freebsd-dev/sys/dev/usb/net/if_muge.c
Warner Losh c6df6f5322 Create wrapper for Giant taken for newbus
Create a wrapper for newbus to take giant and for busses to take it too.
bus_topo_lock() should be called before interacting with newbus routines
and unlocked with bus_topo_unlock(). If you need the topology lock for
some reason, bus_topo_mtx() will provide that.

Sponsored by:		Netflix
Reviewed by:		mav
Differential Revision:	https://reviews.freebsd.org/D31831
2021-12-09 17:04:45 -07:00

2281 lines
59 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2012 Ben Gray <bgray@freebsd.org>.
* Copyright (C) 2018 The FreeBSD Foundation.
*
* This software was developed by Arshan Khanifar <arshankhanifar@gmail.com>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* USB-To-Ethernet adapter driver for Microchip's LAN78XX and related families.
*
* USB 3.1 to 10/100/1000 Mbps Ethernet
* LAN7800 http://www.microchip.com/wwwproducts/en/LAN7800
*
* USB 2.0 to 10/100/1000 Mbps Ethernet
* LAN7850 http://www.microchip.com/wwwproducts/en/LAN7850
*
* USB 2 to 10/100/1000 Mbps Ethernet with built-in USB hub
* LAN7515 (no datasheet available, but probes and functions as LAN7800)
*
* This driver is based on the if_smsc driver, with lan78xx-specific
* functionality modelled on Microchip's Linux lan78xx driver.
*
* UNIMPLEMENTED FEATURES
* ------------------
* A number of features supported by the lan78xx are not yet implemented in
* this driver:
*
* - TX checksum offloading: Nothing has been implemented yet.
* - Direct address translation filtering: Implemented but untested.
* - VLAN tag removal.
* - Support for USB interrupt endpoints.
* - Latency Tolerance Messaging (LTM) support.
* - TCP LSO support.
*
*/
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/condvar.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/queue.h>
#include <sys/random.h>
#include <sys/socket.h>
#include <sys/stddef.h>
#include <sys/stdint.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/unistd.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include "opt_platform.h"
#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/usb/usb_fdt_support.h>
#endif
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR lan78xx_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/net/usb_ethernet.h>
#include <dev/usb/net/if_mugereg.h>
#include "miibus_if.h"
#ifdef USB_DEBUG
static int muge_debug = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, muge, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Microchip LAN78xx USB-GigE");
SYSCTL_INT(_hw_usb_muge, OID_AUTO, debug, CTLFLAG_RWTUN, &muge_debug, 0,
"Debug level");
#endif
#define MUGE_DEFAULT_TX_CSUM_ENABLE (false)
#define MUGE_DEFAULT_TSO_ENABLE (false)
/* Supported Vendor and Product IDs. */
static const struct usb_device_id lan78xx_devs[] = {
#define MUGE_DEV(p,i) { USB_VPI(USB_VENDOR_SMC2, USB_PRODUCT_SMC2_##p, i) }
MUGE_DEV(LAN7800_ETH, 0),
MUGE_DEV(LAN7801_ETH, 0),
MUGE_DEV(LAN7850_ETH, 0),
#undef MUGE_DEV
};
#ifdef USB_DEBUG
#define muge_dbg_printf(sc, fmt, args...) \
do { \
if (muge_debug > 0) \
device_printf((sc)->sc_ue.ue_dev, "debug: " fmt, ##args); \
} while(0)
#else
#define muge_dbg_printf(sc, fmt, args...) do { } while (0)
#endif
#define muge_warn_printf(sc, fmt, args...) \
device_printf((sc)->sc_ue.ue_dev, "warning: " fmt, ##args)
#define muge_err_printf(sc, fmt, args...) \
device_printf((sc)->sc_ue.ue_dev, "error: " fmt, ##args)
#define ETHER_IS_VALID(addr) \
(!ETHER_IS_MULTICAST(addr) && !ETHER_IS_ZERO(addr))
/* USB endpoints. */
enum {
MUGE_BULK_DT_RD,
MUGE_BULK_DT_WR,
#if 0 /* Ignore interrupt endpoints for now as we poll on MII status. */
MUGE_INTR_DT_WR,
MUGE_INTR_DT_RD,
#endif
MUGE_N_TRANSFER,
};
struct muge_softc {
struct usb_ether sc_ue;
struct mtx sc_mtx;
struct usb_xfer *sc_xfer[MUGE_N_TRANSFER];
int sc_phyno;
uint32_t sc_leds;
uint16_t sc_led_modes;
uint16_t sc_led_modes_mask;
/* Settings for the mac control (MAC_CSR) register. */
uint32_t sc_rfe_ctl;
uint32_t sc_mdix_ctl;
uint16_t chipid;
uint16_t chiprev;
uint32_t sc_mchash_table[ETH_DP_SEL_VHF_HASH_LEN];
uint32_t sc_pfilter_table[MUGE_NUM_PFILTER_ADDRS_][2];
uint32_t sc_flags;
#define MUGE_FLAG_LINK 0x0001
#define MUGE_FLAG_INIT_DONE 0x0002
};
#define MUGE_IFACE_IDX 0
#define MUGE_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define MUGE_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define MUGE_LOCK_ASSERT(_sc, t) mtx_assert(&(_sc)->sc_mtx, t)
static device_probe_t muge_probe;
static device_attach_t muge_attach;
static device_detach_t muge_detach;
static usb_callback_t muge_bulk_read_callback;
static usb_callback_t muge_bulk_write_callback;
static miibus_readreg_t lan78xx_miibus_readreg;
static miibus_writereg_t lan78xx_miibus_writereg;
static miibus_statchg_t lan78xx_miibus_statchg;
static int muge_attach_post_sub(struct usb_ether *ue);
static uether_fn_t muge_attach_post;
static uether_fn_t muge_init;
static uether_fn_t muge_stop;
static uether_fn_t muge_start;
static uether_fn_t muge_tick;
static uether_fn_t muge_setmulti;
static uether_fn_t muge_setpromisc;
static int muge_ifmedia_upd(struct ifnet *);
static void muge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int lan78xx_chip_init(struct muge_softc *sc);
static int muge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static const struct usb_config muge_config[MUGE_N_TRANSFER] = {
[MUGE_BULK_DT_WR] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.frames = 16,
.bufsize = 16 * (MCLBYTES + 16),
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = muge_bulk_write_callback,
.timeout = 10000, /* 10 seconds */
},
[MUGE_BULK_DT_RD] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = 20480, /* bytes */
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = muge_bulk_read_callback,
.timeout = 0, /* no timeout */
},
/*
* The chip supports interrupt endpoints, however they aren't
* needed as we poll on the MII status.
*/
};
static const struct usb_ether_methods muge_ue_methods = {
.ue_attach_post = muge_attach_post,
.ue_attach_post_sub = muge_attach_post_sub,
.ue_start = muge_start,
.ue_ioctl = muge_ioctl,
.ue_init = muge_init,
.ue_stop = muge_stop,
.ue_tick = muge_tick,
.ue_setmulti = muge_setmulti,
.ue_setpromisc = muge_setpromisc,
.ue_mii_upd = muge_ifmedia_upd,
.ue_mii_sts = muge_ifmedia_sts,
};
/**
* lan78xx_read_reg - Read a 32-bit register on the device
* @sc: driver soft context
* @off: offset of the register
* @data: pointer a value that will be populated with the register value
*
* LOCKING:
* The device lock must be held before calling this function.
*
* RETURNS:
* 0 on success, a USB_ERR_?? error code on failure.
*/
static int
lan78xx_read_reg(struct muge_softc *sc, uint32_t off, uint32_t *data)
{
struct usb_device_request req;
uint32_t buf;
usb_error_t err;
MUGE_LOCK_ASSERT(sc, MA_OWNED);
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = UVR_READ_REG;
USETW(req.wValue, 0);
USETW(req.wIndex, off);
USETW(req.wLength, 4);
err = uether_do_request(&sc->sc_ue, &req, &buf, 1000);
if (err != 0)
muge_warn_printf(sc, "Failed to read register 0x%0x\n", off);
*data = le32toh(buf);
return (err);
}
/**
* lan78xx_write_reg - Write a 32-bit register on the device
* @sc: driver soft context
* @off: offset of the register
* @data: the 32-bit value to write into the register
*
* LOCKING:
* The device lock must be held before calling this function.
*
* RETURNS:
* 0 on success, a USB_ERR_?? error code on failure.
*/
static int
lan78xx_write_reg(struct muge_softc *sc, uint32_t off, uint32_t data)
{
struct usb_device_request req;
uint32_t buf;
usb_error_t err;
MUGE_LOCK_ASSERT(sc, MA_OWNED);
buf = htole32(data);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = UVR_WRITE_REG;
USETW(req.wValue, 0);
USETW(req.wIndex, off);
USETW(req.wLength, 4);
err = uether_do_request(&sc->sc_ue, &req, &buf, 1000);
if (err != 0)
muge_warn_printf(sc, "Failed to write register 0x%0x\n", off);
return (err);
}
/**
* lan78xx_wait_for_bits - Poll on a register value until bits are cleared
* @sc: soft context
* @reg: offset of the register
* @bits: if the bits are clear the function returns
*
* LOCKING:
* The device lock must be held before calling this function.
*
* RETURNS:
* 0 on success, or a USB_ERR_?? error code on failure.
*/
static int
lan78xx_wait_for_bits(struct muge_softc *sc, uint32_t reg, uint32_t bits)
{
usb_ticks_t start_ticks;
const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000);
uint32_t val;
int err;
MUGE_LOCK_ASSERT(sc, MA_OWNED);
start_ticks = (usb_ticks_t)ticks;
do {
if ((err = lan78xx_read_reg(sc, reg, &val)) != 0)
return (err);
if (!(val & bits))
return (0);
uether_pause(&sc->sc_ue, hz / 100);
} while (((usb_ticks_t)(ticks - start_ticks)) < max_ticks);
return (USB_ERR_TIMEOUT);
}
/**
* lan78xx_eeprom_read_raw - Read the attached EEPROM
* @sc: soft context
* @off: the eeprom address offset
* @buf: stores the bytes
* @buflen: the number of bytes to read
*
* Simply reads bytes from an attached eeprom.
*
* LOCKING:
* The function takes and releases the device lock if not already held.
*
* RETURNS:
* 0 on success, or a USB_ERR_?? error code on failure.
*/
static int
lan78xx_eeprom_read_raw(struct muge_softc *sc, uint16_t off, uint8_t *buf,
uint16_t buflen)
{
usb_ticks_t start_ticks;
const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000);
int err;
uint32_t val, saved;
uint16_t i;
bool locked;
locked = mtx_owned(&sc->sc_mtx); /* XXX */
if (!locked)
MUGE_LOCK(sc);
if (sc->chipid == ETH_ID_REV_CHIP_ID_7800_) {
/* EEDO/EECLK muxed with LED0/LED1 on LAN7800. */
err = lan78xx_read_reg(sc, ETH_HW_CFG, &val);
saved = val;
val &= ~(ETH_HW_CFG_LEDO_EN_ | ETH_HW_CFG_LED1_EN_);
err = lan78xx_write_reg(sc, ETH_HW_CFG, val);
}
err = lan78xx_wait_for_bits(sc, ETH_E2P_CMD, ETH_E2P_CMD_BUSY_);
if (err != 0) {
muge_warn_printf(sc, "eeprom busy, failed to read data\n");
goto done;
}
/* Start reading the bytes, one at a time. */
for (i = 0; i < buflen; i++) {
val = ETH_E2P_CMD_BUSY_ | ETH_E2P_CMD_READ_;
val |= (ETH_E2P_CMD_ADDR_MASK_ & (off + i));
if ((err = lan78xx_write_reg(sc, ETH_E2P_CMD, val)) != 0)
goto done;
start_ticks = (usb_ticks_t)ticks;
do {
if ((err = lan78xx_read_reg(sc, ETH_E2P_CMD, &val)) !=
0)
goto done;
if (!(val & ETH_E2P_CMD_BUSY_) ||
(val & ETH_E2P_CMD_TIMEOUT_))
break;
uether_pause(&sc->sc_ue, hz / 100);
} while (((usb_ticks_t)(ticks - start_ticks)) < max_ticks);
if (val & (ETH_E2P_CMD_BUSY_ | ETH_E2P_CMD_TIMEOUT_)) {
muge_warn_printf(sc, "eeprom command failed\n");
err = USB_ERR_IOERROR;
break;
}
if ((err = lan78xx_read_reg(sc, ETH_E2P_DATA, &val)) != 0)
goto done;
buf[i] = (val & 0xff);
}
done:
if (!locked)
MUGE_UNLOCK(sc);
if (sc->chipid == ETH_ID_REV_CHIP_ID_7800_) {
/* Restore saved LED configuration. */
lan78xx_write_reg(sc, ETH_HW_CFG, saved);
}
return (err);
}
static bool
lan78xx_eeprom_present(struct muge_softc *sc)
{
int ret;
uint8_t sig;
ret = lan78xx_eeprom_read_raw(sc, ETH_E2P_INDICATOR_OFFSET, &sig, 1);
return (ret == 0 && sig == ETH_E2P_INDICATOR);
}
/**
* lan78xx_otp_read_raw
* @sc: soft context
* @off: the otp address offset
* @buf: stores the bytes
* @buflen: the number of bytes to read
*
* Simply reads bytes from the OTP.
*
* LOCKING:
* The function takes and releases the device lock if not already held.
*
* RETURNS:
* 0 on success, or a USB_ERR_?? error code on failure.
*
*/
static int
lan78xx_otp_read_raw(struct muge_softc *sc, uint16_t off, uint8_t *buf,
uint16_t buflen)
{
int err;
uint32_t val;
uint16_t i;
bool locked;
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
MUGE_LOCK(sc);
err = lan78xx_read_reg(sc, OTP_PWR_DN, &val);
/* Checking if bit is set. */
if (val & OTP_PWR_DN_PWRDN_N) {
/* Clear it, then wait for it to be cleared. */
lan78xx_write_reg(sc, OTP_PWR_DN, 0);
err = lan78xx_wait_for_bits(sc, OTP_PWR_DN, OTP_PWR_DN_PWRDN_N);
if (err != 0) {
muge_warn_printf(sc, "OTP off? failed to read data\n");
goto done;
}
}
/* Start reading the bytes, one at a time. */
for (i = 0; i < buflen; i++) {
err = lan78xx_write_reg(sc, OTP_ADDR1,
((off + i) >> 8) & OTP_ADDR1_15_11);
err = lan78xx_write_reg(sc, OTP_ADDR2,
((off + i) & OTP_ADDR2_10_3));
err = lan78xx_write_reg(sc, OTP_FUNC_CMD, OTP_FUNC_CMD_READ_);
err = lan78xx_write_reg(sc, OTP_CMD_GO, OTP_CMD_GO_GO_);
err = lan78xx_wait_for_bits(sc, OTP_STATUS, OTP_STATUS_BUSY_);
if (err != 0) {
muge_warn_printf(sc, "OTP busy failed to read data\n");
goto done;
}
if ((err = lan78xx_read_reg(sc, OTP_RD_DATA, &val)) != 0)
goto done;
buf[i] = (uint8_t)(val & 0xff);
}
done:
if (!locked)
MUGE_UNLOCK(sc);
return (err);
}
/**
* lan78xx_otp_read
* @sc: soft context
* @off: the otp address offset
* @buf: stores the bytes
* @buflen: the number of bytes to read
*
* Simply reads bytes from the otp.
*
* LOCKING:
* The function takes and releases device lock if it is not already held.
*
* RETURNS:
* 0 on success, or a USB_ERR_?? error code on failure.
*/
static int
lan78xx_otp_read(struct muge_softc *sc, uint16_t off, uint8_t *buf,
uint16_t buflen)
{
uint8_t sig;
int err;
err = lan78xx_otp_read_raw(sc, OTP_INDICATOR_OFFSET, &sig, 1);
if (err == 0) {
if (sig == OTP_INDICATOR_1) {
} else if (sig == OTP_INDICATOR_2) {
off += 0x100; /* XXX */
} else {
err = -EINVAL;
}
if (!err)
err = lan78xx_otp_read_raw(sc, off, buf, buflen);
}
return (err);
}
/**
* lan78xx_setmacaddress - Set the mac address in the device
* @sc: driver soft context
* @addr: pointer to array contain at least 6 bytes of the mac
*
* LOCKING:
* Should be called with the MUGE lock held.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int
lan78xx_setmacaddress(struct muge_softc *sc, const uint8_t *addr)
{
int err;
uint32_t val;
muge_dbg_printf(sc,
"setting mac address to %02x:%02x:%02x:%02x:%02x:%02x\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
MUGE_LOCK_ASSERT(sc, MA_OWNED);
val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
if ((err = lan78xx_write_reg(sc, ETH_RX_ADDRL, val)) != 0)
goto done;
val = (addr[5] << 8) | addr[4];
err = lan78xx_write_reg(sc, ETH_RX_ADDRH, val);
done:
return (err);
}
/**
* lan78xx_set_rx_max_frame_length
* @sc: driver soft context
* @size: pointer to array contain at least 6 bytes of the mac
*
* Sets the maximum frame length to be received. Frames bigger than
* this size are aborted.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int
lan78xx_set_rx_max_frame_length(struct muge_softc *sc, int size)
{
int err = 0;
uint32_t buf;
bool rxenabled;
/* First we have to disable rx before changing the length. */
err = lan78xx_read_reg(sc, ETH_MAC_RX, &buf);
rxenabled = ((buf & ETH_MAC_RX_EN_) != 0);
if (rxenabled) {
buf &= ~ETH_MAC_RX_EN_;
err = lan78xx_write_reg(sc, ETH_MAC_RX, buf);
}
/* Setting max frame length. */
buf &= ~ETH_MAC_RX_MAX_FR_SIZE_MASK_;
buf |= (((size + 4) << ETH_MAC_RX_MAX_FR_SIZE_SHIFT_) &
ETH_MAC_RX_MAX_FR_SIZE_MASK_);
err = lan78xx_write_reg(sc, ETH_MAC_RX, buf);
/* If it were enabled before, we enable it back. */
if (rxenabled) {
buf |= ETH_MAC_RX_EN_;
err = lan78xx_write_reg(sc, ETH_MAC_RX, buf);
}
return (0);
}
/**
* lan78xx_miibus_readreg - Read a MII/MDIO register
* @dev: usb ether device
* @phy: the number of phy reading from
* @reg: the register address
*
* LOCKING:
* Takes and releases the device mutex lock if not already held.
*
* RETURNS:
* Returns the 16-bits read from the MII register, if this function fails
* 0 is returned.
*/
static int
lan78xx_miibus_readreg(device_t dev, int phy, int reg)
{
struct muge_softc *sc = device_get_softc(dev);
uint32_t addr, val;
bool locked;
val = 0;
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
MUGE_LOCK(sc);
if (lan78xx_wait_for_bits(sc, ETH_MII_ACC, ETH_MII_ACC_MII_BUSY_) !=
0) {
muge_warn_printf(sc, "MII is busy\n");
goto done;
}
addr = (phy << 11) | (reg << 6) |
ETH_MII_ACC_MII_READ_ | ETH_MII_ACC_MII_BUSY_;
lan78xx_write_reg(sc, ETH_MII_ACC, addr);
if (lan78xx_wait_for_bits(sc, ETH_MII_ACC, ETH_MII_ACC_MII_BUSY_) !=
0) {
muge_warn_printf(sc, "MII read timeout\n");
goto done;
}
lan78xx_read_reg(sc, ETH_MII_DATA, &val);
val = le32toh(val);
done:
if (!locked)
MUGE_UNLOCK(sc);
return (val & 0xFFFF);
}
/**
* lan78xx_miibus_writereg - Writes a MII/MDIO register
* @dev: usb ether device
* @phy: the number of phy writing to
* @reg: the register address
* @val: the value to write
*
* Attempts to write a PHY register through the usb controller registers.
*
* LOCKING:
* Takes and releases the device mutex lock if not already held.
*
* RETURNS:
* Always returns 0 regardless of success or failure.
*/
static int
lan78xx_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct muge_softc *sc = device_get_softc(dev);
uint32_t addr;
bool locked;
if (sc->sc_phyno != phy)
return (0);
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
MUGE_LOCK(sc);
if (lan78xx_wait_for_bits(sc, ETH_MII_ACC, ETH_MII_ACC_MII_BUSY_) !=
0) {
muge_warn_printf(sc, "MII is busy\n");
goto done;
}
val = htole32(val);
lan78xx_write_reg(sc, ETH_MII_DATA, val);
addr = (phy << 11) | (reg << 6) |
ETH_MII_ACC_MII_WRITE_ | ETH_MII_ACC_MII_BUSY_;
lan78xx_write_reg(sc, ETH_MII_ACC, addr);
if (lan78xx_wait_for_bits(sc, ETH_MII_ACC, ETH_MII_ACC_MII_BUSY_) != 0)
muge_warn_printf(sc, "MII write timeout\n");
done:
if (!locked)
MUGE_UNLOCK(sc);
return (0);
}
/*
* lan78xx_miibus_statchg - Called to detect phy status change
* @dev: usb ether device
*
* This function is called periodically by the system to poll for status
* changes of the link.
*
* LOCKING:
* Takes and releases the device mutex lock if not already held.
*/
static void
lan78xx_miibus_statchg(device_t dev)
{
struct muge_softc *sc = device_get_softc(dev);
struct mii_data *mii = uether_getmii(&sc->sc_ue);
struct ifnet *ifp;
int err;
uint32_t flow = 0;
uint32_t fct_flow = 0;
bool locked;
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
MUGE_LOCK(sc);
ifp = uether_getifp(&sc->sc_ue);
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
goto done;
/* Use the MII status to determine link status */
sc->sc_flags &= ~MUGE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
muge_dbg_printf(sc, "media is active\n");
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->sc_flags |= MUGE_FLAG_LINK;
muge_dbg_printf(sc, "10/100 ethernet\n");
break;
case IFM_1000_T:
sc->sc_flags |= MUGE_FLAG_LINK;
muge_dbg_printf(sc, "Gigabit ethernet\n");
break;
default:
break;
}
}
/* Lost link, do nothing. */
if ((sc->sc_flags & MUGE_FLAG_LINK) == 0) {
muge_dbg_printf(sc, "link flag not set\n");
goto done;
}
err = lan78xx_read_reg(sc, ETH_FCT_FLOW, &fct_flow);
if (err) {
muge_warn_printf(sc,
"failed to read initial flow control thresholds, error %d\n",
err);
goto done;
}
/* Enable/disable full duplex operation and TX/RX pause. */
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
muge_dbg_printf(sc, "full duplex operation\n");
/* Enable transmit MAC flow control function. */
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
flow |= ETH_FLOW_CR_TX_FCEN_ | 0xFFFF;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
flow |= ETH_FLOW_CR_RX_FCEN_;
}
/* XXX Flow control settings obtained from Microchip's driver. */
switch(usbd_get_speed(sc->sc_ue.ue_udev)) {
case USB_SPEED_SUPER:
fct_flow = 0x817;
break;
case USB_SPEED_HIGH:
fct_flow = 0x211;
break;
default:
break;
}
err += lan78xx_write_reg(sc, ETH_FLOW, flow);
err += lan78xx_write_reg(sc, ETH_FCT_FLOW, fct_flow);
if (err)
muge_warn_printf(sc, "media change failed, error %d\n", err);
done:
if (!locked)
MUGE_UNLOCK(sc);
}
/*
* lan78xx_set_mdix_auto - Configure the device to enable automatic
* crossover and polarity detection. LAN7800 provides HP Auto-MDIX
* functionality for seamless crossover and polarity detection.
*
* @sc: driver soft context
*
* LOCKING:
* Takes and releases the device mutex lock if not already held.
*/
static void
lan78xx_set_mdix_auto(struct muge_softc *sc)
{
uint32_t buf, err;
err = lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno,
MUGE_EXT_PAGE_ACCESS, MUGE_EXT_PAGE_SPACE_1);
buf = lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno,
MUGE_EXT_MODE_CTRL);
buf &= ~MUGE_EXT_MODE_CTRL_MDIX_MASK_;
buf |= MUGE_EXT_MODE_CTRL_AUTO_MDIX_;
lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR);
err += lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno,
MUGE_EXT_MODE_CTRL, buf);
err += lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno,
MUGE_EXT_PAGE_ACCESS, MUGE_EXT_PAGE_SPACE_0);
if (err != 0)
muge_warn_printf(sc, "error setting PHY's MDIX status\n");
sc->sc_mdix_ctl = buf;
}
/**
* lan78xx_phy_init - Initialises the in-built MUGE phy
* @sc: driver soft context
*
* Resets the PHY part of the chip and then initialises it to default
* values. The 'link down' and 'auto-negotiation complete' interrupts
* from the PHY are also enabled, however we don't monitor the interrupt
* endpoints for the moment.
*
* RETURNS:
* Returns 0 on success or EIO if failed to reset the PHY.
*/
static int
lan78xx_phy_init(struct muge_softc *sc)
{
muge_dbg_printf(sc, "Initializing PHY.\n");
uint16_t bmcr, lmsr;
usb_ticks_t start_ticks;
uint32_t hw_reg;
const usb_ticks_t max_ticks = USB_MS_TO_TICKS(1000);
MUGE_LOCK_ASSERT(sc, MA_OWNED);
/* Reset phy and wait for reset to complete. */
lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR,
BMCR_RESET);
start_ticks = ticks;
do {
uether_pause(&sc->sc_ue, hz / 100);
bmcr = lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno,
MII_BMCR);
} while ((bmcr & BMCR_RESET) && ((ticks - start_ticks) < max_ticks));
if (((usb_ticks_t)(ticks - start_ticks)) >= max_ticks) {
muge_err_printf(sc, "PHY reset timed-out\n");
return (EIO);
}
/* Setup phy to interrupt upon link down or autoneg completion. */
lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno,
MUGE_PHY_INTR_STAT);
lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno,
MUGE_PHY_INTR_MASK,
(MUGE_PHY_INTR_ANEG_COMP | MUGE_PHY_INTR_LINK_CHANGE));
/* Enable Auto-MDIX for crossover and polarity detection. */
lan78xx_set_mdix_auto(sc);
/* Enable all modes. */
lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_ANAR,
ANAR_10 | ANAR_10_FD | ANAR_TX | ANAR_TX_FD |
ANAR_CSMA | ANAR_FC | ANAR_PAUSE_ASYM);
/* Restart auto-negotation. */
bmcr |= BMCR_STARTNEG;
bmcr |= BMCR_AUTOEN;
lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR, bmcr);
bmcr = lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno, MII_BMCR);
/* Configure LED Modes. */
if (sc->sc_led_modes_mask != 0) {
lmsr = lan78xx_miibus_readreg(sc->sc_ue.ue_dev, sc->sc_phyno,
MUGE_PHY_LED_MODE);
lmsr &= ~sc->sc_led_modes_mask;
lmsr |= sc->sc_led_modes;
lan78xx_miibus_writereg(sc->sc_ue.ue_dev, sc->sc_phyno,
MUGE_PHY_LED_MODE, lmsr);
}
/* Enable appropriate LEDs. */
if (sc->sc_leds != 0 &&
lan78xx_read_reg(sc, ETH_HW_CFG, &hw_reg) == 0) {
hw_reg &= ~(ETH_HW_CFG_LEDO_EN_ | ETH_HW_CFG_LED1_EN_ |
ETH_HW_CFG_LED2_EN_ | ETH_HW_CFG_LED3_EN_ );
hw_reg |= sc->sc_leds;
lan78xx_write_reg(sc, ETH_HW_CFG, hw_reg);
}
return (0);
}
/**
* lan78xx_chip_init - Initialises the chip after power on
* @sc: driver soft context
*
* This initialisation sequence is modelled on the procedure in the Linux
* driver.
*
* RETURNS:
* Returns 0 on success or an error code on failure.
*/
static int
lan78xx_chip_init(struct muge_softc *sc)
{
int err;
uint32_t buf;
uint32_t burst_cap;
MUGE_LOCK_ASSERT(sc, MA_OWNED);
/* Enter H/W config mode. */
lan78xx_write_reg(sc, ETH_HW_CFG, ETH_HW_CFG_LRST_);
if ((err = lan78xx_wait_for_bits(sc, ETH_HW_CFG, ETH_HW_CFG_LRST_)) !=
0) {
muge_warn_printf(sc,
"timed-out waiting for lite reset to complete\n");
goto init_failed;
}
/* Set the mac address. */
if ((err = lan78xx_setmacaddress(sc, sc->sc_ue.ue_eaddr)) != 0) {
muge_warn_printf(sc, "failed to set the MAC address\n");
goto init_failed;
}
/* Read and display the revision register. */
if ((err = lan78xx_read_reg(sc, ETH_ID_REV, &buf)) < 0) {
muge_warn_printf(sc, "failed to read ETH_ID_REV (err = %d)\n",
err);
goto init_failed;
}
sc->chipid = (buf & ETH_ID_REV_CHIP_ID_MASK_) >> 16;
sc->chiprev = buf & ETH_ID_REV_CHIP_REV_MASK_;
switch (sc->chipid) {
case ETH_ID_REV_CHIP_ID_7800_:
case ETH_ID_REV_CHIP_ID_7850_:
break;
default:
muge_warn_printf(sc, "Chip ID 0x%04x not yet supported\n",
sc->chipid);
goto init_failed;
}
device_printf(sc->sc_ue.ue_dev, "Chip ID 0x%04x rev %04x\n", sc->chipid,
sc->chiprev);
/* Respond to BULK-IN tokens with a NAK when RX FIFO is empty. */
if ((err = lan78xx_read_reg(sc, ETH_USB_CFG0, &buf)) != 0) {
muge_warn_printf(sc, "failed to read ETH_USB_CFG0 (err=%d)\n", err);
goto init_failed;
}
buf |= ETH_USB_CFG_BIR_;
lan78xx_write_reg(sc, ETH_USB_CFG0, buf);
/*
* XXX LTM support will go here.
*/
/* Configuring the burst cap. */
switch (usbd_get_speed(sc->sc_ue.ue_udev)) {
case USB_SPEED_SUPER:
burst_cap = MUGE_DEFAULT_BURST_CAP_SIZE/MUGE_SS_USB_PKT_SIZE;
break;
case USB_SPEED_HIGH:
burst_cap = MUGE_DEFAULT_BURST_CAP_SIZE/MUGE_HS_USB_PKT_SIZE;
break;
default:
burst_cap = MUGE_DEFAULT_BURST_CAP_SIZE/MUGE_FS_USB_PKT_SIZE;
}
lan78xx_write_reg(sc, ETH_BURST_CAP, burst_cap);
/* Set the default bulk in delay (same value from Linux driver). */
lan78xx_write_reg(sc, ETH_BULK_IN_DLY, MUGE_DEFAULT_BULK_IN_DELAY);
/* Multiple ethernet frames per USB packets. */
err = lan78xx_read_reg(sc, ETH_HW_CFG, &buf);
buf |= ETH_HW_CFG_MEF_;
err = lan78xx_write_reg(sc, ETH_HW_CFG, buf);
/* Enable burst cap. */
if ((err = lan78xx_read_reg(sc, ETH_USB_CFG0, &buf)) < 0) {
muge_warn_printf(sc, "failed to read ETH_USB_CFG0 (err=%d)\n",
err);
goto init_failed;
}
buf |= ETH_USB_CFG_BCE_;
err = lan78xx_write_reg(sc, ETH_USB_CFG0, buf);
/*
* Set FCL's RX and TX FIFO sizes: according to data sheet this is
* already the default value. But we initialize it to the same value
* anyways, as that's what the Linux driver does.
*
*/
buf = (MUGE_MAX_RX_FIFO_SIZE - 512) / 512;
err = lan78xx_write_reg(sc, ETH_FCT_RX_FIFO_END, buf);
buf = (MUGE_MAX_TX_FIFO_SIZE - 512) / 512;
err = lan78xx_write_reg(sc, ETH_FCT_TX_FIFO_END, buf);
/* Enabling interrupts. (Not using them for now) */
err = lan78xx_write_reg(sc, ETH_INT_STS, ETH_INT_STS_CLEAR_ALL_);
/*
* Initializing flow control registers to 0. These registers are
* properly set is handled in link-reset function in the Linux driver.
*/
err = lan78xx_write_reg(sc, ETH_FLOW, 0);
err = lan78xx_write_reg(sc, ETH_FCT_FLOW, 0);
/*
* Settings for the RFE, we enable broadcast and destination address
* perfect filtering.
*/
err = lan78xx_read_reg(sc, ETH_RFE_CTL, &buf);
buf |= ETH_RFE_CTL_BCAST_EN_ | ETH_RFE_CTL_DA_PERFECT_;
err = lan78xx_write_reg(sc, ETH_RFE_CTL, buf);
/*
* At this point the Linux driver writes multicast tables, and enables
* checksum engines. But in FreeBSD that gets done in muge_init,
* which gets called when the interface is brought up.
*/
/* Reset the PHY. */
lan78xx_write_reg(sc, ETH_PMT_CTL, ETH_PMT_CTL_PHY_RST_);
if ((err = lan78xx_wait_for_bits(sc, ETH_PMT_CTL,
ETH_PMT_CTL_PHY_RST_)) != 0) {
muge_warn_printf(sc,
"timed-out waiting for phy reset to complete\n");
goto init_failed;
}
err = lan78xx_read_reg(sc, ETH_MAC_CR, &buf);
if (sc->chipid == ETH_ID_REV_CHIP_ID_7800_ &&
!lan78xx_eeprom_present(sc)) {
/* Set automatic duplex and speed on LAN7800 without EEPROM. */
buf |= ETH_MAC_CR_AUTO_DUPLEX_ | ETH_MAC_CR_AUTO_SPEED_;
}
err = lan78xx_write_reg(sc, ETH_MAC_CR, buf);
/*
* Enable PHY interrupts (Not really getting used for now)
* ETH_INT_EP_CTL: interrupt endpoint control register
* phy events cause interrupts to be issued
*/
err = lan78xx_read_reg(sc, ETH_INT_EP_CTL, &buf);
buf |= ETH_INT_ENP_PHY_INT;
err = lan78xx_write_reg(sc, ETH_INT_EP_CTL, buf);
/*
* Enables mac's transmitter. It will transmit frames from the buffer
* onto the cable.
*/
err = lan78xx_read_reg(sc, ETH_MAC_TX, &buf);
buf |= ETH_MAC_TX_TXEN_;
err = lan78xx_write_reg(sc, ETH_MAC_TX, buf);
/* FIFO is capable of transmitting frames to MAC. */
err = lan78xx_read_reg(sc, ETH_FCT_TX_CTL, &buf);
buf |= ETH_FCT_TX_CTL_EN_;
err = lan78xx_write_reg(sc, ETH_FCT_TX_CTL, buf);
/*
* Set max frame length. In linux this is dev->mtu (which by default
* is 1500) + VLAN_ETH_HLEN = 1518.
*/
err = lan78xx_set_rx_max_frame_length(sc, ETHER_MAX_LEN);
/* Initialise the PHY. */
if ((err = lan78xx_phy_init(sc)) != 0)
goto init_failed;
/* Enable MAC RX. */
err = lan78xx_read_reg(sc, ETH_MAC_RX, &buf);
buf |= ETH_MAC_RX_EN_;
err = lan78xx_write_reg(sc, ETH_MAC_RX, buf);
/* Enable FIFO controller RX. */
err = lan78xx_read_reg(sc, ETH_FCT_RX_CTL, &buf);
buf |= ETH_FCT_TX_CTL_EN_;
err = lan78xx_write_reg(sc, ETH_FCT_RX_CTL, buf);
sc->sc_flags |= MUGE_FLAG_INIT_DONE;
return (0);
init_failed:
muge_err_printf(sc, "lan78xx_chip_init failed (err=%d)\n", err);
return (err);
}
static void
muge_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct muge_softc *sc = usbd_xfer_softc(xfer);
struct usb_ether *ue = &sc->sc_ue;
struct ifnet *ifp = uether_getifp(ue);
struct mbuf *m;
struct usb_page_cache *pc;
uint32_t rx_cmd_a, rx_cmd_b;
uint16_t rx_cmd_c;
int pktlen;
int off;
int actlen;
usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
muge_dbg_printf(sc, "rx : actlen %d\n", actlen);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
/*
* There is always a zero length frame after bringing the
* interface up.
*/
if (actlen < (sizeof(rx_cmd_a) + ETHER_CRC_LEN))
goto tr_setup;
/*
* There may be multiple packets in the USB frame. Each will
* have a header and each needs to have its own mbuf allocated
* and populated for it.
*/
pc = usbd_xfer_get_frame(xfer, 0);
off = 0;
while (off < actlen) {
/* The frame header is aligned on a 4 byte boundary. */
off = ((off + 0x3) & ~0x3);
/* Extract RX CMD A. */
if (off + sizeof(rx_cmd_a) > actlen)
goto tr_setup;
usbd_copy_out(pc, off, &rx_cmd_a, sizeof(rx_cmd_a));
off += (sizeof(rx_cmd_a));
rx_cmd_a = le32toh(rx_cmd_a);
/* Extract RX CMD B. */
if (off + sizeof(rx_cmd_b) > actlen)
goto tr_setup;
usbd_copy_out(pc, off, &rx_cmd_b, sizeof(rx_cmd_b));
off += (sizeof(rx_cmd_b));
rx_cmd_b = le32toh(rx_cmd_b);
/* Extract RX CMD C. */
if (off + sizeof(rx_cmd_c) > actlen)
goto tr_setup;
usbd_copy_out(pc, off, &rx_cmd_c, sizeof(rx_cmd_c));
off += (sizeof(rx_cmd_c));
rx_cmd_c = le16toh(rx_cmd_c);
if (off > actlen)
goto tr_setup;
pktlen = (rx_cmd_a & RX_CMD_A_LEN_MASK_);
muge_dbg_printf(sc,
"rx_cmd_a 0x%08x rx_cmd_b 0x%08x rx_cmd_c 0x%04x "
" pktlen %d actlen %d off %d\n",
rx_cmd_a, rx_cmd_b, rx_cmd_c, pktlen, actlen, off);
if (rx_cmd_a & RX_CMD_A_RED_) {
muge_dbg_printf(sc,
"rx error (hdr 0x%08x)\n", rx_cmd_a);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
} else {
/* Ethernet frame too big or too small? */
if ((pktlen < ETHER_HDR_LEN) ||
(pktlen > (actlen - off)))
goto tr_setup;
/* Create a new mbuf to store the packet. */
m = uether_newbuf();
if (m == NULL) {
muge_warn_printf(sc,
"failed to create new mbuf\n");
if_inc_counter(ifp, IFCOUNTER_IQDROPS,
1);
goto tr_setup;
}
if (pktlen > m->m_len) {
muge_dbg_printf(sc,
"buffer too small %d vs %d bytes",
pktlen, m->m_len);
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
m_freem(m);
goto tr_setup;
}
usbd_copy_out(pc, off, mtod(m, uint8_t *),
pktlen);
/*
* Check if RX checksums are computed, and
* offload them
*/
if ((ifp->if_capenable & IFCAP_RXCSUM) &&
!(rx_cmd_a & RX_CMD_A_ICSM_)) {
struct ether_header *eh;
eh = mtod(m, struct ether_header *);
/*
* Remove the extra 2 bytes of the csum
*
* The checksum appears to be
* simplistically calculated over the
* protocol headers up to the end of the
* eth frame. Which means if the eth
* frame is padded the csum calculation
* is incorrectly performed over the
* padding bytes as well. Therefore to
* be safe we ignore the H/W csum on
* frames less than or equal to
* 64 bytes.
*
* Protocols checksummed:
* TCP, UDP, ICMP, IGMP, IP
*/
if (pktlen > ETHER_MIN_LEN) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID |
CSUM_PSEUDO_HDR;
/*
* Copy the checksum from the
* last 2 bytes of the transfer
* and put in the csum_data
* field.
*/
usbd_copy_out(pc,
(off + pktlen),
&m->m_pkthdr.csum_data, 2);
/*
* The data is copied in network
* order, but the csum algorithm
* in the kernel expects it to
* be in host network order.
*/
m->m_pkthdr.csum_data =
ntohs(0xffff);
muge_dbg_printf(sc,
"RX checksum offloaded (0x%04x)\n",
m->m_pkthdr.csum_data);
}
}
/* Enqueue the mbuf on the receive queue. */
if (pktlen < (4 + ETHER_HDR_LEN)) {
m_freem(m);
goto tr_setup;
}
/* Remove 4 trailing bytes */
uether_rxmbuf(ue, m, pktlen - 4);
}
/*
* Update the offset to move to the next potential
* packet.
*/
off += pktlen;
}
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
uether_rxflush(ue);
return;
default:
if (error != USB_ERR_CANCELLED) {
muge_warn_printf(sc, "bulk read error, %s\n",
usbd_errstr(error));
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
return;
}
}
/**
* muge_bulk_write_callback - Write callback used to send ethernet frame(s)
* @xfer: the USB transfer
* @error: error code if the transfers is in an errored state
*
* The main write function that pulls ethernet frames off the queue and
* sends them out.
*
*/
static void
muge_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct muge_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = uether_getifp(&sc->sc_ue);
struct usb_page_cache *pc;
struct mbuf *m;
int nframes;
uint32_t frm_len = 0, tx_cmd_a = 0, tx_cmd_b = 0;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
muge_dbg_printf(sc,
"USB TRANSFER status: USB_ST_TRANSFERRED\n");
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* FALLTHROUGH */
case USB_ST_SETUP:
muge_dbg_printf(sc, "USB TRANSFER status: USB_ST_SETUP\n");
tr_setup:
if ((sc->sc_flags & MUGE_FLAG_LINK) == 0 ||
(ifp->if_drv_flags & IFF_DRV_OACTIVE) != 0) {
muge_dbg_printf(sc,
"sc->sc_flags & MUGE_FLAG_LINK: %d\n",
(sc->sc_flags & MUGE_FLAG_LINK));
muge_dbg_printf(sc,
"ifp->if_drv_flags & IFF_DRV_OACTIVE: %d\n",
(ifp->if_drv_flags & IFF_DRV_OACTIVE));
muge_dbg_printf(sc,
"USB TRANSFER not sending: no link or controller is busy \n");
/*
* Don't send anything if there is no link or
* controller is busy.
*/
return;
}
for (nframes = 0;
nframes < 16 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd);
nframes++) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
usbd_xfer_set_frame_offset(xfer, nframes * MCLBYTES,
nframes);
frm_len = 0;
pc = usbd_xfer_get_frame(xfer, nframes);
/*
* Each frame is prefixed with two 32-bit values
* describing the length of the packet and buffer.
*/
tx_cmd_a = (m->m_pkthdr.len & TX_CMD_A_LEN_MASK_) |
TX_CMD_A_FCS_;
tx_cmd_a = htole32(tx_cmd_a);
usbd_copy_in(pc, 0, &tx_cmd_a, sizeof(tx_cmd_a));
tx_cmd_b = 0;
/* TCP LSO Support will probably be implemented here. */
tx_cmd_b = htole32(tx_cmd_b);
usbd_copy_in(pc, 4, &tx_cmd_b, sizeof(tx_cmd_b));
frm_len += 8;
/* Next copy in the actual packet */
usbd_m_copy_in(pc, frm_len, m, 0, m->m_pkthdr.len);
frm_len += m->m_pkthdr.len;
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
/*
* If there's a BPF listener, bounce a copy of this
* frame to it.
*/
BPF_MTAP(ifp, m);
m_freem(m);
/* Set frame length. */
usbd_xfer_set_frame_len(xfer, nframes, frm_len);
}
muge_dbg_printf(sc, "USB TRANSFER nframes: %d\n", nframes);
if (nframes != 0) {
muge_dbg_printf(sc, "USB TRANSFER submit attempt\n");
usbd_xfer_set_frames(xfer, nframes);
usbd_transfer_submit(xfer);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
return;
default:
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (error != USB_ERR_CANCELLED) {
muge_err_printf(sc,
"usb error on tx: %s\n", usbd_errstr(error));
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
return;
}
}
/**
* muge_set_mac_addr - Initiailizes NIC MAC address
* @ue: the USB ethernet device
*
* Tries to obtain MAC address from number of sources: registers,
* EEPROM, DTB blob. If all sources fail - generates random MAC.
*/
static void
muge_set_mac_addr(struct usb_ether *ue)
{
struct muge_softc *sc = uether_getsc(ue);
uint32_t mac_h, mac_l;
memset(ue->ue_eaddr, 0xff, ETHER_ADDR_LEN);
uint32_t val;
lan78xx_read_reg(sc, 0, &val);
/* Read current MAC address from RX_ADDRx registers. */
if ((lan78xx_read_reg(sc, ETH_RX_ADDRL, &mac_l) == 0) &&
(lan78xx_read_reg(sc, ETH_RX_ADDRH, &mac_h) == 0)) {
ue->ue_eaddr[5] = (uint8_t)((mac_h >> 8) & 0xff);
ue->ue_eaddr[4] = (uint8_t)((mac_h) & 0xff);
ue->ue_eaddr[3] = (uint8_t)((mac_l >> 24) & 0xff);
ue->ue_eaddr[2] = (uint8_t)((mac_l >> 16) & 0xff);
ue->ue_eaddr[1] = (uint8_t)((mac_l >> 8) & 0xff);
ue->ue_eaddr[0] = (uint8_t)((mac_l) & 0xff);
}
/*
* If RX_ADDRx did not provide a valid MAC address, try EEPROM. If that
* doesn't work, try OTP. Whether any of these methods work or not, try
* FDT data, because it is allowed to override the EEPROM/OTP values.
*/
if (ETHER_IS_VALID(ue->ue_eaddr)) {
muge_dbg_printf(sc, "MAC assigned from registers\n");
} else if (lan78xx_eeprom_present(sc) && lan78xx_eeprom_read_raw(sc,
ETH_E2P_MAC_OFFSET, ue->ue_eaddr, ETHER_ADDR_LEN) == 0 &&
ETHER_IS_VALID(ue->ue_eaddr)) {
muge_dbg_printf(sc, "MAC assigned from EEPROM\n");
} else if (lan78xx_otp_read(sc, OTP_MAC_OFFSET, ue->ue_eaddr,
ETHER_ADDR_LEN) == 0 && ETHER_IS_VALID(ue->ue_eaddr)) {
muge_dbg_printf(sc, "MAC assigned from OTP\n");
}
#ifdef FDT
/* ue->ue_eaddr modified only if config exists for this dev instance. */
usb_fdt_get_mac_addr(ue->ue_dev, ue);
if (ETHER_IS_VALID(ue->ue_eaddr)) {
muge_dbg_printf(sc, "MAC assigned from FDT data\n");
}
#endif
if (!ETHER_IS_VALID(ue->ue_eaddr)) {
muge_dbg_printf(sc, "MAC assigned randomly\n");
arc4rand(ue->ue_eaddr, ETHER_ADDR_LEN, 0);
ue->ue_eaddr[0] &= ~0x01; /* unicast */
ue->ue_eaddr[0] |= 0x02; /* locally administered */
}
}
/**
* muge_set_leds - Initializes NIC LEDs pattern
* @ue: the USB ethernet device
*
* Tries to store the LED modes.
* Supports only DTB blob like the Linux driver does.
*/
static void
muge_set_leds(struct usb_ether *ue)
{
#ifdef FDT
struct muge_softc *sc = uether_getsc(ue);
phandle_t node;
pcell_t modes[4]; /* 4 LEDs are possible */
ssize_t proplen;
uint32_t count;
if ((node = usb_fdt_get_node(ue->ue_dev, ue->ue_udev)) != -1 &&
(proplen = OF_getencprop(node, "microchip,led-modes", modes,
sizeof(modes))) > 0) {
count = proplen / sizeof( uint32_t );
sc->sc_leds = (count > 0) * ETH_HW_CFG_LEDO_EN_ |
(count > 1) * ETH_HW_CFG_LED1_EN_ |
(count > 2) * ETH_HW_CFG_LED2_EN_ |
(count > 3) * ETH_HW_CFG_LED3_EN_;
while (count-- > 0) {
sc->sc_led_modes |= (modes[count] & 0xf) << (4 * count);
sc->sc_led_modes_mask |= 0xf << (4 * count);
}
muge_dbg_printf(sc, "LED modes set from FDT data\n");
}
#endif
}
/**
* muge_attach_post - Called after the driver attached to the USB interface
* @ue: the USB ethernet device
*
* This is where the chip is intialised for the first time. This is
* different from the muge_init() function in that that one is designed to
* setup the H/W to match the UE settings and can be called after a reset.
*
*/
static void
muge_attach_post(struct usb_ether *ue)
{
struct muge_softc *sc = uether_getsc(ue);
muge_dbg_printf(sc, "Calling muge_attach_post.\n");
/* Setup some of the basics */
sc->sc_phyno = 1;
muge_set_mac_addr(ue);
muge_set_leds(ue);
/* Initialise the chip for the first time */
lan78xx_chip_init(sc);
}
/**
* muge_attach_post_sub - Called after attach to the USB interface
* @ue: the USB ethernet device
*
* Most of this is boilerplate code and copied from the base USB ethernet
* driver. It has been overriden so that we can indicate to the system
* that the chip supports H/W checksumming.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int
muge_attach_post_sub(struct usb_ether *ue)
{
struct muge_softc *sc;
struct ifnet *ifp;
int error;
sc = uether_getsc(ue);
muge_dbg_printf(sc, "Calling muge_attach_post_sub.\n");
ifp = ue->ue_ifp;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = uether_start;
ifp->if_ioctl = muge_ioctl;
ifp->if_init = uether_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
/*
* The chip supports TCP/UDP checksum offloading on TX and RX paths,
* however currently only RX checksum is supported in the driver
* (see top of file).
*/
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_hwassist = 0;
ifp->if_capabilities |= IFCAP_RXCSUM;
if (MUGE_DEFAULT_TX_CSUM_ENABLE)
ifp->if_capabilities |= IFCAP_TXCSUM;
/*
* In the Linux driver they also enable scatter/gather (NETIF_F_SG)
* here, that's something related to socket buffers used in Linux.
* FreeBSD doesn't have that as an interface feature.
*/
if (MUGE_DEFAULT_TSO_ENABLE)
ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_TSO6;
#if 0
/* TX checksuming is disabled since not yet implemented. */
ifp->if_capabilities |= IFCAP_TXCSUM;
ifp->if_capenable |= IFCAP_TXCSUM;
ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
#endif
ifp->if_capenable = ifp->if_capabilities;
bus_topo_lock();
error = mii_attach(ue->ue_dev, &ue->ue_miibus, ifp, uether_ifmedia_upd,
ue->ue_methods->ue_mii_sts, BMSR_DEFCAPMASK, sc->sc_phyno,
MII_OFFSET_ANY, 0);
bus_topo_unlock();
return (0);
}
/**
* muge_start - Starts communication with the LAN78xx chip
* @ue: USB ether interface
*/
static void
muge_start(struct usb_ether *ue)
{
struct muge_softc *sc = uether_getsc(ue);
/*
* Start the USB transfers, if not already started.
*/
usbd_transfer_start(sc->sc_xfer[MUGE_BULK_DT_RD]);
usbd_transfer_start(sc->sc_xfer[MUGE_BULK_DT_WR]);
}
/**
* muge_ioctl - ioctl function for the device
* @ifp: interface pointer
* @cmd: the ioctl command
* @data: data passed in the ioctl call, typically a pointer to struct
* ifreq.
*
* The ioctl routine is overridden to detect change requests for the H/W
* checksum capabilities.
*
* RETURNS:
* 0 on success and an error code on failure.
*/
static int
muge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct usb_ether *ue = ifp->if_softc;
struct muge_softc *sc;
struct ifreq *ifr;
int rc;
int mask;
int reinit;
if (cmd == SIOCSIFCAP) {
sc = uether_getsc(ue);
ifr = (struct ifreq *)data;
MUGE_LOCK(sc);
rc = 0;
reinit = 0;
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
/* Modify the RX CSUM enable bits. */
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
reinit = 1;
}
}
MUGE_UNLOCK(sc);
if (reinit)
uether_init(ue);
} else {
rc = uether_ioctl(ifp, cmd, data);
}
return (rc);
}
/**
* muge_reset - Reset the SMSC chip
* @sc: device soft context
*
* LOCKING:
* Should be called with the SMSC lock held.
*/
static void
muge_reset(struct muge_softc *sc)
{
struct usb_config_descriptor *cd;
usb_error_t err;
cd = usbd_get_config_descriptor(sc->sc_ue.ue_udev);
err = usbd_req_set_config(sc->sc_ue.ue_udev, &sc->sc_mtx,
cd->bConfigurationValue);
if (err)
muge_warn_printf(sc, "reset failed (ignored)\n");
/* Wait a little while for the chip to get its brains in order. */
uether_pause(&sc->sc_ue, hz / 100);
/* Reinitialize controller to achieve full reset. */
lan78xx_chip_init(sc);
}
/**
* muge_set_addr_filter
*
* @sc: device soft context
* @index: index of the entry to the perfect address table
* @addr: address to be written
*
*/
static void
muge_set_addr_filter(struct muge_softc *sc, int index,
uint8_t addr[ETHER_ADDR_LEN])
{
uint32_t tmp;
if ((sc) && (index > 0) && (index < MUGE_NUM_PFILTER_ADDRS_)) {
tmp = addr[3];
tmp |= addr[2] | (tmp << 8);
tmp |= addr[1] | (tmp << 8);
tmp |= addr[0] | (tmp << 8);
sc->sc_pfilter_table[index][1] = tmp;
tmp = addr[5];
tmp |= addr[4] | (tmp << 8);
tmp |= ETH_MAF_HI_VALID_ | ETH_MAF_HI_TYPE_DST_;
sc->sc_pfilter_table[index][0] = tmp;
}
}
/**
* lan78xx_dataport_write - write to the selected RAM
* @sc: The device soft context.
* @ram_select: Select which RAM to access.
* @addr: Starting address to write to.
* @buf: word-sized buffer to write to RAM, starting at @addr.
* @length: length of @buf
*
*
* RETURNS:
* 0 if write successful.
*/
static int
lan78xx_dataport_write(struct muge_softc *sc, uint32_t ram_select,
uint32_t addr, uint32_t length, uint32_t *buf)
{
uint32_t dp_sel;
int i, ret;
MUGE_LOCK_ASSERT(sc, MA_OWNED);
ret = lan78xx_wait_for_bits(sc, ETH_DP_SEL, ETH_DP_SEL_DPRDY_);
if (ret < 0)
goto done;
ret = lan78xx_read_reg(sc, ETH_DP_SEL, &dp_sel);
dp_sel &= ~ETH_DP_SEL_RSEL_MASK_;
dp_sel |= ram_select;
ret = lan78xx_write_reg(sc, ETH_DP_SEL, dp_sel);
for (i = 0; i < length; i++) {
ret = lan78xx_write_reg(sc, ETH_DP_ADDR, addr + i);
ret = lan78xx_write_reg(sc, ETH_DP_DATA, buf[i]);
ret = lan78xx_write_reg(sc, ETH_DP_CMD, ETH_DP_CMD_WRITE_);
ret = lan78xx_wait_for_bits(sc, ETH_DP_SEL, ETH_DP_SEL_DPRDY_);
if (ret != 0)
goto done;
}
done:
return (ret);
}
/**
* muge_multicast_write
* @sc: device's soft context
*
* Writes perfect addres filters and hash address filters to their
* corresponding registers and RAMs.
*
*/
static void
muge_multicast_write(struct muge_softc *sc)
{
int i, ret;
lan78xx_dataport_write(sc, ETH_DP_SEL_RSEL_VLAN_DA_,
ETH_DP_SEL_VHF_VLAN_LEN, ETH_DP_SEL_VHF_HASH_LEN,
sc->sc_mchash_table);
for (i = 1; i < MUGE_NUM_PFILTER_ADDRS_; i++) {
ret = lan78xx_write_reg(sc, PFILTER_HI(i), 0);
ret = lan78xx_write_reg(sc, PFILTER_LO(i),
sc->sc_pfilter_table[i][1]);
ret = lan78xx_write_reg(sc, PFILTER_HI(i),
sc->sc_pfilter_table[i][0]);
}
}
/**
* muge_hash - Calculate the hash of a mac address
* @addr: The mac address to calculate the hash on
*
* This function is used when configuring a range of multicast mac
* addresses to filter on. The hash of the mac address is put in the
* device's mac hash table.
*
* RETURNS:
* Returns a value from 0-63 value which is the hash of the mac address.
*/
static inline uint32_t
muge_hash(uint8_t addr[ETHER_ADDR_LEN])
{
return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 23) & 0x1ff;
}
static u_int
muge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
struct muge_softc *sc = arg;
uint32_t bitnum;
/* First fill up the perfect address table. */
if (cnt < 32 /* XXX */)
muge_set_addr_filter(sc, cnt + 1, LLADDR(sdl));
else {
bitnum = muge_hash(LLADDR(sdl));
sc->sc_mchash_table[bitnum / 32] |= (1 << (bitnum % 32));
sc->sc_rfe_ctl |= ETH_RFE_CTL_MCAST_HASH_;
}
return (1);
}
/**
* muge_setmulti - Setup multicast
* @ue: usb ethernet device context
*
* Tells the device to either accept frames with a multicast mac address,
* a select group of m'cast mac addresses or just the devices mac address.
*
* LOCKING:
* Should be called with the MUGE lock held.
*/
static void
muge_setmulti(struct usb_ether *ue)
{
struct muge_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
uint8_t i;
MUGE_LOCK_ASSERT(sc, MA_OWNED);
sc->sc_rfe_ctl &= ~(ETH_RFE_CTL_UCAST_EN_ | ETH_RFE_CTL_MCAST_EN_ |
ETH_RFE_CTL_DA_PERFECT_ | ETH_RFE_CTL_MCAST_HASH_);
/* Initialize hash filter table. */
for (i = 0; i < ETH_DP_SEL_VHF_HASH_LEN; i++)
sc->sc_mchash_table[i] = 0;
/* Initialize perfect filter table. */
for (i = 1; i < MUGE_NUM_PFILTER_ADDRS_; i++) {
sc->sc_pfilter_table[i][0] = sc->sc_pfilter_table[i][1] = 0;
}
sc->sc_rfe_ctl |= ETH_RFE_CTL_BCAST_EN_;
if (ifp->if_flags & IFF_PROMISC) {
muge_dbg_printf(sc, "promiscuous mode enabled\n");
sc->sc_rfe_ctl |= ETH_RFE_CTL_MCAST_EN_ | ETH_RFE_CTL_UCAST_EN_;
} else if (ifp->if_flags & IFF_ALLMULTI) {
muge_dbg_printf(sc, "receive all multicast enabled\n");
sc->sc_rfe_ctl |= ETH_RFE_CTL_MCAST_EN_;
} else {
if_foreach_llmaddr(ifp, muge_hash_maddr, sc);
muge_multicast_write(sc);
}
lan78xx_write_reg(sc, ETH_RFE_CTL, sc->sc_rfe_ctl);
}
/**
* muge_setpromisc - Enables/disables promiscuous mode
* @ue: usb ethernet device context
*
* LOCKING:
* Should be called with the MUGE lock held.
*/
static void
muge_setpromisc(struct usb_ether *ue)
{
struct muge_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
muge_dbg_printf(sc, "promiscuous mode %sabled\n",
(ifp->if_flags & IFF_PROMISC) ? "en" : "dis");
MUGE_LOCK_ASSERT(sc, MA_OWNED);
if (ifp->if_flags & IFF_PROMISC)
sc->sc_rfe_ctl |= ETH_RFE_CTL_MCAST_EN_ | ETH_RFE_CTL_UCAST_EN_;
else
sc->sc_rfe_ctl &= ~(ETH_RFE_CTL_MCAST_EN_);
lan78xx_write_reg(sc, ETH_RFE_CTL, sc->sc_rfe_ctl);
}
/**
* muge_sethwcsum - Enable or disable H/W UDP and TCP checksumming
* @sc: driver soft context
*
* LOCKING:
* Should be called with the MUGE lock held.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int
muge_sethwcsum(struct muge_softc *sc)
{
struct ifnet *ifp = uether_getifp(&sc->sc_ue);
int err;
if (!ifp)
return (-EIO);
MUGE_LOCK_ASSERT(sc, MA_OWNED);
if (ifp->if_capenable & IFCAP_RXCSUM) {
sc->sc_rfe_ctl |= ETH_RFE_CTL_IGMP_COE_ | ETH_RFE_CTL_ICMP_COE_;
sc->sc_rfe_ctl |= ETH_RFE_CTL_TCPUDP_COE_ | ETH_RFE_CTL_IP_COE_;
} else {
sc->sc_rfe_ctl &=
~(ETH_RFE_CTL_IGMP_COE_ | ETH_RFE_CTL_ICMP_COE_);
sc->sc_rfe_ctl &=
~(ETH_RFE_CTL_TCPUDP_COE_ | ETH_RFE_CTL_IP_COE_);
}
sc->sc_rfe_ctl &= ~ETH_RFE_CTL_VLAN_FILTER_;
err = lan78xx_write_reg(sc, ETH_RFE_CTL, sc->sc_rfe_ctl);
if (err != 0) {
muge_warn_printf(sc, "failed to write ETH_RFE_CTL (err=%d)\n",
err);
return (err);
}
return (0);
}
/**
* muge_ifmedia_upd - Set media options
* @ifp: interface pointer
*
* Basically boilerplate code that simply calls the mii functions to set
* the media options.
*
* LOCKING:
* The device lock must be held before this function is called.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int
muge_ifmedia_upd(struct ifnet *ifp)
{
struct muge_softc *sc = ifp->if_softc;
muge_dbg_printf(sc, "Calling muge_ifmedia_upd.\n");
struct mii_data *mii = uether_getmii(&sc->sc_ue);
struct mii_softc *miisc;
int err;
MUGE_LOCK_ASSERT(sc, MA_OWNED);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
err = mii_mediachg(mii);
return (err);
}
/**
* muge_init - Initialises the LAN95xx chip
* @ue: USB ether interface
*
* Called when the interface is brought up (i.e. ifconfig ue0 up), this
* initialise the interface and the rx/tx pipes.
*
* LOCKING:
* Should be called with the MUGE lock held.
*/
static void
muge_init(struct usb_ether *ue)
{
struct muge_softc *sc = uether_getsc(ue);
muge_dbg_printf(sc, "Calling muge_init.\n");
struct ifnet *ifp = uether_getifp(ue);
MUGE_LOCK_ASSERT(sc, MA_OWNED);
if (lan78xx_setmacaddress(sc, IF_LLADDR(ifp)))
muge_dbg_printf(sc, "setting MAC address failed\n");
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/* Cancel pending I/O. */
muge_stop(ue);
/* Reset the ethernet interface. */
muge_reset(sc);
/* Load the multicast filter. */
muge_setmulti(ue);
/* TCP/UDP checksum offload engines. */
muge_sethwcsum(sc);
usbd_xfer_set_stall(sc->sc_xfer[MUGE_BULK_DT_WR]);
/* Indicate we are up and running. */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
/* Switch to selected media. */
muge_ifmedia_upd(ifp);
muge_start(ue);
}
/**
* muge_stop - Stops communication with the LAN78xx chip
* @ue: USB ether interface
*/
static void
muge_stop(struct usb_ether *ue)
{
struct muge_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
MUGE_LOCK_ASSERT(sc, MA_OWNED);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_flags &= ~MUGE_FLAG_LINK;
/*
* Stop all the transfers, if not already stopped.
*/
usbd_transfer_stop(sc->sc_xfer[MUGE_BULK_DT_WR]);
usbd_transfer_stop(sc->sc_xfer[MUGE_BULK_DT_RD]);
}
/**
* muge_tick - Called periodically to monitor the state of the LAN95xx chip
* @ue: USB ether interface
*
* Simply calls the mii status functions to check the state of the link.
*
* LOCKING:
* Should be called with the MUGE lock held.
*/
static void
muge_tick(struct usb_ether *ue)
{
struct muge_softc *sc = uether_getsc(ue);
struct mii_data *mii = uether_getmii(&sc->sc_ue);
MUGE_LOCK_ASSERT(sc, MA_OWNED);
mii_tick(mii);
if ((sc->sc_flags & MUGE_FLAG_LINK) == 0) {
lan78xx_miibus_statchg(ue->ue_dev);
if ((sc->sc_flags & MUGE_FLAG_LINK) != 0)
muge_start(ue);
}
}
/**
* muge_ifmedia_sts - Report current media status
* @ifp: inet interface pointer
* @ifmr: interface media request
*
* Call the mii functions to get the media status.
*
* LOCKING:
* Internally takes and releases the device lock.
*/
static void
muge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct muge_softc *sc = ifp->if_softc;
struct mii_data *mii = uether_getmii(&sc->sc_ue);
MUGE_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
MUGE_UNLOCK(sc);
}
/**
* muge_probe - Probe the interface.
* @dev: muge device handle
*
* Checks if the device is a match for this driver.
*
* RETURNS:
* Returns 0 on success or an error code on failure.
*/
static int
muge_probe(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != MUGE_CONFIG_INDEX)
return (ENXIO);
if (uaa->info.bIfaceIndex != MUGE_IFACE_IDX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(lan78xx_devs, sizeof(lan78xx_devs), uaa));
}
/**
* muge_attach - Attach the interface.
* @dev: muge device handle
*
* Allocate softc structures, do ifmedia setup and ethernet/BPF attach.
*
* RETURNS:
* Returns 0 on success or a negative error code.
*/
static int
muge_attach(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct muge_softc *sc = device_get_softc(dev);
struct usb_ether *ue = &sc->sc_ue;
uint8_t iface_index;
int err;
sc->sc_flags = USB_GET_DRIVER_INFO(uaa);
device_set_usb_desc(dev);
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);
/* Setup the endpoints for the Microchip LAN78xx device. */
iface_index = MUGE_IFACE_IDX;
err = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
muge_config, MUGE_N_TRANSFER, sc, &sc->sc_mtx);
if (err) {
device_printf(dev, "error: allocating USB transfers failed\n");
goto err;
}
ue->ue_sc = sc;
ue->ue_dev = dev;
ue->ue_udev = uaa->device;
ue->ue_mtx = &sc->sc_mtx;
ue->ue_methods = &muge_ue_methods;
err = uether_ifattach(ue);
if (err) {
device_printf(dev, "error: could not attach interface\n");
goto err_usbd;
}
/* Wait for lan78xx_chip_init from post-attach callback to complete. */
uether_ifattach_wait(ue);
if (!(sc->sc_flags & MUGE_FLAG_INIT_DONE))
goto err_attached;
return (0);
err_attached:
uether_ifdetach(ue);
err_usbd:
usbd_transfer_unsetup(sc->sc_xfer, MUGE_N_TRANSFER);
err:
mtx_destroy(&sc->sc_mtx);
return (ENXIO);
}
/**
* muge_detach - Detach the interface.
* @dev: muge device handle
*
* RETURNS:
* Returns 0.
*/
static int
muge_detach(device_t dev)
{
struct muge_softc *sc = device_get_softc(dev);
struct usb_ether *ue = &sc->sc_ue;
usbd_transfer_unsetup(sc->sc_xfer, MUGE_N_TRANSFER);
uether_ifdetach(ue);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static device_method_t muge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, muge_probe),
DEVMETHOD(device_attach, muge_attach),
DEVMETHOD(device_detach, muge_detach),
/* Bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, lan78xx_miibus_readreg),
DEVMETHOD(miibus_writereg, lan78xx_miibus_writereg),
DEVMETHOD(miibus_statchg, lan78xx_miibus_statchg),
DEVMETHOD_END
};
static driver_t muge_driver = {
.name = "muge",
.methods = muge_methods,
.size = sizeof(struct muge_softc),
};
static devclass_t muge_devclass;
DRIVER_MODULE(muge, uhub, muge_driver, muge_devclass, NULL, NULL);
DRIVER_MODULE(miibus, muge, miibus_driver, miibus_devclass, NULL, NULL);
MODULE_DEPEND(muge, uether, 1, 1, 1);
MODULE_DEPEND(muge, usb, 1, 1, 1);
MODULE_DEPEND(muge, ether, 1, 1, 1);
MODULE_DEPEND(muge, miibus, 1, 1, 1);
MODULE_VERSION(muge, 1);
USB_PNP_HOST_INFO(lan78xx_devs);