75411d1572
MFC after: 3 weeks Sponsored by: Klara, Inc. Reviewed by: philip Differential Revision: https://reviews.freebsd.org/D39712
2692 lines
67 KiB
C
2692 lines
67 KiB
C
/* Convert timestamp from time_t to struct tm. */
|
|
|
|
/*
|
|
** This file is in the public domain, so clarified as of
|
|
** 1996-06-05 by Arthur David Olson.
|
|
*/
|
|
|
|
/*
|
|
** Leap second handling from Bradley White.
|
|
** POSIX-style TZ environment variable handling from Guy Harris.
|
|
*/
|
|
|
|
/*LINTLIBRARY*/
|
|
|
|
#define LOCALTIME_IMPLEMENTATION
|
|
#include "namespace.h"
|
|
#ifdef DETECT_TZ_CHANGES
|
|
#ifndef DETECT_TZ_CHANGES_INTERVAL
|
|
#define DETECT_TZ_CHANGES_INTERVAL 61
|
|
#endif
|
|
#include <sys/stat.h>
|
|
#endif
|
|
#include <fcntl.h>
|
|
#if THREAD_SAFE
|
|
#include <pthread.h>
|
|
#endif
|
|
#include "private.h"
|
|
#include "un-namespace.h"
|
|
|
|
#include "tzfile.h"
|
|
|
|
#include "libc_private.h"
|
|
|
|
#if defined THREAD_SAFE && THREAD_SAFE
|
|
static pthread_mutex_t locallock = PTHREAD_MUTEX_INITIALIZER;
|
|
static int lock(void) {
|
|
if (__isthreaded)
|
|
return _pthread_mutex_lock(&locallock);
|
|
return 0;
|
|
}
|
|
static void unlock(void) {
|
|
if (__isthreaded)
|
|
_pthread_mutex_unlock(&locallock);
|
|
}
|
|
#else
|
|
static int lock(void) { return 0; }
|
|
static void unlock(void) { }
|
|
#endif
|
|
|
|
#ifndef TZ_ABBR_CHAR_SET
|
|
# define TZ_ABBR_CHAR_SET \
|
|
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
|
|
#endif /* !defined TZ_ABBR_CHAR_SET */
|
|
|
|
#ifndef TZ_ABBR_ERR_CHAR
|
|
# define TZ_ABBR_ERR_CHAR '_'
|
|
#endif /* !defined TZ_ABBR_ERR_CHAR */
|
|
|
|
/*
|
|
** Support non-POSIX platforms that distinguish between text and binary files.
|
|
*/
|
|
|
|
#ifndef O_BINARY
|
|
# define O_BINARY 0
|
|
#endif
|
|
|
|
#ifndef WILDABBR
|
|
/*
|
|
** Someone might make incorrect use of a time zone abbreviation:
|
|
** 1. They might reference tzname[0] before calling tzset (explicitly
|
|
** or implicitly).
|
|
** 2. They might reference tzname[1] before calling tzset (explicitly
|
|
** or implicitly).
|
|
** 3. They might reference tzname[1] after setting to a time zone
|
|
** in which Daylight Saving Time is never observed.
|
|
** 4. They might reference tzname[0] after setting to a time zone
|
|
** in which Standard Time is never observed.
|
|
** 5. They might reference tm.TM_ZONE after calling offtime.
|
|
** What's best to do in the above cases is open to debate;
|
|
** for now, we just set things up so that in any of the five cases
|
|
** WILDABBR is used. Another possibility: initialize tzname[0] to the
|
|
** string "tzname[0] used before set", and similarly for the other cases.
|
|
** And another: initialize tzname[0] to "ERA", with an explanation in the
|
|
** manual page of what this "time zone abbreviation" means (doing this so
|
|
** that tzname[0] has the "normal" length of three characters).
|
|
*/
|
|
# define WILDABBR " "
|
|
#endif /* !defined WILDABBR */
|
|
|
|
static const char wildabbr[] = WILDABBR;
|
|
|
|
static char const etc_utc[] = "Etc/UTC";
|
|
static char const *utc = etc_utc + sizeof "Etc/" - 1;
|
|
|
|
/*
|
|
** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
|
|
** Default to US rules as of 2017-05-07.
|
|
** POSIX does not specify the default DST rules;
|
|
** for historical reasons, US rules are a common default.
|
|
*/
|
|
#ifndef TZDEFRULESTRING
|
|
# define TZDEFRULESTRING ",M3.2.0,M11.1.0"
|
|
#endif
|
|
|
|
struct ttinfo { /* time type information */
|
|
int_fast32_t tt_utoff; /* UT offset in seconds */
|
|
bool tt_isdst; /* used to set tm_isdst */
|
|
int tt_desigidx; /* abbreviation list index */
|
|
bool tt_ttisstd; /* transition is std time */
|
|
bool tt_ttisut; /* transition is UT */
|
|
};
|
|
|
|
struct lsinfo { /* leap second information */
|
|
time_t ls_trans; /* transition time */
|
|
int_fast32_t ls_corr; /* correction to apply */
|
|
};
|
|
|
|
/* This abbreviation means local time is unspecified. */
|
|
static char const UNSPEC[] = "-00";
|
|
|
|
/* How many extra bytes are needed at the end of struct state's chars array.
|
|
This needs to be at least 1 for null termination in case the input
|
|
data isn't properly terminated, and it also needs to be big enough
|
|
for ttunspecified to work without crashing. */
|
|
enum { CHARS_EXTRA = max(sizeof UNSPEC, 2) - 1 };
|
|
|
|
/* Limit to time zone abbreviation length in POSIX-style TZ strings.
|
|
This is distinct from TZ_MAX_CHARS, which limits TZif file contents. */
|
|
#ifndef TZNAME_MAXIMUM
|
|
# define TZNAME_MAXIMUM 255
|
|
#endif
|
|
|
|
struct state {
|
|
int leapcnt;
|
|
int timecnt;
|
|
int typecnt;
|
|
int charcnt;
|
|
bool goback;
|
|
bool goahead;
|
|
time_t ats[TZ_MAX_TIMES];
|
|
unsigned char types[TZ_MAX_TIMES];
|
|
struct ttinfo ttis[TZ_MAX_TYPES];
|
|
char chars[max(max(TZ_MAX_CHARS + CHARS_EXTRA, sizeof "UTC"),
|
|
2 * (TZNAME_MAXIMUM + 1))];
|
|
struct lsinfo lsis[TZ_MAX_LEAPS];
|
|
|
|
/* The time type to use for early times or if no transitions.
|
|
It is always zero for recent tzdb releases.
|
|
It might be nonzero for data from tzdb 2018e or earlier. */
|
|
int defaulttype;
|
|
};
|
|
|
|
enum r_type {
|
|
JULIAN_DAY, /* Jn = Julian day */
|
|
DAY_OF_YEAR, /* n = day of year */
|
|
MONTH_NTH_DAY_OF_WEEK /* Mm.n.d = month, week, day of week */
|
|
};
|
|
|
|
struct rule {
|
|
enum r_type r_type; /* type of rule */
|
|
int r_day; /* day number of rule */
|
|
int r_week; /* week number of rule */
|
|
int r_mon; /* month number of rule */
|
|
int_fast32_t r_time; /* transition time of rule */
|
|
};
|
|
|
|
static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
|
|
struct tm *);
|
|
static bool increment_overflow(int *, int);
|
|
static bool increment_overflow_time(time_t *, int_fast32_t);
|
|
static int_fast32_t leapcorr(struct state const *, time_t);
|
|
static bool normalize_overflow32(int_fast32_t *, int *, int);
|
|
static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
|
|
struct tm *);
|
|
static bool typesequiv(struct state const *, int, int);
|
|
static bool tzparse(char const *, struct state *, struct state *);
|
|
|
|
#ifdef ALL_STATE
|
|
static struct state * lclptr;
|
|
static struct state * gmtptr;
|
|
#endif /* defined ALL_STATE */
|
|
|
|
#ifndef ALL_STATE
|
|
static struct state lclmem;
|
|
static struct state gmtmem;
|
|
static struct state *const lclptr = &lclmem;
|
|
static struct state *const gmtptr = &gmtmem;
|
|
#endif /* State Farm */
|
|
|
|
#ifndef TZ_STRLEN_MAX
|
|
# define TZ_STRLEN_MAX 255
|
|
#endif /* !defined TZ_STRLEN_MAX */
|
|
|
|
static char lcl_TZname[TZ_STRLEN_MAX + 1];
|
|
static int lcl_is_set;
|
|
|
|
static pthread_once_t gmt_once = PTHREAD_ONCE_INIT;
|
|
static pthread_once_t gmtime_once = PTHREAD_ONCE_INIT;
|
|
static pthread_key_t gmtime_key;
|
|
static int gmtime_key_error;
|
|
static pthread_once_t offtime_once = PTHREAD_ONCE_INIT;
|
|
static pthread_key_t offtime_key;
|
|
static int offtime_key_error;
|
|
static pthread_once_t localtime_once = PTHREAD_ONCE_INIT;
|
|
static pthread_key_t localtime_key;
|
|
static int localtime_key_error;
|
|
|
|
/*
|
|
** Section 4.12.3 of X3.159-1989 requires that
|
|
** Except for the strftime function, these functions [asctime,
|
|
** ctime, gmtime, localtime] return values in one of two static
|
|
** objects: a broken-down time structure and an array of char.
|
|
** Thanks to Paul Eggert for noting this.
|
|
**
|
|
** This requirement was removed in C99, so support it only if requested,
|
|
** as support is more likely to lead to bugs in badly written programs.
|
|
*/
|
|
|
|
#if SUPPORT_C89
|
|
static struct tm tm;
|
|
#endif
|
|
|
|
#if 2 <= HAVE_TZNAME + TZ_TIME_T
|
|
char * tzname[2] = {
|
|
(char *) wildabbr,
|
|
(char *) wildabbr
|
|
};
|
|
#endif
|
|
#if 2 <= USG_COMPAT + TZ_TIME_T
|
|
long timezone;
|
|
int daylight;
|
|
#endif
|
|
#if 2 <= ALTZONE + TZ_TIME_T
|
|
long altzone;
|
|
#endif
|
|
|
|
/* Initialize *S to a value based on UTOFF, ISDST, and DESIGIDX. */
|
|
static void
|
|
init_ttinfo(struct ttinfo *s, int_fast32_t utoff, bool isdst, int desigidx)
|
|
{
|
|
s->tt_utoff = utoff;
|
|
s->tt_isdst = isdst;
|
|
s->tt_desigidx = desigidx;
|
|
s->tt_ttisstd = false;
|
|
s->tt_ttisut = false;
|
|
}
|
|
|
|
/* Return true if SP's time type I does not specify local time. */
|
|
static bool
|
|
ttunspecified(struct state const *sp, int i)
|
|
{
|
|
char const *abbr = &sp->chars[sp->ttis[i].tt_desigidx];
|
|
/* memcmp is likely faster than strcmp, and is safe due to CHARS_EXTRA. */
|
|
return memcmp(abbr, UNSPEC, sizeof UNSPEC) == 0;
|
|
}
|
|
|
|
static int_fast32_t
|
|
detzcode(const char *const codep)
|
|
{
|
|
register int_fast32_t result;
|
|
register int i;
|
|
int_fast32_t one = 1;
|
|
int_fast32_t halfmaxval = one << (32 - 2);
|
|
int_fast32_t maxval = halfmaxval - 1 + halfmaxval;
|
|
int_fast32_t minval = -1 - maxval;
|
|
|
|
result = codep[0] & 0x7f;
|
|
for (i = 1; i < 4; ++i)
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
|
|
if (codep[0] & 0x80) {
|
|
/* Do two's-complement negation even on non-two's-complement machines.
|
|
If the result would be minval - 1, return minval. */
|
|
result -= !TWOS_COMPLEMENT(int_fast32_t) && result != 0;
|
|
result += minval;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int_fast64_t
|
|
detzcode64(const char *const codep)
|
|
{
|
|
register int_fast64_t result;
|
|
register int i;
|
|
int_fast64_t one = 1;
|
|
int_fast64_t halfmaxval = one << (64 - 2);
|
|
int_fast64_t maxval = halfmaxval - 1 + halfmaxval;
|
|
int_fast64_t minval = -TWOS_COMPLEMENT(int_fast64_t) - maxval;
|
|
|
|
result = codep[0] & 0x7f;
|
|
for (i = 1; i < 8; ++i)
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
|
|
if (codep[0] & 0x80) {
|
|
/* Do two's-complement negation even on non-two's-complement machines.
|
|
If the result would be minval - 1, return minval. */
|
|
result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0;
|
|
result += minval;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
update_tzname_etc(struct state const *sp, struct ttinfo const *ttisp)
|
|
{
|
|
#if HAVE_TZNAME
|
|
tzname[ttisp->tt_isdst] = (char *) &sp->chars[ttisp->tt_desigidx];
|
|
#endif
|
|
#if USG_COMPAT
|
|
if (!ttisp->tt_isdst)
|
|
timezone = - ttisp->tt_utoff;
|
|
#endif
|
|
#if ALTZONE
|
|
if (ttisp->tt_isdst)
|
|
altzone = - ttisp->tt_utoff;
|
|
#endif
|
|
}
|
|
|
|
/* If STDDST_MASK indicates that SP's TYPE provides useful info,
|
|
update tzname, timezone, and/or altzone and return STDDST_MASK,
|
|
diminished by the provided info if it is a specified local time.
|
|
Otherwise, return STDDST_MASK. See settzname for STDDST_MASK. */
|
|
static int
|
|
may_update_tzname_etc(int stddst_mask, struct state *sp, int type)
|
|
{
|
|
struct ttinfo *ttisp = &sp->ttis[type];
|
|
int this_bit = 1 << ttisp->tt_isdst;
|
|
if (stddst_mask & this_bit) {
|
|
update_tzname_etc(sp, ttisp);
|
|
if (!ttunspecified(sp, type))
|
|
return stddst_mask & ~this_bit;
|
|
}
|
|
return stddst_mask;
|
|
}
|
|
|
|
static void
|
|
settzname(void)
|
|
{
|
|
register struct state * const sp = lclptr;
|
|
register int i;
|
|
|
|
/* If STDDST_MASK & 1 we need info about a standard time.
|
|
If STDDST_MASK & 2 we need info about a daylight saving time.
|
|
When STDDST_MASK becomes zero we can stop looking. */
|
|
int stddst_mask = 0;
|
|
|
|
#if HAVE_TZNAME
|
|
tzname[0] = tzname[1] = (char *) (sp ? wildabbr : utc);
|
|
stddst_mask = 3;
|
|
#endif
|
|
#if USG_COMPAT
|
|
timezone = 0;
|
|
stddst_mask = 3;
|
|
#endif
|
|
#if ALTZONE
|
|
altzone = 0;
|
|
stddst_mask |= 2;
|
|
#endif
|
|
/*
|
|
** And to get the latest time zone abbreviations into tzname. . .
|
|
*/
|
|
if (sp) {
|
|
for (i = sp->timecnt - 1; stddst_mask && 0 <= i; i--)
|
|
stddst_mask = may_update_tzname_etc(stddst_mask, sp, sp->types[i]);
|
|
for (i = sp->typecnt - 1; stddst_mask && 0 <= i; i--)
|
|
stddst_mask = may_update_tzname_etc(stddst_mask, sp, i);
|
|
}
|
|
#if USG_COMPAT
|
|
daylight = stddst_mask >> 1 ^ 1;
|
|
#endif
|
|
}
|
|
|
|
/* Replace bogus characters in time zone abbreviations.
|
|
Return 0 on success, an errno value if a time zone abbreviation is
|
|
too long. */
|
|
static int
|
|
scrub_abbrs(struct state *sp)
|
|
{
|
|
int i;
|
|
|
|
/* Reject overlong abbreviations. */
|
|
for (i = 0; i < sp->charcnt - (TZNAME_MAXIMUM + 1); ) {
|
|
int len = strlen(&sp->chars[i]);
|
|
if (TZNAME_MAXIMUM < len)
|
|
return EOVERFLOW;
|
|
i += len + 1;
|
|
}
|
|
|
|
/* Replace bogus characters. */
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
|
|
sp->chars[i] = TZ_ABBR_ERR_CHAR;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DETECT_TZ_CHANGES
|
|
/*
|
|
* Determine if there's a change in the timezone since the last time we checked.
|
|
* Returns: -1 on error
|
|
* 0 if the timezone has not changed
|
|
* 1 if the timezone has changed
|
|
*/
|
|
static int
|
|
change_in_tz(const char *name)
|
|
{
|
|
static char old_name[PATH_MAX];
|
|
static struct stat old_sb;
|
|
struct stat sb;
|
|
int error;
|
|
|
|
error = stat(name, &sb);
|
|
if (error != 0)
|
|
return -1;
|
|
|
|
if (strcmp(name, old_name) != 0) {
|
|
strlcpy(old_name, name, sizeof(old_name));
|
|
old_sb = sb;
|
|
return 1;
|
|
}
|
|
|
|
if (sb.st_dev != old_sb.st_dev ||
|
|
sb.st_ino != old_sb.st_ino ||
|
|
sb.st_ctime != old_sb.st_ctime ||
|
|
sb.st_mtime != old_sb.st_mtime) {
|
|
old_sb = sb;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else /* !DETECT_TZ_CHANGES */
|
|
#define change_in_tz(X) 1
|
|
#endif /* !DETECT_TZ_CHANGES */
|
|
|
|
/* Input buffer for data read from a compiled tz file. */
|
|
union input_buffer {
|
|
/* The first part of the buffer, interpreted as a header. */
|
|
struct tzhead tzhead;
|
|
|
|
/* The entire buffer. */
|
|
char buf[2 * sizeof(struct tzhead) + 2 * sizeof(struct state)
|
|
+ 4 * TZ_MAX_TIMES];
|
|
};
|
|
|
|
/* TZDIR with a trailing '/' rather than a trailing '\0'. */
|
|
static char const tzdirslash[sizeof TZDIR] = TZDIR "/";
|
|
|
|
/* Local storage needed for 'tzloadbody'. */
|
|
union local_storage {
|
|
/* The results of analyzing the file's contents after it is opened. */
|
|
struct file_analysis {
|
|
/* The input buffer. */
|
|
union input_buffer u;
|
|
|
|
/* A temporary state used for parsing a TZ string in the file. */
|
|
struct state st;
|
|
} u;
|
|
|
|
/* The file name to be opened. */
|
|
char fullname[max(sizeof(struct file_analysis), sizeof tzdirslash + 1024)];
|
|
};
|
|
|
|
/* Load tz data from the file named NAME into *SP. Read extended
|
|
format if DOEXTEND. Use *LSP for temporary storage. Return 0 on
|
|
success, an errno value on failure. */
|
|
static int
|
|
tzloadbody(char const *name, struct state *sp, bool doextend,
|
|
union local_storage *lsp)
|
|
{
|
|
register int i;
|
|
register int fid;
|
|
register int stored;
|
|
register ssize_t nread;
|
|
register union input_buffer *up = &lsp->u.u;
|
|
register int tzheadsize = sizeof(struct tzhead);
|
|
|
|
sp->goback = sp->goahead = false;
|
|
|
|
if (! name) {
|
|
name = TZDEFAULT;
|
|
if (! name)
|
|
return EINVAL;
|
|
}
|
|
|
|
if (name[0] == ':')
|
|
++name;
|
|
if (name[0] != '/') {
|
|
if (sizeof lsp->fullname - sizeof tzdirslash <= strlen(name))
|
|
return ENAMETOOLONG;
|
|
|
|
/* Create a string "TZDIR/NAME". Using sprintf here
|
|
would pull in stdio (and would fail if the
|
|
resulting string length exceeded INT_MAX!). */
|
|
memcpy(lsp->fullname, tzdirslash, sizeof tzdirslash);
|
|
strcpy(lsp->fullname + sizeof tzdirslash, name);
|
|
|
|
name = lsp->fullname;
|
|
}
|
|
if (doextend) {
|
|
/*
|
|
* Detect if the timezone file has changed. Check
|
|
* 'doextend' to ignore TZDEFRULES; the change_in_tz()
|
|
* function can only keep state for a single file.
|
|
*/
|
|
int ret = change_in_tz(name);
|
|
if (ret <= 0) {
|
|
/*
|
|
* Returns an errno value if there was an error,
|
|
* and 0 if the timezone had not changed.
|
|
*/
|
|
return errno;
|
|
}
|
|
}
|
|
fid = _open(name, O_RDONLY | O_BINARY);
|
|
if (fid < 0)
|
|
return errno;
|
|
|
|
nread = _read(fid, up->buf, sizeof up->buf);
|
|
if (nread < tzheadsize) {
|
|
int err = nread < 0 ? errno : EINVAL;
|
|
_close(fid);
|
|
return err;
|
|
}
|
|
if (_close(fid) < 0)
|
|
return errno;
|
|
for (stored = 4; stored <= 8; stored *= 2) {
|
|
char version = up->tzhead.tzh_version[0];
|
|
bool skip_datablock = stored == 4 && version;
|
|
int_fast32_t datablock_size;
|
|
int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
|
|
int_fast32_t ttisutcnt = detzcode(up->tzhead.tzh_ttisutcnt);
|
|
int_fast64_t prevtr = -1;
|
|
int_fast32_t prevcorr;
|
|
int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
|
|
int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
|
|
int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
|
|
int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
|
|
char const *p = up->buf + tzheadsize;
|
|
/* Although tzfile(5) currently requires typecnt to be nonzero,
|
|
support future formats that may allow zero typecnt
|
|
in files that have a TZ string and no transitions. */
|
|
if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
|
|
&& 0 <= typecnt && typecnt < TZ_MAX_TYPES
|
|
&& 0 <= timecnt && timecnt < TZ_MAX_TIMES
|
|
&& 0 <= charcnt && charcnt < TZ_MAX_CHARS
|
|
&& 0 <= ttisstdcnt && ttisstdcnt < TZ_MAX_TYPES
|
|
&& 0 <= ttisutcnt && ttisutcnt < TZ_MAX_TYPES))
|
|
return EINVAL;
|
|
datablock_size
|
|
= (timecnt * stored /* ats */
|
|
+ timecnt /* types */
|
|
+ typecnt * 6 /* ttinfos */
|
|
+ charcnt /* chars */
|
|
+ leapcnt * (stored + 4) /* lsinfos */
|
|
+ ttisstdcnt /* ttisstds */
|
|
+ ttisutcnt); /* ttisuts */
|
|
if (nread < tzheadsize + datablock_size)
|
|
return EINVAL;
|
|
if (skip_datablock)
|
|
p += datablock_size;
|
|
else {
|
|
if (! ((ttisstdcnt == typecnt || ttisstdcnt == 0)
|
|
&& (ttisutcnt == typecnt || ttisutcnt == 0)))
|
|
return EINVAL;
|
|
|
|
sp->leapcnt = leapcnt;
|
|
sp->timecnt = timecnt;
|
|
sp->typecnt = typecnt;
|
|
sp->charcnt = charcnt;
|
|
|
|
/* Read transitions, discarding those out of time_t range.
|
|
But pretend the last transition before TIME_T_MIN
|
|
occurred at TIME_T_MIN. */
|
|
timecnt = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
int_fast64_t at
|
|
= stored == 4 ? detzcode(p) : detzcode64(p);
|
|
sp->types[i] = at <= TIME_T_MAX;
|
|
if (sp->types[i]) {
|
|
time_t attime
|
|
= ((TYPE_SIGNED(time_t) ? at < TIME_T_MIN : at < 0)
|
|
? TIME_T_MIN : at);
|
|
if (timecnt && attime <= sp->ats[timecnt - 1]) {
|
|
if (attime < sp->ats[timecnt - 1])
|
|
return EINVAL;
|
|
sp->types[i - 1] = 0;
|
|
timecnt--;
|
|
}
|
|
sp->ats[timecnt++] = attime;
|
|
}
|
|
p += stored;
|
|
}
|
|
|
|
timecnt = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
unsigned char typ = *p++;
|
|
if (sp->typecnt <= typ)
|
|
return EINVAL;
|
|
if (sp->types[i])
|
|
sp->types[timecnt++] = typ;
|
|
}
|
|
sp->timecnt = timecnt;
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
register struct ttinfo * ttisp;
|
|
unsigned char isdst, desigidx;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
ttisp->tt_utoff = detzcode(p);
|
|
p += 4;
|
|
isdst = *p++;
|
|
if (! (isdst < 2))
|
|
return EINVAL;
|
|
ttisp->tt_isdst = isdst;
|
|
desigidx = *p++;
|
|
if (! (desigidx < sp->charcnt))
|
|
return EINVAL;
|
|
ttisp->tt_desigidx = desigidx;
|
|
}
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
sp->chars[i] = *p++;
|
|
/* Ensure '\0'-terminated, and make it safe to call
|
|
ttunspecified later. */
|
|
memset(&sp->chars[i], 0, CHARS_EXTRA);
|
|
|
|
/* Read leap seconds, discarding those out of time_t range. */
|
|
leapcnt = 0;
|
|
for (i = 0; i < sp->leapcnt; ++i) {
|
|
int_fast64_t tr = stored == 4 ? detzcode(p) : detzcode64(p);
|
|
int_fast32_t corr = detzcode(p + stored);
|
|
p += stored + 4;
|
|
|
|
/* Leap seconds cannot occur before the Epoch,
|
|
or out of order. */
|
|
if (tr <= prevtr)
|
|
return EINVAL;
|
|
|
|
/* To avoid other botches in this code, each leap second's
|
|
correction must differ from the previous one's by 1
|
|
second or less, except that the first correction can be
|
|
any value; these requirements are more generous than
|
|
RFC 8536, to allow future RFC extensions. */
|
|
if (! (i == 0
|
|
|| (prevcorr < corr
|
|
? corr == prevcorr + 1
|
|
: (corr == prevcorr
|
|
|| corr == prevcorr - 1))))
|
|
return EINVAL;
|
|
prevtr = tr;
|
|
prevcorr = corr;
|
|
|
|
if (tr <= TIME_T_MAX) {
|
|
sp->lsis[leapcnt].ls_trans = tr;
|
|
sp->lsis[leapcnt].ls_corr = corr;
|
|
leapcnt++;
|
|
}
|
|
}
|
|
sp->leapcnt = leapcnt;
|
|
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
register struct ttinfo * ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisstdcnt == 0)
|
|
ttisp->tt_ttisstd = false;
|
|
else {
|
|
if (*p != true && *p != false)
|
|
return EINVAL;
|
|
ttisp->tt_ttisstd = *p++;
|
|
}
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i) {
|
|
register struct ttinfo * ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisutcnt == 0)
|
|
ttisp->tt_ttisut = false;
|
|
else {
|
|
if (*p != true && *p != false)
|
|
return EINVAL;
|
|
ttisp->tt_ttisut = *p++;
|
|
}
|
|
}
|
|
}
|
|
|
|
nread -= p - up->buf;
|
|
memmove(up->buf, p, nread);
|
|
|
|
/* If this is an old file, we're done. */
|
|
if (!version)
|
|
break;
|
|
}
|
|
if (doextend && nread > 2 &&
|
|
up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
|
|
sp->typecnt + 2 <= TZ_MAX_TYPES) {
|
|
struct state *ts = &lsp->u.st;
|
|
|
|
up->buf[nread - 1] = '\0';
|
|
if (tzparse(&up->buf[1], ts, sp)) {
|
|
|
|
/* Attempt to reuse existing abbreviations.
|
|
Without this, America/Anchorage would be right on
|
|
the edge after 2037 when TZ_MAX_CHARS is 50, as
|
|
sp->charcnt equals 40 (for LMT AST AWT APT AHST
|
|
AHDT YST AKDT AKST) and ts->charcnt equals 10
|
|
(for AKST AKDT). Reusing means sp->charcnt can
|
|
stay 40 in this example. */
|
|
int gotabbr = 0;
|
|
int charcnt = sp->charcnt;
|
|
for (i = 0; i < ts->typecnt; i++) {
|
|
char *tsabbr = ts->chars + ts->ttis[i].tt_desigidx;
|
|
int j;
|
|
for (j = 0; j < charcnt; j++)
|
|
if (strcmp(sp->chars + j, tsabbr) == 0) {
|
|
ts->ttis[i].tt_desigidx = j;
|
|
gotabbr++;
|
|
break;
|
|
}
|
|
if (! (j < charcnt)) {
|
|
int tsabbrlen = strlen(tsabbr);
|
|
if (j + tsabbrlen < TZ_MAX_CHARS) {
|
|
strcpy(sp->chars + j, tsabbr);
|
|
charcnt = j + tsabbrlen + 1;
|
|
ts->ttis[i].tt_desigidx = j;
|
|
gotabbr++;
|
|
}
|
|
}
|
|
}
|
|
if (gotabbr == ts->typecnt) {
|
|
sp->charcnt = charcnt;
|
|
|
|
/* Ignore any trailing, no-op transitions generated
|
|
by zic as they don't help here and can run afoul
|
|
of bugs in zic 2016j or earlier. */
|
|
while (1 < sp->timecnt
|
|
&& (sp->types[sp->timecnt - 1]
|
|
== sp->types[sp->timecnt - 2]))
|
|
sp->timecnt--;
|
|
|
|
for (i = 0;
|
|
i < ts->timecnt && sp->timecnt < TZ_MAX_TIMES;
|
|
i++) {
|
|
time_t t = ts->ats[i];
|
|
if (increment_overflow_time(&t, leapcorr(sp, t))
|
|
|| (0 < sp->timecnt
|
|
&& t <= sp->ats[sp->timecnt - 1]))
|
|
continue;
|
|
sp->ats[sp->timecnt] = t;
|
|
sp->types[sp->timecnt] = (sp->typecnt
|
|
+ ts->types[i]);
|
|
sp->timecnt++;
|
|
}
|
|
for (i = 0; i < ts->typecnt; i++)
|
|
sp->ttis[sp->typecnt++] = ts->ttis[i];
|
|
}
|
|
}
|
|
}
|
|
if (sp->typecnt == 0)
|
|
return EINVAL;
|
|
if (sp->timecnt > 1) {
|
|
if (sp->ats[0] <= TIME_T_MAX - SECSPERREPEAT) {
|
|
time_t repeatat = sp->ats[0] + SECSPERREPEAT;
|
|
int repeattype = sp->types[0];
|
|
for (i = 1; i < sp->timecnt; ++i)
|
|
if (sp->ats[i] == repeatat
|
|
&& typesequiv(sp, sp->types[i], repeattype)) {
|
|
sp->goback = true;
|
|
break;
|
|
}
|
|
}
|
|
if (TIME_T_MIN + SECSPERREPEAT <= sp->ats[sp->timecnt - 1]) {
|
|
time_t repeatat = sp->ats[sp->timecnt - 1] - SECSPERREPEAT;
|
|
int repeattype = sp->types[sp->timecnt - 1];
|
|
for (i = sp->timecnt - 2; i >= 0; --i)
|
|
if (sp->ats[i] == repeatat
|
|
&& typesequiv(sp, sp->types[i], repeattype)) {
|
|
sp->goahead = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Infer sp->defaulttype from the data. Although this default
|
|
type is always zero for data from recent tzdb releases,
|
|
things are trickier for data from tzdb 2018e or earlier.
|
|
|
|
The first set of heuristics work around bugs in 32-bit data
|
|
generated by tzdb 2013c or earlier. The workaround is for
|
|
zones like Australia/Macquarie where timestamps before the
|
|
first transition have a time type that is not the earliest
|
|
standard-time type. See:
|
|
https://mm.icann.org/pipermail/tz/2013-May/019368.html */
|
|
/*
|
|
** If type 0 does not specify local time, or is unused in transitions,
|
|
** it's the type to use for early times.
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
if (sp->types[i] == 0)
|
|
break;
|
|
i = i < sp->timecnt && ! ttunspecified(sp, 0) ? -1 : 0;
|
|
/*
|
|
** Absent the above,
|
|
** if there are transition times
|
|
** and the first transition is to a daylight time
|
|
** find the standard type less than and closest to
|
|
** the type of the first transition.
|
|
*/
|
|
if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
|
|
i = sp->types[0];
|
|
while (--i >= 0)
|
|
if (!sp->ttis[i].tt_isdst)
|
|
break;
|
|
}
|
|
/* The next heuristics are for data generated by tzdb 2018e or
|
|
earlier, for zones like EST5EDT where the first transition
|
|
is to DST. */
|
|
/*
|
|
** If no result yet, find the first standard type.
|
|
** If there is none, punt to type zero.
|
|
*/
|
|
if (i < 0) {
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt) {
|
|
i = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* A simple 'sp->defaulttype = 0;' would suffice here if we
|
|
didn't have to worry about 2018e-or-earlier data. Even
|
|
simpler would be to remove the defaulttype member and just
|
|
use 0 in its place. */
|
|
sp->defaulttype = i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Load tz data from the file named NAME into *SP. Read extended
|
|
format if DOEXTEND. Return 0 on success, an errno value on failure. */
|
|
static int
|
|
tzload(char const *name, struct state *sp, bool doextend)
|
|
{
|
|
#ifdef ALL_STATE
|
|
union local_storage *lsp = malloc(sizeof *lsp);
|
|
if (!lsp) {
|
|
return HAVE_MALLOC_ERRNO ? errno : ENOMEM;
|
|
} else {
|
|
int err = tzloadbody(name, sp, doextend, lsp);
|
|
free(lsp);
|
|
return err;
|
|
}
|
|
#else
|
|
union local_storage ls;
|
|
return tzloadbody(name, sp, doextend, &ls);
|
|
#endif
|
|
}
|
|
|
|
static bool
|
|
typesequiv(const struct state *sp, int a, int b)
|
|
{
|
|
register bool result;
|
|
|
|
if (sp == NULL ||
|
|
a < 0 || a >= sp->typecnt ||
|
|
b < 0 || b >= sp->typecnt)
|
|
result = false;
|
|
else {
|
|
/* Compare the relevant members of *AP and *BP.
|
|
Ignore tt_ttisstd and tt_ttisut, as they are
|
|
irrelevant now and counting them could cause
|
|
sp->goahead to mistakenly remain false. */
|
|
register const struct ttinfo * ap = &sp->ttis[a];
|
|
register const struct ttinfo * bp = &sp->ttis[b];
|
|
result = (ap->tt_utoff == bp->tt_utoff
|
|
&& ap->tt_isdst == bp->tt_isdst
|
|
&& (strcmp(&sp->chars[ap->tt_desigidx],
|
|
&sp->chars[bp->tt_desigidx])
|
|
== 0));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const int mon_lengths[2][MONSPERYEAR] = {
|
|
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
|
|
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
|
|
};
|
|
|
|
static const int year_lengths[2] = {
|
|
DAYSPERNYEAR, DAYSPERLYEAR
|
|
};
|
|
|
|
/* Is C an ASCII digit? */
|
|
static bool
|
|
is_digit(char c)
|
|
{
|
|
return '0' <= c && c <= '9';
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a timezone string, scan until a character that is not
|
|
** a valid character in a time zone abbreviation is found.
|
|
** Return a pointer to that character.
|
|
*/
|
|
|
|
ATTRIBUTE_REPRODUCIBLE static const char *
|
|
getzname(register const char *strp)
|
|
{
|
|
register char c;
|
|
|
|
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
|
|
c != '+')
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into an extended timezone string, scan until the ending
|
|
** delimiter of the time zone abbreviation is located.
|
|
** Return a pointer to the delimiter.
|
|
**
|
|
** As with getzname above, the legal character set is actually quite
|
|
** restricted, with other characters producing undefined results.
|
|
** We don't do any checking here; checking is done later in common-case code.
|
|
*/
|
|
|
|
ATTRIBUTE_REPRODUCIBLE static const char *
|
|
getqzname(register const char *strp, const int delim)
|
|
{
|
|
register int c;
|
|
|
|
while ((c = *strp) != '\0' && c != delim)
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a timezone string, extract a number from that string.
|
|
** Check that the number is within a specified range; if it is not, return
|
|
** NULL.
|
|
** Otherwise, return a pointer to the first character not part of the number.
|
|
*/
|
|
|
|
static const char *
|
|
getnum(register const char *strp, int *const nump, const int min, const int max)
|
|
{
|
|
register char c;
|
|
register int num;
|
|
|
|
if (strp == NULL || !is_digit(c = *strp))
|
|
return NULL;
|
|
num = 0;
|
|
do {
|
|
num = num * 10 + (c - '0');
|
|
if (num > max)
|
|
return NULL; /* illegal value */
|
|
c = *++strp;
|
|
} while (is_digit(c));
|
|
if (num < min)
|
|
return NULL; /* illegal value */
|
|
*nump = num;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a timezone string, extract a number of seconds,
|
|
** in hh[:mm[:ss]] form, from the string.
|
|
** If any error occurs, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the number
|
|
** of seconds.
|
|
*/
|
|
|
|
static const char *
|
|
getsecs(register const char *strp, int_fast32_t *const secsp)
|
|
{
|
|
int num;
|
|
int_fast32_t secsperhour = SECSPERHOUR;
|
|
|
|
/*
|
|
** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
|
|
** "M10.4.6/26", which does not conform to Posix,
|
|
** but which specifies the equivalent of
|
|
** "02:00 on the first Sunday on or after 23 Oct".
|
|
*/
|
|
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp = num * secsperhour;
|
|
if (*strp == ':') {
|
|
++strp;
|
|
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num * SECSPERMIN;
|
|
if (*strp == ':') {
|
|
++strp;
|
|
/* 'SECSPERMIN' allows for leap seconds. */
|
|
strp = getnum(strp, &num, 0, SECSPERMIN);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num;
|
|
}
|
|
}
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a timezone string, extract an offset, in
|
|
** [+-]hh[:mm[:ss]] form, from the string.
|
|
** If any error occurs, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the time.
|
|
*/
|
|
|
|
static const char *
|
|
getoffset(register const char *strp, int_fast32_t *const offsetp)
|
|
{
|
|
register bool neg = false;
|
|
|
|
if (*strp == '-') {
|
|
neg = true;
|
|
++strp;
|
|
} else if (*strp == '+')
|
|
++strp;
|
|
strp = getsecs(strp, offsetp);
|
|
if (strp == NULL)
|
|
return NULL; /* illegal time */
|
|
if (neg)
|
|
*offsetp = -*offsetp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a pointer into a timezone string, extract a rule in the form
|
|
** date[/time]. See POSIX section 8 for the format of "date" and "time".
|
|
** If a valid rule is not found, return NULL.
|
|
** Otherwise, return a pointer to the first character not part of the rule.
|
|
*/
|
|
|
|
static const char *
|
|
getrule(const char *strp, register struct rule *const rulep)
|
|
{
|
|
if (*strp == 'J') {
|
|
/*
|
|
** Julian day.
|
|
*/
|
|
rulep->r_type = JULIAN_DAY;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
|
|
} else if (*strp == 'M') {
|
|
/*
|
|
** Month, week, day.
|
|
*/
|
|
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_week, 1, 5);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
|
|
} else if (is_digit(*strp)) {
|
|
/*
|
|
** Day of year.
|
|
*/
|
|
rulep->r_type = DAY_OF_YEAR;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
|
|
} else return NULL; /* invalid format */
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp == '/') {
|
|
/*
|
|
** Time specified.
|
|
*/
|
|
++strp;
|
|
strp = getoffset(strp, &rulep->r_time);
|
|
} else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
** Given a year, a rule, and the offset from UT at the time that rule takes
|
|
** effect, calculate the year-relative time that rule takes effect.
|
|
*/
|
|
|
|
static int_fast32_t
|
|
transtime(const int year, register const struct rule *const rulep,
|
|
const int_fast32_t offset)
|
|
{
|
|
register bool leapyear;
|
|
register int_fast32_t value;
|
|
register int i;
|
|
int d, m1, yy0, yy1, yy2, dow;
|
|
|
|
leapyear = isleap(year);
|
|
switch (rulep->r_type) {
|
|
|
|
case JULIAN_DAY:
|
|
/*
|
|
** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
|
|
** years.
|
|
** In non-leap years, or if the day number is 59 or less, just
|
|
** add SECSPERDAY times the day number-1 to the time of
|
|
** January 1, midnight, to get the day.
|
|
*/
|
|
value = (rulep->r_day - 1) * SECSPERDAY;
|
|
if (leapyear && rulep->r_day >= 60)
|
|
value += SECSPERDAY;
|
|
break;
|
|
|
|
case DAY_OF_YEAR:
|
|
/*
|
|
** n - day of year.
|
|
** Just add SECSPERDAY times the day number to the time of
|
|
** January 1, midnight, to get the day.
|
|
*/
|
|
value = rulep->r_day * SECSPERDAY;
|
|
break;
|
|
|
|
case MONTH_NTH_DAY_OF_WEEK:
|
|
/*
|
|
** Mm.n.d - nth "dth day" of month m.
|
|
*/
|
|
|
|
/*
|
|
** Use Zeller's Congruence to get day-of-week of first day of
|
|
** month.
|
|
*/
|
|
m1 = (rulep->r_mon + 9) % 12 + 1;
|
|
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
|
|
yy1 = yy0 / 100;
|
|
yy2 = yy0 % 100;
|
|
dow = ((26 * m1 - 2) / 10 +
|
|
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
|
|
if (dow < 0)
|
|
dow += DAYSPERWEEK;
|
|
|
|
/*
|
|
** "dow" is the day-of-week of the first day of the month. Get
|
|
** the day-of-month (zero-origin) of the first "dow" day of the
|
|
** month.
|
|
*/
|
|
d = rulep->r_day - dow;
|
|
if (d < 0)
|
|
d += DAYSPERWEEK;
|
|
for (i = 1; i < rulep->r_week; ++i) {
|
|
if (d + DAYSPERWEEK >=
|
|
mon_lengths[leapyear][rulep->r_mon - 1])
|
|
break;
|
|
d += DAYSPERWEEK;
|
|
}
|
|
|
|
/*
|
|
** "d" is the day-of-month (zero-origin) of the day we want.
|
|
*/
|
|
value = d * SECSPERDAY;
|
|
for (i = 0; i < rulep->r_mon - 1; ++i)
|
|
value += mon_lengths[leapyear][i] * SECSPERDAY;
|
|
break;
|
|
|
|
default: unreachable();
|
|
}
|
|
|
|
/*
|
|
** "value" is the year-relative time of 00:00:00 UT on the day in
|
|
** question. To get the year-relative time of the specified local
|
|
** time on that day, add the transition time and the current offset
|
|
** from UT.
|
|
*/
|
|
return value + rulep->r_time + offset;
|
|
}
|
|
|
|
/*
|
|
** Given a POSIX section 8-style TZ string, fill in the rule tables as
|
|
** appropriate.
|
|
*/
|
|
|
|
static bool
|
|
tzparse(const char *name, struct state *sp, struct state *basep)
|
|
{
|
|
const char * stdname;
|
|
const char * dstname;
|
|
int_fast32_t stdoffset;
|
|
int_fast32_t dstoffset;
|
|
register char * cp;
|
|
register bool load_ok;
|
|
ptrdiff_t stdlen, dstlen, charcnt;
|
|
time_t atlo = TIME_T_MIN, leaplo = TIME_T_MIN;
|
|
|
|
stdname = name;
|
|
if (*name == '<') {
|
|
name++;
|
|
stdname = name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
return false;
|
|
stdlen = name - stdname;
|
|
name++;
|
|
} else {
|
|
name = getzname(name);
|
|
stdlen = name - stdname;
|
|
}
|
|
if (! (0 < stdlen && stdlen <= TZNAME_MAXIMUM))
|
|
return false;
|
|
name = getoffset(name, &stdoffset);
|
|
if (name == NULL)
|
|
return false;
|
|
charcnt = stdlen + 1;
|
|
if (basep) {
|
|
if (0 < basep->timecnt)
|
|
atlo = basep->ats[basep->timecnt - 1];
|
|
load_ok = false;
|
|
sp->leapcnt = basep->leapcnt;
|
|
memcpy(sp->lsis, basep->lsis, sp->leapcnt * sizeof *sp->lsis);
|
|
} else {
|
|
load_ok = tzload(TZDEFRULES, sp, false) == 0;
|
|
if (!load_ok)
|
|
sp->leapcnt = 0; /* So, we're off a little. */
|
|
}
|
|
if (0 < sp->leapcnt)
|
|
leaplo = sp->lsis[sp->leapcnt - 1].ls_trans;
|
|
if (*name != '\0') {
|
|
if (*name == '<') {
|
|
dstname = ++name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
return false;
|
|
dstlen = name - dstname;
|
|
name++;
|
|
} else {
|
|
dstname = name;
|
|
name = getzname(name);
|
|
dstlen = name - dstname; /* length of DST abbr. */
|
|
}
|
|
if (! (0 < dstlen && dstlen <= TZNAME_MAXIMUM))
|
|
return false;
|
|
charcnt += dstlen + 1;
|
|
if (*name != '\0' && *name != ',' && *name != ';') {
|
|
name = getoffset(name, &dstoffset);
|
|
if (name == NULL)
|
|
return false;
|
|
} else dstoffset = stdoffset - SECSPERHOUR;
|
|
if (*name == '\0' && !load_ok)
|
|
name = TZDEFRULESTRING;
|
|
if (*name == ',' || *name == ';') {
|
|
struct rule start;
|
|
struct rule end;
|
|
register int year;
|
|
register int timecnt;
|
|
time_t janfirst;
|
|
int_fast32_t janoffset = 0;
|
|
int yearbeg, yearlim;
|
|
|
|
++name;
|
|
if ((name = getrule(name, &start)) == NULL)
|
|
return false;
|
|
if (*name++ != ',')
|
|
return false;
|
|
if ((name = getrule(name, &end)) == NULL)
|
|
return false;
|
|
if (*name != '\0')
|
|
return false;
|
|
sp->typecnt = 2; /* standard time and DST */
|
|
/*
|
|
** Two transitions per year, from EPOCH_YEAR forward.
|
|
*/
|
|
init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
|
|
init_ttinfo(&sp->ttis[1], -dstoffset, true, stdlen + 1);
|
|
sp->defaulttype = 0;
|
|
timecnt = 0;
|
|
janfirst = 0;
|
|
yearbeg = EPOCH_YEAR;
|
|
|
|
do {
|
|
int_fast32_t yearsecs
|
|
= year_lengths[isleap(yearbeg - 1)] * SECSPERDAY;
|
|
yearbeg--;
|
|
if (increment_overflow_time(&janfirst, -yearsecs)) {
|
|
janoffset = -yearsecs;
|
|
break;
|
|
}
|
|
} while (atlo < janfirst
|
|
&& EPOCH_YEAR - YEARSPERREPEAT / 2 < yearbeg);
|
|
|
|
while (true) {
|
|
int_fast32_t yearsecs
|
|
= year_lengths[isleap(yearbeg)] * SECSPERDAY;
|
|
int yearbeg1 = yearbeg;
|
|
time_t janfirst1 = janfirst;
|
|
if (increment_overflow_time(&janfirst1, yearsecs)
|
|
|| increment_overflow(&yearbeg1, 1)
|
|
|| atlo <= janfirst1)
|
|
break;
|
|
yearbeg = yearbeg1;
|
|
janfirst = janfirst1;
|
|
}
|
|
|
|
yearlim = yearbeg;
|
|
if (increment_overflow(&yearlim, YEARSPERREPEAT + 1))
|
|
yearlim = INT_MAX;
|
|
for (year = yearbeg; year < yearlim; year++) {
|
|
int_fast32_t
|
|
starttime = transtime(year, &start, stdoffset),
|
|
endtime = transtime(year, &end, dstoffset);
|
|
int_fast32_t
|
|
yearsecs = (year_lengths[isleap(year)]
|
|
* SECSPERDAY);
|
|
bool reversed = endtime < starttime;
|
|
if (reversed) {
|
|
int_fast32_t swap = starttime;
|
|
starttime = endtime;
|
|
endtime = swap;
|
|
}
|
|
if (reversed
|
|
|| (starttime < endtime
|
|
&& endtime - starttime < yearsecs)) {
|
|
if (TZ_MAX_TIMES - 2 < timecnt)
|
|
break;
|
|
sp->ats[timecnt] = janfirst;
|
|
if (! increment_overflow_time
|
|
(&sp->ats[timecnt],
|
|
janoffset + starttime)
|
|
&& atlo <= sp->ats[timecnt])
|
|
sp->types[timecnt++] = !reversed;
|
|
sp->ats[timecnt] = janfirst;
|
|
if (! increment_overflow_time
|
|
(&sp->ats[timecnt],
|
|
janoffset + endtime)
|
|
&& atlo <= sp->ats[timecnt]) {
|
|
sp->types[timecnt++] = reversed;
|
|
}
|
|
}
|
|
if (endtime < leaplo) {
|
|
yearlim = year;
|
|
if (increment_overflow(&yearlim,
|
|
YEARSPERREPEAT + 1))
|
|
yearlim = INT_MAX;
|
|
}
|
|
if (increment_overflow_time
|
|
(&janfirst, janoffset + yearsecs))
|
|
break;
|
|
janoffset = 0;
|
|
}
|
|
sp->timecnt = timecnt;
|
|
if (! timecnt) {
|
|
sp->ttis[0] = sp->ttis[1];
|
|
sp->typecnt = 1; /* Perpetual DST. */
|
|
} else if (YEARSPERREPEAT < year - yearbeg)
|
|
sp->goback = sp->goahead = true;
|
|
} else {
|
|
register int_fast32_t theirstdoffset;
|
|
register int_fast32_t theirdstoffset;
|
|
register int_fast32_t theiroffset;
|
|
register bool isdst;
|
|
register int i;
|
|
register int j;
|
|
|
|
if (*name != '\0')
|
|
return false;
|
|
/*
|
|
** Initial values of theirstdoffset and theirdstoffset.
|
|
*/
|
|
theirstdoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
if (!sp->ttis[j].tt_isdst) {
|
|
theirstdoffset =
|
|
- sp->ttis[j].tt_utoff;
|
|
break;
|
|
}
|
|
}
|
|
theirdstoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
if (sp->ttis[j].tt_isdst) {
|
|
theirdstoffset =
|
|
- sp->ttis[j].tt_utoff;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
** Initially we're assumed to be in standard time.
|
|
*/
|
|
isdst = false;
|
|
/*
|
|
** Now juggle transition times and types
|
|
** tracking offsets as you do.
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i) {
|
|
j = sp->types[i];
|
|
sp->types[i] = sp->ttis[j].tt_isdst;
|
|
if (sp->ttis[j].tt_ttisut) {
|
|
/* No adjustment to transition time */
|
|
} else {
|
|
/*
|
|
** If daylight saving time is in
|
|
** effect, and the transition time was
|
|
** not specified as standard time, add
|
|
** the daylight saving time offset to
|
|
** the transition time; otherwise, add
|
|
** the standard time offset to the
|
|
** transition time.
|
|
*/
|
|
/*
|
|
** Transitions from DST to DDST
|
|
** will effectively disappear since
|
|
** POSIX provides for only one DST
|
|
** offset.
|
|
*/
|
|
if (isdst && !sp->ttis[j].tt_ttisstd) {
|
|
sp->ats[i] += dstoffset -
|
|
theirdstoffset;
|
|
} else {
|
|
sp->ats[i] += stdoffset -
|
|
theirstdoffset;
|
|
}
|
|
}
|
|
theiroffset = -sp->ttis[j].tt_utoff;
|
|
if (sp->ttis[j].tt_isdst)
|
|
theirdstoffset = theiroffset;
|
|
else theirstdoffset = theiroffset;
|
|
}
|
|
/*
|
|
** Finally, fill in ttis.
|
|
*/
|
|
init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
|
|
init_ttinfo(&sp->ttis[1], -dstoffset, true, stdlen + 1);
|
|
sp->typecnt = 2;
|
|
sp->defaulttype = 0;
|
|
}
|
|
} else {
|
|
dstlen = 0;
|
|
sp->typecnt = 1; /* only standard time */
|
|
sp->timecnt = 0;
|
|
init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
|
|
sp->defaulttype = 0;
|
|
}
|
|
sp->charcnt = charcnt;
|
|
cp = sp->chars;
|
|
memcpy(cp, stdname, stdlen);
|
|
cp += stdlen;
|
|
*cp++ = '\0';
|
|
if (dstlen != 0) {
|
|
memcpy(cp, dstname, dstlen);
|
|
*(cp + dstlen) = '\0';
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
gmtload(struct state *const sp)
|
|
{
|
|
if (tzload(etc_utc, sp, true) != 0)
|
|
tzparse("UTC0", sp, NULL);
|
|
}
|
|
|
|
#ifdef DETECT_TZ_CHANGES
|
|
static int
|
|
recheck_tzdata()
|
|
{
|
|
static time_t last_checked;
|
|
struct timespec now;
|
|
time_t current_time;
|
|
int error;
|
|
|
|
/*
|
|
* We want to recheck the timezone file every 61 sec.
|
|
*/
|
|
error = clock_gettime(CLOCK_MONOTONIC, &now);
|
|
if (error < 0) {
|
|
/* XXX: Can we somehow report this? */
|
|
return 0;
|
|
}
|
|
|
|
current_time = now.tv_sec;
|
|
if ((current_time - last_checked > DETECT_TZ_CHANGES_INTERVAL) ||
|
|
(last_checked > current_time)) {
|
|
last_checked = current_time;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else /* !DETECT_TZ_CHANGES */
|
|
#define recheck_tzdata() 0
|
|
#endif /* !DETECT_TZ_CHANGES */
|
|
|
|
/* Initialize *SP to a value appropriate for the TZ setting NAME.
|
|
Return 0 on success, an errno value on failure. */
|
|
static int
|
|
zoneinit(struct state *sp, char const *name)
|
|
{
|
|
if (name && ! name[0]) {
|
|
/*
|
|
** User wants it fast rather than right.
|
|
*/
|
|
sp->leapcnt = 0; /* so, we're off a little */
|
|
sp->timecnt = 0;
|
|
sp->typecnt = 0;
|
|
sp->charcnt = 0;
|
|
sp->goback = sp->goahead = false;
|
|
init_ttinfo(&sp->ttis[0], 0, false, 0);
|
|
strcpy(sp->chars, utc);
|
|
sp->defaulttype = 0;
|
|
return 0;
|
|
} else {
|
|
int err = tzload(name, sp, true);
|
|
if (err != 0 && name && name[0] != ':' && tzparse(name, sp, NULL))
|
|
err = 0;
|
|
if (err == 0)
|
|
err = scrub_abbrs(sp);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
static void
|
|
tzset_unlocked_name(char const *name)
|
|
{
|
|
struct state *sp = lclptr;
|
|
int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
|
|
if (lcl < 0
|
|
? lcl_is_set < 0
|
|
: 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
|
|
if (recheck_tzdata() == 0)
|
|
return;
|
|
#ifdef ALL_STATE
|
|
if (! sp)
|
|
lclptr = sp = malloc(sizeof *lclptr);
|
|
#endif /* defined ALL_STATE */
|
|
if (sp) {
|
|
if (zoneinit(sp, name) != 0)
|
|
zoneinit(sp, "");
|
|
if (0 < lcl)
|
|
strcpy(lcl_TZname, name);
|
|
}
|
|
settzname();
|
|
lcl_is_set = lcl;
|
|
}
|
|
|
|
static void
|
|
tzset_unlocked(void)
|
|
{
|
|
tzset_unlocked_name(getenv("TZ"));
|
|
}
|
|
|
|
void
|
|
tzset(void)
|
|
{
|
|
if (lock() != 0)
|
|
return;
|
|
tzset_unlocked();
|
|
unlock();
|
|
}
|
|
|
|
void
|
|
freebsd13_tzsetwall(void)
|
|
{
|
|
if (lock() != 0)
|
|
return;
|
|
tzset_unlocked_name(NULL);
|
|
unlock();
|
|
}
|
|
__sym_compat(tzsetwall, freebsd13_tzsetwall, FBSD_1.0);
|
|
__warn_references(tzsetwall,
|
|
"warning: tzsetwall() is deprecated, use tzset() instead.");
|
|
|
|
static void
|
|
gmtcheck(void)
|
|
{
|
|
static bool gmt_is_set;
|
|
if (lock() != 0)
|
|
return;
|
|
if (! gmt_is_set) {
|
|
#ifdef ALL_STATE
|
|
gmtptr = malloc(sizeof *gmtptr);
|
|
#endif
|
|
if (gmtptr)
|
|
gmtload(gmtptr);
|
|
gmt_is_set = true;
|
|
}
|
|
unlock();
|
|
}
|
|
|
|
#if NETBSD_INSPIRED
|
|
|
|
timezone_t
|
|
tzalloc(char const *name)
|
|
{
|
|
timezone_t sp = malloc(sizeof *sp);
|
|
if (sp) {
|
|
int err = zoneinit(sp, name);
|
|
if (err != 0) {
|
|
free(sp);
|
|
errno = err;
|
|
return NULL;
|
|
}
|
|
} else if (!HAVE_MALLOC_ERRNO)
|
|
errno = ENOMEM;
|
|
return sp;
|
|
}
|
|
|
|
void
|
|
tzfree(timezone_t sp)
|
|
{
|
|
free(sp);
|
|
}
|
|
|
|
/*
|
|
** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
|
|
** ctime_r are obsolescent and have potential security problems that
|
|
** ctime_rz would share. Callers can instead use localtime_rz + strftime.
|
|
**
|
|
** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
|
|
** in zones with three or more time zone abbreviations.
|
|
** Callers can instead use localtime_rz + strftime.
|
|
*/
|
|
|
|
#endif
|
|
|
|
/*
|
|
** The easy way to behave "as if no library function calls" localtime
|
|
** is to not call it, so we drop its guts into "localsub", which can be
|
|
** freely called. (And no, the PANS doesn't require the above behavior,
|
|
** but it *is* desirable.)
|
|
**
|
|
** If successful and SETNAME is nonzero,
|
|
** set the applicable parts of tzname, timezone and altzone;
|
|
** however, it's OK to omit this step if the timezone is POSIX-compatible,
|
|
** since in that case tzset should have already done this step correctly.
|
|
** SETNAME's type is int_fast32_t for compatibility with gmtsub,
|
|
** but it is actually a boolean and its value should be 0 or 1.
|
|
*/
|
|
|
|
/*ARGSUSED*/
|
|
static struct tm *
|
|
localsub(struct state const *sp, time_t const *timep, int_fast32_t setname,
|
|
struct tm *const tmp)
|
|
{
|
|
register const struct ttinfo * ttisp;
|
|
register int i;
|
|
register struct tm * result;
|
|
const time_t t = *timep;
|
|
|
|
if (sp == NULL) {
|
|
/* Don't bother to set tzname etc.; tzset has already done it. */
|
|
return gmtsub(gmtptr, timep, 0, tmp);
|
|
}
|
|
if ((sp->goback && t < sp->ats[0]) ||
|
|
(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
|
|
time_t newt;
|
|
register time_t seconds;
|
|
register time_t years;
|
|
|
|
if (t < sp->ats[0])
|
|
seconds = sp->ats[0] - t;
|
|
else seconds = t - sp->ats[sp->timecnt - 1];
|
|
--seconds;
|
|
|
|
/* Beware integer overflow, as SECONDS might
|
|
be close to the maximum time_t. */
|
|
years = seconds / SECSPERREPEAT * YEARSPERREPEAT;
|
|
seconds = years * AVGSECSPERYEAR;
|
|
years += YEARSPERREPEAT;
|
|
if (t < sp->ats[0])
|
|
newt = t + seconds + SECSPERREPEAT;
|
|
else
|
|
newt = t - seconds - SECSPERREPEAT;
|
|
|
|
if (newt < sp->ats[0] ||
|
|
newt > sp->ats[sp->timecnt - 1])
|
|
return NULL; /* "cannot happen" */
|
|
result = localsub(sp, &newt, setname, tmp);
|
|
if (result) {
|
|
#if defined ckd_add && defined ckd_sub
|
|
if (t < sp->ats[0]
|
|
? ckd_sub(&result->tm_year,
|
|
result->tm_year, years)
|
|
: ckd_add(&result->tm_year,
|
|
result->tm_year, years))
|
|
return NULL;
|
|
#else
|
|
register int_fast64_t newy;
|
|
|
|
newy = result->tm_year;
|
|
if (t < sp->ats[0])
|
|
newy -= years;
|
|
else newy += years;
|
|
if (! (INT_MIN <= newy && newy <= INT_MAX))
|
|
return NULL;
|
|
result->tm_year = newy;
|
|
#endif
|
|
}
|
|
return result;
|
|
}
|
|
if (sp->timecnt == 0 || t < sp->ats[0]) {
|
|
i = sp->defaulttype;
|
|
} else {
|
|
register int lo = 1;
|
|
register int hi = sp->timecnt;
|
|
|
|
while (lo < hi) {
|
|
register int mid = (lo + hi) >> 1;
|
|
|
|
if (t < sp->ats[mid])
|
|
hi = mid;
|
|
else lo = mid + 1;
|
|
}
|
|
i = sp->types[lo - 1];
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
/*
|
|
** To get (wrong) behavior that's compatible with System V Release 2.0
|
|
** you'd replace the statement below with
|
|
** t += ttisp->tt_utoff;
|
|
** timesub(&t, 0L, sp, tmp);
|
|
*/
|
|
result = timesub(&t, ttisp->tt_utoff, sp, tmp);
|
|
if (result) {
|
|
result->tm_isdst = ttisp->tt_isdst;
|
|
#ifdef TM_ZONE
|
|
result->TM_ZONE = (char *) &sp->chars[ttisp->tt_desigidx];
|
|
#endif /* defined TM_ZONE */
|
|
if (setname)
|
|
update_tzname_etc(sp, ttisp);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#if NETBSD_INSPIRED
|
|
|
|
struct tm *
|
|
localtime_rz(struct state *restrict sp, time_t const *restrict timep,
|
|
struct tm *restrict tmp)
|
|
{
|
|
return localsub(sp, timep, 0, tmp);
|
|
}
|
|
|
|
#endif
|
|
|
|
static struct tm *
|
|
localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
|
|
{
|
|
int err = lock();
|
|
if (err) {
|
|
errno = err;
|
|
return NULL;
|
|
}
|
|
#ifndef DETECT_TZ_CHANGES
|
|
if (setname || !lcl_is_set)
|
|
#endif
|
|
tzset_unlocked();
|
|
tmp = localsub(lclptr, timep, setname, tmp);
|
|
unlock();
|
|
return tmp;
|
|
}
|
|
|
|
static void
|
|
localtime_key_init(void)
|
|
{
|
|
|
|
localtime_key_error = _pthread_key_create(&localtime_key, free);
|
|
}
|
|
|
|
struct tm *
|
|
localtime(const time_t *timep)
|
|
{
|
|
#if !SUPPORT_C89
|
|
static struct tm tm;
|
|
#endif
|
|
struct tm *p_tm = &tm;
|
|
|
|
if (__isthreaded != 0) {
|
|
_pthread_once(&localtime_once, localtime_key_init);
|
|
if (localtime_key_error != 0) {
|
|
errno = localtime_key_error;
|
|
return (NULL);
|
|
}
|
|
if ((p_tm = _pthread_getspecific(localtime_key)) == NULL) {
|
|
if ((p_tm = malloc(sizeof(*p_tm))) == NULL) {
|
|
return (NULL);
|
|
}
|
|
if (_pthread_setspecific(localtime_key, p_tm) != 0) {
|
|
free(p_tm);
|
|
return (NULL);
|
|
}
|
|
}
|
|
}
|
|
return localtime_tzset(timep, p_tm, true);
|
|
}
|
|
|
|
struct tm *
|
|
localtime_r(const time_t *restrict timep, struct tm *restrict tmp)
|
|
{
|
|
return localtime_tzset(timep, tmp, false);
|
|
}
|
|
|
|
/*
|
|
** gmtsub is to gmtime as localsub is to localtime.
|
|
*/
|
|
|
|
static struct tm *
|
|
gmtsub(ATTRIBUTE_MAYBE_UNUSED struct state const *sp, time_t const *timep,
|
|
int_fast32_t offset, struct tm *tmp)
|
|
{
|
|
register struct tm * result;
|
|
|
|
result = timesub(timep, offset, gmtptr, tmp);
|
|
#ifdef TM_ZONE
|
|
/*
|
|
** Could get fancy here and deliver something such as
|
|
** "+xx" or "-xx" if offset is non-zero,
|
|
** but this is no time for a treasure hunt.
|
|
*/
|
|
tmp->TM_ZONE = ((char *)
|
|
(offset ? wildabbr : gmtptr ? gmtptr->chars : utc));
|
|
#endif /* defined TM_ZONE */
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Re-entrant version of gmtime.
|
|
*/
|
|
|
|
struct tm *
|
|
gmtime_r(time_t const *restrict timep, struct tm *restrict tmp)
|
|
{
|
|
_once(&gmt_once, gmtcheck);
|
|
return gmtsub(gmtptr, timep, 0, tmp);
|
|
}
|
|
|
|
static void
|
|
gmtime_key_init(void)
|
|
{
|
|
|
|
gmtime_key_error = _pthread_key_create(&gmtime_key, free);
|
|
}
|
|
|
|
struct tm *
|
|
gmtime(const time_t *timep)
|
|
{
|
|
#if !SUPPORT_C89
|
|
static struct tm tm;
|
|
#endif
|
|
struct tm *p_tm = &tm;
|
|
|
|
if (__isthreaded != 0) {
|
|
_pthread_once(&gmtime_once, gmtime_key_init);
|
|
if (gmtime_key_error != 0) {
|
|
errno = gmtime_key_error;
|
|
return (NULL);
|
|
}
|
|
if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
|
|
if ((p_tm = malloc(sizeof(*p_tm))) == NULL) {
|
|
return (NULL);
|
|
}
|
|
if (_pthread_setspecific(gmtime_key, p_tm) != 0) {
|
|
free(p_tm);
|
|
return (NULL);
|
|
}
|
|
}
|
|
}
|
|
return gmtime_r(timep, p_tm);
|
|
}
|
|
|
|
#if STD_INSPIRED
|
|
|
|
struct tm *
|
|
offtime_r(time_t const *restrict timep, long offset, struct tm *restrict tmp)
|
|
{
|
|
_once(&gmt_once, gmtcheck);
|
|
return gmtsub(gmtptr, timep, offset, tmp);
|
|
}
|
|
|
|
static void
|
|
offtime_key_init(void)
|
|
{
|
|
|
|
offtime_key_error = _pthread_key_create(&offtime_key, free);
|
|
}
|
|
|
|
struct tm *
|
|
offtime(const time_t *timep, long offset)
|
|
{
|
|
#if !SUPPORT_C89
|
|
static struct tm tm;
|
|
#endif
|
|
struct tm *p_tm = &tm;
|
|
|
|
if (__isthreaded != 0) {
|
|
_pthread_once(&offtime_once, offtime_key_init);
|
|
if (offtime_key_error != 0) {
|
|
errno = offtime_key_error;
|
|
return (NULL);
|
|
}
|
|
if ((p_tm = _pthread_getspecific(offtime_key)) == NULL) {
|
|
if ((p_tm = malloc(sizeof(*p_tm))) == NULL) {
|
|
return (NULL);
|
|
}
|
|
if (_pthread_setspecific(offtime_key, p_tm) != 0) {
|
|
free(p_tm);
|
|
return (NULL);
|
|
}
|
|
}
|
|
}
|
|
return offtime_r(timep, offset, p_tm);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
** Return the number of leap years through the end of the given year
|
|
** where, to make the math easy, the answer for year zero is defined as zero.
|
|
*/
|
|
|
|
static time_t
|
|
leaps_thru_end_of_nonneg(time_t y)
|
|
{
|
|
return y / 4 - y / 100 + y / 400;
|
|
}
|
|
|
|
static time_t
|
|
leaps_thru_end_of(time_t y)
|
|
{
|
|
return (y < 0
|
|
? -1 - leaps_thru_end_of_nonneg(-1 - y)
|
|
: leaps_thru_end_of_nonneg(y));
|
|
}
|
|
|
|
static struct tm *
|
|
timesub(const time_t *timep, int_fast32_t offset,
|
|
const struct state *sp, struct tm *tmp)
|
|
{
|
|
register const struct lsinfo * lp;
|
|
register time_t tdays;
|
|
register const int * ip;
|
|
register int_fast32_t corr;
|
|
register int i;
|
|
int_fast32_t idays, rem, dayoff, dayrem;
|
|
time_t y;
|
|
|
|
/* If less than SECSPERMIN, the number of seconds since the
|
|
most recent positive leap second; otherwise, do not add 1
|
|
to localtime tm_sec because of leap seconds. */
|
|
time_t secs_since_posleap = SECSPERMIN;
|
|
|
|
corr = 0;
|
|
i = (sp == NULL) ? 0 : sp->leapcnt;
|
|
while (--i >= 0) {
|
|
lp = &sp->lsis[i];
|
|
if (*timep >= lp->ls_trans) {
|
|
corr = lp->ls_corr;
|
|
if ((i == 0 ? 0 : lp[-1].ls_corr) < corr)
|
|
secs_since_posleap = *timep - lp->ls_trans;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Calculate the year, avoiding integer overflow even if
|
|
time_t is unsigned. */
|
|
tdays = *timep / SECSPERDAY;
|
|
rem = *timep % SECSPERDAY;
|
|
rem += offset % SECSPERDAY - corr % SECSPERDAY + 3 * SECSPERDAY;
|
|
dayoff = offset / SECSPERDAY - corr / SECSPERDAY + rem / SECSPERDAY - 3;
|
|
rem %= SECSPERDAY;
|
|
/* y = (EPOCH_YEAR
|
|
+ floor((tdays + dayoff) / DAYSPERREPEAT) * YEARSPERREPEAT),
|
|
sans overflow. But calculate against 1570 (EPOCH_YEAR -
|
|
YEARSPERREPEAT) instead of against 1970 so that things work
|
|
for localtime values before 1970 when time_t is unsigned. */
|
|
dayrem = tdays % DAYSPERREPEAT;
|
|
dayrem += dayoff % DAYSPERREPEAT;
|
|
y = (EPOCH_YEAR - YEARSPERREPEAT
|
|
+ ((1 + dayoff / DAYSPERREPEAT + dayrem / DAYSPERREPEAT
|
|
- ((dayrem % DAYSPERREPEAT) < 0)
|
|
+ tdays / DAYSPERREPEAT)
|
|
* YEARSPERREPEAT));
|
|
/* idays = (tdays + dayoff) mod DAYSPERREPEAT, sans overflow. */
|
|
idays = tdays % DAYSPERREPEAT;
|
|
idays += dayoff % DAYSPERREPEAT + 2 * DAYSPERREPEAT;
|
|
idays %= DAYSPERREPEAT;
|
|
/* Increase Y and decrease IDAYS until IDAYS is in range for Y. */
|
|
while (year_lengths[isleap(y)] <= idays) {
|
|
int tdelta = idays / DAYSPERLYEAR;
|
|
int_fast32_t ydelta = tdelta + !tdelta;
|
|
time_t newy = y + ydelta;
|
|
register int leapdays;
|
|
leapdays = leaps_thru_end_of(newy - 1) -
|
|
leaps_thru_end_of(y - 1);
|
|
idays -= ydelta * DAYSPERNYEAR;
|
|
idays -= leapdays;
|
|
y = newy;
|
|
}
|
|
|
|
#ifdef ckd_add
|
|
if (ckd_add(&tmp->tm_year, y, -TM_YEAR_BASE)) {
|
|
errno = EOVERFLOW;
|
|
return NULL;
|
|
}
|
|
#else
|
|
if (!TYPE_SIGNED(time_t) && y < TM_YEAR_BASE) {
|
|
int signed_y = y;
|
|
tmp->tm_year = signed_y - TM_YEAR_BASE;
|
|
} else if ((!TYPE_SIGNED(time_t) || INT_MIN + TM_YEAR_BASE <= y)
|
|
&& y - TM_YEAR_BASE <= INT_MAX)
|
|
tmp->tm_year = y - TM_YEAR_BASE;
|
|
else {
|
|
errno = EOVERFLOW;
|
|
return NULL;
|
|
}
|
|
#endif
|
|
tmp->tm_yday = idays;
|
|
/*
|
|
** The "extra" mods below avoid overflow problems.
|
|
*/
|
|
tmp->tm_wday = (TM_WDAY_BASE
|
|
+ ((tmp->tm_year % DAYSPERWEEK)
|
|
* (DAYSPERNYEAR % DAYSPERWEEK))
|
|
+ leaps_thru_end_of(y - 1)
|
|
- leaps_thru_end_of(TM_YEAR_BASE - 1)
|
|
+ idays);
|
|
tmp->tm_wday %= DAYSPERWEEK;
|
|
if (tmp->tm_wday < 0)
|
|
tmp->tm_wday += DAYSPERWEEK;
|
|
tmp->tm_hour = rem / SECSPERHOUR;
|
|
rem %= SECSPERHOUR;
|
|
tmp->tm_min = rem / SECSPERMIN;
|
|
tmp->tm_sec = rem % SECSPERMIN;
|
|
|
|
/* Use "... ??:??:60" at the end of the localtime minute containing
|
|
the second just before the positive leap second. */
|
|
tmp->tm_sec += secs_since_posleap <= tmp->tm_sec;
|
|
|
|
ip = mon_lengths[isleap(y)];
|
|
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
|
|
idays -= ip[tmp->tm_mon];
|
|
tmp->tm_mday = idays + 1;
|
|
tmp->tm_isdst = 0;
|
|
#ifdef TM_GMTOFF
|
|
tmp->TM_GMTOFF = offset;
|
|
#endif /* defined TM_GMTOFF */
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
** Adapted from code provided by Robert Elz, who writes:
|
|
** The "best" way to do mktime I think is based on an idea of Bob
|
|
** Kridle's (so its said...) from a long time ago.
|
|
** It does a binary search of the time_t space. Since time_t's are
|
|
** just 32 bits, its a max of 32 iterations (even at 64 bits it
|
|
** would still be very reasonable).
|
|
*/
|
|
|
|
#ifndef WRONG
|
|
# define WRONG (-1)
|
|
#endif /* !defined WRONG */
|
|
|
|
/*
|
|
** Normalize logic courtesy Paul Eggert.
|
|
*/
|
|
|
|
static bool
|
|
increment_overflow(int *ip, int j)
|
|
{
|
|
#ifdef ckd_add
|
|
return ckd_add(ip, *ip, j);
|
|
#else
|
|
register int const i = *ip;
|
|
|
|
/*
|
|
** If i >= 0 there can only be overflow if i + j > INT_MAX
|
|
** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
|
|
** If i < 0 there can only be overflow if i + j < INT_MIN
|
|
** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
|
|
*/
|
|
if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
|
|
return true;
|
|
*ip += j;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static bool
|
|
increment_overflow32(int_fast32_t *const lp, int const m)
|
|
{
|
|
#ifdef ckd_add
|
|
return ckd_add(lp, *lp, m);
|
|
#else
|
|
register int_fast32_t const l = *lp;
|
|
|
|
if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
|
|
return true;
|
|
*lp += m;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static bool
|
|
increment_overflow_time(time_t *tp, int_fast32_t j)
|
|
{
|
|
#ifdef ckd_add
|
|
return ckd_add(tp, *tp, j);
|
|
#else
|
|
/*
|
|
** This is like
|
|
** 'if (! (TIME_T_MIN <= *tp + j && *tp + j <= TIME_T_MAX)) ...',
|
|
** except that it does the right thing even if *tp + j would overflow.
|
|
*/
|
|
if (! (j < 0
|
|
? (TYPE_SIGNED(time_t) ? TIME_T_MIN - j <= *tp : -1 - j < *tp)
|
|
: *tp <= TIME_T_MAX - j))
|
|
return true;
|
|
*tp += j;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static bool
|
|
normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
|
|
{
|
|
register int tensdelta;
|
|
|
|
tensdelta = (*unitsptr >= 0) ?
|
|
(*unitsptr / base) :
|
|
(-1 - (-1 - *unitsptr) / base);
|
|
*unitsptr -= tensdelta * base;
|
|
return increment_overflow(tensptr, tensdelta);
|
|
}
|
|
|
|
static bool
|
|
normalize_overflow32(int_fast32_t *tensptr, int *unitsptr, int base)
|
|
{
|
|
register int tensdelta;
|
|
|
|
tensdelta = (*unitsptr >= 0) ?
|
|
(*unitsptr / base) :
|
|
(-1 - (-1 - *unitsptr) / base);
|
|
*unitsptr -= tensdelta * base;
|
|
return increment_overflow32(tensptr, tensdelta);
|
|
}
|
|
|
|
static int
|
|
tmcomp(register const struct tm *const atmp,
|
|
register const struct tm *const btmp)
|
|
{
|
|
register int result;
|
|
|
|
if (atmp->tm_year != btmp->tm_year)
|
|
return atmp->tm_year < btmp->tm_year ? -1 : 1;
|
|
if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
|
|
(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
|
|
(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
|
|
(result = (atmp->tm_min - btmp->tm_min)) == 0)
|
|
result = atmp->tm_sec - btmp->tm_sec;
|
|
return result;
|
|
}
|
|
|
|
/* Copy to *DEST from *SRC. Copy only the members needed for mktime,
|
|
as other members might not be initialized. */
|
|
static void
|
|
mktmcpy(struct tm *dest, struct tm const *src)
|
|
{
|
|
dest->tm_sec = src->tm_sec;
|
|
dest->tm_min = src->tm_min;
|
|
dest->tm_hour = src->tm_hour;
|
|
dest->tm_mday = src->tm_mday;
|
|
dest->tm_mon = src->tm_mon;
|
|
dest->tm_year = src->tm_year;
|
|
dest->tm_isdst = src->tm_isdst;
|
|
#if defined TM_GMTOFF && ! UNINIT_TRAP
|
|
dest->TM_GMTOFF = src->TM_GMTOFF;
|
|
#endif
|
|
}
|
|
|
|
static time_t
|
|
time2sub(struct tm *const tmp,
|
|
struct tm *(*funcp)(struct state const *, time_t const *,
|
|
int_fast32_t, struct tm *),
|
|
struct state const *sp,
|
|
const int_fast32_t offset,
|
|
bool *okayp,
|
|
bool do_norm_secs)
|
|
{
|
|
register int dir;
|
|
register int i, j;
|
|
register int saved_seconds;
|
|
register int_fast32_t li;
|
|
register time_t lo;
|
|
register time_t hi;
|
|
int_fast32_t y;
|
|
time_t newt;
|
|
time_t t;
|
|
struct tm yourtm, mytm;
|
|
|
|
*okayp = false;
|
|
mktmcpy(&yourtm, tmp);
|
|
|
|
if (do_norm_secs) {
|
|
if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
|
|
SECSPERMIN))
|
|
return WRONG;
|
|
}
|
|
if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
|
|
return WRONG;
|
|
if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
|
|
return WRONG;
|
|
y = yourtm.tm_year;
|
|
if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
|
|
return WRONG;
|
|
/*
|
|
** Turn y into an actual year number for now.
|
|
** It is converted back to an offset from TM_YEAR_BASE later.
|
|
*/
|
|
if (increment_overflow32(&y, TM_YEAR_BASE))
|
|
return WRONG;
|
|
while (yourtm.tm_mday <= 0) {
|
|
if (increment_overflow32(&y, -1))
|
|
return WRONG;
|
|
li = y + (1 < yourtm.tm_mon);
|
|
yourtm.tm_mday += year_lengths[isleap(li)];
|
|
}
|
|
while (yourtm.tm_mday > DAYSPERLYEAR) {
|
|
li = y + (1 < yourtm.tm_mon);
|
|
yourtm.tm_mday -= year_lengths[isleap(li)];
|
|
if (increment_overflow32(&y, 1))
|
|
return WRONG;
|
|
}
|
|
for ( ; ; ) {
|
|
i = mon_lengths[isleap(y)][yourtm.tm_mon];
|
|
if (yourtm.tm_mday <= i)
|
|
break;
|
|
yourtm.tm_mday -= i;
|
|
if (++yourtm.tm_mon >= MONSPERYEAR) {
|
|
yourtm.tm_mon = 0;
|
|
if (increment_overflow32(&y, 1))
|
|
return WRONG;
|
|
}
|
|
}
|
|
#ifdef ckd_add
|
|
if (ckd_add(&yourtm.tm_year, y, -TM_YEAR_BASE))
|
|
return WRONG;
|
|
#else
|
|
if (increment_overflow32(&y, -TM_YEAR_BASE))
|
|
return WRONG;
|
|
if (! (INT_MIN <= y && y <= INT_MAX))
|
|
return WRONG;
|
|
yourtm.tm_year = y;
|
|
#endif
|
|
if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
|
|
saved_seconds = 0;
|
|
else if (yourtm.tm_year < EPOCH_YEAR - TM_YEAR_BASE) {
|
|
/*
|
|
** We can't set tm_sec to 0, because that might push the
|
|
** time below the minimum representable time.
|
|
** Set tm_sec to 59 instead.
|
|
** This assumes that the minimum representable time is
|
|
** not in the same minute that a leap second was deleted from,
|
|
** which is a safer assumption than using 58 would be.
|
|
*/
|
|
if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
|
|
return WRONG;
|
|
saved_seconds = yourtm.tm_sec;
|
|
yourtm.tm_sec = SECSPERMIN - 1;
|
|
} else {
|
|
saved_seconds = yourtm.tm_sec;
|
|
yourtm.tm_sec = 0;
|
|
}
|
|
/*
|
|
** Do a binary search (this works whatever time_t's type is).
|
|
*/
|
|
lo = TIME_T_MIN;
|
|
hi = TIME_T_MAX;
|
|
for ( ; ; ) {
|
|
t = lo / 2 + hi / 2;
|
|
if (t < lo)
|
|
t = lo;
|
|
else if (t > hi)
|
|
t = hi;
|
|
if (! funcp(sp, &t, offset, &mytm)) {
|
|
/*
|
|
** Assume that t is too extreme to be represented in
|
|
** a struct tm; arrange things so that it is less
|
|
** extreme on the next pass.
|
|
*/
|
|
dir = (t > 0) ? 1 : -1;
|
|
} else dir = tmcomp(&mytm, &yourtm);
|
|
if (dir != 0) {
|
|
if (t == lo) {
|
|
if (t == TIME_T_MAX)
|
|
return WRONG;
|
|
++t;
|
|
++lo;
|
|
} else if (t == hi) {
|
|
if (t == TIME_T_MIN)
|
|
return WRONG;
|
|
--t;
|
|
--hi;
|
|
}
|
|
if (lo > hi)
|
|
return WRONG;
|
|
if (dir > 0)
|
|
hi = t;
|
|
else lo = t;
|
|
continue;
|
|
}
|
|
#if defined TM_GMTOFF && ! UNINIT_TRAP
|
|
if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
|
|
&& (yourtm.TM_GMTOFF < 0
|
|
? (-SECSPERDAY <= yourtm.TM_GMTOFF
|
|
&& (mytm.TM_GMTOFF <=
|
|
(min(INT_FAST32_MAX, LONG_MAX)
|
|
+ yourtm.TM_GMTOFF)))
|
|
: (yourtm.TM_GMTOFF <= SECSPERDAY
|
|
&& ((max(INT_FAST32_MIN, LONG_MIN)
|
|
+ yourtm.TM_GMTOFF)
|
|
<= mytm.TM_GMTOFF)))) {
|
|
/* MYTM matches YOURTM except with the wrong UT offset.
|
|
YOURTM.TM_GMTOFF is plausible, so try it instead.
|
|
It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
|
|
since the guess gets checked. */
|
|
time_t altt = t;
|
|
int_fast32_t diff = mytm.TM_GMTOFF - yourtm.TM_GMTOFF;
|
|
if (!increment_overflow_time(&altt, diff)) {
|
|
struct tm alttm;
|
|
if (funcp(sp, &altt, offset, &alttm)
|
|
&& alttm.tm_isdst == mytm.tm_isdst
|
|
&& alttm.TM_GMTOFF == yourtm.TM_GMTOFF
|
|
&& tmcomp(&alttm, &yourtm) == 0) {
|
|
t = altt;
|
|
mytm = alttm;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
|
|
break;
|
|
/*
|
|
** Right time, wrong type.
|
|
** Hunt for right time, right type.
|
|
** It's okay to guess wrong since the guess
|
|
** gets checked.
|
|
*/
|
|
if (sp == NULL)
|
|
return WRONG;
|
|
for (i = sp->typecnt - 1; i >= 0; --i) {
|
|
if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
|
|
continue;
|
|
for (j = sp->typecnt - 1; j >= 0; --j) {
|
|
if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
|
|
continue;
|
|
if (ttunspecified(sp, j))
|
|
continue;
|
|
newt = (t + sp->ttis[j].tt_utoff
|
|
- sp->ttis[i].tt_utoff);
|
|
if (! funcp(sp, &newt, offset, &mytm))
|
|
continue;
|
|
if (tmcomp(&mytm, &yourtm) != 0)
|
|
continue;
|
|
if (mytm.tm_isdst != yourtm.tm_isdst)
|
|
continue;
|
|
/*
|
|
** We have a match.
|
|
*/
|
|
t = newt;
|
|
goto label;
|
|
}
|
|
}
|
|
return WRONG;
|
|
}
|
|
label:
|
|
newt = t + saved_seconds;
|
|
if ((newt < t) != (saved_seconds < 0))
|
|
return WRONG;
|
|
t = newt;
|
|
if (funcp(sp, &t, offset, tmp))
|
|
*okayp = true;
|
|
return t;
|
|
}
|
|
|
|
static time_t
|
|
time2(struct tm * const tmp,
|
|
struct tm *(*funcp)(struct state const *, time_t const *,
|
|
int_fast32_t, struct tm *),
|
|
struct state const *sp,
|
|
const int_fast32_t offset,
|
|
bool *okayp)
|
|
{
|
|
time_t t;
|
|
|
|
/*
|
|
** First try without normalization of seconds
|
|
** (in case tm_sec contains a value associated with a leap second).
|
|
** If that fails, try with normalization of seconds.
|
|
*/
|
|
t = time2sub(tmp, funcp, sp, offset, okayp, false);
|
|
return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
|
|
}
|
|
|
|
static time_t
|
|
time1(struct tm *const tmp,
|
|
struct tm *(*funcp)(struct state const *, time_t const *,
|
|
int_fast32_t, struct tm *),
|
|
struct state const *sp,
|
|
const int_fast32_t offset)
|
|
{
|
|
register time_t t;
|
|
register int samei, otheri;
|
|
register int sameind, otherind;
|
|
register int i;
|
|
register int nseen;
|
|
char seen[TZ_MAX_TYPES];
|
|
unsigned char types[TZ_MAX_TYPES];
|
|
bool okay;
|
|
|
|
if (tmp == NULL) {
|
|
errno = EINVAL;
|
|
return WRONG;
|
|
}
|
|
|
|
if (tmp->tm_isdst > 1)
|
|
tmp->tm_isdst = 1;
|
|
t = time2(tmp, funcp, sp, offset, &okay);
|
|
if (okay)
|
|
return t;
|
|
if (tmp->tm_isdst < 0)
|
|
#ifdef PCTS
|
|
/*
|
|
** POSIX Conformance Test Suite code courtesy Grant Sullivan.
|
|
*/
|
|
tmp->tm_isdst = 0; /* reset to std and try again */
|
|
#else
|
|
return t;
|
|
#endif /* !defined PCTS */
|
|
/*
|
|
** We're supposed to assume that somebody took a time of one type
|
|
** and did some math on it that yielded a "struct tm" that's bad.
|
|
** We try to divine the type they started from and adjust to the
|
|
** type they need.
|
|
*/
|
|
if (sp == NULL)
|
|
return WRONG;
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
seen[i] = false;
|
|
nseen = 0;
|
|
for (i = sp->timecnt - 1; i >= 0; --i)
|
|
if (!seen[sp->types[i]] && !ttunspecified(sp, sp->types[i])) {
|
|
seen[sp->types[i]] = true;
|
|
types[nseen++] = sp->types[i];
|
|
}
|
|
for (sameind = 0; sameind < nseen; ++sameind) {
|
|
samei = types[sameind];
|
|
if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
|
|
continue;
|
|
for (otherind = 0; otherind < nseen; ++otherind) {
|
|
otheri = types[otherind];
|
|
if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
|
|
continue;
|
|
tmp->tm_sec += (sp->ttis[otheri].tt_utoff
|
|
- sp->ttis[samei].tt_utoff);
|
|
tmp->tm_isdst = !tmp->tm_isdst;
|
|
t = time2(tmp, funcp, sp, offset, &okay);
|
|
if (okay)
|
|
return t;
|
|
tmp->tm_sec -= (sp->ttis[otheri].tt_utoff
|
|
- sp->ttis[samei].tt_utoff);
|
|
tmp->tm_isdst = !tmp->tm_isdst;
|
|
}
|
|
}
|
|
return WRONG;
|
|
}
|
|
|
|
static time_t
|
|
mktime_tzname(struct state *sp, struct tm *tmp, bool setname)
|
|
{
|
|
if (sp)
|
|
return time1(tmp, localsub, sp, setname);
|
|
else {
|
|
_once(&gmt_once, gmtcheck);
|
|
return time1(tmp, gmtsub, gmtptr, 0);
|
|
}
|
|
}
|
|
|
|
#if NETBSD_INSPIRED
|
|
|
|
time_t
|
|
mktime_z(struct state *restrict sp, struct tm *restrict tmp)
|
|
{
|
|
return mktime_tzname(sp, tmp, false);
|
|
}
|
|
|
|
#endif
|
|
|
|
time_t
|
|
mktime(struct tm *tmp)
|
|
{
|
|
time_t t;
|
|
int err = lock();
|
|
if (err) {
|
|
errno = err;
|
|
return -1;
|
|
}
|
|
tzset_unlocked();
|
|
t = mktime_tzname(lclptr, tmp, true);
|
|
unlock();
|
|
return t;
|
|
}
|
|
|
|
#if STD_INSPIRED
|
|
time_t
|
|
timelocal(struct tm *tmp)
|
|
{
|
|
if (tmp != NULL)
|
|
tmp->tm_isdst = -1; /* in case it wasn't initialized */
|
|
return mktime(tmp);
|
|
}
|
|
#else
|
|
static
|
|
#endif
|
|
time_t
|
|
timeoff(struct tm *tmp, long offset)
|
|
{
|
|
if (tmp)
|
|
tmp->tm_isdst = 0;
|
|
_once(&gmt_once, gmtcheck);
|
|
return time1(tmp, gmtsub, gmtptr, offset);
|
|
}
|
|
|
|
time_t
|
|
timegm(struct tm *tmp)
|
|
{
|
|
time_t t;
|
|
struct tm tmcpy;
|
|
mktmcpy(&tmcpy, tmp);
|
|
tmcpy.tm_wday = -1;
|
|
t = timeoff(&tmcpy, 0);
|
|
if (0 <= tmcpy.tm_wday)
|
|
*tmp = tmcpy;
|
|
return t;
|
|
}
|
|
|
|
static int_fast32_t
|
|
leapcorr(struct state const *sp, time_t t)
|
|
{
|
|
register struct lsinfo const * lp;
|
|
register int i;
|
|
|
|
i = sp->leapcnt;
|
|
while (--i >= 0) {
|
|
lp = &sp->lsis[i];
|
|
if (t >= lp->ls_trans)
|
|
return lp->ls_corr;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** XXX--is the below the right way to conditionalize??
|
|
*/
|
|
|
|
#if STD_INSPIRED
|
|
|
|
/* NETBSD_INSPIRED_EXTERN functions are exported to callers if
|
|
NETBSD_INSPIRED is defined, and are private otherwise. */
|
|
# if NETBSD_INSPIRED
|
|
# define NETBSD_INSPIRED_EXTERN
|
|
# else
|
|
# define NETBSD_INSPIRED_EXTERN static
|
|
# endif
|
|
|
|
/*
|
|
** IEEE Std 1003.1 (POSIX) says that 536457599
|
|
** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
|
|
** is not the case if we are accounting for leap seconds.
|
|
** So, we provide the following conversion routines for use
|
|
** when exchanging timestamps with POSIX conforming systems.
|
|
*/
|
|
|
|
NETBSD_INSPIRED_EXTERN time_t
|
|
time2posix_z(struct state *sp, time_t t)
|
|
{
|
|
return t - leapcorr(sp, t);
|
|
}
|
|
|
|
time_t
|
|
time2posix(time_t t)
|
|
{
|
|
int err = lock();
|
|
if (err) {
|
|
errno = err;
|
|
return -1;
|
|
}
|
|
#ifndef DETECT_TZ_CHANGES
|
|
if (!lcl_is_set)
|
|
#endif
|
|
tzset_unlocked();
|
|
if (lclptr)
|
|
t = time2posix_z(lclptr, t);
|
|
unlock();
|
|
return t;
|
|
}
|
|
|
|
NETBSD_INSPIRED_EXTERN time_t
|
|
posix2time_z(struct state *sp, time_t t)
|
|
{
|
|
time_t x;
|
|
time_t y;
|
|
/*
|
|
** For a positive leap second hit, the result
|
|
** is not unique. For a negative leap second
|
|
** hit, the corresponding time doesn't exist,
|
|
** so we return an adjacent second.
|
|
*/
|
|
x = t + leapcorr(sp, t);
|
|
y = x - leapcorr(sp, x);
|
|
if (y < t) {
|
|
do {
|
|
x++;
|
|
y = x - leapcorr(sp, x);
|
|
} while (y < t);
|
|
x -= y != t;
|
|
} else if (y > t) {
|
|
do {
|
|
--x;
|
|
y = x - leapcorr(sp, x);
|
|
} while (y > t);
|
|
x += y != t;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
time_t
|
|
posix2time(time_t t)
|
|
{
|
|
int err = lock();
|
|
if (err) {
|
|
errno = err;
|
|
return -1;
|
|
}
|
|
#ifndef DETECT_TZ_CHANGES
|
|
if (!lcl_is_set)
|
|
#endif
|
|
tzset_unlocked();
|
|
if (lclptr)
|
|
t = posix2time_z(lclptr, t);
|
|
unlock();
|
|
return t;
|
|
}
|
|
|
|
#endif /* STD_INSPIRED */
|
|
|
|
#if TZ_TIME_T
|
|
|
|
# if !USG_COMPAT
|
|
# define daylight 0
|
|
# define timezone 0
|
|
# endif
|
|
# if !ALTZONE
|
|
# define altzone 0
|
|
# endif
|
|
|
|
/* Convert from the underlying system's time_t to the ersatz time_tz,
|
|
which is called 'time_t' in this file. Typically, this merely
|
|
converts the time's integer width. On some platforms, the system
|
|
time is local time not UT, or uses some epoch other than the POSIX
|
|
epoch.
|
|
|
|
Although this code appears to define a function named 'time' that
|
|
returns time_t, the macros in private.h cause this code to actually
|
|
define a function named 'tz_time' that returns tz_time_t. The call
|
|
to sys_time invokes the underlying system's 'time' function. */
|
|
|
|
time_t
|
|
time(time_t *p)
|
|
{
|
|
time_t r = sys_time(0);
|
|
if (r != (time_t) -1) {
|
|
int_fast32_t offset = EPOCH_LOCAL ? (daylight ? timezone : altzone) : 0;
|
|
if (increment_overflow32(&offset, -EPOCH_OFFSET)
|
|
|| increment_overflow_time(&r, offset)) {
|
|
errno = EOVERFLOW;
|
|
r = -1;
|
|
}
|
|
}
|
|
if (p)
|
|
*p = r;
|
|
return r;
|
|
}
|
|
|
|
#endif
|