE_ATTRIBUTES (new_type) = TYPE_ATTRIBUTES (type);
|
||
|
||
tmp_var = build_decl (VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL,
|
||
type);
|
||
|
||
/* The variable was declared by the compiler. */
|
||
DECL_ARTIFICIAL (tmp_var) = 1;
|
||
/* And we don't want debug info for it. */
|
||
DECL_IGNORED_P (tmp_var) = 1;
|
||
|
||
/* Make the variable writable. */
|
||
TREE_READONLY (tmp_var) = 0;
|
||
|
||
DECL_EXTERNAL (tmp_var) = 0;
|
||
TREE_STATIC (tmp_var) = 0;
|
||
TREE_USED (tmp_var) = 1;
|
||
|
||
return tmp_var;
|
||
}
|
||
|
||
/* Create a new temporary variable declaration of type TYPE. DOES push the
|
||
variable into the current binding. Further, assume that this is called
|
||
only from gimplification or optimization, at which point the creation of
|
||
certain types are bugs. */
|
||
|
||
tree
|
||
create_tmp_var (tree type, const char *prefix)
|
||
{
|
||
tree tmp_var;
|
||
|
||
/* We don't allow types that are addressable (meaning we can't make copies),
|
||
or incomplete. We also used to reject every variable size objects here,
|
||
but now support those for which a constant upper bound can be obtained.
|
||
The processing for variable sizes is performed in gimple_add_tmp_var,
|
||
point at which it really matters and possibly reached via paths not going
|
||
through this function, e.g. after direct calls to create_tmp_var_raw. */
|
||
gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
|
||
|
||
tmp_var = create_tmp_var_raw (type, prefix);
|
||
gimple_add_tmp_var (tmp_var);
|
||
return tmp_var;
|
||
}
|
||
|
||
/* Given a tree, try to return a useful variable name that we can use
|
||
to prefix a temporary that is being assigned the value of the tree.
|
||
I.E. given <temp> = &A, return A. */
|
||
|
||
const char *
|
||
get_name (tree t)
|
||
{
|
||
tree stripped_decl;
|
||
|
||
stripped_decl = t;
|
||
STRIP_NOPS (stripped_decl);
|
||
if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
|
||
return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
|
||
else
|
||
{
|
||
switch (TREE_CODE (stripped_decl))
|
||
{
|
||
case ADDR_EXPR:
|
||
return get_name (TREE_OPERAND (stripped_decl, 0));
|
||
break;
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Create a temporary with a name derived from VAL. Subroutine of
|
||
lookup_tmp_var; nobody else should call this function. */
|
||
|
||
static inline tree
|
||
create_tmp_from_val (tree val)
|
||
{
|
||
return create_tmp_var (TYPE_MAIN_VARIANT (TREE_TYPE (val)), get_name (val));
|
||
}
|
||
|
||
/* Create a temporary to hold the value of VAL. If IS_FORMAL, try to reuse
|
||
an existing expression temporary. */
|
||
|
||
static tree
|
||
lookup_tmp_var (tree val, bool is_formal)
|
||
{
|
||
tree ret;
|
||
|
||
/* If not optimizing, never really reuse a temporary. local-alloc
|
||
won't allocate any variable that is used in more than one basic
|
||
block, which means it will go into memory, causing much extra
|
||
work in reload and final and poorer code generation, outweighing
|
||
the extra memory allocation here. */
|
||
if (!optimize || !is_formal || TREE_SIDE_EFFECTS (val))
|
||
ret = create_tmp_from_val (val);
|
||
else
|
||
{
|
||
elt_t elt, *elt_p;
|
||
void **slot;
|
||
|
||
elt.val = val;
|
||
slot = htab_find_slot (gimplify_ctxp->temp_htab, (void *)&elt, INSERT);
|
||
if (*slot == NULL)
|
||
{
|
||
elt_p = XNEW (elt_t);
|
||
elt_p->val = val;
|
||
elt_p->temp = ret = create_tmp_from_val (val);
|
||
*slot = (void *) elt_p;
|
||
}
|
||
else
|
||
{
|
||
elt_p = (elt_t *) *slot;
|
||
ret = elt_p->temp;
|
||
}
|
||
}
|
||
|
||
if (is_formal)
|
||
DECL_GIMPLE_FORMAL_TEMP_P (ret) = 1;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Returns a formal temporary variable initialized with VAL. PRE_P is as
|
||
in gimplify_expr. Only use this function if:
|
||
|
||
1) The value of the unfactored expression represented by VAL will not
|
||
change between the initialization and use of the temporary, and
|
||
2) The temporary will not be otherwise modified.
|
||
|
||
For instance, #1 means that this is inappropriate for SAVE_EXPR temps,
|
||
and #2 means it is inappropriate for && temps.
|
||
|
||
For other cases, use get_initialized_tmp_var instead. */
|
||
|
||
static tree
|
||
internal_get_tmp_var (tree val, tree *pre_p, tree *post_p, bool is_formal)
|
||
{
|
||
tree t, mod;
|
||
|
||
gimplify_expr (&val, pre_p, post_p, is_gimple_formal_tmp_rhs, fb_rvalue);
|
||
|
||
t = lookup_tmp_var (val, is_formal);
|
||
|
||
if (is_formal)
|
||
{
|
||
tree u = find_single_pointer_decl (val);
|
||
|
||
if (u && TREE_CODE (u) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (u))
|
||
u = DECL_GET_RESTRICT_BASE (u);
|
||
if (u && TYPE_RESTRICT (TREE_TYPE (u)))
|
||
{
|
||
if (DECL_BASED_ON_RESTRICT_P (t))
|
||
gcc_assert (u == DECL_GET_RESTRICT_BASE (t));
|
||
else
|
||
{
|
||
DECL_BASED_ON_RESTRICT_P (t) = 1;
|
||
SET_DECL_RESTRICT_BASE (t, u);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE)
|
||
DECL_COMPLEX_GIMPLE_REG_P (t) = 1;
|
||
|
||
mod = build2 (INIT_EXPR, TREE_TYPE (t), t, val);
|
||
|
||
if (EXPR_HAS_LOCATION (val))
|
||
SET_EXPR_LOCUS (mod, EXPR_LOCUS (val));
|
||
else
|
||
SET_EXPR_LOCATION (mod, input_location);
|
||
|
||
/* gimplify_modify_expr might want to reduce this further. */
|
||
gimplify_and_add (mod, pre_p);
|
||
|
||
/* If we're gimplifying into ssa, gimplify_modify_expr will have
|
||
given our temporary an ssa name. Find and return it. */
|
||
if (gimplify_ctxp->into_ssa)
|
||
t = TREE_OPERAND (mod, 0);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Returns a formal temporary variable initialized with VAL. PRE_P
|
||
points to a statement list where side-effects needed to compute VAL
|
||
should be stored. */
|
||
|
||
tree
|
||
get_formal_tmp_var (tree val, tree *pre_p)
|
||
{
|
||
return internal_get_tmp_var (val, pre_p, NULL, true);
|
||
}
|
||
|
||
/* Returns a temporary variable initialized with VAL. PRE_P and POST_P
|
||
are as in gimplify_expr. */
|
||
|
||
tree
|
||
get_initialized_tmp_var (tree val, tree *pre_p, tree *post_p)
|
||
{
|
||
return internal_get_tmp_var (val, pre_p, post_p, false);
|
||
}
|
||
|
||
/* Declares all the variables in VARS in SCOPE. If DEBUG_INFO is
|
||
true, generate debug info for them; otherwise don't. */
|
||
|
||
void
|
||
declare_vars (tree vars, tree scope, bool debug_info)
|
||
{
|
||
tree last = vars;
|
||
if (last)
|
||
{
|
||
tree temps, block;
|
||
|
||
/* C99 mode puts the default 'return 0;' for main outside the outer
|
||
braces. So drill down until we find an actual scope. */
|
||
while (TREE_CODE (scope) == COMPOUND_EXPR)
|
||
scope = TREE_OPERAND (scope, 0);
|
||
|
||
gcc_assert (TREE_CODE (scope) == BIND_EXPR);
|
||
|
||
temps = nreverse (last);
|
||
|
||
block = BIND_EXPR_BLOCK (scope);
|
||
if (!block || !debug_info)
|
||
{
|
||
TREE_CHAIN (last) = BIND_EXPR_VARS (scope);
|
||
BIND_EXPR_VARS (scope) = temps;
|
||
}
|
||
else
|
||
{
|
||
/* We need to attach the nodes both to the BIND_EXPR and to its
|
||
associated BLOCK for debugging purposes. The key point here
|
||
is that the BLOCK_VARS of the BIND_EXPR_BLOCK of a BIND_EXPR
|
||
is a subchain of the BIND_EXPR_VARS of the BIND_EXPR. */
|
||
if (BLOCK_VARS (block))
|
||
BLOCK_VARS (block) = chainon (BLOCK_VARS (block), temps);
|
||
else
|
||
{
|
||
BIND_EXPR_VARS (scope) = chainon (BIND_EXPR_VARS (scope), temps);
|
||
BLOCK_VARS (block) = temps;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* For VAR a VAR_DECL of variable size, try to find a constant upper bound
|
||
for the size and adjust DECL_SIZE/DECL_SIZE_UNIT accordingly. Abort if
|
||
no such upper bound can be obtained. */
|
||
|
||
static void
|
||
force_constant_size (tree var)
|
||
{
|
||
/* The only attempt we make is by querying the maximum size of objects
|
||
of the variable's type. */
|
||
|
||
HOST_WIDE_INT max_size;
|
||
|
||
gcc_assert (TREE_CODE (var) == VAR_DECL);
|
||
|
||
max_size = max_int_size_in_bytes (TREE_TYPE (var));
|
||
|
||
gcc_assert (max_size >= 0);
|
||
|
||
DECL_SIZE_UNIT (var)
|
||
= build_int_cst (TREE_TYPE (DECL_SIZE_UNIT (var)), max_size);
|
||
DECL_SIZE (var)
|
||
= build_int_cst (TREE_TYPE (DECL_SIZE (var)), max_size * BITS_PER_UNIT);
|
||
}
|
||
|
||
void
|
||
gimple_add_tmp_var (tree tmp)
|
||
{
|
||
gcc_assert (!TREE_CHAIN (tmp) && !DECL_SEEN_IN_BIND_EXPR_P (tmp));
|
||
|
||
/* Later processing assumes that the object size is constant, which might
|
||
not be true at this point. Force the use of a constant upper bound in
|
||
this case. */
|
||
if (!host_integerp (DECL_SIZE_UNIT (tmp), 1))
|
||
force_constant_size (tmp);
|
||
|
||
DECL_CONTEXT (tmp) = current_function_decl;
|
||
DECL_SEEN_IN_BIND_EXPR_P (tmp) = 1;
|
||
|
||
if (gimplify_ctxp)
|
||
{
|
||
TREE_CHAIN (tmp) = gimplify_ctxp->temps;
|
||
gimplify_ctxp->temps = tmp;
|
||
|
||
/* Mark temporaries local within the nearest enclosing parallel. */
|
||
if (gimplify_omp_ctxp)
|
||
{
|
||
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
|
||
while (ctx && !ctx->is_parallel)
|
||
ctx = ctx->outer_context;
|
||
if (ctx)
|
||
omp_add_variable (ctx, tmp, GOVD_LOCAL | GOVD_SEEN);
|
||
}
|
||
}
|
||
else if (cfun)
|
||
record_vars (tmp);
|
||
else
|
||
declare_vars (tmp, DECL_SAVED_TREE (current_function_decl), false);
|
||
}
|
||
|
||
/* Determines whether to assign a locus to the statement STMT. */
|
||
|
||
static bool
|
||
should_carry_locus_p (tree stmt)
|
||
{
|
||
/* Don't emit a line note for a label. We particularly don't want to
|
||
emit one for the break label, since it doesn't actually correspond
|
||
to the beginning of the loop/switch. */
|
||
if (TREE_CODE (stmt) == LABEL_EXPR)
|
||
return false;
|
||
|
||
/* Do not annotate empty statements, since it confuses gcov. */
|
||
if (!TREE_SIDE_EFFECTS (stmt))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
static void
|
||
annotate_one_with_locus (tree t, location_t locus)
|
||
{
|
||
if (EXPR_P (t) && ! EXPR_HAS_LOCATION (t) && should_carry_locus_p (t))
|
||
SET_EXPR_LOCATION (t, locus);
|
||
}
|
||
|
||
void
|
||
annotate_all_with_locus (tree *stmt_p, location_t locus)
|
||
{
|
||
tree_stmt_iterator i;
|
||
|
||
if (!*stmt_p)
|
||
return;
|
||
|
||
for (i = tsi_start (*stmt_p); !tsi_end_p (i); tsi_next (&i))
|
||
{
|
||
tree t = tsi_stmt (i);
|
||
|
||
/* Assuming we've already been gimplified, we shouldn't
|
||
see nested chaining constructs anymore. */
|
||
gcc_assert (TREE_CODE (t) != STATEMENT_LIST
|
||
&& TREE_CODE (t) != COMPOUND_EXPR);
|
||
|
||
annotate_one_with_locus (t, locus);
|
||
}
|
||
}
|
||
|
||
/* Similar to copy_tree_r() but do not copy SAVE_EXPR or TARGET_EXPR nodes.
|
||
These nodes model computations that should only be done once. If we
|
||
were to unshare something like SAVE_EXPR(i++), the gimplification
|
||
process would create wrong code. */
|
||
|
||
static tree
|
||
mostly_copy_tree_r (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
enum tree_code code = TREE_CODE (*tp);
|
||
/* Don't unshare types, decls, constants and SAVE_EXPR nodes. */
|
||
if (TREE_CODE_CLASS (code) == tcc_type
|
||
|| TREE_CODE_CLASS (code) == tcc_declaration
|
||
|| TREE_CODE_CLASS (code) == tcc_constant
|
||
|| code == SAVE_EXPR || code == TARGET_EXPR
|
||
/* We can't do anything sensible with a BLOCK used as an expression,
|
||
but we also can't just die when we see it because of non-expression
|
||
uses. So just avert our eyes and cross our fingers. Silly Java. */
|
||
|| code == BLOCK)
|
||
*walk_subtrees = 0;
|
||
else
|
||
{
|
||
gcc_assert (code != BIND_EXPR);
|
||
copy_tree_r (tp, walk_subtrees, data);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Callback for walk_tree to unshare most of the shared trees rooted at
|
||
*TP. If *TP has been visited already (i.e., TREE_VISITED (*TP) == 1),
|
||
then *TP is deep copied by calling copy_tree_r.
|
||
|
||
This unshares the same trees as copy_tree_r with the exception of
|
||
SAVE_EXPR nodes. These nodes model computations that should only be
|
||
done once. If we were to unshare something like SAVE_EXPR(i++), the
|
||
gimplification process would create wrong code. */
|
||
|
||
static tree
|
||
copy_if_shared_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
tree t = *tp;
|
||
enum tree_code code = TREE_CODE (t);
|
||
|
||
/* Skip types, decls, and constants. But we do want to look at their
|
||
types and the bounds of types. Mark them as visited so we properly
|
||
unmark their subtrees on the unmark pass. If we've already seen them,
|
||
don't look down further. */
|
||
if (TREE_CODE_CLASS (code) == tcc_type
|
||
|| TREE_CODE_CLASS (code) == tcc_declaration
|
||
|| TREE_CODE_CLASS (code) == tcc_constant)
|
||
{
|
||
if (TREE_VISITED (t))
|
||
*walk_subtrees = 0;
|
||
else
|
||
TREE_VISITED (t) = 1;
|
||
}
|
||
|
||
/* If this node has been visited already, unshare it and don't look
|
||
any deeper. */
|
||
else if (TREE_VISITED (t))
|
||
{
|
||
walk_tree (tp, mostly_copy_tree_r, NULL, NULL);
|
||
*walk_subtrees = 0;
|
||
}
|
||
|
||
/* Otherwise, mark the tree as visited and keep looking. */
|
||
else
|
||
TREE_VISITED (t) = 1;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
static tree
|
||
unmark_visited_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
if (TREE_VISITED (*tp))
|
||
TREE_VISITED (*tp) = 0;
|
||
else
|
||
*walk_subtrees = 0;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Unshare all the trees in BODY_P, a pointer into the body of FNDECL, and the
|
||
bodies of any nested functions if we are unsharing the entire body of
|
||
FNDECL. */
|
||
|
||
static void
|
||
unshare_body (tree *body_p, tree fndecl)
|
||
{
|
||
struct cgraph_node *cgn = cgraph_node (fndecl);
|
||
|
||
walk_tree (body_p, copy_if_shared_r, NULL, NULL);
|
||
if (body_p == &DECL_SAVED_TREE (fndecl))
|
||
for (cgn = cgn->nested; cgn; cgn = cgn->next_nested)
|
||
unshare_body (&DECL_SAVED_TREE (cgn->decl), cgn->decl);
|
||
}
|
||
|
||
/* Likewise, but mark all trees as not visited. */
|
||
|
||
static void
|
||
unvisit_body (tree *body_p, tree fndecl)
|
||
{
|
||
struct cgraph_node *cgn = cgraph_node (fndecl);
|
||
|
||
walk_tree (body_p, unmark_visited_r, NULL, NULL);
|
||
if (body_p == &DECL_SAVED_TREE (fndecl))
|
||
for (cgn = cgn->nested; cgn; cgn = cgn->next_nested)
|
||
unvisit_body (&DECL_SAVED_TREE (cgn->decl), cgn->decl);
|
||
}
|
||
|
||
/* Unshare T and all the trees reached from T via TREE_CHAIN. */
|
||
|
||
static void
|
||
unshare_all_trees (tree t)
|
||
{
|
||
walk_tree (&t, copy_if_shared_r, NULL, NULL);
|
||
walk_tree (&t, unmark_visited_r, NULL, NULL);
|
||
}
|
||
|
||
/* Unconditionally make an unshared copy of EXPR. This is used when using
|
||
stored expressions which span multiple functions, such as BINFO_VTABLE,
|
||
as the normal unsharing process can't tell that they're shared. */
|
||
|
||
tree
|
||
unshare_expr (tree expr)
|
||
{
|
||
walk_tree (&expr, mostly_copy_tree_r, NULL, NULL);
|
||
return expr;
|
||
}
|
||
|
||
/* A terser interface for building a representation of an exception
|
||
specification. */
|
||
|
||
tree
|
||
gimple_build_eh_filter (tree body, tree allowed, tree failure)
|
||
{
|
||
tree t;
|
||
|
||
/* FIXME should the allowed types go in TREE_TYPE? */
|
||
t = build2 (EH_FILTER_EXPR, void_type_node, allowed, NULL_TREE);
|
||
append_to_statement_list (failure, &EH_FILTER_FAILURE (t));
|
||
|
||
t = build2 (TRY_CATCH_EXPR, void_type_node, NULL_TREE, t);
|
||
append_to_statement_list (body, &TREE_OPERAND (t, 0));
|
||
|
||
return t;
|
||
}
|
||
|
||
|
||
/* WRAPPER is a code such as BIND_EXPR or CLEANUP_POINT_EXPR which can both
|
||
contain statements and have a value. Assign its value to a temporary
|
||
and give it void_type_node. Returns the temporary, or NULL_TREE if
|
||
WRAPPER was already void. */
|
||
|
||
tree
|
||
voidify_wrapper_expr (tree wrapper, tree temp)
|
||
{
|
||
tree type = TREE_TYPE (wrapper);
|
||
if (type && !VOID_TYPE_P (type))
|
||
{
|
||
tree *p;
|
||
|
||
/* Set p to point to the body of the wrapper. Loop until we find
|
||
something that isn't a wrapper. */
|
||
for (p = &wrapper; p && *p; )
|
||
{
|
||
switch (TREE_CODE (*p))
|
||
{
|
||
case BIND_EXPR:
|
||
TREE_SIDE_EFFECTS (*p) = 1;
|
||
TREE_TYPE (*p) = void_type_node;
|
||
/* For a BIND_EXPR, the body is operand 1. */
|
||
p = &BIND_EXPR_BODY (*p);
|
||
break;
|
||
|
||
case CLEANUP_POINT_EXPR:
|
||
case TRY_FINALLY_EXPR:
|
||
case TRY_CATCH_EXPR:
|
||
TREE_SIDE_EFFECTS (*p) = 1;
|
||
TREE_TYPE (*p) = void_type_node;
|
||
p = &TREE_OPERAND (*p, 0);
|
||
break;
|
||
|
||
case STATEMENT_LIST:
|
||
{
|
||
tree_stmt_iterator i = tsi_last (*p);
|
||
TREE_SIDE_EFFECTS (*p) = 1;
|
||
TREE_TYPE (*p) = void_type_node;
|
||
p = tsi_end_p (i) ? NULL : tsi_stmt_ptr (i);
|
||
}
|
||
break;
|
||
|
||
case COMPOUND_EXPR:
|
||
/* Advance to the last statement. Set all container types to void. */
|
||
for (; TREE_CODE (*p) == COMPOUND_EXPR; p = &TREE_OPERAND (*p, 1))
|
||
{
|
||
TREE_SIDE_EFFECTS (*p) = 1;
|
||
TREE_TYPE (*p) = void_type_node;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
out:
|
||
if (p == NULL || IS_EMPTY_STMT (*p))
|
||
temp = NULL_TREE;
|
||
else if (temp)
|
||
{
|
||
/* The wrapper is on the RHS of an assignment that we're pushing
|
||
down. */
|
||
gcc_assert (TREE_CODE (temp) == INIT_EXPR
|
||
|| TREE_CODE (temp) == MODIFY_EXPR);
|
||
TREE_OPERAND (temp, 1) = *p;
|
||
*p = temp;
|
||
}
|
||
else
|
||
{
|
||
temp = create_tmp_var (type, "retval");
|
||
*p = build2 (INIT_EXPR, type, temp, *p);
|
||
}
|
||
|
||
return temp;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Prepare calls to builtins to SAVE and RESTORE the stack as well as
|
||
a temporary through which they communicate. */
|
||
|
||
static void
|
||
build_stack_save_restore (tree *save, tree *restore)
|
||
{
|
||
tree save_call, tmp_var;
|
||
|
||
save_call =
|
||
build_function_call_expr (implicit_built_in_decls[BUILT_IN_STACK_SAVE],
|
||
NULL_TREE);
|
||
tmp_var = create_tmp_var (ptr_type_node, "saved_stack");
|
||
|
||
*save = build2 (MODIFY_EXPR, ptr_type_node, tmp_var, save_call);
|
||
*restore =
|
||
build_function_call_expr (implicit_built_in_decls[BUILT_IN_STACK_RESTORE],
|
||
tree_cons (NULL_TREE, tmp_var, NULL_TREE));
|
||
}
|
||
|
||
/* Gimplify a BIND_EXPR. Just voidify and recurse. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_bind_expr (tree *expr_p, tree *pre_p)
|
||
{
|
||
tree bind_expr = *expr_p;
|
||
bool old_save_stack = gimplify_ctxp->save_stack;
|
||
tree t;
|
||
|
||
tree temp = voidify_wrapper_expr (bind_expr, NULL);
|
||
|
||
/* Mark variables seen in this bind expr. */
|
||
for (t = BIND_EXPR_VARS (bind_expr); t ; t = TREE_CHAIN (t))
|
||
{
|
||
if (TREE_CODE (t) == VAR_DECL)
|
||
{
|
||
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
|
||
|
||
/* Mark variable as local. */
|
||
if (ctx && !is_global_var (t)
|
||
&& (! DECL_SEEN_IN_BIND_EXPR_P (t)
|
||
|| splay_tree_lookup (ctx->variables,
|
||
(splay_tree_key) t) == NULL))
|
||
omp_add_variable (gimplify_omp_ctxp, t, GOVD_LOCAL | GOVD_SEEN);
|
||
|
||
DECL_SEEN_IN_BIND_EXPR_P (t) = 1;
|
||
}
|
||
|
||
/* Preliminarily mark non-addressed complex variables as eligible
|
||
for promotion to gimple registers. We'll transform their uses
|
||
as we find them. */
|
||
if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
|
||
&& !TREE_THIS_VOLATILE (t)
|
||
&& (TREE_CODE (t) == VAR_DECL && !DECL_HARD_REGISTER (t))
|
||
&& !needs_to_live_in_memory (t))
|
||
DECL_COMPLEX_GIMPLE_REG_P (t) = 1;
|
||
}
|
||
|
||
gimple_push_bind_expr (bind_expr);
|
||
gimplify_ctxp->save_stack = false;
|
||
|
||
gimplify_to_stmt_list (&BIND_EXPR_BODY (bind_expr));
|
||
|
||
if (gimplify_ctxp->save_stack)
|
||
{
|
||
tree stack_save, stack_restore;
|
||
|
||
/* Save stack on entry and restore it on exit. Add a try_finally
|
||
block to achieve this. Note that mudflap depends on the
|
||
format of the emitted code: see mx_register_decls(). */
|
||
build_stack_save_restore (&stack_save, &stack_restore);
|
||
|
||
t = build2 (TRY_FINALLY_EXPR, void_type_node,
|
||
BIND_EXPR_BODY (bind_expr), NULL_TREE);
|
||
append_to_statement_list (stack_restore, &TREE_OPERAND (t, 1));
|
||
|
||
BIND_EXPR_BODY (bind_expr) = NULL_TREE;
|
||
append_to_statement_list (stack_save, &BIND_EXPR_BODY (bind_expr));
|
||
append_to_statement_list (t, &BIND_EXPR_BODY (bind_expr));
|
||
}
|
||
|
||
gimplify_ctxp->save_stack = old_save_stack;
|
||
gimple_pop_bind_expr ();
|
||
|
||
if (temp)
|
||
{
|
||
*expr_p = temp;
|
||
append_to_statement_list (bind_expr, pre_p);
|
||
return GS_OK;
|
||
}
|
||
else
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Gimplify a RETURN_EXPR. If the expression to be returned is not a
|
||
GIMPLE value, it is assigned to a new temporary and the statement is
|
||
re-written to return the temporary.
|
||
|
||
PRE_P points to the list where side effects that must happen before
|
||
STMT should be stored. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_return_expr (tree stmt, tree *pre_p)
|
||
{
|
||
tree ret_expr = TREE_OPERAND (stmt, 0);
|
||
tree result_decl, result;
|
||
|
||
if (!ret_expr || TREE_CODE (ret_expr) == RESULT_DECL
|
||
|| ret_expr == error_mark_node)
|
||
return GS_ALL_DONE;
|
||
|
||
if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl))))
|
||
result_decl = NULL_TREE;
|
||
else
|
||
{
|
||
result_decl = TREE_OPERAND (ret_expr, 0);
|
||
if (TREE_CODE (result_decl) == INDIRECT_REF)
|
||
/* See through a return by reference. */
|
||
result_decl = TREE_OPERAND (result_decl, 0);
|
||
|
||
gcc_assert ((TREE_CODE (ret_expr) == MODIFY_EXPR
|
||
|| TREE_CODE (ret_expr) == INIT_EXPR)
|
||
&& TREE_CODE (result_decl) == RESULT_DECL);
|
||
}
|
||
|
||
/* If aggregate_value_p is true, then we can return the bare RESULT_DECL.
|
||
Recall that aggregate_value_p is FALSE for any aggregate type that is
|
||
returned in registers. If we're returning values in registers, then
|
||
we don't want to extend the lifetime of the RESULT_DECL, particularly
|
||
across another call. In addition, for those aggregates for which
|
||
hard_function_value generates a PARALLEL, we'll die during normal
|
||
expansion of structure assignments; there's special code in expand_return
|
||
to handle this case that does not exist in expand_expr. */
|
||
if (!result_decl
|
||
|| aggregate_value_p (result_decl, TREE_TYPE (current_function_decl)))
|
||
result = result_decl;
|
||
else if (gimplify_ctxp->return_temp)
|
||
result = gimplify_ctxp->return_temp;
|
||
else
|
||
{
|
||
result = create_tmp_var (TREE_TYPE (result_decl), NULL);
|
||
|
||
/* ??? With complex control flow (usually involving abnormal edges),
|
||
we can wind up warning about an uninitialized value for this. Due
|
||
to how this variable is constructed and initialized, this is never
|
||
true. Give up and never warn. */
|
||
TREE_NO_WARNING (result) = 1;
|
||
|
||
gimplify_ctxp->return_temp = result;
|
||
}
|
||
|
||
/* Smash the lhs of the MODIFY_EXPR to the temporary we plan to use.
|
||
Then gimplify the whole thing. */
|
||
if (result != result_decl)
|
||
TREE_OPERAND (ret_expr, 0) = result;
|
||
|
||
gimplify_and_add (TREE_OPERAND (stmt, 0), pre_p);
|
||
|
||
/* If we didn't use a temporary, then the result is just the result_decl.
|
||
Otherwise we need a simple copy. This should already be gimple. */
|
||
if (result == result_decl)
|
||
ret_expr = result;
|
||
else
|
||
ret_expr = build2 (MODIFY_EXPR, TREE_TYPE (result), result_decl, result);
|
||
TREE_OPERAND (stmt, 0) = ret_expr;
|
||
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Gimplifies a DECL_EXPR node *STMT_P by making any necessary allocation
|
||
and initialization explicit. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_decl_expr (tree *stmt_p)
|
||
{
|
||
tree stmt = *stmt_p;
|
||
tree decl = DECL_EXPR_DECL (stmt);
|
||
|
||
*stmt_p = NULL_TREE;
|
||
|
||
if (TREE_TYPE (decl) == error_mark_node)
|
||
return GS_ERROR;
|
||
|
||
if ((TREE_CODE (decl) == TYPE_DECL
|
||
|| TREE_CODE (decl) == VAR_DECL)
|
||
&& !TYPE_SIZES_GIMPLIFIED (TREE_TYPE (decl)))
|
||
gimplify_type_sizes (TREE_TYPE (decl), stmt_p);
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl))
|
||
{
|
||
tree init = DECL_INITIAL (decl);
|
||
|
||
if (TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
|
||
{
|
||
/* This is a variable-sized decl. Simplify its size and mark it
|
||
for deferred expansion. Note that mudflap depends on the format
|
||
of the emitted code: see mx_register_decls(). */
|
||
tree t, args, addr, ptr_type;
|
||
|
||
gimplify_one_sizepos (&DECL_SIZE (decl), stmt_p);
|
||
gimplify_one_sizepos (&DECL_SIZE_UNIT (decl), stmt_p);
|
||
|
||
/* All occurrences of this decl in final gimplified code will be
|
||
replaced by indirection. Setting DECL_VALUE_EXPR does two
|
||
things: First, it lets the rest of the gimplifier know what
|
||
replacement to use. Second, it lets the debug info know
|
||
where to find the value. */
|
||
ptr_type = build_pointer_type (TREE_TYPE (decl));
|
||
addr = create_tmp_var (ptr_type, get_name (decl));
|
||
DECL_IGNORED_P (addr) = 0;
|
||
t = build_fold_indirect_ref (addr);
|
||
SET_DECL_VALUE_EXPR (decl, t);
|
||
DECL_HAS_VALUE_EXPR_P (decl) = 1;
|
||
|
||
args = tree_cons (NULL, DECL_SIZE_UNIT (decl), NULL);
|
||
t = built_in_decls[BUILT_IN_ALLOCA];
|
||
t = build_function_call_expr (t, args);
|
||
t = fold_convert (ptr_type, t);
|
||
t = build2 (MODIFY_EXPR, void_type_node, addr, t);
|
||
|
||
gimplify_and_add (t, stmt_p);
|
||
|
||
/* Indicate that we need to restore the stack level when the
|
||
enclosing BIND_EXPR is exited. */
|
||
gimplify_ctxp->save_stack = true;
|
||
}
|
||
|
||
if (init && init != error_mark_node)
|
||
{
|
||
if (!TREE_STATIC (decl))
|
||
{
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
init = build2 (INIT_EXPR, void_type_node, decl, init);
|
||
gimplify_and_add (init, stmt_p);
|
||
}
|
||
else
|
||
/* We must still examine initializers for static variables
|
||
as they may contain a label address. */
|
||
walk_tree (&init, force_labels_r, NULL, NULL);
|
||
}
|
||
|
||
/* Some front ends do not explicitly declare all anonymous
|
||
artificial variables. We compensate here by declaring the
|
||
variables, though it would be better if the front ends would
|
||
explicitly declare them. */
|
||
if (!DECL_SEEN_IN_BIND_EXPR_P (decl)
|
||
&& DECL_ARTIFICIAL (decl) && DECL_NAME (decl) == NULL_TREE)
|
||
gimple_add_tmp_var (decl);
|
||
}
|
||
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Gimplify a LOOP_EXPR. Normally this just involves gimplifying the body
|
||
and replacing the LOOP_EXPR with goto, but if the loop contains an
|
||
EXIT_EXPR, we need to append a label for it to jump to. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_loop_expr (tree *expr_p, tree *pre_p)
|
||
{
|
||
tree saved_label = gimplify_ctxp->exit_label;
|
||
tree start_label = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
|
||
tree jump_stmt = build_and_jump (&LABEL_EXPR_LABEL (start_label));
|
||
|
||
append_to_statement_list (start_label, pre_p);
|
||
|
||
gimplify_ctxp->exit_label = NULL_TREE;
|
||
|
||
gimplify_and_add (LOOP_EXPR_BODY (*expr_p), pre_p);
|
||
|
||
if (gimplify_ctxp->exit_label)
|
||
{
|
||
append_to_statement_list (jump_stmt, pre_p);
|
||
*expr_p = build1 (LABEL_EXPR, void_type_node, gimplify_ctxp->exit_label);
|
||
}
|
||
else
|
||
*expr_p = jump_stmt;
|
||
|
||
gimplify_ctxp->exit_label = saved_label;
|
||
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Compare two case labels. Because the front end should already have
|
||
made sure that case ranges do not overlap, it is enough to only compare
|
||
the CASE_LOW values of each case label. */
|
||
|
||
static int
|
||
compare_case_labels (const void *p1, const void *p2)
|
||
{
|
||
tree case1 = *(tree *)p1;
|
||
tree case2 = *(tree *)p2;
|
||
|
||
return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
|
||
}
|
||
|
||
/* Sort the case labels in LABEL_VEC in place in ascending order. */
|
||
|
||
void
|
||
sort_case_labels (tree label_vec)
|
||
{
|
||
size_t len = TREE_VEC_LENGTH (label_vec);
|
||
tree default_case = TREE_VEC_ELT (label_vec, len - 1);
|
||
|
||
if (CASE_LOW (default_case))
|
||
{
|
||
size_t i;
|
||
|
||
/* The last label in the vector should be the default case
|
||
but it is not. */
|
||
for (i = 0; i < len; ++i)
|
||
{
|
||
tree t = TREE_VEC_ELT (label_vec, i);
|
||
if (!CASE_LOW (t))
|
||
{
|
||
default_case = t;
|
||
TREE_VEC_ELT (label_vec, i) = TREE_VEC_ELT (label_vec, len - 1);
|
||
TREE_VEC_ELT (label_vec, len - 1) = default_case;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
qsort (&TREE_VEC_ELT (label_vec, 0), len - 1, sizeof (tree),
|
||
compare_case_labels);
|
||
}
|
||
|
||
/* Gimplify a SWITCH_EXPR, and collect a TREE_VEC of the labels it can
|
||
branch to. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_switch_expr (tree *expr_p, tree *pre_p)
|
||
{
|
||
tree switch_expr = *expr_p;
|
||
enum gimplify_status ret;
|
||
|
||
ret = gimplify_expr (&SWITCH_COND (switch_expr), pre_p, NULL,
|
||
is_gimple_val, fb_rvalue);
|
||
|
||
if (SWITCH_BODY (switch_expr))
|
||
{
|
||
VEC(tree,heap) *labels, *saved_labels;
|
||
tree label_vec, default_case = NULL_TREE;
|
||
size_t i, len;
|
||
|
||
/* If someone can be bothered to fill in the labels, they can
|
||
be bothered to null out the body too. */
|
||
gcc_assert (!SWITCH_LABELS (switch_expr));
|
||
|
||
saved_labels = gimplify_ctxp->case_labels;
|
||
gimplify_ctxp->case_labels = VEC_alloc (tree, heap, 8);
|
||
|
||
gimplify_to_stmt_list (&SWITCH_BODY (switch_expr));
|
||
|
||
labels = gimplify_ctxp->case_labels;
|
||
gimplify_ctxp->case_labels = saved_labels;
|
||
|
||
i = 0;
|
||
while (i < VEC_length (tree, labels))
|
||
{
|
||
tree elt = VEC_index (tree, labels, i);
|
||
tree low = CASE_LOW (elt);
|
||
bool remove_element = FALSE;
|
||
|
||
if (low)
|
||
{
|
||
/* Discard empty ranges. */
|
||
tree high = CASE_HIGH (elt);
|
||
if (high && INT_CST_LT (high, low))
|
||
remove_element = TRUE;
|
||
}
|
||
else
|
||
{
|
||
/* The default case must be the last label in the list. */
|
||
gcc_assert (!default_case);
|
||
default_case = elt;
|
||
remove_element = TRUE;
|
||
}
|
||
|
||
if (remove_element)
|
||
VEC_ordered_remove (tree, labels, i);
|
||
else
|
||
i++;
|
||
}
|
||
len = i;
|
||
|
||
label_vec = make_tree_vec (len + 1);
|
||
SWITCH_LABELS (*expr_p) = label_vec;
|
||
append_to_statement_list (switch_expr, pre_p);
|
||
|
||
if (! default_case)
|
||
{
|
||
/* If the switch has no default label, add one, so that we jump
|
||
around the switch body. */
|
||
default_case = build3 (CASE_LABEL_EXPR, void_type_node, NULL_TREE,
|
||
NULL_TREE, create_artificial_label ());
|
||
append_to_statement_list (SWITCH_BODY (switch_expr), pre_p);
|
||
*expr_p = build1 (LABEL_EXPR, void_type_node,
|
||
CASE_LABEL (default_case));
|
||
}
|
||
else
|
||
*expr_p = SWITCH_BODY (switch_expr);
|
||
|
||
for (i = 0; i < len; ++i)
|
||
TREE_VEC_ELT (label_vec, i) = VEC_index (tree, labels, i);
|
||
TREE_VEC_ELT (label_vec, len) = default_case;
|
||
|
||
VEC_free (tree, heap, labels);
|
||
|
||
sort_case_labels (label_vec);
|
||
|
||
SWITCH_BODY (switch_expr) = NULL;
|
||
}
|
||
else
|
||
gcc_assert (SWITCH_LABELS (switch_expr));
|
||
|
||
return ret;
|
||
}
|
||
|
||
static enum gimplify_status
|
||
gimplify_case_label_expr (tree *expr_p)
|
||
{
|
||
tree expr = *expr_p;
|
||
struct gimplify_ctx *ctxp;
|
||
|
||
/* Invalid OpenMP programs can play Duff's Device type games with
|
||
#pragma omp parallel. At least in the C front end, we don't
|
||
detect such invalid branches until after gimplification. */
|
||
for (ctxp = gimplify_ctxp; ; ctxp = ctxp->prev_context)
|
||
if (ctxp->case_labels)
|
||
break;
|
||
|
||
VEC_safe_push (tree, heap, ctxp->case_labels, expr);
|
||
*expr_p = build1 (LABEL_EXPR, void_type_node, CASE_LABEL (expr));
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Build a GOTO to the LABEL_DECL pointed to by LABEL_P, building it first
|
||
if necessary. */
|
||
|
||
tree
|
||
build_and_jump (tree *label_p)
|
||
{
|
||
if (label_p == NULL)
|
||
/* If there's nowhere to jump, just fall through. */
|
||
return NULL_TREE;
|
||
|
||
if (*label_p == NULL_TREE)
|
||
{
|
||
tree label = create_artificial_label ();
|
||
*label_p = label;
|
||
}
|
||
|
||
return build1 (GOTO_EXPR, void_type_node, *label_p);
|
||
}
|
||
|
||
/* Gimplify an EXIT_EXPR by converting to a GOTO_EXPR inside a COND_EXPR.
|
||
This also involves building a label to jump to and communicating it to
|
||
gimplify_loop_expr through gimplify_ctxp->exit_label. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_exit_expr (tree *expr_p)
|
||
{
|
||
tree cond = TREE_OPERAND (*expr_p, 0);
|
||
tree expr;
|
||
|
||
expr = build_and_jump (&gimplify_ctxp->exit_label);
|
||
expr = build3 (COND_EXPR, void_type_node, cond, expr, NULL_TREE);
|
||
*expr_p = expr;
|
||
|
||
return GS_OK;
|
||
}
|
||
|
||
/* A helper function to be called via walk_tree. Mark all labels under *TP
|
||
as being forced. To be called for DECL_INITIAL of static variables. */
|
||
|
||
tree
|
||
force_labels_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
if (TYPE_P (*tp))
|
||
*walk_subtrees = 0;
|
||
if (TREE_CODE (*tp) == LABEL_DECL)
|
||
FORCED_LABEL (*tp) = 1;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* *EXPR_P is a COMPONENT_REF being used as an rvalue. If its type is
|
||
different from its canonical type, wrap the whole thing inside a
|
||
NOP_EXPR and force the type of the COMPONENT_REF to be the canonical
|
||
type.
|
||
|
||
The canonical type of a COMPONENT_REF is the type of the field being
|
||
referenced--unless the field is a bit-field which can be read directly
|
||
in a smaller mode, in which case the canonical type is the
|
||
sign-appropriate type corresponding to that mode. */
|
||
|
||
static void
|
||
canonicalize_component_ref (tree *expr_p)
|
||
{
|
||
tree expr = *expr_p;
|
||
tree type;
|
||
|
||
gcc_assert (TREE_CODE (expr) == COMPONENT_REF);
|
||
|
||
if (INTEGRAL_TYPE_P (TREE_TYPE (expr)))
|
||
type = TREE_TYPE (get_unwidened (expr, NULL_TREE));
|
||
else
|
||
type = TREE_TYPE (TREE_OPERAND (expr, 1));
|
||
|
||
if (TREE_TYPE (expr) != type)
|
||
{
|
||
tree old_type = TREE_TYPE (expr);
|
||
|
||
/* Set the type of the COMPONENT_REF to the underlying type. */
|
||
TREE_TYPE (expr) = type;
|
||
|
||
/* And wrap the whole thing inside a NOP_EXPR. */
|
||
expr = build1 (NOP_EXPR, old_type, expr);
|
||
|
||
*expr_p = expr;
|
||
}
|
||
}
|
||
|
||
/* If a NOP conversion is changing a pointer to array of foo to a pointer
|
||
to foo, embed that change in the ADDR_EXPR by converting
|
||
T array[U];
|
||
(T *)&array
|
||
==>
|
||
&array[L]
|
||
where L is the lower bound. For simplicity, only do this for constant
|
||
lower bound. */
|
||
|
||
static void
|
||
canonicalize_addr_expr (tree *expr_p)
|
||
{
|
||
tree expr = *expr_p;
|
||
tree ctype = TREE_TYPE (expr);
|
||
tree addr_expr = TREE_OPERAND (expr, 0);
|
||
tree atype = TREE_TYPE (addr_expr);
|
||
tree dctype, datype, ddatype, otype, obj_expr;
|
||
|
||
/* Both cast and addr_expr types should be pointers. */
|
||
if (!POINTER_TYPE_P (ctype) || !POINTER_TYPE_P (atype))
|
||
return;
|
||
|
||
/* The addr_expr type should be a pointer to an array. */
|
||
datype = TREE_TYPE (atype);
|
||
if (TREE_CODE (datype) != ARRAY_TYPE)
|
||
return;
|
||
|
||
/* Both cast and addr_expr types should address the same object type. */
|
||
dctype = TREE_TYPE (ctype);
|
||
ddatype = TREE_TYPE (datype);
|
||
if (!lang_hooks.types_compatible_p (ddatype, dctype))
|
||
return;
|
||
|
||
/* The addr_expr and the object type should match. */
|
||
obj_expr = TREE_OPERAND (addr_expr, 0);
|
||
otype = TREE_TYPE (obj_expr);
|
||
if (!lang_hooks.types_compatible_p (otype, datype))
|
||
return;
|
||
|
||
/* The lower bound and element sizes must be constant. */
|
||
if (!TYPE_SIZE_UNIT (dctype)
|
||
|| TREE_CODE (TYPE_SIZE_UNIT (dctype)) != INTEGER_CST
|
||
|| !TYPE_DOMAIN (datype) || !TYPE_MIN_VALUE (TYPE_DOMAIN (datype))
|
||
|| TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (datype))) != INTEGER_CST)
|
||
return;
|
||
|
||
/* All checks succeeded. Build a new node to merge the cast. */
|
||
*expr_p = build4 (ARRAY_REF, dctype, obj_expr,
|
||
TYPE_MIN_VALUE (TYPE_DOMAIN (datype)),
|
||
TYPE_MIN_VALUE (TYPE_DOMAIN (datype)),
|
||
size_binop (EXACT_DIV_EXPR, TYPE_SIZE_UNIT (dctype),
|
||
size_int (TYPE_ALIGN_UNIT (dctype))));
|
||
*expr_p = build1 (ADDR_EXPR, ctype, *expr_p);
|
||
}
|
||
|
||
/* *EXPR_P is a NOP_EXPR or CONVERT_EXPR. Remove it and/or other conversions
|
||
underneath as appropriate. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_conversion (tree *expr_p)
|
||
{
|
||
gcc_assert (TREE_CODE (*expr_p) == NOP_EXPR
|
||
|| TREE_CODE (*expr_p) == CONVERT_EXPR);
|
||
|
||
/* Then strip away all but the outermost conversion. */
|
||
STRIP_SIGN_NOPS (TREE_OPERAND (*expr_p, 0));
|
||
|
||
/* And remove the outermost conversion if it's useless. */
|
||
if (tree_ssa_useless_type_conversion (*expr_p))
|
||
*expr_p = TREE_OPERAND (*expr_p, 0);
|
||
|
||
/* If we still have a conversion at the toplevel,
|
||
then canonicalize some constructs. */
|
||
if (TREE_CODE (*expr_p) == NOP_EXPR || TREE_CODE (*expr_p) == CONVERT_EXPR)
|
||
{
|
||
tree sub = TREE_OPERAND (*expr_p, 0);
|
||
|
||
/* If a NOP conversion is changing the type of a COMPONENT_REF
|
||
expression, then canonicalize its type now in order to expose more
|
||
redundant conversions. */
|
||
if (TREE_CODE (sub) == COMPONENT_REF)
|
||
canonicalize_component_ref (&TREE_OPERAND (*expr_p, 0));
|
||
|
||
/* If a NOP conversion is changing a pointer to array of foo
|
||
to a pointer to foo, embed that change in the ADDR_EXPR. */
|
||
else if (TREE_CODE (sub) == ADDR_EXPR)
|
||
canonicalize_addr_expr (expr_p);
|
||
}
|
||
|
||
return GS_OK;
|
||
}
|
||
|
||
/* Gimplify a VAR_DECL or PARM_DECL. Returns GS_OK if we expanded a
|
||
DECL_VALUE_EXPR, and it's worth re-examining things. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_var_or_parm_decl (tree *expr_p)
|
||
{
|
||
tree decl = *expr_p;
|
||
|
||
/* ??? If this is a local variable, and it has not been seen in any
|
||
outer BIND_EXPR, then it's probably the result of a duplicate
|
||
declaration, for which we've already issued an error. It would
|
||
be really nice if the front end wouldn't leak these at all.
|
||
Currently the only known culprit is C++ destructors, as seen
|
||
in g++.old-deja/g++.jason/binding.C. */
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& !DECL_SEEN_IN_BIND_EXPR_P (decl)
|
||
&& !TREE_STATIC (decl) && !DECL_EXTERNAL (decl)
|
||
&& decl_function_context (decl) == current_function_decl)
|
||
{
|
||
gcc_assert (errorcount || sorrycount);
|
||
return GS_ERROR;
|
||
}
|
||
|
||
/* When within an OpenMP context, notice uses of variables. */
|
||
if (gimplify_omp_ctxp && omp_notice_variable (gimplify_omp_ctxp, decl, true))
|
||
return GS_ALL_DONE;
|
||
|
||
/* If the decl is an alias for another expression, substitute it now. */
|
||
if (DECL_HAS_VALUE_EXPR_P (decl))
|
||
{
|
||
*expr_p = unshare_expr (DECL_VALUE_EXPR (decl));
|
||
return GS_OK;
|
||
}
|
||
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
|
||
/* Gimplify the COMPONENT_REF, ARRAY_REF, REALPART_EXPR or IMAGPART_EXPR
|
||
node pointed to by EXPR_P.
|
||
|
||
compound_lval
|
||
: min_lval '[' val ']'
|
||
| min_lval '.' ID
|
||
| compound_lval '[' val ']'
|
||
| compound_lval '.' ID
|
||
|
||
This is not part of the original SIMPLE definition, which separates
|
||
array and member references, but it seems reasonable to handle them
|
||
together. Also, this way we don't run into problems with union
|
||
aliasing; gcc requires that for accesses through a union to alias, the
|
||
union reference must be explicit, which was not always the case when we
|
||
were splitting up array and member refs.
|
||
|
||
PRE_P points to the list where side effects that must happen before
|
||
*EXPR_P should be stored.
|
||
|
||
POST_P points to the list where side effects that must happen after
|
||
*EXPR_P should be stored. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_compound_lval (tree *expr_p, tree *pre_p,
|
||
tree *post_p, fallback_t fallback)
|
||
{
|
||
tree *p;
|
||
VEC(tree,heap) *stack;
|
||
enum gimplify_status ret = GS_OK, tret;
|
||
int i;
|
||
|
||
/* Create a stack of the subexpressions so later we can walk them in
|
||
order from inner to outer. */
|
||
stack = VEC_alloc (tree, heap, 10);
|
||
|
||
/* We can handle anything that get_inner_reference can deal with. */
|
||
for (p = expr_p; ; p = &TREE_OPERAND (*p, 0))
|
||
{
|
||
restart:
|
||
/* Fold INDIRECT_REFs now to turn them into ARRAY_REFs. */
|
||
if (TREE_CODE (*p) == INDIRECT_REF)
|
||
*p = fold_indirect_ref (*p);
|
||
|
||
if (handled_component_p (*p))
|
||
;
|
||
/* Expand DECL_VALUE_EXPR now. In some cases that may expose
|
||
additional COMPONENT_REFs. */
|
||
else if ((TREE_CODE (*p) == VAR_DECL || TREE_CODE (*p) == PARM_DECL)
|
||
&& gimplify_var_or_parm_decl (p) == GS_OK)
|
||
goto restart;
|
||
else
|
||
break;
|
||
|
||
VEC_safe_push (tree, heap, stack, *p);
|
||
}
|
||
|
||
gcc_assert (VEC_length (tree, stack));
|
||
|
||
/* Now STACK is a stack of pointers to all the refs we've walked through
|
||
and P points to the innermost expression.
|
||
|
||
Java requires that we elaborated nodes in source order. That
|
||
means we must gimplify the inner expression followed by each of
|
||
the indices, in order. But we can't gimplify the inner
|
||
expression until we deal with any variable bounds, sizes, or
|
||
positions in order to deal with PLACEHOLDER_EXPRs.
|
||
|
||
So we do this in three steps. First we deal with the annotations
|
||
for any variables in the components, then we gimplify the base,
|
||
then we gimplify any indices, from left to right. */
|
||
for (i = VEC_length (tree, stack) - 1; i >= 0; i--)
|
||
{
|
||
tree t = VEC_index (tree, stack, i);
|
||
|
||
if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
|
||
{
|
||
/* Gimplify the low bound and element type size and put them into
|
||
the ARRAY_REF. If these values are set, they have already been
|
||
gimplified. */
|
||
if (!TREE_OPERAND (t, 2))
|
||
{
|
||
tree low = unshare_expr (array_ref_low_bound (t));
|
||
if (!is_gimple_min_invariant (low))
|
||
{
|
||
TREE_OPERAND (t, 2) = low;
|
||
tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p,
|
||
is_gimple_formal_tmp_reg, fb_rvalue);
|
||
ret = MIN (ret, tret);
|
||
}
|
||
}
|
||
|
||
if (!TREE_OPERAND (t, 3))
|
||
{
|
||
tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (t, 0)));
|
||
tree elmt_size = unshare_expr (array_ref_element_size (t));
|
||
tree factor = size_int (TYPE_ALIGN_UNIT (elmt_type));
|
||
|
||
/* Divide the element size by the alignment of the element
|
||
type (above). */
|
||
elmt_size = size_binop (EXACT_DIV_EXPR, elmt_size, factor);
|
||
|
||
if (!is_gimple_min_invariant (elmt_size))
|
||
{
|
||
TREE_OPERAND (t, 3) = elmt_size;
|
||
tret = gimplify_expr (&TREE_OPERAND (t, 3), pre_p, post_p,
|
||
is_gimple_formal_tmp_reg, fb_rvalue);
|
||
ret = MIN (ret, tret);
|
||
}
|
||
}
|
||
}
|
||
else if (TREE_CODE (t) == COMPONENT_REF)
|
||
{
|
||
/* Set the field offset into T and gimplify it. */
|
||
if (!TREE_OPERAND (t, 2))
|
||
{
|
||
tree offset = unshare_expr (component_ref_field_offset (t));
|
||
tree field = TREE_OPERAND (t, 1);
|
||
tree factor
|
||
= size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT);
|
||
|
||
/* Divide the offset by its alignment. */
|
||
offset = size_binop (EXACT_DIV_EXPR, offset, factor);
|
||
|
||
if (!is_gimple_min_invariant (offset))
|
||
{
|
||
TREE_OPERAND (t, 2) = offset;
|
||
tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p,
|
||
is_gimple_formal_tmp_reg, fb_rvalue);
|
||
ret = MIN (ret, tret);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Step 2 is to gimplify the base expression. Make sure lvalue is set
|
||
so as to match the min_lval predicate. Failure to do so may result
|
||
in the creation of large aggregate temporaries. */
|
||
tret = gimplify_expr (p, pre_p, post_p, is_gimple_min_lval,
|
||
fallback | fb_lvalue);
|
||
ret = MIN (ret, tret);
|
||
|
||
/* And finally, the indices and operands to BIT_FIELD_REF. During this
|
||
loop we also remove any useless conversions. */
|
||
for (; VEC_length (tree, stack) > 0; )
|
||
{
|
||
tree t = VEC_pop (tree, stack);
|
||
|
||
if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
|
||
{
|
||
/* Gimplify the dimension.
|
||
Temporary fix for gcc.c-torture/execute/20040313-1.c.
|
||
Gimplify non-constant array indices into a temporary
|
||
variable.
|
||
FIXME - The real fix is to gimplify post-modify
|
||
expressions into a minimal gimple lvalue. However, that
|
||
exposes bugs in alias analysis. The alias analyzer does
|
||
not handle &PTR->FIELD very well. Will fix after the
|
||
branch is merged into mainline (dnovillo 2004-05-03). */
|
||
if (!is_gimple_min_invariant (TREE_OPERAND (t, 1)))
|
||
{
|
||
tret = gimplify_expr (&TREE_OPERAND (t, 1), pre_p, post_p,
|
||
is_gimple_formal_tmp_reg, fb_rvalue);
|
||
ret = MIN (ret, tret);
|
||
}
|
||
}
|
||
else if (TREE_CODE (t) == BIT_FIELD_REF)
|
||
{
|
||
tret = gimplify_expr (&TREE_OPERAND (t, 1), pre_p, post_p,
|
||
is_gimple_val, fb_rvalue);
|
||
ret = MIN (ret, tret);
|
||
tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p,
|
||
is_gimple_val, fb_rvalue);
|
||
ret = MIN (ret, tret);
|
||
}
|
||
|
||
STRIP_USELESS_TYPE_CONVERSION (TREE_OPERAND (t, 0));
|
||
|
||
/* The innermost expression P may have originally had TREE_SIDE_EFFECTS
|
||
set which would have caused all the outer expressions in EXPR_P
|
||
leading to P to also have had TREE_SIDE_EFFECTS set. */
|
||
recalculate_side_effects (t);
|
||
}
|
||
|
||
tret = gimplify_expr (p, pre_p, post_p, is_gimple_min_lval, fallback);
|
||
ret = MIN (ret, tret);
|
||
|
||
/* If the outermost expression is a COMPONENT_REF, canonicalize its type. */
|
||
if ((fallback & fb_rvalue) && TREE_CODE (*expr_p) == COMPONENT_REF)
|
||
{
|
||
canonicalize_component_ref (expr_p);
|
||
ret = MIN (ret, GS_OK);
|
||
}
|
||
|
||
VEC_free (tree, heap, stack);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Gimplify the self modifying expression pointed to by EXPR_P
|
||
(++, --, +=, -=).
|
||
|
||
PRE_P points to the list where side effects that must happen before
|
||
*EXPR_P should be stored.
|
||
|
||
POST_P points to the list where side effects that must happen after
|
||
*EXPR_P should be stored.
|
||
|
||
WANT_VALUE is nonzero iff we want to use the value of this expression
|
||
in another expression. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_self_mod_expr (tree *expr_p, tree *pre_p, tree *post_p,
|
||
bool want_value)
|
||
{
|
||
enum tree_code code;
|
||
tree lhs, lvalue, rhs, t1, post = NULL, *orig_post_p = post_p;
|
||
bool postfix;
|
||
enum tree_code arith_code;
|
||
enum gimplify_status ret;
|
||
|
||
code = TREE_CODE (*expr_p);
|
||
|
||
gcc_assert (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR
|
||
|| code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR);
|
||
|
||
/* Prefix or postfix? */
|
||
if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
|
||
/* Faster to treat as prefix if result is not used. */
|
||
postfix = want_value;
|
||
else
|
||
postfix = false;
|
||
|
||
/* For postfix, make sure the inner expression's post side effects
|
||
are executed after side effects from this expression. */
|
||
if (postfix)
|
||
post_p = &post;
|
||
|
||
/* Add or subtract? */
|
||
if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
|
||
arith_code = PLUS_EXPR;
|
||
else
|
||
arith_code = MINUS_EXPR;
|
||
|
||
/* Gimplify the LHS into a GIMPLE lvalue. */
|
||
lvalue = TREE_OPERAND (*expr_p, 0);
|
||
ret = gimplify_expr (&lvalue, pre_p, post_p, is_gimple_lvalue, fb_lvalue);
|
||
if (ret == GS_ERROR)
|
||
return ret;
|
||
|
||
/* Extract the operands to the arithmetic operation. */
|
||
lhs = lvalue;
|
||
rhs = TREE_OPERAND (*expr_p, 1);
|
||
|
||
/* For postfix operator, we evaluate the LHS to an rvalue and then use
|
||
that as the result value and in the postqueue operation. */
|
||
if (postfix)
|
||
{
|
||
ret = gimplify_expr (&lhs, pre_p, post_p, is_gimple_val, fb_rvalue);
|
||
if (ret == GS_ERROR)
|
||
return ret;
|
||
}
|
||
|
||
t1 = build2 (arith_code, TREE_TYPE (*expr_p), lhs, rhs);
|
||
t1 = build2 (MODIFY_EXPR, TREE_TYPE (lvalue), lvalue, t1);
|
||
|
||
if (postfix)
|
||
{
|
||
gimplify_and_add (t1, orig_post_p);
|
||
append_to_statement_list (post, orig_post_p);
|
||
*expr_p = lhs;
|
||
return GS_ALL_DONE;
|
||
}
|
||
else
|
||
{
|
||
*expr_p = t1;
|
||
return GS_OK;
|
||
}
|
||
}
|
||
|
||
/* If *EXPR_P has a variable sized type, wrap it in a WITH_SIZE_EXPR. */
|
||
|
||
static void
|
||
maybe_with_size_expr (tree *expr_p)
|
||
{
|
||
tree expr = *expr_p;
|
||
tree type = TREE_TYPE (expr);
|
||
tree size;
|
||
|
||
/* If we've already wrapped this or the type is error_mark_node, we can't do
|
||
anything. */
|
||
if (TREE_CODE (expr) == WITH_SIZE_EXPR
|
||
|| type == error_mark_node)
|
||
return;
|
||
|
||
/* If the size isn't known or is a constant, we have nothing to do. */
|
||
size = TYPE_SIZE_UNIT (type);
|
||
if (!size || TREE_CODE (size) == INTEGER_CST)
|
||
return;
|
||
|
||
/* Otherwise, make a WITH_SIZE_EXPR. */
|
||
size = unshare_expr (size);
|
||
size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, expr);
|
||
*expr_p = build2 (WITH_SIZE_EXPR, type, expr, size);
|
||
}
|
||
|
||
/* Subroutine of gimplify_call_expr: Gimplify a single argument. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_arg (tree *expr_p, tree *pre_p)
|
||
{
|
||
bool (*test) (tree);
|
||
fallback_t fb;
|
||
|
||
/* In general, we allow lvalues for function arguments to avoid
|
||
extra overhead of copying large aggregates out of even larger
|
||
aggregates into temporaries only to copy the temporaries to
|
||
the argument list. Make optimizers happy by pulling out to
|
||
temporaries those types that fit in registers. */
|
||
if (is_gimple_reg_type (TREE_TYPE (*expr_p)))
|
||
test = is_gimple_val, fb = fb_rvalue;
|
||
else
|
||
test = is_gimple_lvalue, fb = fb_either;
|
||
|
||
/* If this is a variable sized type, we must remember the size. */
|
||
maybe_with_size_expr (expr_p);
|
||
|
||
/* There is a sequence point before a function call. Side effects in
|
||
the argument list must occur before the actual call. So, when
|
||
gimplifying arguments, force gimplify_expr to use an internal
|
||
post queue which is then appended to the end of PRE_P. */
|
||
return gimplify_expr (expr_p, pre_p, NULL, test, fb);
|
||
}
|
||
|
||
/* Gimplify the CALL_EXPR node pointed to by EXPR_P. PRE_P points to the
|
||
list where side effects that must happen before *EXPR_P should be stored.
|
||
WANT_VALUE is true if the result of the call is desired. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_call_expr (tree *expr_p, tree *pre_p, bool want_value)
|
||
{
|
||
tree decl;
|
||
tree arglist;
|
||
enum gimplify_status ret;
|
||
|
||
gcc_assert (TREE_CODE (*expr_p) == CALL_EXPR);
|
||
|
||
/* For reliable diagnostics during inlining, it is necessary that
|
||
every call_expr be annotated with file and line. */
|
||
if (! EXPR_HAS_LOCATION (*expr_p))
|
||
SET_EXPR_LOCATION (*expr_p, input_location);
|
||
|
||
/* This may be a call to a builtin function.
|
||
|
||
Builtin function calls may be transformed into different
|
||
(and more efficient) builtin function calls under certain
|
||
circumstances. Unfortunately, gimplification can muck things
|
||
up enough that the builtin expanders are not aware that certain
|
||
transformations are still valid.
|
||
|
||
So we attempt transformation/gimplification of the call before
|
||
we gimplify the CALL_EXPR. At this time we do not manage to
|
||
transform all calls in the same manner as the expanders do, but
|
||
we do transform most of them. */
|
||
decl = get_callee_fndecl (*expr_p);
|
||
if (decl && DECL_BUILT_IN (decl))
|
||
{
|
||
tree arglist = TREE_OPERAND (*expr_p, 1);
|
||
tree new = fold_builtin (decl, arglist, !want_value);
|
||
|
||
if (new && new != *expr_p)
|
||
{
|
||
/* There was a transformation of this call which computes the
|
||
same value, but in a more efficient way. Return and try
|
||
again. */
|
||
*expr_p = new;
|
||
return GS_OK;
|
||
}
|
||
|
||
if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
|
||
&& DECL_FUNCTION_CODE (decl) == BUILT_IN_VA_START)
|
||
{
|
||
if (!arglist || !TREE_CHAIN (arglist))
|
||
{
|
||
error ("too few arguments to function %<va_start%>");
|
||
*expr_p = build_empty_stmt ();
|
||
return GS_OK;
|
||
}
|
||
|
||
if (fold_builtin_next_arg (TREE_CHAIN (arglist)))
|
||
{
|
||
*expr_p = build_empty_stmt ();
|
||
return GS_OK;
|
||
}
|
||
/* Avoid gimplifying the second argument to va_start, which needs
|
||
to be the plain PARM_DECL. */
|
||
return gimplify_arg (&TREE_VALUE (TREE_OPERAND (*expr_p, 1)), pre_p);
|
||
}
|
||
}
|
||
|
||
/* There is a sequence point before the call, so any side effects in
|
||
the calling expression must occur before the actual call. Force
|
||
gimplify_expr to use an internal post queue. */
|
||
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, NULL,
|
||
is_gimple_call_addr, fb_rvalue);
|
||
|
||
if (PUSH_ARGS_REVERSED)
|
||
TREE_OPERAND (*expr_p, 1) = nreverse (TREE_OPERAND (*expr_p, 1));
|
||
for (arglist = TREE_OPERAND (*expr_p, 1); arglist;
|
||
arglist = TREE_CHAIN (arglist))
|
||
{
|
||
enum gimplify_status t;
|
||
|
||
t = gimplify_arg (&TREE_VALUE (arglist), pre_p);
|
||
|
||
if (t == GS_ERROR)
|
||
ret = GS_ERROR;
|
||
}
|
||
if (PUSH_ARGS_REVERSED)
|
||
TREE_OPERAND (*expr_p, 1) = nreverse (TREE_OPERAND (*expr_p, 1));
|
||
|
||
/* Try this again in case gimplification exposed something. */
|
||
if (ret != GS_ERROR)
|
||
{
|
||
decl = get_callee_fndecl (*expr_p);
|
||
if (decl && DECL_BUILT_IN (decl))
|
||
{
|
||
tree arglist = TREE_OPERAND (*expr_p, 1);
|
||
tree new = fold_builtin (decl, arglist, !want_value);
|
||
|
||
if (new && new != *expr_p)
|
||
{
|
||
/* There was a transformation of this call which computes the
|
||
same value, but in a more efficient way. Return and try
|
||
again. */
|
||
*expr_p = new;
|
||
return GS_OK;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
|
||
decl. This allows us to eliminate redundant or useless
|
||
calls to "const" functions. */
|
||
if (TREE_CODE (*expr_p) == CALL_EXPR
|
||
&& (call_expr_flags (*expr_p) & (ECF_CONST | ECF_PURE)))
|
||
TREE_SIDE_EFFECTS (*expr_p) = 0;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Handle shortcut semantics in the predicate operand of a COND_EXPR by
|
||
rewriting it into multiple COND_EXPRs, and possibly GOTO_EXPRs.
|
||
|
||
TRUE_LABEL_P and FALSE_LABEL_P point to the labels to jump to if the
|
||
condition is true or false, respectively. If null, we should generate
|
||
our own to skip over the evaluation of this specific expression.
|
||
|
||
This function is the tree equivalent of do_jump.
|
||
|
||
shortcut_cond_r should only be called by shortcut_cond_expr. */
|
||
|
||
static tree
|
||
shortcut_cond_r (tree pred, tree *true_label_p, tree *false_label_p)
|
||
{
|
||
tree local_label = NULL_TREE;
|
||
tree t, expr = NULL;
|
||
|
||
/* OK, it's not a simple case; we need to pull apart the COND_EXPR to
|
||
retain the shortcut semantics. Just insert the gotos here;
|
||
shortcut_cond_expr will append the real blocks later. */
|
||
if (TREE_CODE (pred) == TRUTH_ANDIF_EXPR)
|
||
{
|
||
/* Turn if (a && b) into
|
||
|
||
if (a); else goto no;
|
||
if (b) goto yes; else goto no;
|
||
(no:) */
|
||
|
||
if (false_label_p == NULL)
|
||
false_label_p = &local_label;
|
||
|
||
t = shortcut_cond_r (TREE_OPERAND (pred, 0), NULL, false_label_p);
|
||
append_to_statement_list (t, &expr);
|
||
|
||
t = shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p,
|
||
false_label_p);
|
||
append_to_statement_list (t, &expr);
|
||
}
|
||
else if (TREE_CODE (pred) == TRUTH_ORIF_EXPR)
|
||
{
|
||
/* Turn if (a || b) into
|
||
|
||
if (a) goto yes;
|
||
if (b) goto yes; else goto no;
|
||
(yes:) */
|
||
|
||
if (true_label_p == NULL)
|
||
true_label_p = &local_label;
|
||
|
||
t = shortcut_cond_r (TREE_OPERAND (pred, 0), true_label_p, NULL);
|
||
append_to_statement_list (t, &expr);
|
||
|
||
t = shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p,
|
||
false_label_p);
|
||
append_to_statement_list (t, &expr);
|
||
}
|
||
else if (TREE_CODE (pred) == COND_EXPR)
|
||
{
|
||
/* As long as we're messing with gotos, turn if (a ? b : c) into
|
||
if (a)
|
||
if (b) goto yes; else goto no;
|
||
else
|
||
if (c) goto yes; else goto no; */
|
||
expr = build3 (COND_EXPR, void_type_node, TREE_OPERAND (pred, 0),
|
||
shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p,
|
||
false_label_p),
|
||
shortcut_cond_r (TREE_OPERAND (pred, 2), true_label_p,
|
||
false_label_p));
|
||
}
|
||
else
|
||
{
|
||
expr = build3 (COND_EXPR, void_type_node, pred,
|
||
build_and_jump (true_label_p),
|
||
build_and_jump (false_label_p));
|
||
}
|
||
|
||
if (local_label)
|
||
{
|
||
t = build1 (LABEL_EXPR, void_type_node, local_label);
|
||
append_to_statement_list (t, &expr);
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
static tree
|
||
shortcut_cond_expr (tree expr)
|
||
{
|
||
tree pred = TREE_OPERAND (expr, 0);
|
||
tree then_ = TREE_OPERAND (expr, 1);
|
||
tree else_ = TREE_OPERAND (expr, 2);
|
||
tree true_label, false_label, end_label, t;
|
||
tree *true_label_p;
|
||
tree *false_label_p;
|
||
bool emit_end, emit_false, jump_over_else;
|
||
bool then_se = then_ && TREE_SIDE_EFFECTS (then_);
|
||
bool else_se = else_ && TREE_SIDE_EFFECTS (else_);
|
||
|
||
/* First do simple transformations. */
|
||
if (!else_se)
|
||
{
|
||
/* If there is no 'else', turn (a && b) into if (a) if (b). */
|
||
while (TREE_CODE (pred) == TRUTH_ANDIF_EXPR)
|
||
{
|
||
TREE_OPERAND (expr, 0) = TREE_OPERAND (pred, 1);
|
||
then_ = shortcut_cond_expr (expr);
|
||
then_se = then_ && TREE_SIDE_EFFECTS (then_);
|
||
pred = TREE_OPERAND (pred, 0);
|
||
expr = build3 (COND_EXPR, void_type_node, pred, then_, NULL_TREE);
|
||
}
|
||
}
|
||
if (!then_se)
|
||
{
|
||
/* If there is no 'then', turn
|
||
if (a || b); else d
|
||
into
|
||
if (a); else if (b); else d. */
|
||
while (TREE_CODE (pred) == TRUTH_ORIF_EXPR)
|
||
{
|
||
TREE_OPERAND (expr, 0) = TREE_OPERAND (pred, 1);
|
||
else_ = shortcut_cond_expr (expr);
|
||
else_se = else_ && TREE_SIDE_EFFECTS (else_);
|
||
pred = TREE_OPERAND (pred, 0);
|
||
expr = build3 (COND_EXPR, void_type_node, pred, NULL_TREE, else_);
|
||
}
|
||
}
|
||
|
||
/* If we're done, great. */
|
||
if (TREE_CODE (pred) != TRUTH_ANDIF_EXPR
|
||
&& TREE_CODE (pred) != TRUTH_ORIF_EXPR)
|
||
return expr;
|
||
|
||
/* Otherwise we need to mess with gotos. Change
|
||
if (a) c; else d;
|
||
to
|
||
if (a); else goto no;
|
||
c; goto end;
|
||
no: d; end:
|
||
and recursively gimplify the condition. */
|
||
|
||
true_label = false_label = end_label = NULL_TREE;
|
||
|
||
/* If our arms just jump somewhere, hijack those labels so we don't
|
||
generate jumps to jumps. */
|
||
|
||
if (then_
|
||
&& TREE_CODE (then_) == GOTO_EXPR
|
||
&& TREE_CODE (GOTO_DESTINATION (then_)) == LABEL_DECL)
|
||
{
|
||
true_label = GOTO_DESTINATION (then_);
|
||
then_ = NULL;
|
||
then_se = false;
|
||
}
|
||
|
||
if (else_
|
||
&& TREE_CODE (else_) == GOTO_EXPR
|
||
&& TREE_CODE (GOTO_DESTINATION (else_)) == LABEL_DECL)
|
||
{
|
||
false_label = GOTO_DESTINATION (else_);
|
||
else_ = NULL;
|
||
else_se = false;
|
||
}
|
||
|
||
/* If we aren't hijacking a label for the 'then' branch, it falls through. */
|
||
if (true_label)
|
||
true_label_p = &true_label;
|
||
else
|
||
true_label_p = NULL;
|
||
|
||
/* The 'else' branch also needs a label if it contains interesting code. */
|
||
if (false_label || else_se)
|
||
false_label_p = &false_label;
|
||
else
|
||
false_label_p = NULL;
|
||
|
||
/* If there was nothing else in our arms, just forward the label(s). */
|
||
if (!then_se && !else_se)
|
||
return shortcut_cond_r (pred, true_label_p, false_label_p);
|
||
|
||
/* If our last subexpression already has a terminal label, reuse it. */
|
||
if (else_se)
|
||
expr = expr_last (else_);
|
||
else if (then_se)
|
||
expr = expr_last (then_);
|
||
else
|
||
expr = NULL;
|
||
if (expr && TREE_CODE (expr) == LABEL_EXPR)
|
||
end_label = LABEL_EXPR_LABEL (expr);
|
||
|
||
/* If we don't care about jumping to the 'else' branch, jump to the end
|
||
if the condition is false. */
|
||
if (!false_label_p)
|
||
false_label_p = &end_label;
|
||
|
||
/* We only want to emit these labels if we aren't hijacking them. */
|
||
emit_end = (end_label == NULL_TREE);
|
||
emit_false = (false_label == NULL_TREE);
|
||
|
||
/* We only emit the jump over the else clause if we have to--if the
|
||
then clause may fall through. Otherwise we can wind up with a
|
||
useless jump and a useless label at the end of gimplified code,
|
||
which will cause us to think that this conditional as a whole
|
||
falls through even if it doesn't. If we then inline a function
|
||
which ends with such a condition, that can cause us to issue an
|
||
inappropriate warning about control reaching the end of a
|
||
non-void function. */
|
||
jump_over_else = block_may_fallthru (then_);
|
||
|
||
pred = shortcut_cond_r (pred, true_label_p, false_label_p);
|
||
|
||
expr = NULL;
|
||
append_to_statement_list (pred, &expr);
|
||
|
||
append_to_statement_list (then_, &expr);
|
||
if (else_se)
|
||
{
|
||
if (jump_over_else)
|
||
{
|
||
t = build_and_jump (&end_label);
|
||
append_to_statement_list (t, &expr);
|
||
}
|
||
if (emit_false)
|
||
{
|
||
t = build1 (LABEL_EXPR, void_type_node, false_label);
|
||
append_to_statement_list (t, &expr);
|
||
}
|
||
append_to_statement_list (else_, &expr);
|
||
}
|
||
if (emit_end && end_label)
|
||
{
|
||
t = build1 (LABEL_EXPR, void_type_node, end_label);
|
||
append_to_statement_list (t, &expr);
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* EXPR is used in a boolean context; make sure it has BOOLEAN_TYPE. */
|
||
|
||
tree
|
||
gimple_boolify (tree expr)
|
||
{
|
||
tree type = TREE_TYPE (expr);
|
||
|
||
if (TREE_CODE (type) == BOOLEAN_TYPE)
|
||
return expr;
|
||
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
/* Also boolify the arguments of truth exprs. */
|
||
TREE_OPERAND (expr, 1) = gimple_boolify (TREE_OPERAND (expr, 1));
|
||
/* FALLTHRU */
|
||
|
||
case TRUTH_NOT_EXPR:
|
||
TREE_OPERAND (expr, 0) = gimple_boolify (TREE_OPERAND (expr, 0));
|
||
/* FALLTHRU */
|
||
|
||
case EQ_EXPR: case NE_EXPR:
|
||
case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR:
|
||
/* These expressions always produce boolean results. */
|
||
TREE_TYPE (expr) = boolean_type_node;
|
||
return expr;
|
||
|
||
default:
|
||
/* Other expressions that get here must have boolean values, but
|
||
might need to be converted to the appropriate mode. */
|
||
return fold_convert (boolean_type_node, expr);
|
||
}
|
||
}
|
||
|
||
/* Convert the conditional expression pointed to by EXPR_P '(p) ? a : b;'
|
||
into
|
||
|
||
if (p) if (p)
|
||
t1 = a; a;
|
||
else or else
|
||
t1 = b; b;
|
||
t1;
|
||
|
||
The second form is used when *EXPR_P is of type void.
|
||
|
||
TARGET is the tree for T1 above.
|
||
|
||
PRE_P points to the list where side effects that must happen before
|
||
*EXPR_P should be stored. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_cond_expr (tree *expr_p, tree *pre_p, fallback_t fallback)
|
||
{
|
||
tree expr = *expr_p;
|
||
tree tmp, tmp2, type;
|
||
enum gimplify_status ret;
|
||
|
||
type = TREE_TYPE (expr);
|
||
|
||
/* If this COND_EXPR has a value, copy the values into a temporary within
|
||
the arms. */
|
||
if (! VOID_TYPE_P (type))
|
||
{
|
||
tree result;
|
||
|
||
if ((fallback & fb_lvalue) == 0)
|
||
{
|
||
result = tmp2 = tmp = create_tmp_var (TREE_TYPE (expr), "iftmp");
|
||
ret = GS_ALL_DONE;
|
||
}
|
||
else
|
||
{
|
||
tree type = build_pointer_type (TREE_TYPE (expr));
|
||
|
||
if (TREE_TYPE (TREE_OPERAND (expr, 1)) != void_type_node)
|
||
TREE_OPERAND (expr, 1) =
|
||
build_fold_addr_expr (TREE_OPERAND (expr, 1));
|
||
|
||
if (TREE_TYPE (TREE_OPERAND (expr, 2)) != void_type_node)
|
||
TREE_OPERAND (expr, 2) =
|
||
build_fold_addr_expr (TREE_OPERAND (expr, 2));
|
||
|
||
tmp2 = tmp = create_tmp_var (type, "iftmp");
|
||
|
||
expr = build3 (COND_EXPR, void_type_node, TREE_OPERAND (expr, 0),
|
||
TREE_OPERAND (expr, 1), TREE_OPERAND (expr, 2));
|
||
|
||
result = build_fold_indirect_ref (tmp);
|
||
ret = GS_ALL_DONE;
|
||
}
|
||
|
||
/* Build the then clause, 't1 = a;'. But don't build an assignment
|
||
if this branch is void; in C++ it can be, if it's a throw. */
|
||
if (TREE_TYPE (TREE_OPERAND (expr, 1)) != void_type_node)
|
||
TREE_OPERAND (expr, 1)
|
||
= build2 (MODIFY_EXPR, void_type_node, tmp, TREE_OPERAND (expr, 1));
|
||
|
||
/* Build the else clause, 't1 = b;'. */
|
||
if (TREE_TYPE (TREE_OPERAND (expr, 2)) != void_type_node)
|
||
TREE_OPERAND (expr, 2)
|
||
= build2 (MODIFY_EXPR, void_type_node, tmp2, TREE_OPERAND (expr, 2));
|
||
|
||
TREE_TYPE (expr) = void_type_node;
|
||
recalculate_side_effects (expr);
|
||
|
||
/* Move the COND_EXPR to the prequeue. */
|
||
gimplify_and_add (expr, pre_p);
|
||
|
||
*expr_p = result;
|
||
return ret;
|
||
}
|
||
|
||
/* Make sure the condition has BOOLEAN_TYPE. */
|
||
TREE_OPERAND (expr, 0) = gimple_boolify (TREE_OPERAND (expr, 0));
|
||
|
||
/* Break apart && and || conditions. */
|
||
if (TREE_CODE (TREE_OPERAND (expr, 0)) == TRUTH_ANDIF_EXPR
|
||
|| TREE_CODE (TREE_OPERAND (expr, 0)) == TRUTH_ORIF_EXPR)
|
||
{
|
||
expr = shortcut_cond_expr (expr);
|
||
|
||
if (expr != *expr_p)
|
||
{
|
||
*expr_p = expr;
|
||
|
||
/* We can't rely on gimplify_expr to re-gimplify the expanded
|
||
form properly, as cleanups might cause the target labels to be
|
||
wrapped in a TRY_FINALLY_EXPR. To prevent that, we need to
|
||
set up a conditional context. */
|
||
gimple_push_condition ();
|
||
gimplify_stmt (expr_p);
|
||
gimple_pop_condition (pre_p);
|
||
|
||
return GS_ALL_DONE;
|
||
}
|
||
}
|
||
|
||
/* Now do the normal gimplification. */
|
||
ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, NULL,
|
||
is_gimple_condexpr, fb_rvalue);
|
||
|
||
gimple_push_condition ();
|
||
|
||
gimplify_to_stmt_list (&TREE_OPERAND (expr, 1));
|
||
gimplify_to_stmt_list (&TREE_OPERAND (expr, 2));
|
||
recalculate_side_effects (expr);
|
||
|
||
gimple_pop_condition (pre_p);
|
||
|
||
if (ret == GS_ERROR)
|
||
;
|
||
else if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
|
||
ret = GS_ALL_DONE;
|
||
else if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 2)))
|
||
/* Rewrite "if (a); else b" to "if (!a) b" */
|
||
{
|
||
TREE_OPERAND (expr, 0) = invert_truthvalue (TREE_OPERAND (expr, 0));
|
||
ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, NULL,
|
||
is_gimple_condexpr, fb_rvalue);
|
||
|
||
tmp = TREE_OPERAND (expr, 1);
|
||
TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 2);
|
||
TREE_OPERAND (expr, 2) = tmp;
|
||
}
|
||
else
|
||
/* Both arms are empty; replace the COND_EXPR with its predicate. */
|
||
expr = TREE_OPERAND (expr, 0);
|
||
|
||
*expr_p = expr;
|
||
return ret;
|
||
}
|
||
|
||
/* A subroutine of gimplify_modify_expr. Replace a MODIFY_EXPR with
|
||
a call to __builtin_memcpy. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_modify_expr_to_memcpy (tree *expr_p, tree size, bool want_value)
|
||
{
|
||
tree args, t, to, to_ptr, from;
|
||
|
||
to = TREE_OPERAND (*expr_p, 0);
|
||
from = TREE_OPERAND (*expr_p, 1);
|
||
|
||
args = tree_cons (NULL, size, NULL);
|
||
|
||
t = build_fold_addr_expr (from);
|
||
args = tree_cons (NULL, t, args);
|
||
|
||
to_ptr = build_fold_addr_expr (to);
|
||
args = tree_cons (NULL, to_ptr, args);
|
||
t = implicit_built_in_decls[BUILT_IN_MEMCPY];
|
||
t = build_function_call_expr (t, args);
|
||
|
||
if (want_value)
|
||
{
|
||
t = build1 (NOP_EXPR, TREE_TYPE (to_ptr), t);
|
||
t = build1 (INDIRECT_REF, TREE_TYPE (to), t);
|
||
}
|
||
|
||
*expr_p = t;
|
||
return GS_OK;
|
||
}
|
||
|
||
/* A subroutine of gimplify_modify_expr. Replace a MODIFY_EXPR with
|
||
a call to __builtin_memset. In this case we know that the RHS is
|
||
a CONSTRUCTOR with an empty element list. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_modify_expr_to_memset (tree *expr_p, tree size, bool want_value)
|
||
{
|
||
tree args, t, to, to_ptr;
|
||
|
||
to = TREE_OPERAND (*expr_p, 0);
|
||
|
||
args = tree_cons (NULL, size, NULL);
|
||
|
||
args = tree_cons (NULL, integer_zero_node, args);
|
||
|
||
to_ptr = build_fold_addr_expr (to);
|
||
args = tree_cons (NULL, to_ptr, args);
|
||
t = implicit_built_in_decls[BUILT_IN_MEMSET];
|
||
t = build_function_call_expr (t, args);
|
||
|
||
if (want_value)
|
||
{
|
||
t = build1 (NOP_EXPR, TREE_TYPE (to_ptr), t);
|
||
t = build1 (INDIRECT_REF, TREE_TYPE (to), t);
|
||
}
|
||
|
||
*expr_p = t;
|
||
return GS_OK;
|
||
}
|
||
|
||
/* A subroutine of gimplify_init_ctor_preeval. Called via walk_tree,
|
||
determine, cautiously, if a CONSTRUCTOR overlaps the lhs of an
|
||
assignment. Returns non-null if we detect a potential overlap. */
|
||
|
||
struct gimplify_init_ctor_preeval_data
|
||
{
|
||
/* The base decl of the lhs object. May be NULL, in which case we
|
||
have to assume the lhs is indirect. */
|
||
tree lhs_base_decl;
|
||
|
||
/* The alias set of the lhs object. */
|
||
int lhs_alias_set;
|
||
};
|
||
|
||
static tree
|
||
gimplify_init_ctor_preeval_1 (tree *tp, int *walk_subtrees, void *xdata)
|
||
{
|
||
struct gimplify_init_ctor_preeval_data *data
|
||
= (struct gimplify_init_ctor_preeval_data *) xdata;
|
||
tree t = *tp;
|
||
|
||
/* If we find the base object, obviously we have overlap. */
|
||
if (data->lhs_base_decl == t)
|
||
return t;
|
||
|
||
/* If the constructor component is indirect, determine if we have a
|
||
potential overlap with the lhs. The only bits of information we
|
||
have to go on at this point are addressability and alias sets. */
|
||
if (TREE_CODE (t) == INDIRECT_REF
|
||
&& (!data->lhs_base_decl || TREE_ADDRESSABLE (data->lhs_base_decl))
|
||
&& alias_sets_conflict_p (data->lhs_alias_set, get_alias_set (t)))
|
||
return t;
|
||
|
||
/* If the constructor component is a call, determine if it can hide a
|
||
potential overlap with the lhs through an INDIRECT_REF like above. */
|
||
if (TREE_CODE (t) == CALL_EXPR)
|
||
{
|
||
tree type, fntype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (t, 0)));
|
||
|
||
for (type = TYPE_ARG_TYPES (fntype); type; type = TREE_CHAIN (type))
|
||
if (POINTER_TYPE_P (TREE_VALUE (type))
|
||
&& (!data->lhs_base_decl || TREE_ADDRESSABLE (data->lhs_base_decl))
|
||
&& alias_sets_conflict_p (data->lhs_alias_set,
|
||
get_alias_set
|
||
(TREE_TYPE (TREE_VALUE (type)))))
|
||
return t;
|
||
}
|
||
|
||
if (IS_TYPE_OR_DECL_P (t))
|
||
*walk_subtrees = 0;
|
||
return NULL;
|
||
}
|
||
|
||
/* A subroutine of gimplify_init_constructor. Pre-evaluate *EXPR_P,
|
||
force values that overlap with the lhs (as described by *DATA)
|
||
into temporaries. */
|
||
|
||
static void
|
||
gimplify_init_ctor_preeval (tree *expr_p, tree *pre_p, tree *post_p,
|
||
struct gimplify_init_ctor_preeval_data *data)
|
||
{
|
||
enum gimplify_status one;
|
||
|
||
/* If the value is invariant, then there's nothing to pre-evaluate.
|
||
But ensure it doesn't have any side-effects since a SAVE_EXPR is
|
||
invariant but has side effects and might contain a reference to
|
||
the object we're initializing. */
|
||
if (TREE_INVARIANT (*expr_p) && !TREE_SIDE_EFFECTS (*expr_p))
|
||
return;
|
||
|
||
/* If the type has non-trivial constructors, we can't pre-evaluate. */
|
||
if (TREE_ADDRESSABLE (TREE_TYPE (*expr_p)))
|
||
return;
|
||
|
||
/* Recurse for nested constructors. */
|
||
if (TREE_CODE (*expr_p) == CONSTRUCTOR)
|
||
{
|
||
unsigned HOST_WIDE_INT ix;
|
||
constructor_elt *ce;
|
||
VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (*expr_p);
|
||
|
||
for (ix = 0; VEC_iterate (constructor_elt, v, ix, ce); ix++)
|
||
gimplify_init_ctor_preeval (&ce->value, pre_p, post_p, data);
|
||
return;
|
||
}
|
||
|
||
/* If this is a variable sized type, we must remember the size. */
|
||
maybe_with_size_expr (expr_p);
|
||
|
||
/* Gimplify the constructor element to something appropriate for the rhs
|
||
of a MODIFY_EXPR. Given that we know the lhs is an aggregate, we know
|
||
the gimplifier will consider this a store to memory. Doing this
|
||
gimplification now means that we won't have to deal with complicated
|
||
language-specific trees, nor trees like SAVE_EXPR that can induce
|
||
exponential search behavior. */
|
||
one = gimplify_expr (expr_p, pre_p, post_p, is_gimple_mem_rhs, fb_rvalue);
|
||
if (one == GS_ERROR)
|
||
{
|
||
*expr_p = NULL;
|
||
return;
|
||
}
|
||
|
||
/* If we gimplified to a bare decl, we can be sure that it doesn't overlap
|
||
with the lhs, since "a = { .x=a }" doesn't make sense. This will
|
||
always be true for all scalars, since is_gimple_mem_rhs insists on a
|
||
temporary variable for them. */
|
||
if (DECL_P (*expr_p))
|
||
return;
|
||
|
||
/* If this is of variable size, we have no choice but to assume it doesn't
|
||
overlap since we can't make a temporary for it. */
|
||
if (TREE_CODE (TYPE_SIZE (TREE_TYPE (*expr_p))) != INTEGER_CST)
|
||
return;
|
||
|
||
/* Otherwise, we must search for overlap ... */
|
||
if (!walk_tree (expr_p, gimplify_init_ctor_preeval_1, data, NULL))
|
||
return;
|
||
|
||
/* ... and if found, force the value into a temporary. */
|
||
*expr_p = get_formal_tmp_var (*expr_p, pre_p);
|
||
}
|
||
|
||
/* A subroutine of gimplify_init_ctor_eval. Create a loop for
|
||
a RANGE_EXPR in a CONSTRUCTOR for an array.
|
||
|
||
var = lower;
|
||
loop_entry:
|
||
object[var] = value;
|
||
if (var == upper)
|
||
goto loop_exit;
|
||
var = var + 1;
|
||
goto loop_entry;
|
||
loop_exit:
|
||
|
||
We increment var _after_ the loop exit check because we might otherwise
|
||
fail if upper == TYPE_MAX_VALUE (type for upper).
|
||
|
||
Note that we never have to deal with SAVE_EXPRs here, because this has
|
||
already been taken care of for us, in gimplify_init_ctor_preeval(). */
|
||
|
||
static void gimplify_init_ctor_eval (tree, VEC(constructor_elt,gc) *,
|
||
tree *, bool);
|
||
|
||
static void
|
||
gimplify_init_ctor_eval_range (tree object, tree lower, tree upper,
|
||
tree value, tree array_elt_type,
|
||
tree *pre_p, bool cleared)
|
||
{
|
||
tree loop_entry_label, loop_exit_label;
|
||
tree var, var_type, cref;
|
||
|
||
loop_entry_label = create_artificial_label ();
|
||
loop_exit_label = create_artificial_label ();
|
||
|
||
/* Create and initialize the index variable. */
|
||
var_type = TREE_TYPE (upper);
|
||
var = create_tmp_var (var_type, NULL);
|
||
append_to_statement_list (build2 (MODIFY_EXPR, var_type, var, lower), pre_p);
|
||
|
||
/* Add the loop entry label. */
|
||
append_to_statement_list (build1 (LABEL_EXPR,
|
||
void_type_node,
|
||
loop_entry_label),
|
||
pre_p);
|
||
|
||
/* Build the reference. */
|
||
cref = build4 (ARRAY_REF, array_elt_type, unshare_expr (object),
|
||
var, NULL_TREE, NULL_TREE);
|
||
|
||
/* If we are a constructor, just call gimplify_init_ctor_eval to do
|
||
the store. Otherwise just assign value to the reference. */
|
||
|
||
if (TREE_CODE (value) == CONSTRUCTOR)
|
||
/* NB we might have to call ourself recursively through
|
||
gimplify_init_ctor_eval if the value is a constructor. */
|
||
gimplify_init_ctor_eval (cref, CONSTRUCTOR_ELTS (value),
|
||
pre_p, cleared);
|
||
else
|
||
append_to_statement_list (build2 (MODIFY_EXPR, TREE_TYPE (cref),
|
||
cref, value),
|
||
pre_p);
|
||
|
||
/* We exit the loop when the index var is equal to the upper bound. */
|
||
gimplify_and_add (build3 (COND_EXPR, void_type_node,
|
||
build2 (EQ_EXPR, boolean_type_node,
|
||
var, upper),
|
||
build1 (GOTO_EXPR,
|
||
void_type_node,
|
||
loop_exit_label),
|
||
NULL_TREE),
|
||
pre_p);
|
||
|
||
/* Otherwise, increment the index var... */
|
||
append_to_statement_list (build2 (MODIFY_EXPR, var_type, var,
|
||
build2 (PLUS_EXPR, var_type, var,
|
||
fold_convert (var_type,
|
||
integer_one_node))),
|
||
pre_p);
|
||
|
||
/* ...and jump back to the loop entry. */
|
||
append_to_statement_list (build1 (GOTO_EXPR,
|
||
void_type_node,
|
||
loop_entry_label),
|
||
pre_p);
|
||
|
||
/* Add the loop exit label. */
|
||
append_to_statement_list (build1 (LABEL_EXPR,
|
||
void_type_node,
|
||
loop_exit_label),
|
||
pre_p);
|
||
}
|
||
|
||
/* Return true if FDECL is accessing a field that is zero sized. */
|
||
|
||
static bool
|
||
zero_sized_field_decl (tree fdecl)
|
||
{
|
||
if (TREE_CODE (fdecl) == FIELD_DECL && DECL_SIZE (fdecl)
|
||
&& integer_zerop (DECL_SIZE (fdecl)))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Return true if TYPE is zero sized. */
|
||
|
||
static bool
|
||
zero_sized_type (tree type)
|
||
{
|
||
if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type)
|
||
&& integer_zerop (TYPE_SIZE (type)))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* A subroutine of gimplify_init_constructor. Generate individual
|
||
MODIFY_EXPRs for a CONSTRUCTOR. OBJECT is the LHS against which the
|
||
assignments should happen. ELTS is the CONSTRUCTOR_ELTS of the
|
||
CONSTRUCTOR. CLEARED is true if the entire LHS object has been
|
||
zeroed first. */
|
||
|
||
static void
|
||
gimplify_init_ctor_eval (tree object, VEC(constructor_elt,gc) *elts,
|
||
tree *pre_p, bool cleared)
|
||
{
|
||
tree array_elt_type = NULL;
|
||
unsigned HOST_WIDE_INT ix;
|
||
tree purpose, value;
|
||
|
||
if (TREE_CODE (TREE_TYPE (object)) == ARRAY_TYPE)
|
||
array_elt_type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (object)));
|
||
|
||
FOR_EACH_CONSTRUCTOR_ELT (elts, ix, purpose, value)
|
||
{
|
||
tree cref, init;
|
||
|
||
/* NULL values are created above for gimplification errors. */
|
||
if (value == NULL)
|
||
continue;
|
||
|
||
if (cleared && initializer_zerop (value))
|
||
continue;
|
||
|
||
/* ??? Here's to hoping the front end fills in all of the indices,
|
||
so we don't have to figure out what's missing ourselves. */
|
||
gcc_assert (purpose);
|
||
|
||
/* Skip zero-sized fields, unless value has side-effects. This can
|
||
happen with calls to functions returning a zero-sized type, which
|
||
we shouldn't discard. As a number of downstream passes don't
|
||
expect sets of zero-sized fields, we rely on the gimplification of
|
||
the MODIFY_EXPR we make below to drop the assignment statement. */
|
||
if (! TREE_SIDE_EFFECTS (value) && zero_sized_field_decl (purpose))
|
||
continue;
|
||
|
||
/* If we have a RANGE_EXPR, we have to build a loop to assign the
|
||
whole range. */
|
||
if (TREE_CODE (purpose) == RANGE_EXPR)
|
||
{
|
||
tree lower = TREE_OPERAND (purpose, 0);
|
||
tree upper = TREE_OPERAND (purpose, 1);
|
||
|
||
/* If the lower bound is equal to upper, just treat it as if
|
||
upper was the index. */
|
||
if (simple_cst_equal (lower, upper))
|
||
purpose = upper;
|
||
else
|
||
{
|
||
gimplify_init_ctor_eval_range (object, lower, upper, value,
|
||
array_elt_type, pre_p, cleared);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (array_elt_type)
|
||
{
|
||
cref = build4 (ARRAY_REF, array_elt_type, unshare_expr (object),
|
||
purpose, NULL_TREE, NULL_TREE);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (TREE_CODE (purpose) == FIELD_DECL);
|
||
cref = build3 (COMPONENT_REF, TREE_TYPE (purpose),
|
||
unshare_expr (object), purpose, NULL_TREE);
|
||
}
|
||
|
||
if (TREE_CODE (value) == CONSTRUCTOR
|
||
&& TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE)
|
||
gimplify_init_ctor_eval (cref, CONSTRUCTOR_ELTS (value),
|
||
pre_p, cleared);
|
||
else
|
||
{
|
||
init = build2 (INIT_EXPR, TREE_TYPE (cref), cref, value);
|
||
gimplify_and_add (init, pre_p);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A subroutine of gimplify_modify_expr. Break out elements of a
|
||
CONSTRUCTOR used as an initializer into separate MODIFY_EXPRs.
|
||
|
||
Note that we still need to clear any elements that don't have explicit
|
||
initializers, so if not all elements are initialized we keep the
|
||
original MODIFY_EXPR, we just remove all of the constructor elements. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_init_constructor (tree *expr_p, tree *pre_p,
|
||
tree *post_p, bool want_value)
|
||
{
|
||
tree object;
|
||
tree ctor = TREE_OPERAND (*expr_p, 1);
|
||
tree type = TREE_TYPE (ctor);
|
||
enum gimplify_status ret;
|
||
VEC(constructor_elt,gc) *elts;
|
||
|
||
if (TREE_CODE (ctor) != CONSTRUCTOR)
|
||
return GS_UNHANDLED;
|
||
|
||
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
|
||
is_gimple_lvalue, fb_lvalue);
|
||
if (ret == GS_ERROR)
|
||
return ret;
|
||
object = TREE_OPERAND (*expr_p, 0);
|
||
|
||
elts = CONSTRUCTOR_ELTS (ctor);
|
||
|
||
ret = GS_ALL_DONE;
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
case ARRAY_TYPE:
|
||
{
|
||
struct gimplify_init_ctor_preeval_data preeval_data;
|
||
HOST_WIDE_INT num_type_elements, num_ctor_elements;
|
||
HOST_WIDE_INT num_nonzero_elements;
|
||
bool cleared, valid_const_initializer;
|
||
|
||
/* Aggregate types must lower constructors to initialization of
|
||
individual elements. The exception is that a CONSTRUCTOR node
|
||
with no elements indicates zero-initialization of the whole. */
|
||
if (VEC_empty (constructor_elt, elts))
|
||
break;
|
||
|
||
/* Fetch information about the constructor to direct later processing.
|
||
We might want to make static versions of it in various cases, and
|
||
can only do so if it known to be a valid constant initializer. */
|
||
valid_const_initializer
|
||
= categorize_ctor_elements (ctor, &num_nonzero_elements,
|
||
&num_ctor_elements, &cleared);
|
||
|
||
/* If a const aggregate variable is being initialized, then it
|
||
should never be a lose to promote the variable to be static. */
|
||
if (valid_const_initializer
|
||
&& num_nonzero_elements > 1
|
||
&& TREE_READONLY (object)
|
||
&& TREE_CODE (object) == VAR_DECL)
|
||
{
|
||
DECL_INITIAL (object) = ctor;
|
||
TREE_STATIC (object) = 1;
|
||
if (!DECL_NAME (object))
|
||
DECL_NAME (object) = create_tmp_var_name ("C");
|
||
walk_tree (&DECL_INITIAL (object), force_labels_r, NULL, NULL);
|
||
|
||
/* ??? C++ doesn't automatically append a .<number> to the
|
||
assembler name, and even when it does, it looks a FE private
|
||
data structures to figure out what that number should be,
|
||
which are not set for this variable. I suppose this is
|
||
important for local statics for inline functions, which aren't
|
||
"local" in the object file sense. So in order to get a unique
|
||
TU-local symbol, we must invoke the lhd version now. */
|
||
lhd_set_decl_assembler_name (object);
|
||
|
||
*expr_p = NULL_TREE;
|
||
break;
|
||
}
|
||
|
||
/* If there are "lots" of initialized elements, even discounting
|
||
those that are not address constants (and thus *must* be
|
||
computed at runtime), then partition the constructor into
|
||
constant and non-constant parts. Block copy the constant
|
||
parts in, then generate code for the non-constant parts. */
|
||
/* TODO. There's code in cp/typeck.c to do this. */
|
||
|
||
num_type_elements = count_type_elements (type, true);
|
||
|
||
/* If count_type_elements could not determine number of type elements
|
||
for a constant-sized object, assume clearing is needed.
|
||
Don't do this for variable-sized objects, as store_constructor
|
||
will ignore the clearing of variable-sized objects. */
|
||
if (num_type_elements < 0 && int_size_in_bytes (type) >= 0)
|
||
cleared = true;
|
||
/* If there are "lots" of zeros, then block clear the object first. */
|
||
else if (num_type_elements - num_nonzero_elements > CLEAR_RATIO
|
||
&& num_nonzero_elements < num_type_elements/4)
|
||
cleared = true;
|
||
/* ??? This bit ought not be needed. For any element not present
|
||
in the initializer, we should simply set them to zero. Except
|
||
we'd need to *find* the elements that are not present, and that
|
||
requires trickery to avoid quadratic compile-time behavior in
|
||
large cases or excessive memory use in small cases. */
|
||
else if (num_ctor_elements < num_type_elements)
|
||
cleared = true;
|
||
|
||
/* If there are "lots" of initialized elements, and all of them
|
||
are valid address constants, then the entire initializer can
|
||
be dropped to memory, and then memcpy'd out. Don't do this
|
||
for sparse arrays, though, as it's more efficient to follow
|
||
the standard CONSTRUCTOR behavior of memset followed by
|
||
individual element initialization. */
|
||
if (valid_const_initializer && !cleared)
|
||
{
|
||
HOST_WIDE_INT size = int_size_in_bytes (type);
|
||
unsigned int align;
|
||
|
||
/* ??? We can still get unbounded array types, at least
|
||
from the C++ front end. This seems wrong, but attempt
|
||
to work around it for now. */
|
||
if (size < 0)
|
||
{
|
||
size = int_size_in_bytes (TREE_TYPE (object));
|
||
if (size >= 0)
|
||
TREE_TYPE (ctor) = type = TREE_TYPE (object);
|
||
}
|
||
|
||
/* Find the maximum alignment we can assume for the object. */
|
||
/* ??? Make use of DECL_OFFSET_ALIGN. */
|
||
if (DECL_P (object))
|
||
align = DECL_ALIGN (object);
|
||
else
|
||
align = TYPE_ALIGN (type);
|
||
|
||
if (size > 0 && !can_move_by_pieces (size, align))
|
||
{
|
||
tree new = create_tmp_var_raw (type, "C");
|
||
|
||
gimple_add_tmp_var (new);
|
||
TREE_STATIC (new) = 1;
|
||
TREE_READONLY (new) = 1;
|
||
DECL_INITIAL (new) = ctor;
|
||
if (align > DECL_ALIGN (new))
|
||
{
|
||
DECL_ALIGN (new) = align;
|
||
DECL_USER_ALIGN (new) = 1;
|
||
}
|
||
walk_tree (&DECL_INITIAL (new), force_labels_r, NULL, NULL);
|
||
|
||
TREE_OPERAND (*expr_p, 1) = new;
|
||
|
||
/* This is no longer an assignment of a CONSTRUCTOR, but
|
||
we still may have processing to do on the LHS. So
|
||
pretend we didn't do anything here to let that happen. */
|
||
return GS_UNHANDLED;
|
||
}
|
||
}
|
||
|
||
/* If there are nonzero elements, pre-evaluate to capture elements
|
||
overlapping with the lhs into temporaries. We must do this before
|
||
clearing to fetch the values before they are zeroed-out. */
|
||
if (num_nonzero_elements > 0)
|
||
{
|
||
preeval_data.lhs_base_decl = get_base_address (object);
|
||
if (!DECL_P (preeval_data.lhs_base_decl))
|
||
preeval_data.lhs_base_decl = NULL;
|
||
preeval_data.lhs_alias_set = get_alias_set (object);
|
||
|
||
gimplify_init_ctor_preeval (&TREE_OPERAND (*expr_p, 1),
|
||
pre_p, post_p, &preeval_data);
|
||
}
|
||
|
||
if (cleared)
|
||
{
|
||
/* Zap the CONSTRUCTOR element list, which simplifies this case.
|
||
Note that we still have to gimplify, in order to handle the
|
||
case of variable sized types. Avoid shared tree structures. */
|
||
CONSTRUCTOR_ELTS (ctor) = NULL;
|
||
object = unshare_expr (object);
|
||
gimplify_stmt (expr_p);
|
||
append_to_statement_list (*expr_p, pre_p);
|
||
}
|
||
|
||
/* If we have not block cleared the object, or if there are nonzero
|
||
elements in the constructor, add assignments to the individual
|
||
scalar fields of the object. */
|
||
if (!cleared || num_nonzero_elements > 0)
|
||
gimplify_init_ctor_eval (object, elts, pre_p, cleared);
|
||
|
||
*expr_p = NULL_TREE;
|
||
}
|
||
break;
|
||
|
||
case COMPLEX_TYPE:
|
||
{
|
||
tree r, i;
|
||
|
||
/* Extract the real and imaginary parts out of the ctor. */
|
||
gcc_assert (VEC_length (constructor_elt, elts) == 2);
|
||
r = VEC_index (constructor_elt, elts, 0)->value;
|
||
i = VEC_index (constructor_elt, elts, 1)->value;
|
||
if (r == NULL || i == NULL)
|
||
{
|
||
tree zero = fold_convert (TREE_TYPE (type), integer_zero_node);
|
||
if (r == NULL)
|
||
r = zero;
|
||
if (i == NULL)
|
||
i = zero;
|
||
}
|
||
|
||
/* Complex types have either COMPLEX_CST or COMPLEX_EXPR to
|
||
represent creation of a complex value. */
|
||
if (TREE_CONSTANT (r) && TREE_CONSTANT (i))
|
||
{
|
||
ctor = build_complex (type, r, i);
|
||
TREE_OPERAND (*expr_p, 1) = ctor;
|
||
}
|
||
else
|
||
{
|
||
ctor = build2 (COMPLEX_EXPR, type, r, i);
|
||
TREE_OPERAND (*expr_p, 1) = ctor;
|
||
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
|
||
rhs_predicate_for (TREE_OPERAND (*expr_p, 0)),
|
||
fb_rvalue);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case VECTOR_TYPE:
|
||
{
|
||
unsigned HOST_WIDE_INT ix;
|
||
constructor_elt *ce;
|
||
|
||
/* Go ahead and simplify constant constructors to VECTOR_CST. */
|
||
if (TREE_CONSTANT (ctor))
|
||
{
|
||
bool constant_p = true;
|
||
tree value;
|
||
|
||
/* Even when ctor is constant, it might contain non-*_CST
|
||
elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
|
||
belong into VECTOR_CST nodes. */
|
||
FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
|
||
if (!CONSTANT_CLASS_P (value))
|
||
{
|
||
constant_p = false;
|
||
break;
|
||
}
|
||
|
||
if (constant_p)
|
||
{
|
||
TREE_OPERAND (*expr_p, 1) = build_vector_from_ctor (type, elts);
|
||
break;
|
||
}
|
||
|
||
/* Don't reduce a TREE_CONSTANT vector ctor even if we can't
|
||
make a VECTOR_CST. It won't do anything for us, and it'll
|
||
prevent us from representing it as a single constant. */
|
||
break;
|
||
}
|
||
|
||
/* Vector types use CONSTRUCTOR all the way through gimple
|
||
compilation as a general initializer. */
|
||
for (ix = 0; VEC_iterate (constructor_elt, elts, ix, ce); ix++)
|
||
{
|
||
enum gimplify_status tret;
|
||
tret = gimplify_expr (&ce->value, pre_p, post_p,
|
||
is_gimple_val, fb_rvalue);
|
||
if (tret == GS_ERROR)
|
||
ret = GS_ERROR;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* So how did we get a CONSTRUCTOR for a scalar type? */
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (ret == GS_ERROR)
|
||
return GS_ERROR;
|
||
else if (want_value)
|
||
{
|
||
append_to_statement_list (*expr_p, pre_p);
|
||
*expr_p = object;
|
||
return GS_OK;
|
||
}
|
||
else
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Given a pointer value OP0, return a simplified version of an
|
||
indirection through OP0, or NULL_TREE if no simplification is
|
||
possible. This may only be applied to a rhs of an expression.
|
||
Note that the resulting type may be different from the type pointed
|
||
to in the sense that it is still compatible from the langhooks
|
||
point of view. */
|
||
|
||
static tree
|
||
fold_indirect_ref_rhs (tree t)
|
||
{
|
||
tree type = TREE_TYPE (TREE_TYPE (t));
|
||
tree sub = t;
|
||
tree subtype;
|
||
|
||
STRIP_USELESS_TYPE_CONVERSION (sub);
|
||
subtype = TREE_TYPE (sub);
|
||
if (!POINTER_TYPE_P (subtype))
|
||
return NULL_TREE;
|
||
|
||
if (TREE_CODE (sub) == ADDR_EXPR)
|
||
{
|
||
tree op = TREE_OPERAND (sub, 0);
|
||
tree optype = TREE_TYPE (op);
|
||
/* *&p => p */
|
||
if (lang_hooks.types_compatible_p (type, optype))
|
||
return op;
|
||
/* *(foo *)&fooarray => fooarray[0] */
|
||
else if (TREE_CODE (optype) == ARRAY_TYPE
|
||
&& lang_hooks.types_compatible_p (type, TREE_TYPE (optype)))
|
||
{
|
||
tree type_domain = TYPE_DOMAIN (optype);
|
||
tree min_val = size_zero_node;
|
||
if (type_domain && TYPE_MIN_VALUE (type_domain))
|
||
min_val = TYPE_MIN_VALUE (type_domain);
|
||
return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
|
||
}
|
||
}
|
||
|
||
/* *(foo *)fooarrptr => (*fooarrptr)[0] */
|
||
if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
|
||
&& lang_hooks.types_compatible_p (type, TREE_TYPE (TREE_TYPE (subtype))))
|
||
{
|
||
tree type_domain;
|
||
tree min_val = size_zero_node;
|
||
tree osub = sub;
|
||
sub = fold_indirect_ref_rhs (sub);
|
||
if (! sub)
|
||
sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub);
|
||
type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
|
||
if (type_domain && TYPE_MIN_VALUE (type_domain))
|
||
min_val = TYPE_MIN_VALUE (type_domain);
|
||
return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Subroutine of gimplify_modify_expr to do simplifications of MODIFY_EXPRs
|
||
based on the code of the RHS. We loop for as long as something changes. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_modify_expr_rhs (tree *expr_p, tree *from_p, tree *to_p, tree *pre_p,
|
||
tree *post_p, bool want_value)
|
||
{
|
||
enum gimplify_status ret = GS_OK;
|
||
|
||
while (ret != GS_UNHANDLED)
|
||
switch (TREE_CODE (*from_p))
|
||
{
|
||
case INDIRECT_REF:
|
||
{
|
||
/* If we have code like
|
||
|
||
*(const A*)(A*)&x
|
||
|
||
where the type of "x" is a (possibly cv-qualified variant
|
||
of "A"), treat the entire expression as identical to "x".
|
||
This kind of code arises in C++ when an object is bound
|
||
to a const reference, and if "x" is a TARGET_EXPR we want
|
||
to take advantage of the optimization below. */
|
||
tree t = fold_indirect_ref_rhs (TREE_OPERAND (*from_p, 0));
|
||
if (t)
|
||
{
|
||
*from_p = t;
|
||
ret = GS_OK;
|
||
}
|
||
else
|
||
ret = GS_UNHANDLED;
|
||
break;
|
||
}
|
||
|
||
case TARGET_EXPR:
|
||
{
|
||
/* If we are initializing something from a TARGET_EXPR, strip the
|
||
TARGET_EXPR and initialize it directly, if possible. This can't
|
||
be done if the initializer is void, since that implies that the
|
||
temporary is set in some non-trivial way.
|
||
|
||
??? What about code that pulls out the temp and uses it
|
||
elsewhere? I think that such code never uses the TARGET_EXPR as
|
||
an initializer. If I'm wrong, we'll die because the temp won't
|
||
have any RTL. In that case, I guess we'll need to replace
|
||
references somehow. */
|
||
tree init = TARGET_EXPR_INITIAL (*from_p);
|
||
|
||
if (!VOID_TYPE_P (TREE_TYPE (init)))
|
||
{
|
||
*from_p = init;
|
||
ret = GS_OK;
|
||
}
|
||
else
|
||
ret = GS_UNHANDLED;
|
||
}
|
||
break;
|
||
|
||
case COMPOUND_EXPR:
|
||
/* Remove any COMPOUND_EXPR in the RHS so the following cases will be
|
||
caught. */
|
||
gimplify_compound_expr (from_p, pre_p, true);
|
||
ret = GS_OK;
|
||
break;
|
||
|
||
case CONSTRUCTOR:
|
||
/* If we're initializing from a CONSTRUCTOR, break this into
|
||
individual MODIFY_EXPRs. */
|
||
return gimplify_init_constructor (expr_p, pre_p, post_p, want_value);
|
||
|
||
case COND_EXPR:
|
||
/* If we're assigning to a non-register type, push the assignment
|
||
down into the branches. This is mandatory for ADDRESSABLE types,
|
||
since we cannot generate temporaries for such, but it saves a
|
||
copy in other cases as well. */
|
||
if (!is_gimple_reg_type (TREE_TYPE (*from_p)))
|
||
{
|
||
/* This code should mirror the code in gimplify_cond_expr. */
|
||
enum tree_code code = TREE_CODE (*expr_p);
|
||
tree cond = *from_p;
|
||
tree result = *to_p;
|
||
|
||
ret = gimplify_expr (&result, pre_p, post_p,
|
||
is_gimple_min_lval, fb_lvalue);
|
||
if (ret != GS_ERROR)
|
||
ret = GS_OK;
|
||
|
||
if (TREE_TYPE (TREE_OPERAND (cond, 1)) != void_type_node)
|
||
TREE_OPERAND (cond, 1)
|
||
= build2 (code, void_type_node, result,
|
||
TREE_OPERAND (cond, 1));
|
||
if (TREE_TYPE (TREE_OPERAND (cond, 2)) != void_type_node)
|
||
TREE_OPERAND (cond, 2)
|
||
= build2 (code, void_type_node, unshare_expr (result),
|
||
TREE_OPERAND (cond, 2));
|
||
|
||
TREE_TYPE (cond) = void_type_node;
|
||
recalculate_side_effects (cond);
|
||
|
||
if (want_value)
|
||
{
|
||
gimplify_and_add (cond, pre_p);
|
||
*expr_p = unshare_expr (result);
|
||
}
|
||
else
|
||
*expr_p = cond;
|
||
return ret;
|
||
}
|
||
else
|
||
ret = GS_UNHANDLED;
|
||
break;
|
||
|
||
case CALL_EXPR:
|
||
/* For calls that return in memory, give *to_p as the CALL_EXPR's
|
||
return slot so that we don't generate a temporary. */
|
||
if (!CALL_EXPR_RETURN_SLOT_OPT (*from_p)
|
||
&& aggregate_value_p (*from_p, *from_p))
|
||
{
|
||
bool use_target;
|
||
|
||
if (!(rhs_predicate_for (*to_p))(*from_p))
|
||
/* If we need a temporary, *to_p isn't accurate. */
|
||
use_target = false;
|
||
else if (TREE_CODE (*to_p) == RESULT_DECL
|
||
&& DECL_NAME (*to_p) == NULL_TREE
|
||
&& needs_to_live_in_memory (*to_p))
|
||
/* It's OK to use the return slot directly unless it's an NRV. */
|
||
use_target = true;
|
||
else if (is_gimple_reg_type (TREE_TYPE (*to_p))
|
||
|| (DECL_P (*to_p) && DECL_REGISTER (*to_p)))
|
||
/* Don't force regs into memory. */
|
||
use_target = false;
|
||
else if (TREE_CODE (*to_p) == VAR_DECL
|
||
&& DECL_GIMPLE_FORMAL_TEMP_P (*to_p))
|
||
/* Don't use the original target if it's a formal temp; we
|
||
don't want to take their addresses. */
|
||
use_target = false;
|
||
else if (TREE_CODE (*expr_p) == INIT_EXPR)
|
||
/* It's OK to use the target directly if it's being
|
||
initialized. */
|
||
use_target = true;
|
||
else if (!is_gimple_non_addressable (*to_p))
|
||
/* Don't use the original target if it's already addressable;
|
||
if its address escapes, and the called function uses the
|
||
NRV optimization, a conforming program could see *to_p
|
||
change before the called function returns; see c++/19317.
|
||
When optimizing, the return_slot pass marks more functions
|
||
as safe after we have escape info. */
|
||
use_target = false;
|
||
else
|
||
use_target = true;
|
||
|
||
if (use_target)
|
||
{
|
||
CALL_EXPR_RETURN_SLOT_OPT (*from_p) = 1;
|
||
lang_hooks.mark_addressable (*to_p);
|
||
}
|
||
}
|
||
|
||
ret = GS_UNHANDLED;
|
||
break;
|
||
|
||
/* If we're initializing from a container, push the initialization
|
||
inside it. */
|
||
case CLEANUP_POINT_EXPR:
|
||
case BIND_EXPR:
|
||
case STATEMENT_LIST:
|
||
{
|
||
tree wrap = *from_p;
|
||
tree t;
|
||
|
||
ret = gimplify_expr (to_p, pre_p, post_p,
|
||
is_gimple_min_lval, fb_lvalue);
|
||
if (ret != GS_ERROR)
|
||
ret = GS_OK;
|
||
|
||
t = voidify_wrapper_expr (wrap, *expr_p);
|
||
gcc_assert (t == *expr_p);
|
||
|
||
if (want_value)
|
||
{
|
||
gimplify_and_add (wrap, pre_p);
|
||
*expr_p = unshare_expr (*to_p);
|
||
}
|
||
else
|
||
*expr_p = wrap;
|
||
return GS_OK;
|
||
}
|
||
|
||
default:
|
||
ret = GS_UNHANDLED;
|
||
break;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Promote partial stores to COMPLEX variables to total stores. *EXPR_P is
|
||
a MODIFY_EXPR with a lhs of a REAL/IMAGPART_EXPR of a variable with
|
||
DECL_COMPLEX_GIMPLE_REG_P set. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_modify_expr_complex_part (tree *expr_p, tree *pre_p, bool want_value)
|
||
{
|
||
enum tree_code code, ocode;
|
||
tree lhs, rhs, new_rhs, other, realpart, imagpart;
|
||
|
||
lhs = TREE_OPERAND (*expr_p, 0);
|
||
rhs = TREE_OPERAND (*expr_p, 1);
|
||
code = TREE_CODE (lhs);
|
||
lhs = TREE_OPERAND (lhs, 0);
|
||
|
||
ocode = code == REALPART_EXPR ? IMAGPART_EXPR : REALPART_EXPR;
|
||
other = build1 (ocode, TREE_TYPE (rhs), lhs);
|
||
other = get_formal_tmp_var (other, pre_p);
|
||
|
||
realpart = code == REALPART_EXPR ? rhs : other;
|
||
imagpart = code == REALPART_EXPR ? other : rhs;
|
||
|
||
if (TREE_CONSTANT (realpart) && TREE_CONSTANT (imagpart))
|
||
new_rhs = build_complex (TREE_TYPE (lhs), realpart, imagpart);
|
||
else
|
||
new_rhs = build2 (COMPLEX_EXPR, TREE_TYPE (lhs), realpart, imagpart);
|
||
|
||
TREE_OPERAND (*expr_p, 0) = lhs;
|
||
TREE_OPERAND (*expr_p, 1) = new_rhs;
|
||
|
||
if (want_value)
|
||
{
|
||
append_to_statement_list (*expr_p, pre_p);
|
||
*expr_p = rhs;
|
||
}
|
||
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Gimplify the MODIFY_EXPR node pointed to by EXPR_P.
|
||
|
||
modify_expr
|
||
: varname '=' rhs
|
||
| '*' ID '=' rhs
|
||
|
||
PRE_P points to the list where side effects that must happen before
|
||
*EXPR_P should be stored.
|
||
|
||
POST_P points to the list where side effects that must happen after
|
||
*EXPR_P should be stored.
|
||
|
||
WANT_VALUE is nonzero iff we want to use the value of this expression
|
||
in another expression. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_modify_expr (tree *expr_p, tree *pre_p, tree *post_p, bool want_value)
|
||
{
|
||
tree *from_p = &TREE_OPERAND (*expr_p, 1);
|
||
tree *to_p = &TREE_OPERAND (*expr_p, 0);
|
||
enum gimplify_status ret = GS_UNHANDLED;
|
||
|
||
gcc_assert (TREE_CODE (*expr_p) == MODIFY_EXPR
|
||
|| TREE_CODE (*expr_p) == INIT_EXPR);
|
||
|
||
/* See if any simplifications can be done based on what the RHS is. */
|
||
ret = gimplify_modify_expr_rhs (expr_p, from_p, to_p, pre_p, post_p,
|
||
want_value);
|
||
if (ret != GS_UNHANDLED)
|
||
return ret;
|
||
|
||
/* For zero sized types only gimplify the left hand side and right hand
|
||
side as statements and throw away the assignment. Do this after
|
||
gimplify_modify_expr_rhs so we handle TARGET_EXPRs of addressable
|
||
types properly. */
|
||
if (zero_sized_type (TREE_TYPE (*from_p)))
|
||
{
|
||
gimplify_stmt (from_p);
|
||
gimplify_stmt (to_p);
|
||
append_to_statement_list (*from_p, pre_p);
|
||
append_to_statement_list (*to_p, pre_p);
|
||
*expr_p = NULL_TREE;
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* If the value being copied is of variable width, compute the length
|
||
of the copy into a WITH_SIZE_EXPR. Note that we need to do this
|
||
before gimplifying any of the operands so that we can resolve any
|
||
PLACEHOLDER_EXPRs in the size. Also note that the RTL expander uses
|
||
the size of the expression to be copied, not of the destination, so
|
||
that is what we must here. */
|
||
maybe_with_size_expr (from_p);
|
||
|
||
ret = gimplify_expr (to_p, pre_p, post_p, is_gimple_lvalue, fb_lvalue);
|
||
if (ret == GS_ERROR)
|
||
return ret;
|
||
|
||
ret = gimplify_expr (from_p, pre_p, post_p,
|
||
rhs_predicate_for (*to_p), fb_rvalue);
|
||
if (ret == GS_ERROR)
|
||
return ret;
|
||
|
||
/* Now see if the above changed *from_p to something we handle specially. */
|
||
ret = gimplify_modify_expr_rhs (expr_p, from_p, to_p, pre_p, post_p,
|
||
want_value);
|
||
if (ret != GS_UNHANDLED)
|
||
return ret;
|
||
|
||
/* If we've got a variable sized assignment between two lvalues (i.e. does
|
||
not involve a call), then we can make things a bit more straightforward
|
||
by converting the assignment to memcpy or memset. */
|
||
if (TREE_CODE (*from_p) == WITH_SIZE_EXPR)
|
||
{
|
||
tree from = TREE_OPERAND (*from_p, 0);
|
||
tree size = TREE_OPERAND (*from_p, 1);
|
||
|
||
if (TREE_CODE (from) == CONSTRUCTOR)
|
||
return gimplify_modify_expr_to_memset (expr_p, size, want_value);
|
||
if (is_gimple_addressable (from))
|
||
{
|
||
*from_p = from;
|
||
return gimplify_modify_expr_to_memcpy (expr_p, size, want_value);
|
||
}
|
||
}
|
||
|
||
/* Transform partial stores to non-addressable complex variables into
|
||
total stores. This allows us to use real instead of virtual operands
|
||
for these variables, which improves optimization. */
|
||
if ((TREE_CODE (*to_p) == REALPART_EXPR
|
||
|| TREE_CODE (*to_p) == IMAGPART_EXPR)
|
||
&& is_gimple_reg (TREE_OPERAND (*to_p, 0)))
|
||
return gimplify_modify_expr_complex_part (expr_p, pre_p, want_value);
|
||
|
||
if (gimplify_ctxp->into_ssa && is_gimple_reg (*to_p))
|
||
{
|
||
/* If we've somehow already got an SSA_NAME on the LHS, then
|
||
we're probably modified it twice. Not good. */
|
||
gcc_assert (TREE_CODE (*to_p) != SSA_NAME);
|
||
*to_p = make_ssa_name (*to_p, *expr_p);
|
||
}
|
||
|
||
if (want_value)
|
||
{
|
||
append_to_statement_list (*expr_p, pre_p);
|
||
*expr_p = *to_p;
|
||
return GS_OK;
|
||
}
|
||
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Gimplify a comparison between two variable-sized objects. Do this
|
||
with a call to BUILT_IN_MEMCMP. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_variable_sized_compare (tree *expr_p)
|
||
{
|
||
tree op0 = TREE_OPERAND (*expr_p, 0);
|
||
tree op1 = TREE_OPERAND (*expr_p, 1);
|
||
tree args, t, dest;
|
||
|
||
t = TYPE_SIZE_UNIT (TREE_TYPE (op0));
|
||
t = unshare_expr (t);
|
||
t = SUBSTITUTE_PLACEHOLDER_IN_EXPR (t, op0);
|
||
args = tree_cons (NULL, t, NULL);
|
||
t = build_fold_addr_expr (op1);
|
||
args = tree_cons (NULL, t, args);
|
||
dest = build_fold_addr_expr (op0);
|
||
args = tree_cons (NULL, dest, args);
|
||
t = implicit_built_in_decls[BUILT_IN_MEMCMP];
|
||
t = build_function_call_expr (t, args);
|
||
*expr_p
|
||
= build2 (TREE_CODE (*expr_p), TREE_TYPE (*expr_p), t, integer_zero_node);
|
||
|
||
return GS_OK;
|
||
}
|
||
|
||
/* Gimplify a comparison between two aggregate objects of integral scalar
|
||
mode as a comparison between the bitwise equivalent scalar values. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_scalar_mode_aggregate_compare (tree *expr_p)
|
||
{
|
||
tree op0 = TREE_OPERAND (*expr_p, 0);
|
||
tree op1 = TREE_OPERAND (*expr_p, 1);
|
||
|
||
tree type = TREE_TYPE (op0);
|
||
tree scalar_type = lang_hooks.types.type_for_mode (TYPE_MODE (type), 1);
|
||
|
||
op0 = fold_build1 (VIEW_CONVERT_EXPR, scalar_type, op0);
|
||
op1 = fold_build1 (VIEW_CONVERT_EXPR, scalar_type, op1);
|
||
|
||
*expr_p
|
||
= fold_build2 (TREE_CODE (*expr_p), TREE_TYPE (*expr_p), op0, op1);
|
||
|
||
return GS_OK;
|
||
}
|
||
|
||
/* Gimplify TRUTH_ANDIF_EXPR and TRUTH_ORIF_EXPR expressions. EXPR_P
|
||
points to the expression to gimplify.
|
||
|
||
Expressions of the form 'a && b' are gimplified to:
|
||
|
||
a && b ? true : false
|
||
|
||
gimplify_cond_expr will do the rest.
|
||
|
||
PRE_P points to the list where side effects that must happen before
|
||
*EXPR_P should be stored. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_boolean_expr (tree *expr_p)
|
||
{
|
||
/* Preserve the original type of the expression. */
|
||
tree type = TREE_TYPE (*expr_p);
|
||
|
||
*expr_p = build3 (COND_EXPR, type, *expr_p,
|
||
fold_convert (type, boolean_true_node),
|
||
fold_convert (type, boolean_false_node));
|
||
|
||
return GS_OK;
|
||
}
|
||
|
||
/* Gimplifies an expression sequence. This function gimplifies each
|
||
expression and re-writes the original expression with the last
|
||
expression of the sequence in GIMPLE form.
|
||
|
||
PRE_P points to the list where the side effects for all the
|
||
expressions in the sequence will be emitted.
|
||
|
||
WANT_VALUE is true when the result of the last COMPOUND_EXPR is used. */
|
||
/* ??? Should rearrange to share the pre-queue with all the indirect
|
||
invocations of gimplify_expr. Would probably save on creations
|
||
of statement_list nodes. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_compound_expr (tree *expr_p, tree *pre_p, bool want_value)
|
||
{
|
||
tree t = *expr_p;
|
||
|
||
do
|
||
{
|
||
tree *sub_p = &TREE_OPERAND (t, 0);
|
||
|
||
if (TREE_CODE (*sub_p) == COMPOUND_EXPR)
|
||
gimplify_compound_expr (sub_p, pre_p, false);
|
||
else
|
||
gimplify_stmt (sub_p);
|
||
append_to_statement_list (*sub_p, pre_p);
|
||
|
||
t = TREE_OPERAND (t, 1);
|
||
}
|
||
while (TREE_CODE (t) == COMPOUND_EXPR);
|
||
|
||
*expr_p = t;
|
||
if (want_value)
|
||
return GS_OK;
|
||
else
|
||
{
|
||
gimplify_stmt (expr_p);
|
||
return GS_ALL_DONE;
|
||
}
|
||
}
|
||
|
||
/* Gimplifies a statement list. These may be created either by an
|
||
enlightened front-end, or by shortcut_cond_expr. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_statement_list (tree *expr_p, tree *pre_p)
|
||
{
|
||
tree temp = voidify_wrapper_expr (*expr_p, NULL);
|
||
|
||
tree_stmt_iterator i = tsi_start (*expr_p);
|
||
|
||
while (!tsi_end_p (i))
|
||
{
|
||
tree t;
|
||
|
||
gimplify_stmt (tsi_stmt_ptr (i));
|
||
|
||
t = tsi_stmt (i);
|
||
if (t == NULL)
|
||
tsi_delink (&i);
|
||
else if (TREE_CODE (t) == STATEMENT_LIST)
|
||
{
|
||
tsi_link_before (&i, t, TSI_SAME_STMT);
|
||
tsi_delink (&i);
|
||
}
|
||
else
|
||
tsi_next (&i);
|
||
}
|
||
|
||
if (temp)
|
||
{
|
||
append_to_statement_list (*expr_p, pre_p);
|
||
*expr_p = temp;
|
||
return GS_OK;
|
||
}
|
||
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Gimplify a SAVE_EXPR node. EXPR_P points to the expression to
|
||
gimplify. After gimplification, EXPR_P will point to a new temporary
|
||
that holds the original value of the SAVE_EXPR node.
|
||
|
||
PRE_P points to the list where side effects that must happen before
|
||
*EXPR_P should be stored. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_save_expr (tree *expr_p, tree *pre_p, tree *post_p)
|
||
{
|
||
enum gimplify_status ret = GS_ALL_DONE;
|
||
tree val;
|
||
|
||
gcc_assert (TREE_CODE (*expr_p) == SAVE_EXPR);
|
||
val = TREE_OPERAND (*expr_p, 0);
|
||
|
||
/* If the SAVE_EXPR has not been resolved, then evaluate it once. */
|
||
if (!SAVE_EXPR_RESOLVED_P (*expr_p))
|
||
{
|
||
/* The operand may be a void-valued expression such as SAVE_EXPRs
|
||
generated by the Java frontend for class initialization. It is
|
||
being executed only for its side-effects. */
|
||
if (TREE_TYPE (val) == void_type_node)
|
||
{
|
||
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
|
||
is_gimple_stmt, fb_none);
|
||
append_to_statement_list (TREE_OPERAND (*expr_p, 0), pre_p);
|
||
val = NULL;
|
||
}
|
||
else
|
||
val = get_initialized_tmp_var (val, pre_p, post_p);
|
||
|
||
TREE_OPERAND (*expr_p, 0) = val;
|
||
SAVE_EXPR_RESOLVED_P (*expr_p) = 1;
|
||
}
|
||
|
||
*expr_p = val;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Re-write the ADDR_EXPR node pointed to by EXPR_P
|
||
|
||
unary_expr
|
||
: ...
|
||
| '&' varname
|
||
...
|
||
|
||
PRE_P points to the list where side effects that must happen before
|
||
*EXPR_P should be stored.
|
||
|
||
POST_P points to the list where side effects that must happen after
|
||
*EXPR_P should be stored. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_addr_expr (tree *expr_p, tree *pre_p, tree *post_p)
|
||
{
|
||
tree expr = *expr_p;
|
||
tree op0 = TREE_OPERAND (expr, 0);
|
||
enum gimplify_status ret;
|
||
|
||
switch (TREE_CODE (op0))
|
||
{
|
||
case INDIRECT_REF:
|
||
case MISALIGNED_INDIRECT_REF:
|
||
do_indirect_ref:
|
||
/* Check if we are dealing with an expression of the form '&*ptr'.
|
||
While the front end folds away '&*ptr' into 'ptr', these
|
||
expressions may be generated internally by the compiler (e.g.,
|
||
builtins like __builtin_va_end). */
|
||
/* Caution: the silent array decomposition semantics we allow for
|
||
ADDR_EXPR means we can't always discard the pair. */
|
||
/* Gimplification of the ADDR_EXPR operand may drop
|
||
cv-qualification conversions, so make sure we add them if
|
||
needed. */
|
||
{
|
||
tree op00 = TREE_OPERAND (op0, 0);
|
||
tree t_expr = TREE_TYPE (expr);
|
||
tree t_op00 = TREE_TYPE (op00);
|
||
|
||
if (!lang_hooks.types_compatible_p (t_expr, t_op00))
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
tree t_op0 = TREE_TYPE (op0);
|
||
gcc_assert (POINTER_TYPE_P (t_expr)
|
||
&& cpt_same_type (TREE_CODE (t_op0) == ARRAY_TYPE
|
||
? TREE_TYPE (t_op0) : t_op0,
|
||
TREE_TYPE (t_expr))
|
||
&& POINTER_TYPE_P (t_op00)
|
||
&& cpt_same_type (t_op0, TREE_TYPE (t_op00)));
|
||
#endif
|
||
op00 = fold_convert (TREE_TYPE (expr), op00);
|
||
}
|
||
*expr_p = op00;
|
||
ret = GS_OK;
|
||
}
|
||
break;
|
||
|
||
case VIEW_CONVERT_EXPR:
|
||
/* Take the address of our operand and then convert it to the type of
|
||
this ADDR_EXPR.
|
||
|
||
??? The interactions of VIEW_CONVERT_EXPR and aliasing is not at
|
||
all clear. The impact of this transformation is even less clear. */
|
||
|
||
/* If the operand is a useless conversion, look through it. Doing so
|
||
guarantees that the ADDR_EXPR and its operand will remain of the
|
||
same type. */
|
||
if (tree_ssa_useless_type_conversion (TREE_OPERAND (op0, 0)))
|
||
op0 = TREE_OPERAND (op0, 0);
|
||
|
||
*expr_p = fold_convert (TREE_TYPE (expr),
|
||
build_fold_addr_expr (TREE_OPERAND (op0, 0)));
|
||
ret = GS_OK;
|
||
break;
|
||
|
||
default:
|
||
/* We use fb_either here because the C frontend sometimes takes
|
||
the address of a call that returns a struct; see
|
||
gcc.dg/c99-array-lval-1.c. The gimplifier will correctly make
|
||
the implied temporary explicit. */
|
||
ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, post_p,
|
||
is_gimple_addressable, fb_either);
|
||
if (ret != GS_ERROR)
|
||
{
|
||
op0 = TREE_OPERAND (expr, 0);
|
||
|
||
/* For various reasons, the gimplification of the expression
|
||
may have made a new INDIRECT_REF. */
|
||
if (TREE_CODE (op0) == INDIRECT_REF)
|
||
goto do_indirect_ref;
|
||
|
||
/* Make sure TREE_INVARIANT, TREE_CONSTANT, and TREE_SIDE_EFFECTS
|
||
is set properly. */
|
||
recompute_tree_invariant_for_addr_expr (expr);
|
||
|
||
/* Mark the RHS addressable. */
|
||
lang_hooks.mark_addressable (TREE_OPERAND (expr, 0));
|
||
}
|
||
break;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Gimplify the operands of an ASM_EXPR. Input operands should be a gimple
|
||
value; output operands should be a gimple lvalue. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_asm_expr (tree *expr_p, tree *pre_p, tree *post_p)
|
||
{
|
||
tree expr = *expr_p;
|
||
int noutputs = list_length (ASM_OUTPUTS (expr));
|
||
const char **oconstraints
|
||
= (const char **) alloca ((noutputs) * sizeof (const char *));
|
||
int i;
|
||
tree link;
|
||
const char *constraint;
|
||
bool allows_mem, allows_reg, is_inout;
|
||
enum gimplify_status ret, tret;
|
||
|
||
ret = GS_ALL_DONE;
|
||
for (i = 0, link = ASM_OUTPUTS (expr); link; ++i, link = TREE_CHAIN (link))
|
||
{
|
||
size_t constraint_len;
|
||
oconstraints[i] = constraint
|
||
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
||
constraint_len = strlen (constraint);
|
||
if (constraint_len == 0)
|
||
continue;
|
||
|
||
parse_output_constraint (&constraint, i, 0, 0,
|
||
&allows_mem, &allows_reg, &is_inout);
|
||
|
||
if (!allows_reg && allows_mem)
|
||
lang_hooks.mark_addressable (TREE_VALUE (link));
|
||
|
||
tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p,
|
||
is_inout ? is_gimple_min_lval : is_gimple_lvalue,
|
||
fb_lvalue | fb_mayfail);
|
||
if (tret == GS_ERROR)
|
||
{
|
||
error ("invalid lvalue in asm output %d", i);
|
||
ret = tret;
|
||
}
|
||
|
||
if (is_inout)
|
||
{
|
||
/* An input/output operand. To give the optimizers more
|
||
flexibility, split it into separate input and output
|
||
operands. */
|
||
tree input;
|
||
char buf[10];
|
||
|
||
/* Turn the in/out constraint into an output constraint. */
|
||
char *p = xstrdup (constraint);
|
||
p[0] = '=';
|
||
TREE_VALUE (TREE_PURPOSE (link)) = build_string (constraint_len, p);
|
||
|
||
/* And add a matching input constraint. */
|
||
if (allows_reg)
|
||
{
|
||
sprintf (buf, "%d", i);
|
||
|
||
/* If there are multiple alternatives in the constraint,
|
||
handle each of them individually. Those that allow register
|
||
will be replaced with operand number, the others will stay
|
||
unchanged. */
|
||
if (strchr (p, ',') != NULL)
|
||
{
|
||
size_t len = 0, buflen = strlen (buf);
|
||
char *beg, *end, *str, *dst;
|
||
|
||
for (beg = p + 1;;)
|
||
{
|
||
end = strchr (beg, ',');
|
||
if (end == NULL)
|
||
end = strchr (beg, '\0');
|
||
if ((size_t) (end - beg) < buflen)
|
||
len += buflen + 1;
|
||
else
|
||
len += end - beg + 1;
|
||
if (*end)
|
||
beg = end + 1;
|
||
else
|
||
break;
|
||
}
|
||
|
||
str = (char *) alloca (len);
|
||
for (beg = p + 1, dst = str;;)
|
||
{
|
||
const char *tem;
|
||
bool mem_p, reg_p, inout_p;
|
||
|
||
end = strchr (beg, ',');
|
||
if (end)
|
||
*end = '\0';
|
||
beg[-1] = '=';
|
||
tem = beg - 1;
|
||
parse_output_constraint (&tem, i, 0, 0,
|
||
&mem_p, ®_p, &inout_p);
|
||
if (dst != str)
|
||
*dst++ = ',';
|
||
if (reg_p)
|
||
{
|
||
memcpy (dst, buf, buflen);
|
||
dst += buflen;
|
||
}
|
||
else
|
||
{
|
||
if (end)
|
||
len = end - beg;
|
||
else
|
||
len = strlen (beg);
|
||
memcpy (dst, beg, len);
|
||
dst += len;
|
||
}
|
||
if (end)
|
||
beg = end + 1;
|
||
else
|
||
break;
|
||
}
|
||
*dst = '\0';
|
||
input = build_string (dst - str, str);
|
||
}
|
||
else
|
||
input = build_string (strlen (buf), buf);
|
||
}
|
||
else
|
||
input = build_string (constraint_len - 1, constraint + 1);
|
||
|
||
free (p);
|
||
|
||
input = build_tree_list (build_tree_list (NULL_TREE, input),
|
||
unshare_expr (TREE_VALUE (link)));
|
||
ASM_INPUTS (expr) = chainon (ASM_INPUTS (expr), input);
|
||
}
|
||
}
|
||
|
||
for (link = ASM_INPUTS (expr); link; ++i, link = TREE_CHAIN (link))
|
||
{
|
||
constraint
|
||
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
||
parse_input_constraint (&constraint, 0, 0, noutputs, 0,
|
||
oconstraints, &allows_mem, &allows_reg);
|
||
|
||
/* If we can't make copies, we can only accept memory. */
|
||
if (TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (link))))
|
||
{
|
||
if (allows_mem)
|
||
allows_reg = 0;
|
||
else
|
||
{
|
||
error ("impossible constraint in %<asm%>");
|
||
error ("non-memory input %d must stay in memory", i);
|
||
return GS_ERROR;
|
||
}
|
||
}
|
||
|
||
/* If the operand is a memory input, it should be an lvalue. */
|
||
if (!allows_reg && allows_mem)
|
||
{
|
||
tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p,
|
||
is_gimple_lvalue, fb_lvalue | fb_mayfail);
|
||
lang_hooks.mark_addressable (TREE_VALUE (link));
|
||
if (tret == GS_ERROR)
|
||
{
|
||
error ("memory input %d is not directly addressable", i);
|
||
ret = tret;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p,
|
||
is_gimple_asm_val, fb_rvalue);
|
||
if (tret == GS_ERROR)
|
||
ret = tret;
|
||
}
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Gimplify a CLEANUP_POINT_EXPR. Currently this works by adding
|
||
WITH_CLEANUP_EXPRs to the prequeue as we encounter cleanups while
|
||
gimplifying the body, and converting them to TRY_FINALLY_EXPRs when we
|
||
return to this function.
|
||
|
||
FIXME should we complexify the prequeue handling instead? Or use flags
|
||
for all the cleanups and let the optimizer tighten them up? The current
|
||
code seems pretty fragile; it will break on a cleanup within any
|
||
non-conditional nesting. But any such nesting would be broken, anyway;
|
||
we can't write a TRY_FINALLY_EXPR that starts inside a nesting construct
|
||
and continues out of it. We can do that at the RTL level, though, so
|
||
having an optimizer to tighten up try/finally regions would be a Good
|
||
Thing. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_cleanup_point_expr (tree *expr_p, tree *pre_p)
|
||
{
|
||
tree_stmt_iterator iter;
|
||
tree body;
|
||
|
||
tree temp = voidify_wrapper_expr (*expr_p, NULL);
|
||
|
||
/* We only care about the number of conditions between the innermost
|
||
CLEANUP_POINT_EXPR and the cleanup. So save and reset the count and
|
||
any cleanups collected outside the CLEANUP_POINT_EXPR. */
|
||
int old_conds = gimplify_ctxp->conditions;
|
||
tree old_cleanups = gimplify_ctxp->conditional_cleanups;
|
||
gimplify_ctxp->conditions = 0;
|
||
gimplify_ctxp->conditional_cleanups = NULL_TREE;
|
||
|
||
body = TREE_OPERAND (*expr_p, 0);
|
||
gimplify_to_stmt_list (&body);
|
||
|
||
gimplify_ctxp->conditions = old_conds;
|
||
gimplify_ctxp->conditional_cleanups = old_cleanups;
|
||
|
||
for (iter = tsi_start (body); !tsi_end_p (iter); )
|
||
{
|
||
tree *wce_p = tsi_stmt_ptr (iter);
|
||
tree wce = *wce_p;
|
||
|
||
if (TREE_CODE (wce) == WITH_CLEANUP_EXPR)
|
||
{
|
||
if (tsi_one_before_end_p (iter))
|
||
{
|
||
tsi_link_before (&iter, TREE_OPERAND (wce, 0), TSI_SAME_STMT);
|
||
tsi_delink (&iter);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
tree sl, tfe;
|
||
enum tree_code code;
|
||
|
||
if (CLEANUP_EH_ONLY (wce))
|
||
code = TRY_CATCH_EXPR;
|
||
else
|
||
code = TRY_FINALLY_EXPR;
|
||
|
||
sl = tsi_split_statement_list_after (&iter);
|
||
tfe = build2 (code, void_type_node, sl, NULL_TREE);
|
||
append_to_statement_list (TREE_OPERAND (wce, 0),
|
||
&TREE_OPERAND (tfe, 1));
|
||
*wce_p = tfe;
|
||
iter = tsi_start (sl);
|
||
}
|
||
}
|
||
else
|
||
tsi_next (&iter);
|
||
}
|
||
|
||
if (temp)
|
||
{
|
||
*expr_p = temp;
|
||
append_to_statement_list (body, pre_p);
|
||
return GS_OK;
|
||
}
|
||
else
|
||
{
|
||
*expr_p = body;
|
||
return GS_ALL_DONE;
|
||
}
|
||
}
|
||
|
||
/* Insert a cleanup marker for gimplify_cleanup_point_expr. CLEANUP
|
||
is the cleanup action required. */
|
||
|
||
static void
|
||
gimple_push_cleanup (tree var, tree cleanup, bool eh_only, tree *pre_p)
|
||
{
|
||
tree wce;
|
||
|
||
/* Errors can result in improperly nested cleanups. Which results in
|
||
confusion when trying to resolve the WITH_CLEANUP_EXPR. */
|
||
if (errorcount || sorrycount)
|
||
return;
|
||
|
||
if (gimple_conditional_context ())
|
||
{
|
||
/* If we're in a conditional context, this is more complex. We only
|
||
want to run the cleanup if we actually ran the initialization that
|
||
necessitates it, but we want to run it after the end of the
|
||
conditional context. So we wrap the try/finally around the
|
||
condition and use a flag to determine whether or not to actually
|
||
run the destructor. Thus
|
||
|
||
test ? f(A()) : 0
|
||
|
||
becomes (approximately)
|
||
|
||
flag = 0;
|
||
try {
|
||
if (test) { A::A(temp); flag = 1; val = f(temp); }
|
||
else { val = 0; }
|
||
} finally {
|
||
if (flag) A::~A(temp);
|
||
}
|
||
val
|
||
*/
|
||
|
||
tree flag = create_tmp_var (boolean_type_node, "cleanup");
|
||
tree ffalse = build2 (MODIFY_EXPR, void_type_node, flag,
|
||
boolean_false_node);
|
||
tree ftrue = build2 (MODIFY_EXPR, void_type_node, flag,
|
||
boolean_true_node);
|
||
cleanup = build3 (COND_EXPR, void_type_node, flag, cleanup, NULL);
|
||
wce = build1 (WITH_CLEANUP_EXPR, void_type_node, cleanup);
|
||
append_to_statement_list (ffalse, &gimplify_ctxp->conditional_cleanups);
|
||
append_to_statement_list (wce, &gimplify_ctxp->conditional_cleanups);
|
||
append_to_statement_list (ftrue, pre_p);
|
||
|
||
/* Because of this manipulation, and the EH edges that jump
|
||
threading cannot redirect, the temporary (VAR) will appear
|
||
to be used uninitialized. Don't warn. */
|
||
TREE_NO_WARNING (var) = 1;
|
||
}
|
||
else
|
||
{
|
||
wce = build1 (WITH_CLEANUP_EXPR, void_type_node, cleanup);
|
||
CLEANUP_EH_ONLY (wce) = eh_only;
|
||
append_to_statement_list (wce, pre_p);
|
||
}
|
||
|
||
gimplify_stmt (&TREE_OPERAND (wce, 0));
|
||
}
|
||
|
||
/* Gimplify a TARGET_EXPR which doesn't appear on the rhs of an INIT_EXPR. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_target_expr (tree *expr_p, tree *pre_p, tree *post_p)
|
||
{
|
||
tree targ = *expr_p;
|
||
tree temp = TARGET_EXPR_SLOT (targ);
|
||
tree init = TARGET_EXPR_INITIAL (targ);
|
||
enum gimplify_status ret;
|
||
|
||
if (init)
|
||
{
|
||
/* TARGET_EXPR temps aren't part of the enclosing block, so add it
|
||
to the temps list. */
|
||
gimple_add_tmp_var (temp);
|
||
|
||
/* If TARGET_EXPR_INITIAL is void, then the mere evaluation of the
|
||
expression is supposed to initialize the slot. */
|
||
if (VOID_TYPE_P (TREE_TYPE (init)))
|
||
ret = gimplify_expr (&init, pre_p, post_p, is_gimple_stmt, fb_none);
|
||
else
|
||
{
|
||
init = build2 (INIT_EXPR, void_type_node, temp, init);
|
||
ret = gimplify_expr (&init, pre_p, post_p, is_gimple_stmt,
|
||
fb_none);
|
||
}
|
||
if (ret == GS_ERROR)
|
||
{
|
||
/* PR c++/28266 Make sure this is expanded only once. */
|
||
TARGET_EXPR_INITIAL (targ) = NULL_TREE;
|
||
return GS_ERROR;
|
||
}
|
||
append_to_statement_list (init, pre_p);
|
||
|
||
/* If needed, push the cleanup for the temp. */
|
||
if (TARGET_EXPR_CLEANUP (targ))
|
||
{
|
||
gimplify_stmt (&TARGET_EXPR_CLEANUP (targ));
|
||
gimple_push_cleanup (temp, TARGET_EXPR_CLEANUP (targ),
|
||
CLEANUP_EH_ONLY (targ), pre_p);
|
||
}
|
||
|
||
/* Only expand this once. */
|
||
TREE_OPERAND (targ, 3) = init;
|
||
TARGET_EXPR_INITIAL (targ) = NULL_TREE;
|
||
}
|
||
else
|
||
/* We should have expanded this before. */
|
||
gcc_assert (DECL_SEEN_IN_BIND_EXPR_P (temp));
|
||
|
||
*expr_p = temp;
|
||
return GS_OK;
|
||
}
|
||
|
||
/* Gimplification of expression trees. */
|
||
|
||
/* Gimplify an expression which appears at statement context; usually, this
|
||
means replacing it with a suitably gimple STATEMENT_LIST. */
|
||
|
||
void
|
||
gimplify_stmt (tree *stmt_p)
|
||
{
|
||
gimplify_expr (stmt_p, NULL, NULL, is_gimple_stmt, fb_none);
|
||
}
|
||
|
||
/* Similarly, but force the result to be a STATEMENT_LIST. */
|
||
|
||
void
|
||
gimplify_to_stmt_list (tree *stmt_p)
|
||
{
|
||
gimplify_stmt (stmt_p);
|
||
if (!*stmt_p)
|
||
*stmt_p = alloc_stmt_list ();
|
||
else if (TREE_CODE (*stmt_p) != STATEMENT_LIST)
|
||
{
|
||
tree t = *stmt_p;
|
||
*stmt_p = alloc_stmt_list ();
|
||
append_to_statement_list (t, stmt_p);
|
||
}
|
||
}
|
||
|
||
|
||
/* Add FIRSTPRIVATE entries for DECL in the OpenMP the surrounding parallels
|
||
to CTX. If entries already exist, force them to be some flavor of private.
|
||
If there is no enclosing parallel, do nothing. */
|
||
|
||
void
|
||
omp_firstprivatize_variable (struct gimplify_omp_ctx *ctx, tree decl)
|
||
{
|
||
splay_tree_node n;
|
||
|
||
if (decl == NULL || !DECL_P (decl))
|
||
return;
|
||
|
||
do
|
||
{
|
||
n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl);
|
||
if (n != NULL)
|
||
{
|
||
if (n->value & GOVD_SHARED)
|
||
n->value = GOVD_FIRSTPRIVATE | (n->value & GOVD_SEEN);
|
||
else
|
||
return;
|
||
}
|
||
else if (ctx->is_parallel)
|
||
omp_add_variable (ctx, decl, GOVD_FIRSTPRIVATE);
|
||
|
||
ctx = ctx->outer_context;
|
||
}
|
||
while (ctx);
|
||
}
|
||
|
||
/* Similarly for each of the type sizes of TYPE. */
|
||
|
||
static void
|
||
omp_firstprivatize_type_sizes (struct gimplify_omp_ctx *ctx, tree type)
|
||
{
|
||
if (type == NULL || type == error_mark_node)
|
||
return;
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
if (pointer_set_insert (ctx->privatized_types, type))
|
||
return;
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case INTEGER_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case REAL_TYPE:
|
||
omp_firstprivatize_variable (ctx, TYPE_MIN_VALUE (type));
|
||
omp_firstprivatize_variable (ctx, TYPE_MAX_VALUE (type));
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
omp_firstprivatize_type_sizes (ctx, TREE_TYPE (type));
|
||
omp_firstprivatize_type_sizes (ctx, TYPE_DOMAIN (type));
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
{
|
||
tree field;
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
if (TREE_CODE (field) == FIELD_DECL)
|
||
{
|
||
omp_firstprivatize_variable (ctx, DECL_FIELD_OFFSET (field));
|
||
omp_firstprivatize_type_sizes (ctx, TREE_TYPE (field));
|
||
}
|
||
}
|
||
break;
|
||
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
omp_firstprivatize_type_sizes (ctx, TREE_TYPE (type));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
omp_firstprivatize_variable (ctx, TYPE_SIZE (type));
|
||
omp_firstprivatize_variable (ctx, TYPE_SIZE_UNIT (type));
|
||
lang_hooks.types.omp_firstprivatize_type_sizes (ctx, type);
|
||
}
|
||
|
||
/* Add an entry for DECL in the OpenMP context CTX with FLAGS. */
|
||
|
||
static void
|
||
omp_add_variable (struct gimplify_omp_ctx *ctx, tree decl, unsigned int flags)
|
||
{
|
||
splay_tree_node n;
|
||
unsigned int nflags;
|
||
tree t;
|
||
|
||
if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node)
|
||
return;
|
||
|
||
/* Never elide decls whose type has TREE_ADDRESSABLE set. This means
|
||
there are constructors involved somewhere. */
|
||
if (TREE_ADDRESSABLE (TREE_TYPE (decl))
|
||
|| TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl)))
|
||
flags |= GOVD_SEEN;
|
||
|
||
n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl);
|
||
if (n != NULL)
|
||
{
|
||
/* We shouldn't be re-adding the decl with the same data
|
||
sharing class. */
|
||
gcc_assert ((n->value & GOVD_DATA_SHARE_CLASS & flags) == 0);
|
||
/* The only combination of data sharing classes we should see is
|
||
FIRSTPRIVATE and LASTPRIVATE. */
|
||
nflags = n->value | flags;
|
||
gcc_assert ((nflags & GOVD_DATA_SHARE_CLASS)
|
||
== (GOVD_FIRSTPRIVATE | GOVD_LASTPRIVATE));
|
||
n->value = nflags;
|
||
return;
|
||
}
|
||
|
||
/* When adding a variable-sized variable, we have to handle all sorts
|
||
of additional bits of data: the pointer replacement variable, and
|
||
the parameters of the type. */
|
||
if (DECL_SIZE (decl) && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
|
||
{
|
||
/* Add the pointer replacement variable as PRIVATE if the variable
|
||
replacement is private, else FIRSTPRIVATE since we'll need the
|
||
address of the original variable either for SHARED, or for the
|
||
copy into or out of the context. */
|
||
if (!(flags & GOVD_LOCAL))
|
||
{
|
||
nflags = flags & GOVD_PRIVATE ? GOVD_PRIVATE : GOVD_FIRSTPRIVATE;
|
||
nflags |= flags & GOVD_SEEN;
|
||
t = DECL_VALUE_EXPR (decl);
|
||
gcc_assert (TREE_CODE (t) == INDIRECT_REF);
|
||
t = TREE_OPERAND (t, 0);
|
||
gcc_assert (DECL_P (t));
|
||
omp_add_variable (ctx, t, nflags);
|
||
}
|
||
|
||
/* Add all of the variable and type parameters (which should have
|
||
been gimplified to a formal temporary) as FIRSTPRIVATE. */
|
||
omp_firstprivatize_variable (ctx, DECL_SIZE_UNIT (decl));
|
||
omp_firstprivatize_variable (ctx, DECL_SIZE (decl));
|
||
omp_firstprivatize_type_sizes (ctx, TREE_TYPE (decl));
|
||
|
||
/* The variable-sized variable itself is never SHARED, only some form
|
||
of PRIVATE. The sharing would take place via the pointer variable
|
||
which we remapped above. */
|
||
if (flags & GOVD_SHARED)
|
||
flags = GOVD_PRIVATE | GOVD_DEBUG_PRIVATE
|
||
| (flags & (GOVD_SEEN | GOVD_EXPLICIT));
|
||
|
||
/* We're going to make use of the TYPE_SIZE_UNIT at least in the
|
||
alloca statement we generate for the variable, so make sure it
|
||
is available. This isn't automatically needed for the SHARED
|
||
case, since we won't be allocating local storage then.
|
||
For local variables TYPE_SIZE_UNIT might not be gimplified yet,
|
||
in this case omp_notice_variable will be called later
|
||
on when it is gimplified. */
|
||
else if (! (flags & GOVD_LOCAL))
|
||
omp_notice_variable (ctx, TYPE_SIZE_UNIT (TREE_TYPE (decl)), true);
|
||
}
|
||
else if (lang_hooks.decls.omp_privatize_by_reference (decl))
|
||
{
|
||
gcc_assert ((flags & GOVD_LOCAL) == 0);
|
||
omp_firstprivatize_type_sizes (ctx, TREE_TYPE (decl));
|
||
|
||
/* Similar to the direct variable sized case above, we'll need the
|
||
size of references being privatized. */
|
||
if ((flags & GOVD_SHARED) == 0)
|
||
{
|
||
t = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (decl)));
|
||
if (TREE_CODE (t) != INTEGER_CST)
|
||
omp_notice_variable (ctx, t, true);
|
||
}
|
||
}
|
||
|
||
splay_tree_insert (ctx->variables, (splay_tree_key)decl, flags);
|
||
}
|
||
|
||
/* Record the fact that DECL was used within the OpenMP context CTX.
|
||
IN_CODE is true when real code uses DECL, and false when we should
|
||
merely emit default(none) errors. Return true if DECL is going to
|
||
be remapped and thus DECL shouldn't be gimplified into its
|
||
DECL_VALUE_EXPR (if any). */
|
||
|
||
static bool
|
||
omp_notice_variable (struct gimplify_omp_ctx *ctx, tree decl, bool in_code)
|
||
{
|
||
splay_tree_node n;
|
||
unsigned flags = in_code ? GOVD_SEEN : 0;
|
||
bool ret = false, shared;
|
||
|
||
if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node)
|
||
return false;
|
||
|
||
/* Threadprivate variables are predetermined. */
|
||
if (is_global_var (decl))
|
||
{
|
||
if (DECL_THREAD_LOCAL_P (decl))
|
||
return false;
|
||
|
||
if (DECL_HAS_VALUE_EXPR_P (decl))
|
||
{
|
||
tree value = get_base_address (DECL_VALUE_EXPR (decl));
|
||
|
||
if (value && DECL_P (value) && DECL_THREAD_LOCAL_P (value))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl);
|
||
if (n == NULL)
|
||
{
|
||
enum omp_clause_default_kind default_kind, kind;
|
||
|
||
if (!ctx->is_parallel)
|
||
goto do_outer;
|
||
|
||
/* ??? Some compiler-generated variables (like SAVE_EXPRs) could be
|
||
remapped firstprivate instead of shared. To some extent this is
|
||
addressed in omp_firstprivatize_type_sizes, but not effectively. */
|
||
default_kind = ctx->default_kind;
|
||
kind = lang_hooks.decls.omp_predetermined_sharing (decl);
|
||
if (kind != OMP_CLAUSE_DEFAULT_UNSPECIFIED)
|
||
default_kind = kind;
|
||
|
||
switch (default_kind)
|
||
{
|
||
case OMP_CLAUSE_DEFAULT_NONE:
|
||
error ("%qs not specified in enclosing parallel",
|
||
IDENTIFIER_POINTER (DECL_NAME (decl)));
|
||
error ("%Henclosing parallel", &ctx->location);
|
||
/* FALLTHRU */
|
||
case OMP_CLAUSE_DEFAULT_SHARED:
|
||
flags |= GOVD_SHARED;
|
||
break;
|
||
case OMP_CLAUSE_DEFAULT_PRIVATE:
|
||
flags |= GOVD_PRIVATE;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
omp_add_variable (ctx, decl, flags);
|
||
|
||
shared = (flags & GOVD_SHARED) != 0;
|
||
ret = lang_hooks.decls.omp_disregard_value_expr (decl, shared);
|
||
goto do_outer;
|
||
}
|
||
|
||
shared = ((flags | n->value) & GOVD_SHARED) != 0;
|
||
ret = lang_hooks.decls.omp_disregard_value_expr (decl, shared);
|
||
|
||
/* If nothing changed, there's nothing left to do. */
|
||
if ((n->value & flags) == flags)
|
||
return ret;
|
||
flags |= n->value;
|
||
n->value = flags;
|
||
|
||
do_outer:
|
||
/* If the variable is private in the current context, then we don't
|
||
need to propagate anything to an outer context. */
|
||
if (flags & GOVD_PRIVATE)
|
||
return ret;
|
||
if (ctx->outer_context
|
||
&& omp_notice_variable (ctx->outer_context, decl, in_code))
|
||
return true;
|
||
return ret;
|
||
}
|
||
|
||
/* Verify that DECL is private within CTX. If there's specific information
|
||
to the contrary in the innermost scope, generate an error. */
|
||
|
||
static bool
|
||
omp_is_private (struct gimplify_omp_ctx *ctx, tree decl)
|
||
{
|
||
splay_tree_node n;
|
||
|
||
n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl);
|
||
if (n != NULL)
|
||
{
|
||
if (n->value & GOVD_SHARED)
|
||
{
|
||
if (ctx == gimplify_omp_ctxp)
|
||
{
|
||
error ("iteration variable %qs should be private",
|
||
IDENTIFIER_POINTER (DECL_NAME (decl)));
|
||
n->value = GOVD_PRIVATE;
|
||
return true;
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
else if ((n->value & GOVD_EXPLICIT) != 0
|
||
&& (ctx == gimplify_omp_ctxp
|
||
|| (ctx->is_combined_parallel
|
||
&& gimplify_omp_ctxp->outer_context == ctx)))
|
||
{
|
||
if ((n->value & GOVD_FIRSTPRIVATE) != 0)
|
||
error ("iteration variable %qs should not be firstprivate",
|
||
IDENTIFIER_POINTER (DECL_NAME (decl)));
|
||
else if ((n->value & GOVD_REDUCTION) != 0)
|
||
error ("iteration variable %qs should not be reduction",
|
||
IDENTIFIER_POINTER (DECL_NAME (decl)));
|
||
}
|
||
return true;
|
||
}
|
||
|
||
if (ctx->is_parallel)
|
||
return false;
|
||
else if (ctx->outer_context)
|
||
return omp_is_private (ctx->outer_context, decl);
|
||
else
|
||
return !is_global_var (decl);
|
||
}
|
||
|
||
/* Return true if DECL is private within a parallel region
|
||
that binds to the current construct's context or in parallel
|
||
region's REDUCTION clause. */
|
||
|
||
static bool
|
||
omp_check_private (struct gimplify_omp_ctx *ctx, tree decl)
|
||
{
|
||
splay_tree_node n;
|
||
|
||
do
|
||
{
|
||
ctx = ctx->outer_context;
|
||
if (ctx == NULL)
|
||
return !(is_global_var (decl)
|
||
/* References might be private, but might be shared too. */
|
||
|| lang_hooks.decls.omp_privatize_by_reference (decl));
|
||
|
||
n = splay_tree_lookup (ctx->variables, (splay_tree_key) decl);
|
||
if (n != NULL)
|
||
return (n->value & GOVD_SHARED) == 0;
|
||
}
|
||
while (!ctx->is_parallel);
|
||
return false;
|
||
}
|
||
|
||
/* Scan the OpenMP clauses in *LIST_P, installing mappings into a new
|
||
and previous omp contexts. */
|
||
|
||
static void
|
||
gimplify_scan_omp_clauses (tree *list_p, tree *pre_p, bool in_parallel,
|
||
bool in_combined_parallel)
|
||
{
|
||
struct gimplify_omp_ctx *ctx, *outer_ctx;
|
||
tree c;
|
||
|
||
ctx = new_omp_context (in_parallel, in_combined_parallel);
|
||
outer_ctx = ctx->outer_context;
|
||
|
||
while ((c = *list_p) != NULL)
|
||
{
|
||
enum gimplify_status gs;
|
||
bool remove = false;
|
||
bool notice_outer = true;
|
||
const char *check_non_private = NULL;
|
||
unsigned int flags;
|
||
tree decl;
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_PRIVATE:
|
||
flags = GOVD_PRIVATE | GOVD_EXPLICIT;
|
||
notice_outer = false;
|
||
goto do_add;
|
||
case OMP_CLAUSE_SHARED:
|
||
flags = GOVD_SHARED | GOVD_EXPLICIT;
|
||
goto do_add;
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
flags = GOVD_FIRSTPRIVATE | GOVD_EXPLICIT;
|
||
check_non_private = "firstprivate";
|
||
goto do_add;
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
flags = GOVD_LASTPRIVATE | GOVD_SEEN | GOVD_EXPLICIT;
|
||
check_non_private = "lastprivate";
|
||
goto do_add;
|
||
case OMP_CLAUSE_REDUCTION:
|
||
flags = GOVD_REDUCTION | GOVD_SEEN | GOVD_EXPLICIT;
|
||
check_non_private = "reduction";
|
||
goto do_add;
|
||
|
||
do_add:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node)
|
||
{
|
||
remove = true;
|
||
break;
|
||
}
|
||
omp_add_variable (ctx, decl, flags);
|
||
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION
|
||
&& OMP_CLAUSE_REDUCTION_PLACEHOLDER (c))
|
||
{
|
||
omp_add_variable (ctx, OMP_CLAUSE_REDUCTION_PLACEHOLDER (c),
|
||
GOVD_LOCAL | GOVD_SEEN);
|
||
gimplify_omp_ctxp = ctx;
|
||
push_gimplify_context ();
|
||
gimplify_stmt (&OMP_CLAUSE_REDUCTION_INIT (c));
|
||
pop_gimplify_context (OMP_CLAUSE_REDUCTION_INIT (c));
|
||
push_gimplify_context ();
|
||
gimplify_stmt (&OMP_CLAUSE_REDUCTION_MERGE (c));
|
||
pop_gimplify_context (OMP_CLAUSE_REDUCTION_MERGE (c));
|
||
gimplify_omp_ctxp = outer_ctx;
|
||
}
|
||
if (notice_outer)
|
||
goto do_notice;
|
||
break;
|
||
|
||
case OMP_CLAUSE_COPYIN:
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node)
|
||
{
|
||
remove = true;
|
||
break;
|
||
}
|
||
do_notice:
|
||
if (outer_ctx)
|
||
omp_notice_variable (outer_ctx, decl, true);
|
||
if (check_non_private
|
||
&& !in_parallel
|
||
&& omp_check_private (ctx, decl))
|
||
{
|
||
error ("%s variable %qs is private in outer context",
|
||
check_non_private, IDENTIFIER_POINTER (DECL_NAME (decl)));
|
||
remove = true;
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_IF:
|
||
OMP_CLAUSE_OPERAND (c, 0)
|
||
= gimple_boolify (OMP_CLAUSE_OPERAND (c, 0));
|
||
/* Fall through. */
|
||
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
gs = gimplify_expr (&OMP_CLAUSE_OPERAND (c, 0), pre_p, NULL,
|
||
is_gimple_val, fb_rvalue);
|
||
if (gs == GS_ERROR)
|
||
remove = true;
|
||
break;
|
||
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_ORDERED:
|
||
break;
|
||
|
||
case OMP_CLAUSE_DEFAULT:
|
||
ctx->default_kind = OMP_CLAUSE_DEFAULT_KIND (c);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (remove)
|
||
*list_p = OMP_CLAUSE_CHAIN (c);
|
||
else
|
||
list_p = &OMP_CLAUSE_CHAIN (c);
|
||
}
|
||
|
||
gimplify_omp_ctxp = ctx;
|
||
}
|
||
|
||
/* For all variables that were not actually used within the context,
|
||
remove PRIVATE, SHARED, and FIRSTPRIVATE clauses. */
|
||
|
||
static int
|
||
gimplify_adjust_omp_clauses_1 (splay_tree_node n, void *data)
|
||
{
|
||
tree *list_p = (tree *) data;
|
||
tree decl = (tree) n->key;
|
||
unsigned flags = n->value;
|
||
enum omp_clause_code code;
|
||
tree clause;
|
||
bool private_debug;
|
||
|
||
if (flags & (GOVD_EXPLICIT | GOVD_LOCAL))
|
||
return 0;
|
||
if ((flags & GOVD_SEEN) == 0)
|
||
return 0;
|
||
if (flags & GOVD_DEBUG_PRIVATE)
|
||
{
|
||
gcc_assert ((flags & GOVD_DATA_SHARE_CLASS) == GOVD_PRIVATE);
|
||
private_debug = true;
|
||
}
|
||
else
|
||
private_debug
|
||
= lang_hooks.decls.omp_private_debug_clause (decl,
|
||
!!(flags & GOVD_SHARED));
|
||
if (private_debug)
|
||
code = OMP_CLAUSE_PRIVATE;
|
||
else if (flags & GOVD_SHARED)
|
||
{
|
||
if (is_global_var (decl))
|
||
{
|
||
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp->outer_context;
|
||
while (ctx != NULL)
|
||
{
|
||
splay_tree_node on
|
||
= splay_tree_lookup (ctx->variables, (splay_tree_key) decl);
|
||
if (on && (on->value & (GOVD_FIRSTPRIVATE | GOVD_LASTPRIVATE
|
||
| GOVD_PRIVATE | GOVD_REDUCTION)) != 0)
|
||
break;
|
||
ctx = ctx->outer_context;
|
||
}
|
||
if (ctx == NULL)
|
||
return 0;
|
||
}
|
||
code = OMP_CLAUSE_SHARED;
|
||
}
|
||
else if (flags & GOVD_PRIVATE)
|
||
code = OMP_CLAUSE_PRIVATE;
|
||
else if (flags & GOVD_FIRSTPRIVATE)
|
||
code = OMP_CLAUSE_FIRSTPRIVATE;
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
clause = build_omp_clause (code);
|
||
OMP_CLAUSE_DECL (clause) = decl;
|
||
OMP_CLAUSE_CHAIN (clause) = *list_p;
|
||
if (private_debug)
|
||
OMP_CLAUSE_PRIVATE_DEBUG (clause) = 1;
|
||
*list_p = clause;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
gimplify_adjust_omp_clauses (tree *list_p)
|
||
{
|
||
struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp;
|
||
tree c, decl;
|
||
|
||
while ((c = *list_p) != NULL)
|
||
{
|
||
splay_tree_node n;
|
||
bool remove = false;
|
||
|
||
switch (OMP_CLAUSE_CODE (c))
|
||
{
|
||
case OMP_CLAUSE_PRIVATE:
|
||
case OMP_CLAUSE_SHARED:
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
n = splay_tree_lookup (ctx->variables, (splay_tree_key) decl);
|
||
remove = !(n->value & GOVD_SEEN);
|
||
if (! remove)
|
||
{
|
||
bool shared = OMP_CLAUSE_CODE (c) == OMP_CLAUSE_SHARED;
|
||
if ((n->value & GOVD_DEBUG_PRIVATE)
|
||
|| lang_hooks.decls.omp_private_debug_clause (decl, shared))
|
||
{
|
||
gcc_assert ((n->value & GOVD_DEBUG_PRIVATE) == 0
|
||
|| ((n->value & GOVD_DATA_SHARE_CLASS)
|
||
== GOVD_PRIVATE));
|
||
OMP_CLAUSE_SET_CODE (c, OMP_CLAUSE_PRIVATE);
|
||
OMP_CLAUSE_PRIVATE_DEBUG (c) = 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
/* Make sure OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE is set to
|
||
accurately reflect the presence of a FIRSTPRIVATE clause. */
|
||
decl = OMP_CLAUSE_DECL (c);
|
||
n = splay_tree_lookup (ctx->variables, (splay_tree_key) decl);
|
||
OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c)
|
||
= (n->value & GOVD_FIRSTPRIVATE) != 0;
|
||
break;
|
||
|
||
case OMP_CLAUSE_REDUCTION:
|
||
case OMP_CLAUSE_COPYIN:
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
case OMP_CLAUSE_IF:
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_ORDERED:
|
||
case OMP_CLAUSE_DEFAULT:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (remove)
|
||
*list_p = OMP_CLAUSE_CHAIN (c);
|
||
else
|
||
list_p = &OMP_CLAUSE_CHAIN (c);
|
||
}
|
||
|
||
/* Add in any implicit data sharing. */
|
||
splay_tree_foreach (ctx->variables, gimplify_adjust_omp_clauses_1, list_p);
|
||
|
||
gimplify_omp_ctxp = ctx->outer_context;
|
||
delete_omp_context (ctx);
|
||
}
|
||
|
||
/* Gimplify the contents of an OMP_PARALLEL statement. This involves
|
||
gimplification of the body, as well as scanning the body for used
|
||
variables. We need to do this scan now, because variable-sized
|
||
decls will be decomposed during gimplification. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_omp_parallel (tree *expr_p, tree *pre_p)
|
||
{
|
||
tree expr = *expr_p;
|
||
|
||
gimplify_scan_omp_clauses (&OMP_PARALLEL_CLAUSES (expr), pre_p, true,
|
||
OMP_PARALLEL_COMBINED (expr));
|
||
|
||
push_gimplify_context ();
|
||
|
||
gimplify_stmt (&OMP_PARALLEL_BODY (expr));
|
||
|
||
if (TREE_CODE (OMP_PARALLEL_BODY (expr)) == BIND_EXPR)
|
||
pop_gimplify_context (OMP_PARALLEL_BODY (expr));
|
||
else
|
||
pop_gimplify_context (NULL_TREE);
|
||
|
||
gimplify_adjust_omp_clauses (&OMP_PARALLEL_CLAUSES (expr));
|
||
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Gimplify the gross structure of an OMP_FOR statement. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_omp_for (tree *expr_p, tree *pre_p)
|
||
{
|
||
tree for_stmt, decl, t;
|
||
enum gimplify_status ret = 0;
|
||
|
||
for_stmt = *expr_p;
|
||
|
||
gimplify_scan_omp_clauses (&OMP_FOR_CLAUSES (for_stmt), pre_p, false, false);
|
||
|
||
t = OMP_FOR_INIT (for_stmt);
|
||
gcc_assert (TREE_CODE (t) == MODIFY_EXPR);
|
||
decl = TREE_OPERAND (t, 0);
|
||
gcc_assert (DECL_P (decl));
|
||
gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (decl)));
|
||
|
||
/* Make sure the iteration variable is private. */
|
||
if (omp_is_private (gimplify_omp_ctxp, decl))
|
||
omp_notice_variable (gimplify_omp_ctxp, decl, true);
|
||
else
|
||
omp_add_variable (gimplify_omp_ctxp, decl, GOVD_PRIVATE | GOVD_SEEN);
|
||
|
||
ret |= gimplify_expr (&TREE_OPERAND (t, 1), &OMP_FOR_PRE_BODY (for_stmt),
|
||
NULL, is_gimple_val, fb_rvalue);
|
||
|
||
t = OMP_FOR_COND (for_stmt);
|
||
gcc_assert (COMPARISON_CLASS_P (t));
|
||
gcc_assert (TREE_OPERAND (t, 0) == decl);
|
||
|
||
ret |= gimplify_expr (&TREE_OPERAND (t, 1), &OMP_FOR_PRE_BODY (for_stmt),
|
||
NULL, is_gimple_val, fb_rvalue);
|
||
|
||
t = OMP_FOR_INCR (for_stmt);
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case PREINCREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
t = build_int_cst (TREE_TYPE (decl), 1);
|
||
goto build_modify;
|
||
case PREDECREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
t = build_int_cst (TREE_TYPE (decl), -1);
|
||
goto build_modify;
|
||
build_modify:
|
||
t = build2 (PLUS_EXPR, TREE_TYPE (decl), decl, t);
|
||
t = build2 (MODIFY_EXPR, void_type_node, decl, t);
|
||
OMP_FOR_INCR (for_stmt) = t;
|
||
break;
|
||
|
||
case MODIFY_EXPR:
|
||
gcc_assert (TREE_OPERAND (t, 0) == decl);
|
||
t = TREE_OPERAND (t, 1);
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case PLUS_EXPR:
|
||
if (TREE_OPERAND (t, 1) == decl)
|
||
{
|
||
TREE_OPERAND (t, 1) = TREE_OPERAND (t, 0);
|
||
TREE_OPERAND (t, 0) = decl;
|
||
break;
|
||
}
|
||
case MINUS_EXPR:
|
||
gcc_assert (TREE_OPERAND (t, 0) == decl);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
ret |= gimplify_expr (&TREE_OPERAND (t, 1), &OMP_FOR_PRE_BODY (for_stmt),
|
||
NULL, is_gimple_val, fb_rvalue);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
gimplify_to_stmt_list (&OMP_FOR_BODY (for_stmt));
|
||
gimplify_adjust_omp_clauses (&OMP_FOR_CLAUSES (for_stmt));
|
||
|
||
return ret == GS_ALL_DONE ? GS_ALL_DONE : GS_ERROR;
|
||
}
|
||
|
||
/* Gimplify the gross structure of other OpenMP worksharing constructs.
|
||
In particular, OMP_SECTIONS and OMP_SINGLE. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_omp_workshare (tree *expr_p, tree *pre_p)
|
||
{
|
||
tree stmt = *expr_p;
|
||
|
||
gimplify_scan_omp_clauses (&OMP_CLAUSES (stmt), pre_p, false, false);
|
||
gimplify_to_stmt_list (&OMP_BODY (stmt));
|
||
gimplify_adjust_omp_clauses (&OMP_CLAUSES (stmt));
|
||
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* A subroutine of gimplify_omp_atomic. The front end is supposed to have
|
||
stabilized the lhs of the atomic operation as *ADDR. Return true if
|
||
EXPR is this stabilized form. */
|
||
|
||
static bool
|
||
goa_lhs_expr_p (tree expr, tree addr)
|
||
{
|
||
/* Also include casts to other type variants. The C front end is fond
|
||
of adding these for e.g. volatile variables. This is like
|
||
STRIP_TYPE_NOPS but includes the main variant lookup. */
|
||
while ((TREE_CODE (expr) == NOP_EXPR
|
||
|| TREE_CODE (expr) == CONVERT_EXPR
|
||
|| TREE_CODE (expr) == NON_LVALUE_EXPR)
|
||
&& TREE_OPERAND (expr, 0) != error_mark_node
|
||
&& (TYPE_MAIN_VARIANT (TREE_TYPE (expr))
|
||
== TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (expr, 0)))))
|
||
expr = TREE_OPERAND (expr, 0);
|
||
|
||
if (TREE_CODE (expr) == INDIRECT_REF && TREE_OPERAND (expr, 0) == addr)
|
||
return true;
|
||
if (TREE_CODE (addr) == ADDR_EXPR && expr == TREE_OPERAND (addr, 0))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* A subroutine of gimplify_omp_atomic. Attempt to implement the atomic
|
||
operation as a __sync_fetch_and_op builtin. INDEX is log2 of the
|
||
size of the data type, and thus usable to find the index of the builtin
|
||
decl. Returns GS_UNHANDLED if the expression is not of the proper form. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_omp_atomic_fetch_op (tree *expr_p, tree addr, tree rhs, int index)
|
||
{
|
||
enum built_in_function base;
|
||
tree decl, args, itype;
|
||
enum insn_code *optab;
|
||
|
||
/* Check for one of the supported fetch-op operations. */
|
||
switch (TREE_CODE (rhs))
|
||
{
|
||
case PLUS_EXPR:
|
||
base = BUILT_IN_FETCH_AND_ADD_N;
|
||
optab = sync_add_optab;
|
||
break;
|
||
case MINUS_EXPR:
|
||
base = BUILT_IN_FETCH_AND_SUB_N;
|
||
optab = sync_add_optab;
|
||
break;
|
||
case BIT_AND_EXPR:
|
||
base = BUILT_IN_FETCH_AND_AND_N;
|
||
optab = sync_and_optab;
|
||
break;
|
||
case BIT_IOR_EXPR:
|
||
base = BUILT_IN_FETCH_AND_OR_N;
|
||
optab = sync_ior_optab;
|
||
break;
|
||
case BIT_XOR_EXPR:
|
||
base = BUILT_IN_FETCH_AND_XOR_N;
|
||
optab = sync_xor_optab;
|
||
break;
|
||
default:
|
||
return GS_UNHANDLED;
|
||
}
|
||
|
||
/* Make sure the expression is of the proper form. */
|
||
if (goa_lhs_expr_p (TREE_OPERAND (rhs, 0), addr))
|
||
rhs = TREE_OPERAND (rhs, 1);
|
||
else if (commutative_tree_code (TREE_CODE (rhs))
|
||
&& goa_lhs_expr_p (TREE_OPERAND (rhs, 1), addr))
|
||
rhs = TREE_OPERAND (rhs, 0);
|
||
else
|
||
return GS_UNHANDLED;
|
||
|
||
decl = built_in_decls[base + index + 1];
|
||
itype = TREE_TYPE (TREE_TYPE (decl));
|
||
|
||
if (optab[TYPE_MODE (itype)] == CODE_FOR_nothing)
|
||
return GS_UNHANDLED;
|
||
|
||
args = tree_cons (NULL, fold_convert (itype, rhs), NULL);
|
||
args = tree_cons (NULL, addr, args);
|
||
*expr_p = build_function_call_expr (decl, args);
|
||
return GS_OK;
|
||
}
|
||
|
||
/* A subroutine of gimplify_omp_atomic_pipeline. Walk *EXPR_P and replace
|
||
appearances of *LHS_ADDR with LHS_VAR. If an expression does not involve
|
||
the lhs, evaluate it into a temporary. Return 1 if the lhs appeared as
|
||
a subexpression, 0 if it did not, or -1 if an error was encountered. */
|
||
|
||
static int
|
||
goa_stabilize_expr (tree *expr_p, tree *pre_p, tree lhs_addr, tree lhs_var)
|
||
{
|
||
tree expr = *expr_p;
|
||
int saw_lhs;
|
||
|
||
if (goa_lhs_expr_p (expr, lhs_addr))
|
||
{
|
||
*expr_p = lhs_var;
|
||
return 1;
|
||
}
|
||
if (is_gimple_val (expr))
|
||
return 0;
|
||
|
||
saw_lhs = 0;
|
||
switch (TREE_CODE_CLASS (TREE_CODE (expr)))
|
||
{
|
||
case tcc_binary:
|
||
saw_lhs |= goa_stabilize_expr (&TREE_OPERAND (expr, 1), pre_p,
|
||
lhs_addr, lhs_var);
|
||
case tcc_unary:
|
||
saw_lhs |= goa_stabilize_expr (&TREE_OPERAND (expr, 0), pre_p,
|
||
lhs_addr, lhs_var);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (saw_lhs == 0)
|
||
{
|
||
enum gimplify_status gs;
|
||
gs = gimplify_expr (expr_p, pre_p, NULL, is_gimple_val, fb_rvalue);
|
||
if (gs != GS_ALL_DONE)
|
||
saw_lhs = -1;
|
||
}
|
||
|
||
return saw_lhs;
|
||
}
|
||
|
||
/* A subroutine of gimplify_omp_atomic. Implement the atomic operation as:
|
||
|
||
oldval = *addr;
|
||
repeat:
|
||
newval = rhs; // with oldval replacing *addr in rhs
|
||
oldval = __sync_val_compare_and_swap (addr, oldval, newval);
|
||
if (oldval != newval)
|
||
goto repeat;
|
||
|
||
INDEX is log2 of the size of the data type, and thus usable to find the
|
||
index of the builtin decl. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_omp_atomic_pipeline (tree *expr_p, tree *pre_p, tree addr,
|
||
tree rhs, int index)
|
||
{
|
||
tree oldval, oldival, oldival2, newval, newival, label;
|
||
tree type, itype, cmpxchg, args, x, iaddr;
|
||
|
||
cmpxchg = built_in_decls[BUILT_IN_VAL_COMPARE_AND_SWAP_N + index + 1];
|
||
type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr)));
|
||
itype = TREE_TYPE (TREE_TYPE (cmpxchg));
|
||
|
||
if (sync_compare_and_swap[TYPE_MODE (itype)] == CODE_FOR_nothing)
|
||
return GS_UNHANDLED;
|
||
|
||
oldval = create_tmp_var (type, NULL);
|
||
newval = create_tmp_var (type, NULL);
|
||
|
||
/* Precompute as much of RHS as possible. In the same walk, replace
|
||
occurrences of the lhs value with our temporary. */
|
||
if (goa_stabilize_expr (&rhs, pre_p, addr, oldval) < 0)
|
||
return GS_ERROR;
|
||
|
||
x = build_fold_indirect_ref (addr);
|
||
x = build2 (MODIFY_EXPR, void_type_node, oldval, x);
|
||
gimplify_and_add (x, pre_p);
|
||
|
||
/* For floating-point values, we'll need to view-convert them to integers
|
||
so that we can perform the atomic compare and swap. Simplify the
|
||
following code by always setting up the "i"ntegral variables. */
|
||
if (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
|
||
{
|
||
oldival = oldval;
|
||
newival = newval;
|
||
iaddr = addr;
|
||
}
|
||
else
|
||
{
|
||
oldival = create_tmp_var (itype, NULL);
|
||
newival = create_tmp_var (itype, NULL);
|
||
|
||
x = build1 (VIEW_CONVERT_EXPR, itype, oldval);
|
||
x = build2 (MODIFY_EXPR, void_type_node, oldival, x);
|
||
gimplify_and_add (x, pre_p);
|
||
iaddr = fold_convert (build_pointer_type (itype), addr);
|
||
}
|
||
|
||
oldival2 = create_tmp_var (itype, NULL);
|
||
|
||
label = create_artificial_label ();
|
||
x = build1 (LABEL_EXPR, void_type_node, label);
|
||
gimplify_and_add (x, pre_p);
|
||
|
||
x = build2 (MODIFY_EXPR, void_type_node, newval, rhs);
|
||
gimplify_and_add (x, pre_p);
|
||
|
||
if (newval != newival)
|
||
{
|
||
x = build1 (VIEW_CONVERT_EXPR, itype, newval);
|
||
x = build2 (MODIFY_EXPR, void_type_node, newival, x);
|
||
gimplify_and_add (x, pre_p);
|
||
}
|
||
|
||
x = build2 (MODIFY_EXPR, void_type_node, oldival2,
|
||
fold_convert (itype, oldival));
|
||
gimplify_and_add (x, pre_p);
|
||
|
||
args = tree_cons (NULL, fold_convert (itype, newival), NULL);
|
||
args = tree_cons (NULL, fold_convert (itype, oldival), args);
|
||
args = tree_cons (NULL, iaddr, args);
|
||
x = build_function_call_expr (cmpxchg, args);
|
||
if (oldval == oldival)
|
||
x = fold_convert (type, x);
|
||
x = build2 (MODIFY_EXPR, void_type_node, oldival, x);
|
||
gimplify_and_add (x, pre_p);
|
||
|
||
/* For floating point, be prepared for the loop backedge. */
|
||
if (oldval != oldival)
|
||
{
|
||
x = build1 (VIEW_CONVERT_EXPR, type, oldival);
|
||
x = build2 (MODIFY_EXPR, void_type_node, oldval, x);
|
||
gimplify_and_add (x, pre_p);
|
||
}
|
||
|
||
/* Note that we always perform the comparison as an integer, even for
|
||
floating point. This allows the atomic operation to properly
|
||
succeed even with NaNs and -0.0. */
|
||
x = build3 (COND_EXPR, void_type_node,
|
||
build2 (NE_EXPR, boolean_type_node, oldival, oldival2),
|
||
build1 (GOTO_EXPR, void_type_node, label), NULL);
|
||
gimplify_and_add (x, pre_p);
|
||
|
||
*expr_p = NULL;
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* A subroutine of gimplify_omp_atomic. Implement the atomic operation as:
|
||
|
||
GOMP_atomic_start ();
|
||
*addr = rhs;
|
||
GOMP_atomic_end ();
|
||
|
||
The result is not globally atomic, but works so long as all parallel
|
||
references are within #pragma omp atomic directives. According to
|
||
responses received from omp@openmp.org, appears to be within spec.
|
||
Which makes sense, since that's how several other compilers handle
|
||
this situation as well. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_omp_atomic_mutex (tree *expr_p, tree *pre_p, tree addr, tree rhs)
|
||
{
|
||
tree t;
|
||
|
||
t = built_in_decls[BUILT_IN_GOMP_ATOMIC_START];
|
||
t = build_function_call_expr (t, NULL);
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
t = build_fold_indirect_ref (addr);
|
||
t = build2 (MODIFY_EXPR, void_type_node, t, rhs);
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
t = built_in_decls[BUILT_IN_GOMP_ATOMIC_END];
|
||
t = build_function_call_expr (t, NULL);
|
||
gimplify_and_add (t, pre_p);
|
||
|
||
*expr_p = NULL;
|
||
return GS_ALL_DONE;
|
||
}
|
||
|
||
/* Gimplify an OMP_ATOMIC statement. */
|
||
|
||
static enum gimplify_status
|
||
gimplify_omp_atomic (tree *expr_p, tree *pre_p)
|
||
{
|
||
tree addr = TREE_OPERAND (*expr_p, 0);
|
||
tree rhs = TREE_OPERAND (*expr_p, 1);
|
||
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr)));
|
||
HOST_WIDE_INT index;
|
||
|
||
/* Make sure the type is one of the supported sizes. */
|
||
index = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
|
||
index = exact_log2 (index);
|
||
if (index >= 0 && index <= 4)
|
||
{
|
||
enum gimplify_status gs;
|
||
unsigned int align;
|
||
|
||
if (DECL_P (TREE_OPERAND (addr, 0)))
|
||
align = DECL_ALIGN_UNIT (TREE_OPERAND (addr, 0));
|
||
else if (TREE_CODE (TREE_OPERAND (addr, 0)) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (addr, 0), 1))
|
||
== FIELD_DECL)
|
||
align = DECL_ALIGN_UNIT (TREE_OPERAND (TREE_OPERAND (addr, 0), 1));
|
||
else
|
||
align = TYPE_ALIGN_UNIT (type);
|
||
|
||
/* __sync builtins require strict data alignment. */
|
||
if (exact_log2 (align) >= index)
|
||
{
|
||
/* When possible, use specialized atomic update functions. */
|
||
if (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
|
||
{
|
||
gs = gimplify_omp_atomic_fetch_op (expr_p, addr, rhs, index);
|
||
if (gs != GS_UNHANDLED)
|
||
return gs;
|
||
}
|
||
|
||
/* If we don't have specialized __sync builtins, try and implement
|
||
as a compare and swap loop. */
|
||
gs = gimplify_omp_atomic_pipeline (expr_p, pre_p, addr, rhs, index);
|
||
if (gs != GS_UNHANDLED)
|
||
return gs;
|
||
}
|
||
}
|
||
|
||
/* The ultimate fallback is wrapping the operation in a mutex. */
|
||
return gimplify_omp_atomic_mutex (expr_p, pre_p, addr, rhs);
|
||
}
|
||
|
||
/* Gimplifies the expression tree pointed to by EXPR_P. Return 0 if
|
||
gimplification failed.
|
||
|
||
PRE_P points to the list where side effects that must happen before
|
||
EXPR should be stored.
|
||
|
||
POST_P points to the list where side effects that must happen after
|
||
EXPR should be stored, or NULL if there is no suitable list. In
|
||
that case, we copy the result to a temporary, emit the
|
||
post-effects, and then return the temporary.
|
||
|
||
GIMPLE_TEST_F points to a function that takes a tree T and
|
||
returns nonzero if T is in the GIMPLE form requested by the
|
||
caller. The GIMPLE predicates are in tree-gimple.c.
|
||
|
||
This test is used twice. Before gimplification, the test is
|
||
invoked to determine whether *EXPR_P is already gimple enough. If
|
||
that fails, *EXPR_P is gimplified according to its code and
|
||
GIMPLE_TEST_F is called again. If the test still fails, then a new
|
||
temporary variable is created and assigned the value of the
|
||
gimplified expression.
|
||
|
||
FALLBACK tells the function what sort of a temporary we want. If the 1
|
||
bit is set, an rvalue is OK. If the 2 bit is set, an lvalue is OK.
|
||
If both are set, either is OK, but an lvalue is preferable.
|
||
|
||
The return value is either GS_ERROR or GS_ALL_DONE, since this function
|
||
iterates until solution. */
|
||
|
||
enum gimplify_status
|
||
gimplify_expr (tree *expr_p, tree *pre_p, tree *post_p,
|
||
bool (* gimple_test_f) (tree), fallback_t fallback)
|
||
{
|
||
tree tmp;
|
||
tree internal_pre = NULL_TREE;
|
||
tree internal_post = NULL_TREE;
|
||
tree save_expr;
|
||
int is_statement = (pre_p == NULL);
|
||
location_t saved_location;
|
||
enum gimplify_status ret;
|
||
|
||
save_expr = *expr_p;
|
||
if (save_expr == NULL_TREE)
|
||
return GS_ALL_DONE;
|
||
|
||
/* We used to check the predicate here and return immediately if it
|
||
succeeds. This is wrong; the design is for gimplification to be
|
||
idempotent, and for the predicates to only test for valid forms, not
|
||
whether they are fully simplified. */
|
||
|
||
/* Set up our internal queues if needed. */
|
||
if (pre_p == NULL)
|
||
pre_p = &internal_pre;
|
||
if (post_p == NULL)
|
||
post_p = &internal_post;
|
||
|
||
saved_location = input_location;
|
||
if (save_expr != error_mark_node
|
||
&& EXPR_HAS_LOCATION (*expr_p))
|
||
input_location = EXPR_LOCATION (*expr_p);
|
||
|
||
/* Loop over the specific gimplifiers until the toplevel node
|
||
remains the same. */
|
||
do
|
||
{
|
||
/* Strip away as many useless type conversions as possible
|
||
at the toplevel. */
|
||
STRIP_USELESS_TYPE_CONVERSION (*expr_p);
|
||
|
||
/* Remember the expr. */
|
||
save_expr = *expr_p;
|
||
|
||
/* Die, die, die, my darling. */
|
||
if (save_expr == error_mark_node
|
||
|| (TREE_TYPE (save_expr)
|
||
&& TREE_TYPE (save_expr) == error_mark_node))
|
||
{
|
||
ret = GS_ERROR;
|
||
break;
|
||
}
|
||
|
||
/* Do any language-specific gimplification. */
|
||
ret = lang_hooks.gimplify_expr (expr_p, pre_p, post_p);
|
||
if (ret == GS_OK)
|
||
{
|
||
if (*expr_p == NULL_TREE)
|
||
break;
|
||
if (*expr_p != save_expr)
|
||
continue;
|
||
}
|
||
else if (ret != GS_UNHANDLED)
|
||
break;
|
||
|
||
ret = GS_OK;
|
||
switch (TREE_CODE (*expr_p))
|
||
{
|
||
/* First deal with the special cases. */
|
||
|
||
case POSTINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
ret = gimplify_self_mod_expr (expr_p, pre_p, post_p,
|
||
fallback != fb_none);
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case COMPONENT_REF:
|
||
case VIEW_CONVERT_EXPR:
|
||
ret = gimplify_compound_lval (expr_p, pre_p, post_p,
|
||
fallback ? fallback : fb_rvalue);
|
||
break;
|
||
|
||
case COND_EXPR:
|
||
ret = gimplify_cond_expr (expr_p, pre_p, fallback);
|
||
/* C99 code may assign to an array in a structure value of a
|
||
conditional expression, and this has undefined behavior
|
||
only on execution, so create a temporary if an lvalue is
|
||
required. */
|
||
if (fallback == fb_lvalue)
|
||
{
|
||
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
|
||
lang_hooks.mark_addressable (*expr_p);
|
||
}
|
||
break;
|
||
|
||
case CALL_EXPR:
|
||
ret = gimplify_call_expr (expr_p, pre_p, fallback != fb_none);
|
||
/* C99 code may assign to an array in a structure returned
|
||
from a function, and this has undefined behavior only on
|
||
execution, so create a temporary if an lvalue is
|
||
required. */
|
||
if (fallback == fb_lvalue)
|
||
{
|
||
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
|
||
lang_hooks.mark_addressable (*expr_p);
|
||
}
|
||
break;
|
||
|
||
case TREE_LIST:
|
||
gcc_unreachable ();
|
||
|
||
case COMPOUND_EXPR:
|
||
ret = gimplify_compound_expr (expr_p, pre_p, fallback != fb_none);
|
||
break;
|
||
|
||
case MODIFY_EXPR:
|
||
case INIT_EXPR:
|
||
ret = gimplify_modify_expr (expr_p, pre_p, post_p,
|
||
fallback != fb_none);
|
||
|
||
/* The distinction between MODIFY_EXPR and INIT_EXPR is no longer
|
||
useful. */
|
||
if (*expr_p && TREE_CODE (*expr_p) == INIT_EXPR)
|
||
TREE_SET_CODE (*expr_p, MODIFY_EXPR);
|
||
break;
|
||
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
ret = gimplify_boolean_expr (expr_p);
|
||
break;
|
||
|
||
case TRUTH_NOT_EXPR:
|
||
TREE_OPERAND (*expr_p, 0)
|
||
= gimple_boolify (TREE_OPERAND (*expr_p, 0));
|
||
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
|
||
is_gimple_val, fb_rvalue);
|
||
recalculate_side_effects (*expr_p);
|
||
break;
|
||
|
||
case ADDR_EXPR:
|
||
ret = gimplify_addr_expr (expr_p, pre_p, post_p);
|
||
break;
|
||
|
||
case VA_ARG_EXPR:
|
||
ret = gimplify_va_arg_expr (expr_p, pre_p, post_p);
|
||
break;
|
||
|
||
case CONVERT_EXPR:
|
||
case NOP_EXPR:
|
||
if (IS_EMPTY_STMT (*expr_p))
|
||
{
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
}
|
||
|
||
if (VOID_TYPE_P (TREE_TYPE (*expr_p))
|
||
|| fallback == fb_none)
|
||
{
|
||
/* Just strip a conversion to void (or in void context) and
|
||
try again. */
|
||
*expr_p = TREE_OPERAND (*expr_p, 0);
|
||
break;
|
||
}
|
||
|
||
ret = gimplify_conversion (expr_p);
|
||
if (ret == GS_ERROR)
|
||
break;
|
||
if (*expr_p != save_expr)
|
||
break;
|
||
/* FALLTHRU */
|
||
|
||
case FIX_TRUNC_EXPR:
|
||
case FIX_CEIL_EXPR:
|
||
case FIX_FLOOR_EXPR:
|
||
case FIX_ROUND_EXPR:
|
||
/* unary_expr: ... | '(' cast ')' val | ... */
|
||
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
|
||
is_gimple_val, fb_rvalue);
|
||
recalculate_side_effects (*expr_p);
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
*expr_p = fold_indirect_ref (*expr_p);
|
||
if (*expr_p != save_expr)
|
||
break;
|
||
/* else fall through. */
|
||
case ALIGN_INDIRECT_REF:
|
||
case MISALIGNED_INDIRECT_REF:
|
||
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
|
||
is_gimple_reg, fb_rvalue);
|
||
recalculate_side_effects (*expr_p);
|
||
break;
|
||
|
||
/* Constants need not be gimplified. */
|
||
case INTEGER_CST:
|
||
case REAL_CST:
|
||
case STRING_CST:
|
||
case COMPLEX_CST:
|
||
case VECTOR_CST:
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
|
||
case CONST_DECL:
|
||
/* If we require an lvalue, such as for ADDR_EXPR, retain the
|
||
CONST_DECL node. Otherwise the decl is replaceable by its
|
||
value. */
|
||
/* ??? Should be == fb_lvalue, but ADDR_EXPR passes fb_either. */
|
||
if (fallback & fb_lvalue)
|
||
ret = GS_ALL_DONE;
|
||
else
|
||
*expr_p = DECL_INITIAL (*expr_p);
|
||
break;
|
||
|
||
case DECL_EXPR:
|
||
ret = gimplify_decl_expr (expr_p);
|
||
break;
|
||
|
||
case EXC_PTR_EXPR:
|
||
/* FIXME make this a decl. */
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
|
||
case BIND_EXPR:
|
||
ret = gimplify_bind_expr (expr_p, pre_p);
|
||
break;
|
||
|
||
case LOOP_EXPR:
|
||
ret = gimplify_loop_expr (expr_p, pre_p);
|
||
break;
|
||
|
||
case SWITCH_EXPR:
|
||
ret = gimplify_switch_expr (expr_p, pre_p);
|
||
break;
|
||
|
||
case EXIT_EXPR:
|
||
ret = gimplify_exit_expr (expr_p);
|
||
break;
|
||
|
||
case GOTO_EXPR:
|
||
/* If the target is not LABEL, then it is a computed jump
|
||
and the target needs to be gimplified. */
|
||
if (TREE_CODE (GOTO_DESTINATION (*expr_p)) != LABEL_DECL)
|
||
ret = gimplify_expr (&GOTO_DESTINATION (*expr_p), pre_p,
|
||
NULL, is_gimple_val, fb_rvalue);
|
||
break;
|
||
|
||
case LABEL_EXPR:
|
||
ret = GS_ALL_DONE;
|
||
gcc_assert (decl_function_context (LABEL_EXPR_LABEL (*expr_p))
|
||
== current_function_decl);
|
||
break;
|
||
|
||
case CASE_LABEL_EXPR:
|
||
ret = gimplify_case_label_expr (expr_p);
|
||
break;
|
||
|
||
case RETURN_EXPR:
|
||
ret = gimplify_return_expr (*expr_p, pre_p);
|
||
break;
|
||
|
||
case CONSTRUCTOR:
|
||
/* Don't reduce this in place; let gimplify_init_constructor work its
|
||
magic. Buf if we're just elaborating this for side effects, just
|
||
gimplify any element that has side-effects. */
|
||
if (fallback == fb_none)
|
||
{
|
||
unsigned HOST_WIDE_INT ix;
|
||
constructor_elt *ce;
|
||
tree temp = NULL_TREE;
|
||
for (ix = 0;
|
||
VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (*expr_p),
|
||
ix, ce);
|
||
ix++)
|
||
if (TREE_SIDE_EFFECTS (ce->value))
|
||
append_to_statement_list (ce->value, &temp);
|
||
|
||
*expr_p = temp;
|
||
ret = GS_OK;
|
||
}
|
||
/* C99 code may assign to an array in a constructed
|
||
structure or union, and this has undefined behavior only
|
||
on execution, so create a temporary if an lvalue is
|
||
required. */
|
||
else if (fallback == fb_lvalue)
|
||
{
|
||
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
|
||
lang_hooks.mark_addressable (*expr_p);
|
||
}
|
||
else
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
|
||
/* The following are special cases that are not handled by the
|
||
original GIMPLE grammar. */
|
||
|
||
/* SAVE_EXPR nodes are converted into a GIMPLE identifier and
|
||
eliminated. */
|
||
case SAVE_EXPR:
|
||
ret = gimplify_save_expr (expr_p, pre_p, post_p);
|
||
break;
|
||
|
||
case BIT_FIELD_REF:
|
||
{
|
||
enum gimplify_status r0, r1, r2;
|
||
|
||
r0 = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
|
||
is_gimple_lvalue, fb_either);
|
||
r1 = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
|
||
is_gimple_val, fb_rvalue);
|
||
r2 = gimplify_expr (&TREE_OPERAND (*expr_p, 2), pre_p, post_p,
|
||
is_gimple_val, fb_rvalue);
|
||
recalculate_side_effects (*expr_p);
|
||
|
||
ret = MIN (r0, MIN (r1, r2));
|
||
}
|
||
break;
|
||
|
||
case NON_LVALUE_EXPR:
|
||
/* This should have been stripped above. */
|
||
gcc_unreachable ();
|
||
|
||
case ASM_EXPR:
|
||
ret = gimplify_asm_expr (expr_p, pre_p, post_p);
|
||
break;
|
||
|
||
case TRY_FINALLY_EXPR:
|
||
case TRY_CATCH_EXPR:
|
||
gimplify_to_stmt_list (&TREE_OPERAND (*expr_p, 0));
|
||
gimplify_to_stmt_list (&TREE_OPERAND (*expr_p, 1));
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
|
||
case CLEANUP_POINT_EXPR:
|
||
ret = gimplify_cleanup_point_expr (expr_p, pre_p);
|
||
break;
|
||
|
||
case TARGET_EXPR:
|
||
ret = gimplify_target_expr (expr_p, pre_p, post_p);
|
||
break;
|
||
|
||
case CATCH_EXPR:
|
||
gimplify_to_stmt_list (&CATCH_BODY (*expr_p));
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
|
||
case EH_FILTER_EXPR:
|
||
gimplify_to_stmt_list (&EH_FILTER_FAILURE (*expr_p));
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
|
||
case OBJ_TYPE_REF:
|
||
{
|
||
enum gimplify_status r0, r1;
|
||
r0 = gimplify_expr (&OBJ_TYPE_REF_OBJECT (*expr_p), pre_p, post_p,
|
||
is_gimple_val, fb_rvalue);
|
||
r1 = gimplify_expr (&OBJ_TYPE_REF_EXPR (*expr_p), pre_p, post_p,
|
||
is_gimple_val, fb_rvalue);
|
||
ret = MIN (r0, r1);
|
||
}
|
||
break;
|
||
|
||
case LABEL_DECL:
|
||
/* We get here when taking the address of a label. We mark
|
||
the label as "forced"; meaning it can never be removed and
|
||
it is a potential target for any computed goto. */
|
||
FORCED_LABEL (*expr_p) = 1;
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
|
||
case STATEMENT_LIST:
|
||
ret = gimplify_statement_list (expr_p, pre_p);
|
||
break;
|
||
|
||
case WITH_SIZE_EXPR:
|
||
{
|
||
gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p,
|
||
post_p == &internal_post ? NULL : post_p,
|
||
gimple_test_f, fallback);
|
||
gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
|
||
is_gimple_val, fb_rvalue);
|
||
}
|
||
break;
|
||
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
ret = gimplify_var_or_parm_decl (expr_p);
|
||
break;
|
||
|
||
case RESULT_DECL:
|
||
/* When within an OpenMP context, notice uses of variables. */
|
||
if (gimplify_omp_ctxp)
|
||
omp_notice_variable (gimplify_omp_ctxp, *expr_p, true);
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
|
||
case SSA_NAME:
|
||
/* Allow callbacks into the gimplifier during optimization. */
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
|
||
case OMP_PARALLEL:
|
||
ret = gimplify_omp_parallel (expr_p, pre_p);
|
||
break;
|
||
|
||
case OMP_FOR:
|
||
ret = gimplify_omp_for (expr_p, pre_p);
|
||
break;
|
||
|
||
case OMP_SECTIONS:
|
||
case OMP_SINGLE:
|
||
ret = gimplify_omp_workshare (expr_p, pre_p);
|
||
break;
|
||
|
||
case OMP_SECTION:
|
||
case OMP_MASTER:
|
||
case OMP_ORDERED:
|
||
case OMP_CRITICAL:
|
||
gimplify_to_stmt_list (&OMP_BODY (*expr_p));
|
||
break;
|
||
|
||
case OMP_ATOMIC:
|
||
ret = gimplify_omp_atomic (expr_p, pre_p);
|
||
break;
|
||
|
||
case OMP_RETURN:
|
||
case OMP_CONTINUE:
|
||
ret = GS_ALL_DONE;
|
||
break;
|
||
|
||
default:
|
||
switch (TREE_CODE_CLASS (TREE_CODE (*expr_p)))
|
||
{
|
||
case tcc_comparison:
|
||
/* Handle comparison of objects of non scalar mode aggregates
|
||
with a call to memcmp. It would be nice to only have to do
|
||
this for variable-sized objects, but then we'd have to allow
|
||
the same nest of reference nodes we allow for MODIFY_EXPR and
|
||
that's too complex.
|
||
|
||
Compare scalar mode aggregates as scalar mode values. Using
|
||
memcmp for them would be very inefficient at best, and is
|
||
plain wrong if bitfields are involved. */
|
||
|
||
{
|
||
tree type = TREE_TYPE (TREE_OPERAND (*expr_p, 1));
|
||
|
||
if (!AGGREGATE_TYPE_P (type))
|
||
goto expr_2;
|
||
else if (TYPE_MODE (type) != BLKmode)
|
||
ret = gimplify_scalar_mode_aggregate_compare (expr_p);
|
||
else
|
||
ret = gimplify_variable_sized_compare (expr_p);
|
||
|
||
break;
|
||
}
|
||
|
||
/* If *EXPR_P does not need to be special-cased, handle it
|
||
according to its class. */
|
||
case tcc_unary:
|
||
ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p,
|
||
post_p, is_gimple_val, fb_rvalue);
|
||
break;
|
||
|
||
case tcc_binary:
|
||
expr_2:
|
||
{
|
||
enum gimplify_status r0, r1;
|
||
|
||
r0 = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p,
|
||
post_p, is_gimple_val, fb_rvalue);
|
||
r1 = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p,
|
||
post_p, is_gimple_val, fb_rvalue);
|
||
|
||
ret = MIN (r0, r1);
|
||
break;
|
||
}
|
||
|
||
case tcc_declaration:
|
||
case tcc_constant:
|
||
ret = GS_ALL_DONE;
|
||
goto dont_recalculate;
|
||
|
||
default:
|
||
gcc_assert (TREE_CODE (*expr_p) == TRUTH_AND_EXPR
|
||
|| TREE_CODE (*expr_p) == TRUTH_OR_EXPR
|
||
|| TREE_CODE (*expr_p) == TRUTH_XOR_EXPR);
|
||
goto expr_2;
|
||
}
|
||
|
||
recalculate_side_effects (*expr_p);
|
||
dont_recalculate:
|
||
break;
|
||
}
|
||
|
||
/* If we replaced *expr_p, gimplify again. */
|
||
if (ret == GS_OK && (*expr_p == NULL || *expr_p == save_expr))
|
||
ret = GS_ALL_DONE;
|
||
}
|
||
while (ret == GS_OK);
|
||
|
||
/* If we encountered an error_mark somewhere nested inside, either
|
||
stub out the statement or propagate the error back out. */
|
||
if (ret == GS_ERROR)
|
||
{
|
||
if (is_statement)
|
||
*expr_p = NULL;
|
||
goto out;
|
||
}
|
||
|
||
/* This was only valid as a return value from the langhook, which
|
||
we handled. Make sure it doesn't escape from any other context. */
|
||
gcc_assert (ret != GS_UNHANDLED);
|
||
|
||
if (fallback == fb_none && *expr_p && !is_gimple_stmt (*expr_p))
|
||
{
|
||
/* We aren't looking for a value, and we don't have a valid
|
||
statement. If it doesn't have side-effects, throw it away. */
|
||
if (!TREE_SIDE_EFFECTS (*expr_p))
|
||
*expr_p = NULL;
|
||
else if (!TREE_THIS_VOLATILE (*expr_p))
|
||
{
|
||
/* This is probably a _REF that contains something nested that
|
||
has side effects. Recurse through the operands to find it. */
|
||
enum tree_code code = TREE_CODE (*expr_p);
|
||
|
||
switch (code)
|
||
{
|
||
case COMPONENT_REF:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case VIEW_CONVERT_EXPR:
|
||
gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
|
||
gimple_test_f, fallback);
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p,
|
||
gimple_test_f, fallback);
|
||
gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p,
|
||
gimple_test_f, fallback);
|
||
break;
|
||
|
||
default:
|
||
/* Anything else with side-effects must be converted to
|
||
a valid statement before we get here. */
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
*expr_p = NULL;
|
||
}
|
||
else if (COMPLETE_TYPE_P (TREE_TYPE (*expr_p))
|
||
&& TYPE_MODE (TREE_TYPE (*expr_p)) != BLKmode)
|
||
{
|
||
/* Historically, the compiler has treated a bare reference
|
||
to a non-BLKmode volatile lvalue as forcing a load. */
|
||
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (*expr_p));
|
||
/* Normally, we do not want to create a temporary for a
|
||
TREE_ADDRESSABLE type because such a type should not be
|
||
copied by bitwise-assignment. However, we make an
|
||
exception here, as all we are doing here is ensuring that
|
||
we read the bytes that make up the type. We use
|
||
create_tmp_var_raw because create_tmp_var will abort when
|
||
given a TREE_ADDRESSABLE type. */
|
||
tree tmp = create_tmp_var_raw (type, "vol");
|
||
gimple_add_tmp_var (tmp);
|
||
*expr_p = build2 (MODIFY_EXPR, type, tmp, *expr_p);
|
||
}
|
||
else
|
||
/* We can't do anything useful with a volatile reference to
|
||
an incomplete type, so just throw it away. Likewise for
|
||
a BLKmode type, since any implicit inner load should
|
||
already have been turned into an explicit one by the
|
||
gimplification process. */
|
||
*expr_p = NULL;
|
||
}
|
||
|
||
/* If we are gimplifying at the statement level, we're done. Tack
|
||
everything together and replace the original statement with the
|
||
gimplified form. */
|
||
if (fallback == fb_none || is_statement)
|
||
{
|
||
if (internal_pre || internal_post)
|
||
{
|
||
append_to_statement_list (*expr_p, &internal_pre);
|
||
append_to_statement_list (internal_post, &internal_pre);
|
||
annotate_all_with_locus (&internal_pre, input_location);
|
||
*expr_p = internal_pre;
|
||
}
|
||
else if (!*expr_p)
|
||
;
|
||
else if (TREE_CODE (*expr_p) == STATEMENT_LIST)
|
||
annotate_all_with_locus (expr_p, input_location);
|
||
else
|
||
annotate_one_with_locus (*expr_p, input_location);
|
||
goto out;
|
||
}
|
||
|
||
/* Otherwise we're gimplifying a subexpression, so the resulting value is
|
||
interesting. */
|
||
|
||
/* If it's sufficiently simple already, we're done. Unless we are
|
||
handling some post-effects internally; if that's the case, we need to
|
||
copy into a temp before adding the post-effects to the tree. */
|
||
if (!internal_post && (*gimple_test_f) (*expr_p))
|
||
goto out;
|
||
|
||
/* Otherwise, we need to create a new temporary for the gimplified
|
||
expression. */
|
||
|
||
/* We can't return an lvalue if we have an internal postqueue. The
|
||
object the lvalue refers to would (probably) be modified by the
|
||
postqueue; we need to copy the value out first, which means an
|
||
rvalue. */
|
||
if ((fallback & fb_lvalue) && !internal_post
|
||
&& is_gimple_addressable (*expr_p))
|
||
{
|
||
/* An lvalue will do. Take the address of the expression, store it
|
||
in a temporary, and replace the expression with an INDIRECT_REF of
|
||
that temporary. */
|
||
tmp = build_fold_addr_expr (*expr_p);
|
||
gimplify_expr (&tmp, pre_p, post_p, is_gimple_reg, fb_rvalue);
|
||
*expr_p = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (tmp)), tmp);
|
||
}
|
||
else if ((fallback & fb_rvalue) && is_gimple_formal_tmp_rhs (*expr_p))
|
||
{
|
||
gcc_assert (!VOID_TYPE_P (TREE_TYPE (*expr_p)));
|
||
|
||
/* An rvalue will do. Assign the gimplified expression into a new
|
||
temporary TMP and replace the original expression with TMP. */
|
||
|
||
if (internal_post || (fallback & fb_lvalue))
|
||
/* The postqueue might change the value of the expression between
|
||
the initialization and use of the temporary, so we can't use a
|
||
formal temp. FIXME do we care? */
|
||
*expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p);
|
||
else
|
||
*expr_p = get_formal_tmp_var (*expr_p, pre_p);
|
||
|
||
if (TREE_CODE (*expr_p) != SSA_NAME)
|
||
DECL_GIMPLE_FORMAL_TEMP_P (*expr_p) = 1;
|
||
}
|
||
else
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
if (!(fallback & fb_mayfail))
|
||
{
|
||
fprintf (stderr, "gimplification failed:\n");
|
||
print_generic_expr (stderr, *expr_p, 0);
|
||
debug_tree (*expr_p);
|
||
internal_error ("gimplification failed");
|
||
}
|
||
#endif
|
||
gcc_assert (fallback & fb_mayfail);
|
||
/* If this is an asm statement, and the user asked for the
|
||
impossible, don't die. Fail and let gimplify_asm_expr
|
||
issue an error. */
|
||
ret = GS_ERROR;
|
||
goto out;
|
||
}
|
||
|
||
/* Make sure the temporary matches our predicate. */
|
||
gcc_assert ((*gimple_test_f) (*expr_p));
|
||
|
||
if (internal_post)
|
||
{
|
||
annotate_all_with_locus (&internal_post, input_location);
|
||
append_to_statement_list (internal_post, pre_p);
|
||
}
|
||
|
||
out:
|
||
input_location = saved_location;
|
||
return ret;
|
||
}
|
||
|
||
/* Look through TYPE for variable-sized objects and gimplify each such
|
||
size that we find. Add to LIST_P any statements generated. */
|
||
|
||
void
|
||
gimplify_type_sizes (tree type, tree *list_p)
|
||
{
|
||
tree field, t;
|
||
|
||
if (type == NULL || type == error_mark_node)
|
||
return;
|
||
|
||
/* We first do the main variant, then copy into any other variants. */
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
/* Avoid infinite recursion. */
|
||
if (TYPE_SIZES_GIMPLIFIED (type))
|
||
return;
|
||
|
||
TYPE_SIZES_GIMPLIFIED (type) = 1;
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case INTEGER_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case REAL_TYPE:
|
||
gimplify_one_sizepos (&TYPE_MIN_VALUE (type), list_p);
|
||
gimplify_one_sizepos (&TYPE_MAX_VALUE (type), list_p);
|
||
|
||
for (t = TYPE_NEXT_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
{
|
||
TYPE_MIN_VALUE (t) = TYPE_MIN_VALUE (type);
|
||
TYPE_MAX_VALUE (t) = TYPE_MAX_VALUE (type);
|
||
}
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
/* These types may not have declarations, so handle them here. */
|
||
gimplify_type_sizes (TREE_TYPE (type), list_p);
|
||
gimplify_type_sizes (TYPE_DOMAIN (type), list_p);
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
if (TREE_CODE (field) == FIELD_DECL)
|
||
{
|
||
gimplify_one_sizepos (&DECL_FIELD_OFFSET (field), list_p);
|
||
gimplify_type_sizes (TREE_TYPE (field), list_p);
|
||
}
|
||
break;
|
||
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
/* We used to recurse on the pointed-to type here, which turned out to
|
||
be incorrect because its definition might refer to variables not
|
||
yet initialized at this point if a forward declaration is involved.
|
||
|
||
It was actually useful for anonymous pointed-to types to ensure
|
||
that the sizes evaluation dominates every possible later use of the
|
||
values. Restricting to such types here would be safe since there
|
||
is no possible forward declaration around, but would introduce an
|
||
undesirable middle-end semantic to anonymity. We then defer to
|
||
front-ends the responsibility of ensuring that the sizes are
|
||
evaluated both early and late enough, e.g. by attaching artificial
|
||
type declarations to the tree. */
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
gimplify_one_sizepos (&TYPE_SIZE (type), list_p);
|
||
gimplify_one_sizepos (&TYPE_SIZE_UNIT (type), list_p);
|
||
|
||
for (t = TYPE_NEXT_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
{
|
||
TYPE_SIZE (t) = TYPE_SIZE (type);
|
||
TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (type);
|
||
TYPE_SIZES_GIMPLIFIED (t) = 1;
|
||
}
|
||
}
|
||
|
||
/* A subroutine of gimplify_type_sizes to make sure that *EXPR_P,
|
||
a size or position, has had all of its SAVE_EXPRs evaluated.
|
||
We add any required statements to STMT_P. */
|
||
|
||
void
|
||
gimplify_one_sizepos (tree *expr_p, tree *stmt_p)
|
||
{
|
||
tree type, expr = *expr_p;
|
||
|
||
/* We don't do anything if the value isn't there, is constant, or contains
|
||
A PLACEHOLDER_EXPR. We also don't want to do anything if it's already
|
||
a VAR_DECL. If it's a VAR_DECL from another function, the gimplifier
|
||
will want to replace it with a new variable, but that will cause problems
|
||
if this type is from outside the function. It's OK to have that here. */
|
||
if (expr == NULL_TREE || TREE_CONSTANT (expr)
|
||
|| TREE_CODE (expr) == VAR_DECL
|
||
|| CONTAINS_PLACEHOLDER_P (expr))
|
||
return;
|
||
|
||
type = TREE_TYPE (expr);
|
||
*expr_p = unshare_expr (expr);
|
||
|
||
gimplify_expr (expr_p, stmt_p, NULL, is_gimple_val, fb_rvalue);
|
||
expr = *expr_p;
|
||
|
||
/* Verify that we've an exact type match with the original expression.
|
||
In particular, we do not wish to drop a "sizetype" in favour of a
|
||
type of similar dimensions. We don't want to pollute the generic
|
||
type-stripping code with this knowledge because it doesn't matter
|
||
for the bulk of GENERIC/GIMPLE. It only matters that TYPE_SIZE_UNIT
|
||
and friends retain their "sizetype-ness". */
|
||
if (TREE_TYPE (expr) != type
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& TYPE_IS_SIZETYPE (type))
|
||
{
|
||
tree tmp;
|
||
|
||
*expr_p = create_tmp_var (type, NULL);
|
||
tmp = build1 (NOP_EXPR, type, expr);
|
||
tmp = build2 (MODIFY_EXPR, type, *expr_p, tmp);
|
||
if (EXPR_HAS_LOCATION (expr))
|
||
SET_EXPR_LOCUS (tmp, EXPR_LOCUS (expr));
|
||
else
|
||
SET_EXPR_LOCATION (tmp, input_location);
|
||
|
||
gimplify_and_add (tmp, stmt_p);
|
||
}
|
||
}
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
/* Compare types A and B for a "close enough" match. */
|
||
|
||
static bool
|
||
cpt_same_type (tree a, tree b)
|
||
{
|
||
if (lang_hooks.types_compatible_p (a, b))
|
||
return true;
|
||
|
||
/* ??? The C++ FE decomposes METHOD_TYPES to FUNCTION_TYPES and doesn't
|
||
link them together. This routine is intended to catch type errors
|
||
that will affect the optimizers, and the optimizers don't add new
|
||
dereferences of function pointers, so ignore it. */
|
||
if ((TREE_CODE (a) == FUNCTION_TYPE || TREE_CODE (a) == METHOD_TYPE)
|
||
&& (TREE_CODE (b) == FUNCTION_TYPE || TREE_CODE (b) == METHOD_TYPE))
|
||
return true;
|
||
|
||
/* ??? The C FE pushes type qualifiers after the fact into the type of
|
||
the element from the type of the array. See build_unary_op's handling
|
||
of ADDR_EXPR. This seems wrong -- if we were going to do this, we
|
||
should have done it when creating the variable in the first place.
|
||
Alternately, why aren't the two array types made variants? */
|
||
if (TREE_CODE (a) == ARRAY_TYPE && TREE_CODE (b) == ARRAY_TYPE)
|
||
return cpt_same_type (TREE_TYPE (a), TREE_TYPE (b));
|
||
|
||
/* And because of those, we have to recurse down through pointers. */
|
||
if (POINTER_TYPE_P (a) && POINTER_TYPE_P (b))
|
||
return cpt_same_type (TREE_TYPE (a), TREE_TYPE (b));
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Check for some cases of the front end missing cast expressions.
|
||
The type of a dereference should correspond to the pointer type;
|
||
similarly the type of an address should match its object. */
|
||
|
||
static tree
|
||
check_pointer_types_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
tree t = *tp;
|
||
tree ptype, otype, dtype;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case INDIRECT_REF:
|
||
case ARRAY_REF:
|
||
otype = TREE_TYPE (t);
|
||
ptype = TREE_TYPE (TREE_OPERAND (t, 0));
|
||
dtype = TREE_TYPE (ptype);
|
||
gcc_assert (cpt_same_type (otype, dtype));
|
||
break;
|
||
|
||
case ADDR_EXPR:
|
||
ptype = TREE_TYPE (t);
|
||
otype = TREE_TYPE (TREE_OPERAND (t, 0));
|
||
dtype = TREE_TYPE (ptype);
|
||
if (!cpt_same_type (otype, dtype))
|
||
{
|
||
/* &array is allowed to produce a pointer to the element, rather than
|
||
a pointer to the array type. We must allow this in order to
|
||
properly represent assigning the address of an array in C into
|
||
pointer to the element type. */
|
||
gcc_assert (TREE_CODE (otype) == ARRAY_TYPE
|
||
&& POINTER_TYPE_P (ptype)
|
||
&& cpt_same_type (TREE_TYPE (otype), dtype));
|
||
break;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
return NULL_TREE;
|
||
}
|
||
#endif
|
||
|
||
/* Gimplify the body of statements pointed to by BODY_P. FNDECL is the
|
||
function decl containing BODY. */
|
||
|
||
void
|
||
gimplify_body (tree *body_p, tree fndecl, bool do_parms)
|
||
{
|
||
location_t saved_location = input_location;
|
||
tree body, parm_stmts;
|
||
|
||
timevar_push (TV_TREE_GIMPLIFY);
|
||
|
||
gcc_assert (gimplify_ctxp == NULL);
|
||
push_gimplify_context ();
|
||
|
||
/* Unshare most shared trees in the body and in that of any nested functions.
|
||
It would seem we don't have to do this for nested functions because
|
||
they are supposed to be output and then the outer function gimplified
|
||
first, but the g++ front end doesn't always do it that way. */
|
||
unshare_body (body_p, fndecl);
|
||
unvisit_body (body_p, fndecl);
|
||
|
||
/* Make sure input_location isn't set to something wierd. */
|
||
input_location = DECL_SOURCE_LOCATION (fndecl);
|
||
|
||
/* Resolve callee-copies. This has to be done before processing
|
||
the body so that DECL_VALUE_EXPR gets processed correctly. */
|
||
parm_stmts = do_parms ? gimplify_parameters () : NULL;
|
||
|
||
/* Gimplify the function's body. */
|
||
gimplify_stmt (body_p);
|
||
body = *body_p;
|
||
|
||
if (!body)
|
||
body = alloc_stmt_list ();
|
||
else if (TREE_CODE (body) == STATEMENT_LIST)
|
||
{
|
||
tree t = expr_only (*body_p);
|
||
if (t)
|
||
body = t;
|
||
}
|
||
|
||
/* If there isn't an outer BIND_EXPR, add one. */
|
||
if (TREE_CODE (body) != BIND_EXPR)
|
||
{
|
||
tree b = build3 (BIND_EXPR, void_type_node, NULL_TREE,
|
||
NULL_TREE, NULL_TREE);
|
||
TREE_SIDE_EFFECTS (b) = 1;
|
||
append_to_statement_list_force (body, &BIND_EXPR_BODY (b));
|
||
body = b;
|
||
}
|
||
|
||
/* If we had callee-copies statements, insert them at the beginning
|
||
of the function. */
|
||
if (parm_stmts)
|
||
{
|
||
append_to_statement_list_force (BIND_EXPR_BODY (body), &parm_stmts);
|
||
BIND_EXPR_BODY (body) = parm_stmts;
|
||
}
|
||
|
||
/* Unshare again, in case gimplification was sloppy. */
|
||
unshare_all_trees (body);
|
||
|
||
*body_p = body;
|
||
|
||
pop_gimplify_context (body);
|
||
gcc_assert (gimplify_ctxp == NULL);
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
walk_tree (body_p, check_pointer_types_r, NULL, NULL);
|
||
#endif
|
||
|
||
timevar_pop (TV_TREE_GIMPLIFY);
|
||
input_location = saved_location;
|
||
}
|
||
|
||
/* Entry point to the gimplification pass. FNDECL is the FUNCTION_DECL
|
||
node for the function we want to gimplify. */
|
||
|
||
void
|
||
gimplify_function_tree (tree fndecl)
|
||
{
|
||
tree oldfn, parm, ret;
|
||
|
||
oldfn = current_function_decl;
|
||
current_function_decl = fndecl;
|
||
cfun = DECL_STRUCT_FUNCTION (fndecl);
|
||
if (cfun == NULL)
|
||
allocate_struct_function (fndecl);
|
||
|
||
for (parm = DECL_ARGUMENTS (fndecl); parm ; parm = TREE_CHAIN (parm))
|
||
{
|
||
/* Preliminarily mark non-addressed complex variables as eligible
|
||
for promotion to gimple registers. We'll transform their uses
|
||
as we find them. */
|
||
if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
|
||
&& !TREE_THIS_VOLATILE (parm)
|
||
&& !needs_to_live_in_memory (parm))
|
||
DECL_COMPLEX_GIMPLE_REG_P (parm) = 1;
|
||
}
|
||
|
||
ret = DECL_RESULT (fndecl);
|
||
if (TREE_CODE (TREE_TYPE (ret)) == COMPLEX_TYPE
|
||
&& !needs_to_live_in_memory (ret))
|
||
DECL_COMPLEX_GIMPLE_REG_P (ret) = 1;
|
||
|
||
gimplify_body (&DECL_SAVED_TREE (fndecl), fndecl, true);
|
||
|
||
/* If we're instrumenting function entry/exit, then prepend the call to
|
||
the entry hook and wrap the whole function in a TRY_FINALLY_EXPR to
|
||
catch the exit hook. */
|
||
/* ??? Add some way to ignore exceptions for this TFE. */
|
||
if (flag_instrument_function_entry_exit
|
||
&& ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl))
|
||
{
|
||
tree tf, x, bind;
|
||
|
||
tf = build2 (TRY_FINALLY_EXPR, void_type_node, NULL, NULL);
|
||
TREE_SIDE_EFFECTS (tf) = 1;
|
||
x = DECL_SAVED_TREE (fndecl);
|
||
append_to_statement_list (x, &TREE_OPERAND (tf, 0));
|
||
x = implicit_built_in_decls[BUILT_IN_PROFILE_FUNC_EXIT];
|
||
x = build_function_call_expr (x, NULL);
|
||
append_to_statement_list (x, &TREE_OPERAND (tf, 1));
|
||
|
||
bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL);
|
||
TREE_SIDE_EFFECTS (bind) = 1;
|
||
x = implicit_built_in_decls[BUILT_IN_PROFILE_FUNC_ENTER];
|
||
x = build_function_call_expr (x, NULL);
|
||
append_to_statement_list (x, &BIND_EXPR_BODY (bind));
|
||
append_to_statement_list (tf, &BIND_EXPR_BODY (bind));
|
||
|
||
DECL_SAVED_TREE (fndecl) = bind;
|
||
}
|
||
|
||
current_function_decl = oldfn;
|
||
cfun = oldfn ? DECL_STRUCT_FUNCTION (oldfn) : NULL;
|
||
}
|
||
|
||
|
||
/* Expands EXPR to list of gimple statements STMTS. If SIMPLE is true,
|
||
force the result to be either ssa_name or an invariant, otherwise
|
||
just force it to be a rhs expression. If VAR is not NULL, make the
|
||
base variable of the final destination be VAR if suitable. */
|
||
|
||
tree
|
||
force_gimple_operand (tree expr, tree *stmts, bool simple, tree var)
|
||
{
|
||
tree t;
|
||
enum gimplify_status ret;
|
||
gimple_predicate gimple_test_f;
|
||
|
||
*stmts = NULL_TREE;
|
||
|
||
if (is_gimple_val (expr))
|
||
return expr;
|
||
|
||
gimple_test_f = simple ? is_gimple_val : is_gimple_reg_rhs;
|
||
|
||
push_gimplify_context ();
|
||
gimplify_ctxp->into_ssa = in_ssa_p;
|
||
|
||
if (var)
|
||
expr = build2 (MODIFY_EXPR, TREE_TYPE (var), var, expr);
|
||
|
||
ret = gimplify_expr (&expr, stmts, NULL,
|
||
gimple_test_f, fb_rvalue);
|
||
gcc_assert (ret != GS_ERROR);
|
||
|
||
if (referenced_vars)
|
||
{
|
||
for (t = gimplify_ctxp->temps; t ; t = TREE_CHAIN (t))
|
||
add_referenced_var (t);
|
||
}
|
||
|
||
pop_gimplify_context (NULL);
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Invokes force_gimple_operand for EXPR with parameters SIMPLE_P and VAR. If
|
||
some statements are produced, emits them before BSI. */
|
||
|
||
tree
|
||
force_gimple_operand_bsi (block_stmt_iterator *bsi, tree expr,
|
||
bool simple_p, tree var)
|
||
{
|
||
tree stmts;
|
||
|
||
expr = force_gimple_operand (expr, &stmts, simple_p, var);
|
||
if (stmts)
|
||
bsi_insert_before (bsi, stmts, BSI_SAME_STMT);
|
||
|
||
return expr;
|
||
}
|
||
|
||
#include "gt-gimplify.h"
|