freebsd-dev/sys/dev/vge/if_vge.c

2444 lines
58 KiB
C

/*-
* Copyright (c) 2004
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
*
* Written by Bill Paul <wpaul@windriver.com>
* Senior Networking Software Engineer
* Wind River Systems
*/
/*
* The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
* combines a tri-speed ethernet MAC and PHY, with the following
* features:
*
* o Jumbo frame support up to 16K
* o Transmit and receive flow control
* o IPv4 checksum offload
* o VLAN tag insertion and stripping
* o TCP large send
* o 64-bit multicast hash table filter
* o 64 entry CAM filter
* o 16K RX FIFO and 48K TX FIFO memory
* o Interrupt moderation
*
* The VT6122 supports up to four transmit DMA queues. The descriptors
* in the transmit ring can address up to 7 data fragments; frames which
* span more than 7 data buffers must be coalesced, but in general the
* BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
* long. The receive descriptors address only a single buffer.
*
* There are two peculiar design issues with the VT6122. One is that
* receive data buffers must be aligned on a 32-bit boundary. This is
* not a problem where the VT6122 is used as a LOM device in x86-based
* systems, but on architectures that generate unaligned access traps, we
* have to do some copying.
*
* The other issue has to do with the way 64-bit addresses are handled.
* The DMA descriptors only allow you to specify 48 bits of addressing
* information. The remaining 16 bits are specified using one of the
* I/O registers. If you only have a 32-bit system, then this isn't
* an issue, but if you have a 64-bit system and more than 4GB of
* memory, you must have to make sure your network data buffers reside
* in the same 48-bit 'segment.'
*
* Special thanks to Ryan Fu at VIA Networking for providing documentation
* and sample NICs for testing.
*/
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <net/route.h>
#include <net/bpf.h>
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
MODULE_DEPEND(vge, pci, 1, 1, 1);
MODULE_DEPEND(vge, ether, 1, 1, 1);
MODULE_DEPEND(vge, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#include <dev/vge/if_vgereg.h>
#include <dev/vge/if_vgevar.h>
#define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
/*
* Various supported device vendors/types and their names.
*/
static struct vge_type vge_devs[] = {
{ VIA_VENDORID, VIA_DEVICEID_61XX,
"VIA Networking Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int vge_probe (device_t);
static int vge_attach (device_t);
static int vge_detach (device_t);
static int vge_encap (struct vge_softc *, struct mbuf *, int);
static void vge_dma_map_addr (void *, bus_dma_segment_t *, int, int);
static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int,
bus_size_t, int);
static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int,
bus_size_t, int);
static int vge_allocmem (device_t, struct vge_softc *);
static int vge_newbuf (struct vge_softc *, int, struct mbuf *);
static int vge_rx_list_init (struct vge_softc *);
static int vge_tx_list_init (struct vge_softc *);
#ifdef VGE_FIXUP_RX
static __inline void vge_fixup_rx
(struct mbuf *);
#endif
static void vge_rxeof (struct vge_softc *);
static void vge_txeof (struct vge_softc *);
static void vge_intr (void *);
static void vge_tick (void *);
static void vge_tx_task (void *, int);
static void vge_start (struct ifnet *);
static int vge_ioctl (struct ifnet *, u_long, caddr_t);
static void vge_init (void *);
static void vge_stop (struct vge_softc *);
static void vge_watchdog (struct ifnet *);
static int vge_suspend (device_t);
static int vge_resume (device_t);
static void vge_shutdown (device_t);
static int vge_ifmedia_upd (struct ifnet *);
static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *);
static void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int);
static void vge_miipoll_start (struct vge_softc *);
static void vge_miipoll_stop (struct vge_softc *);
static int vge_miibus_readreg (device_t, int, int);
static int vge_miibus_writereg (device_t, int, int, int);
static void vge_miibus_statchg (device_t);
static void vge_cam_clear (struct vge_softc *);
static int vge_cam_set (struct vge_softc *, uint8_t *);
#if __FreeBSD_version < 502113
static uint32_t vge_mchash (uint8_t *);
#endif
static void vge_setmulti (struct vge_softc *);
static void vge_reset (struct vge_softc *);
#define VGE_PCI_LOIO 0x10
#define VGE_PCI_LOMEM 0x14
static device_method_t vge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, vge_probe),
DEVMETHOD(device_attach, vge_attach),
DEVMETHOD(device_detach, vge_detach),
DEVMETHOD(device_suspend, vge_suspend),
DEVMETHOD(device_resume, vge_resume),
DEVMETHOD(device_shutdown, vge_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, vge_miibus_readreg),
DEVMETHOD(miibus_writereg, vge_miibus_writereg),
DEVMETHOD(miibus_statchg, vge_miibus_statchg),
{ 0, 0 }
};
static driver_t vge_driver = {
"vge",
vge_methods,
sizeof(struct vge_softc)
};
static devclass_t vge_devclass;
DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
vge_eeprom_getword(sc, addr, dest)
struct vge_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/*
* Enter EEPROM embedded programming mode. In order to
* access the EEPROM at all, we first have to set the
* EELOAD bit in the CHIPCFG2 register.
*/
CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
/* Select the address of the word we want to read */
CSR_WRITE_1(sc, VGE_EEADDR, addr);
/* Issue read command */
CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
/* Wait for the done bit to be set. */
for (i = 0; i < VGE_TIMEOUT; i++) {
if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "EEPROM read timed out\n");
*dest = 0;
return;
}
/* Read the result */
word = CSR_READ_2(sc, VGE_EERDDAT);
/* Turn off EEPROM access mode. */
CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
vge_read_eeprom(sc, dest, off, cnt, swap)
struct vge_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
vge_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
}
static void
vge_miipoll_stop(sc)
struct vge_softc *sc;
{
int i;
CSR_WRITE_1(sc, VGE_MIICMD, 0);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
break;
}
if (i == VGE_TIMEOUT)
device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
return;
}
static void
vge_miipoll_start(sc)
struct vge_softc *sc;
{
int i;
/* First, make sure we're idle. */
CSR_WRITE_1(sc, VGE_MIICMD, 0);
CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
return;
}
/* Now enable auto poll mode. */
CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
/* And make sure it started. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
break;
}
if (i == VGE_TIMEOUT)
device_printf(sc->vge_dev, "failed to start MII autopoll\n");
return;
}
static int
vge_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct vge_softc *sc;
int i;
u_int16_t rval = 0;
sc = device_get_softc(dev);
if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
return(0);
VGE_LOCK(sc);
vge_miipoll_stop(sc);
/* Specify the register we want to read. */
CSR_WRITE_1(sc, VGE_MIIADDR, reg);
/* Issue read command. */
CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
/* Wait for the read command bit to self-clear. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
break;
}
if (i == VGE_TIMEOUT)
device_printf(sc->vge_dev, "MII read timed out\n");
else
rval = CSR_READ_2(sc, VGE_MIIDATA);
vge_miipoll_start(sc);
VGE_UNLOCK(sc);
return (rval);
}
static int
vge_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct vge_softc *sc;
int i, rval = 0;
sc = device_get_softc(dev);
if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
return(0);
VGE_LOCK(sc);
vge_miipoll_stop(sc);
/* Specify the register we want to write. */
CSR_WRITE_1(sc, VGE_MIIADDR, reg);
/* Specify the data we want to write. */
CSR_WRITE_2(sc, VGE_MIIDATA, data);
/* Issue write command. */
CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
/* Wait for the write command bit to self-clear. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "MII write timed out\n");
rval = EIO;
}
vge_miipoll_start(sc);
VGE_UNLOCK(sc);
return (rval);
}
static void
vge_cam_clear(sc)
struct vge_softc *sc;
{
int i;
/*
* Turn off all the mask bits. This tells the chip
* that none of the entries in the CAM filter are valid.
* desired entries will be enabled as we fill the filter in.
*/
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
for (i = 0; i < 8; i++)
CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
/* Clear the VLAN filter too. */
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
for (i = 0; i < 8; i++)
CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
CSR_WRITE_1(sc, VGE_CAMADDR, 0);
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
sc->vge_camidx = 0;
return;
}
static int
vge_cam_set(sc, addr)
struct vge_softc *sc;
uint8_t *addr;
{
int i, error = 0;
if (sc->vge_camidx == VGE_CAM_MAXADDRS)
return(ENOSPC);
/* Select the CAM data page. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
/* Set the filter entry we want to update and enable writing. */
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
/* Write the address to the CAM registers */
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
/* Issue a write command. */
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
/* Wake for it to clear. */
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(1);
if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "setting CAM filter failed\n");
error = EIO;
goto fail;
}
/* Select the CAM mask page. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
/* Set the mask bit that enables this filter. */
CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
1<<(sc->vge_camidx & 7));
sc->vge_camidx++;
fail:
/* Turn off access to CAM. */
CSR_WRITE_1(sc, VGE_CAMADDR, 0);
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
return (error);
}
#if __FreeBSD_version < 502113
static uint32_t
vge_mchash(addr)
uint8_t *addr;
{
uint32_t crc, carry;
int idx, bit;
uint8_t data;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
crc <<= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
return(crc);
}
#endif
/*
* Program the multicast filter. We use the 64-entry CAM filter
* for perfect filtering. If there's more than 64 multicast addresses,
* we use the hash filter insted.
*/
static void
vge_setmulti(sc)
struct vge_softc *sc;
{
struct ifnet *ifp;
int error = 0/*, h = 0*/;
struct ifmultiaddr *ifma;
u_int32_t h, hashes[2] = { 0, 0 };
ifp = &sc->arpcom.ac_if;
/* First, zot all the multicast entries. */
vge_cam_clear(sc);
CSR_WRITE_4(sc, VGE_MAR0, 0);
CSR_WRITE_4(sc, VGE_MAR1, 0);
/*
* If the user wants allmulti or promisc mode, enable reception
* of all multicast frames.
*/
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
return;
}
/* Now program new ones */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
error = vge_cam_set(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (error)
break;
}
/* If there were too many addresses, use the hash filter. */
if (error) {
vge_cam_clear(sc);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
#if __FreeBSD_version < 502113
h = vge_mchash(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr)) >> 26;
#else
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
#endif
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
}
return;
}
static void
vge_reset(sc)
struct vge_softc *sc;
{
register int i;
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(5);
if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "soft reset timed out");
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
DELAY(2000);
}
DELAY(5000);
CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
for (i = 0; i < VGE_TIMEOUT; i++) {
DELAY(5);
if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
break;
}
if (i == VGE_TIMEOUT) {
device_printf(sc->vge_dev, "EEPROM reload timed out\n");
return;
}
CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
return;
}
/*
* Probe for a VIA gigabit chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
vge_probe(dev)
device_t dev;
{
struct vge_type *t;
struct vge_softc *sc;
t = vge_devs;
sc = device_get_softc(dev);
while (t->vge_name != NULL) {
if ((pci_get_vendor(dev) == t->vge_vid) &&
(pci_get_device(dev) == t->vge_did)) {
device_set_desc(dev, t->vge_name);
return (0);
}
t++;
}
return (ENXIO);
}
static void
vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
bus_size_t mapsize;
int error;
{
struct vge_dmaload_arg *ctx;
struct vge_rx_desc *d = NULL;
if (error)
return;
ctx = arg;
/* Signal error to caller if there's too many segments */
if (nseg > ctx->vge_maxsegs) {
ctx->vge_maxsegs = 0;
return;
}
/*
* Map the segment array into descriptors.
*/
d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
/* If this descriptor is still owned by the chip, bail. */
if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
device_printf(ctx->sc->vge_dev,
"tried to map busy descriptor\n");
ctx->vge_maxsegs = 0;
return;
}
d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
d->vge_sts = 0;
d->vge_ctl = 0;
ctx->vge_maxsegs = 1;
return;
}
static void
vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
bus_size_t mapsize;
int error;
{
struct vge_dmaload_arg *ctx;
struct vge_tx_desc *d = NULL;
struct vge_tx_frag *f;
int i = 0;
if (error)
return;
ctx = arg;
/* Signal error to caller if there's too many segments */
if (nseg > ctx->vge_maxsegs) {
ctx->vge_maxsegs = 0;
return;
}
/* Map the segment array into descriptors. */
d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
/* If this descriptor is still owned by the chip, bail. */
if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
ctx->vge_maxsegs = 0;
return;
}
for (i = 0; i < nseg; i++) {
f = &d->vge_frag[i];
f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
}
/* Argh. This chip does not autopad short frames */
if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
f = &d->vge_frag[i];
f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
ctx->vge_m0->m_pkthdr.len));
f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
i++;
}
/*
* When telling the chip how many segments there are, we
* must use nsegs + 1 instead of just nsegs. Darned if I
* know why.
*/
i++;
d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
d->vge_ctl |= VGE_TDCTL_JUMBO;
ctx->vge_maxsegs = nseg;
return;
}
/*
* Map a single buffer address.
*/
static void
vge_dma_map_addr(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg;
int error;
{
bus_addr_t *addr;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
addr = arg;
*addr = segs->ds_addr;
return;
}
static int
vge_allocmem(dev, sc)
device_t dev;
struct vge_softc *sc;
{
int error;
int nseg;
int i;
/*
* Allocate map for RX mbufs.
*/
nseg = 32;
error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->vge_ldata.vge_mtag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/*
* Allocate map for TX descriptor list.
*/
error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Allocate DMA'able memory for the TX ring */
error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
(void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&sc->vge_ldata.vge_tx_list_map);
if (error)
return (ENOMEM);
/* Load the map for the TX ring. */
error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
VGE_TX_LIST_SZ, vge_dma_map_addr,
&sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
/* Create DMA maps for TX buffers */
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
&sc->vge_ldata.vge_tx_dmamap[i]);
if (error) {
device_printf(dev, "can't create DMA map for TX\n");
return (ENOMEM);
}
}
/*
* Allocate map for RX descriptor list.
*/
error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
if (error) {
device_printf(dev, "could not allocate dma tag\n");
return (ENOMEM);
}
/* Allocate DMA'able memory for the RX ring */
error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
(void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&sc->vge_ldata.vge_rx_list_map);
if (error)
return (ENOMEM);
/* Load the map for the RX ring. */
error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
VGE_TX_LIST_SZ, vge_dma_map_addr,
&sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
/* Create DMA maps for RX buffers */
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
&sc->vge_ldata.vge_rx_dmamap[i]);
if (error) {
device_printf(dev, "can't create DMA map for RX\n");
return (ENOMEM);
}
}
return (0);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
vge_attach(dev)
device_t dev;
{
u_char eaddr[ETHER_ADDR_LEN];
struct vge_softc *sc;
struct ifnet *ifp;
int unit, error = 0, rid;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
sc->vge_dev = dev;
mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = VGE_PCI_LOMEM;
sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->vge_res == NULL) {
printf ("vge%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->vge_btag = rman_get_bustag(sc->vge_res);
sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
/* Allocate interrupt */
rid = 0;
sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->vge_irq == NULL) {
printf("vge%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
/* Reset the adapter. */
vge_reset(sc);
/*
* Get station address from the EEPROM.
*/
vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
sc->vge_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
#if __FreeBSD_version < 502113
printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
#endif
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
#define VGE_NSEG_NEW 32
error = bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->vge_parent_tag);
if (error)
goto fail;
error = vge_allocmem(dev, sc);
if (error)
goto fail;
/* Do MII setup */
if (mii_phy_probe(dev, &sc->vge_miibus,
vge_ifmedia_upd, vge_ifmedia_sts)) {
printf("vge%d: MII without any phy!\n", sc->vge_unit);
error = ENXIO;
goto fail;
}
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vge_ioctl;
ifp->if_capabilities = IFCAP_VLAN_MTU;
ifp->if_start = vge_start;
ifp->if_hwassist = VGE_CSUM_FEATURES;
ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
#ifdef DEVICE_POLLING
#ifdef IFCAP_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
#endif
ifp->if_watchdog = vge_watchdog;
ifp->if_init = vge_init;
ifp->if_baudrate = 1000000000;
ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
ifp->if_capenable = ifp->if_capabilities;
TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
vge_intr, sc, &sc->vge_intrhand);
if (error) {
printf("vge%d: couldn't set up irq\n", unit);
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
vge_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
vge_detach(dev)
device_t dev;
{
struct vge_softc *sc;
struct ifnet *ifp;
int i;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
ifp = &sc->arpcom.ac_if;
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
vge_stop(sc);
/*
* Force off the IFF_UP flag here, in case someone
* still had a BPF descriptor attached to this
* interface. If they do, ether_ifattach() will cause
* the BPF code to try and clear the promisc mode
* flag, which will bubble down to vge_ioctl(),
* which will try to call vge_init() again. This will
* turn the NIC back on and restart the MII ticker,
* which will panic the system when the kernel tries
* to invoke the vge_tick() function that isn't there
* anymore.
*/
ifp->if_flags &= ~IFF_UP;
ether_ifdetach(ifp);
}
if (sc->vge_miibus)
device_delete_child(dev, sc->vge_miibus);
bus_generic_detach(dev);
if (sc->vge_intrhand)
bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
if (sc->vge_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
if (sc->vge_res)
bus_release_resource(dev, SYS_RES_MEMORY,
VGE_PCI_LOMEM, sc->vge_res);
/* Unload and free the RX DMA ring memory and map */
if (sc->vge_ldata.vge_rx_list_tag) {
bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
sc->vge_ldata.vge_rx_list_map);
bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
sc->vge_ldata.vge_rx_list,
sc->vge_ldata.vge_rx_list_map);
bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
}
/* Unload and free the TX DMA ring memory and map */
if (sc->vge_ldata.vge_tx_list_tag) {
bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
sc->vge_ldata.vge_tx_list_map);
bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
sc->vge_ldata.vge_tx_list,
sc->vge_ldata.vge_tx_list_map);
bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
}
/* Destroy all the RX and TX buffer maps */
if (sc->vge_ldata.vge_mtag) {
for (i = 0; i < VGE_TX_DESC_CNT; i++)
bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
sc->vge_ldata.vge_tx_dmamap[i]);
for (i = 0; i < VGE_RX_DESC_CNT; i++)
bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
sc->vge_ldata.vge_rx_dmamap[i]);
bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
}
if (sc->vge_parent_tag)
bus_dma_tag_destroy(sc->vge_parent_tag);
mtx_destroy(&sc->vge_mtx);
return (0);
}
static int
vge_newbuf(sc, idx, m)
struct vge_softc *sc;
int idx;
struct mbuf *m;
{
struct vge_dmaload_arg arg;
struct mbuf *n = NULL;
int i, error;
if (m == NULL) {
n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (n == NULL)
return (ENOBUFS);
m = n;
} else
m->m_data = m->m_ext.ext_buf;
#ifdef VGE_FIXUP_RX
/*
* This is part of an evil trick to deal with non-x86 platforms.
* The VIA chip requires RX buffers to be aligned on 32-bit
* boundaries, but that will hose non-x86 machines. To get around
* this, we leave some empty space at the start of each buffer
* and for non-x86 hosts, we copy the buffer back two bytes
* to achieve word alignment. This is slightly more efficient
* than allocating a new buffer, copying the contents, and
* discarding the old buffer.
*/
m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
m_adj(m, VGE_ETHER_ALIGN);
#else
m->m_len = m->m_pkthdr.len = MCLBYTES;
#endif
arg.sc = sc;
arg.vge_idx = idx;
arg.vge_maxsegs = 1;
arg.vge_flags = 0;
error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
&arg, BUS_DMA_NOWAIT);
if (error || arg.vge_maxsegs != 1) {
if (n != NULL)
m_freem(n);
return (ENOMEM);
}
/*
* Note: the manual fails to document the fact that for
* proper opration, the driver needs to replentish the RX
* DMA ring 4 descriptors at a time (rather than one at a
* time, like most chips). We can allocate the new buffers
* but we should not set the OWN bits until we're ready
* to hand back 4 of them in one shot.
*/
#define VGE_RXCHUNK 4
sc->vge_rx_consumed++;
if (sc->vge_rx_consumed == VGE_RXCHUNK) {
for (i = idx; i != idx - sc->vge_rx_consumed; i--)
sc->vge_ldata.vge_rx_list[i].vge_sts |=
htole32(VGE_RDSTS_OWN);
sc->vge_rx_consumed = 0;
}
sc->vge_ldata.vge_rx_mbuf[idx] = m;
bus_dmamap_sync(sc->vge_ldata.vge_mtag,
sc->vge_ldata.vge_rx_dmamap[idx],
BUS_DMASYNC_PREREAD);
return (0);
}
static int
vge_tx_list_init(sc)
struct vge_softc *sc;
{
bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
(VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
sc->vge_ldata.vge_tx_prodidx = 0;
sc->vge_ldata.vge_tx_considx = 0;
sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
return (0);
}
static int
vge_rx_list_init(sc)
struct vge_softc *sc;
{
int i;
bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
(VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
sc->vge_rx_consumed = 0;
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
if (vge_newbuf(sc, i, NULL) == ENOBUFS)
return (ENOBUFS);
}
/* Flush the RX descriptors */
bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
sc->vge_ldata.vge_rx_list_map,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->vge_ldata.vge_rx_prodidx = 0;
sc->vge_rx_consumed = 0;
sc->vge_head = sc->vge_tail = NULL;
return (0);
}
#ifdef VGE_FIXUP_RX
static __inline void
vge_fixup_rx(m)
struct mbuf *m;
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 1;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= ETHER_ALIGN;
return;
}
#endif
/*
* RX handler. We support the reception of jumbo frames that have
* been fragmented across multiple 2K mbuf cluster buffers.
*/
static void
vge_rxeof(sc)
struct vge_softc *sc;
{
struct mbuf *m;
struct ifnet *ifp;
int i, total_len;
int lim = 0;
struct vge_rx_desc *cur_rx;
u_int32_t rxstat, rxctl;
VGE_LOCK_ASSERT(sc);
ifp = &sc->arpcom.ac_if;
i = sc->vge_ldata.vge_rx_prodidx;
/* Invalidate the descriptor memory */
bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
sc->vge_ldata.vge_rx_list_map,
BUS_DMASYNC_POSTREAD);
while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif /* DEVICE_POLLING */
cur_rx = &sc->vge_ldata.vge_rx_list[i];
m = sc->vge_ldata.vge_rx_mbuf[i];
total_len = VGE_RXBYTES(cur_rx);
rxstat = le32toh(cur_rx->vge_sts);
rxctl = le32toh(cur_rx->vge_ctl);
/* Invalidate the RX mbuf and unload its map */
bus_dmamap_sync(sc->vge_ldata.vge_mtag,
sc->vge_ldata.vge_rx_dmamap[i],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vge_ldata.vge_mtag,
sc->vge_ldata.vge_rx_dmamap[i]);
/*
* If the 'start of frame' bit is set, this indicates
* either the first fragment in a multi-fragment receive,
* or an intermediate fragment. Either way, we want to
* accumulate the buffers.
*/
if (rxstat & VGE_RXPKT_SOF) {
m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
if (sc->vge_head == NULL)
sc->vge_head = sc->vge_tail = m;
else {
m->m_flags &= ~M_PKTHDR;
sc->vge_tail->m_next = m;
sc->vge_tail = m;
}
vge_newbuf(sc, i, NULL);
VGE_RX_DESC_INC(i);
continue;
}
/*
* Bad/error frames will have the RXOK bit cleared.
* However, there's one error case we want to allow:
* if a VLAN tagged frame arrives and the chip can't
* match it against the CAM filter, it considers this
* a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
* We don't want to drop the frame though: our VLAN
* filtering is done in software.
*/
if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
&& !(rxstat & VGE_RDSTS_CSUMERR)) {
ifp->if_ierrors++;
/*
* If this is part of a multi-fragment packet,
* discard all the pieces.
*/
if (sc->vge_head != NULL) {
m_freem(sc->vge_head);
sc->vge_head = sc->vge_tail = NULL;
}
vge_newbuf(sc, i, m);
VGE_RX_DESC_INC(i);
continue;
}
/*
* If allocating a replacement mbuf fails,
* reload the current one.
*/
if (vge_newbuf(sc, i, NULL)) {
ifp->if_ierrors++;
if (sc->vge_head != NULL) {
m_freem(sc->vge_head);
sc->vge_head = sc->vge_tail = NULL;
}
vge_newbuf(sc, i, m);
VGE_RX_DESC_INC(i);
continue;
}
VGE_RX_DESC_INC(i);
if (sc->vge_head != NULL) {
m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
/*
* Special case: if there's 4 bytes or less
* in this buffer, the mbuf can be discarded:
* the last 4 bytes is the CRC, which we don't
* care about anyway.
*/
if (m->m_len <= ETHER_CRC_LEN) {
sc->vge_tail->m_len -=
(ETHER_CRC_LEN - m->m_len);
m_freem(m);
} else {
m->m_len -= ETHER_CRC_LEN;
m->m_flags &= ~M_PKTHDR;
sc->vge_tail->m_next = m;
}
m = sc->vge_head;
sc->vge_head = sc->vge_tail = NULL;
m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
} else
m->m_pkthdr.len = m->m_len =
(total_len - ETHER_CRC_LEN);
#ifdef VGE_FIXUP_RX
vge_fixup_rx(m);
#endif
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
/* Do RX checksumming if enabled */
if (ifp->if_capenable & IFCAP_RXCSUM) {
/* Check IP header checksum */
if (rxctl & VGE_RDCTL_IPPKT)
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (rxctl & VGE_RDCTL_IPCSUMOK)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
/* Check TCP/UDP checksum */
if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
rxctl & VGE_RDCTL_PROTOCSUMOK) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
if (rxstat & VGE_RDSTS_VTAG)
VLAN_INPUT_TAG(ifp, m,
ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
VGE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
VGE_LOCK(sc);
lim++;
if (lim == VGE_RX_DESC_CNT)
break;
}
/* Flush the RX DMA ring */
bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
sc->vge_ldata.vge_rx_list_map,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->vge_ldata.vge_rx_prodidx = i;
CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
return;
}
static void
vge_txeof(sc)
struct vge_softc *sc;
{
struct ifnet *ifp;
u_int32_t txstat;
int idx;
ifp = &sc->arpcom.ac_if;
idx = sc->vge_ldata.vge_tx_considx;
/* Invalidate the TX descriptor list */
bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
sc->vge_ldata.vge_tx_list_map,
BUS_DMASYNC_POSTREAD);
while (idx != sc->vge_ldata.vge_tx_prodidx) {
txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
if (txstat & VGE_TDSTS_OWN)
break;
m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
bus_dmamap_unload(sc->vge_ldata.vge_mtag,
sc->vge_ldata.vge_tx_dmamap[idx]);
if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
ifp->if_collisions++;
if (txstat & VGE_TDSTS_TXERR)
ifp->if_oerrors++;
else
ifp->if_opackets++;
sc->vge_ldata.vge_tx_free++;
VGE_TX_DESC_INC(idx);
}
/* No changes made to the TX ring, so no flush needed */
if (idx != sc->vge_ldata.vge_tx_considx) {
sc->vge_ldata.vge_tx_considx = idx;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
}
/*
* If not all descriptors have been released reaped yet,
* reload the timer so that we will eventually get another
* interrupt that will cause us to re-enter this routine.
* This is done in case the transmitter has gone idle.
*/
if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
}
return;
}
static void
vge_tick(xsc)
void *xsc;
{
struct vge_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
sc = xsc;
ifp = &sc->arpcom.ac_if;
VGE_LOCK(sc);
mii = device_get_softc(sc->vge_miibus);
mii_tick(mii);
if (sc->vge_link) {
if (!(mii->mii_media_status & IFM_ACTIVE)) {
sc->vge_link = 0;
#ifdef LINK_STATE_UP
sc->arpcom.ac_if.if_link_state = LINK_STATE_UP;
rt_ifmsg(&(sc->arpcom.ac_if));
#endif /* LINK_STATE_UP */
}
} else {
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->vge_link = 1;
#ifdef LINK_STATE_DOWN
sc->arpcom.ac_if.if_link_state = LINK_STATE_DOWN;
rt_ifmsg(&(sc->arpcom.ac_if));
#endif /* LINK_STATE_DOWN */
#if __FreeBSD_version < 502114
if (ifp->if_snd.ifq_head != NULL)
#else
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
#endif
taskqueue_enqueue(taskqueue_swi,
&sc->vge_txtask);
}
}
VGE_UNLOCK(sc);
return;
}
#ifdef DEVICE_POLLING
static void
vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct vge_softc *sc = ifp->if_softc;
VGE_LOCK(sc);
#ifdef IFCAP_POLLING
if (!(ifp->if_capenable & IFCAP_POLLING)) {
ether_poll_deregister(ifp);
cmd = POLL_DEREGISTER;
}
#endif
if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
goto done;
}
sc->rxcycles = count;
vge_rxeof(sc);
vge_txeof(sc);
#if __FreeBSD_version < 502114
if (ifp->if_snd.ifq_head != NULL)
#else
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
#endif
taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
u_int32_t status;
status = CSR_READ_4(sc, VGE_ISR);
if (status == 0xFFFFFFFF)
goto done;
if (status)
CSR_WRITE_4(sc, VGE_ISR, status);
/*
* XXX check behaviour on receiver stalls.
*/
if (status & VGE_ISR_TXDMA_STALL ||
status & VGE_ISR_RXDMA_STALL)
vge_init(sc);
if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
vge_rxeof(sc);
ifp->if_ierrors++;
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
}
}
done:
VGE_UNLOCK(sc);
}
#endif /* DEVICE_POLLING */
static void
vge_intr(arg)
void *arg;
{
struct vge_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
if (sc->suspended) {
return;
}
VGE_LOCK(sc);
ifp = &sc->arpcom.ac_if;
if (!(ifp->if_flags & IFF_UP)) {
VGE_UNLOCK(sc);
return;
}
#ifdef DEVICE_POLLING
if (ifp->if_flags & IFF_POLLING)
goto done;
if (
#ifdef IFCAP_POLLING
(ifp->if_capenable & IFCAP_POLLING) &&
#endif
ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
CSR_WRITE_4(sc, VGE_IMR, 0);
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
vge_poll(ifp, 0, 1);
goto done;
}
#endif /* DEVICE_POLLING */
/* Disable interrupts */
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
for (;;) {
status = CSR_READ_4(sc, VGE_ISR);
/* If the card has gone away the read returns 0xffff. */
if (status == 0xFFFFFFFF)
break;
if (status)
CSR_WRITE_4(sc, VGE_ISR, status);
if ((status & VGE_INTRS) == 0)
break;
if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
vge_rxeof(sc);
if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
vge_rxeof(sc);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
}
if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
vge_txeof(sc);
if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
vge_init(sc);
if (status & VGE_ISR_LINKSTS)
vge_tick(sc);
}
/* Re-enable interrupts */
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
#ifdef DEVICE_POLLING
done:
#endif
VGE_UNLOCK(sc);
#if __FreeBSD_version < 502114
if (ifp->if_snd.ifq_head != NULL)
#else
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
#endif
taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
return;
}
static int
vge_encap(sc, m_head, idx)
struct vge_softc *sc;
struct mbuf *m_head;
int idx;
{
struct mbuf *m_new = NULL;
struct vge_dmaload_arg arg;
bus_dmamap_t map;
int error;
struct m_tag *mtag;
if (sc->vge_ldata.vge_tx_free <= 2)
return (EFBIG);
arg.vge_flags = 0;
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
arg.vge_flags |= VGE_TDCTL_IPCSUM;
if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
arg.vge_flags |= VGE_TDCTL_TCPCSUM;
if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
arg.vge_flags |= VGE_TDCTL_UDPCSUM;
arg.sc = sc;
arg.vge_idx = idx;
arg.vge_m0 = m_head;
arg.vge_maxsegs = VGE_TX_FRAGS;
map = sc->vge_ldata.vge_tx_dmamap[idx];
error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
if (error && error != EFBIG) {
printf("vge%d: can't map mbuf (error %d)\n",
sc->vge_unit, error);
return (ENOBUFS);
}
/* Too many segments to map, coalesce into a single mbuf */
if (error || arg.vge_maxsegs == 0) {
m_new = m_defrag(m_head, M_DONTWAIT);
if (m_new == NULL)
return (1);
else
m_head = m_new;
arg.sc = sc;
arg.vge_m0 = m_head;
arg.vge_idx = idx;
arg.vge_maxsegs = 1;
error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
if (error) {
printf("vge%d: can't map mbuf (error %d)\n",
sc->vge_unit, error);
return (EFBIG);
}
}
sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
sc->vge_ldata.vge_tx_free--;
/*
* Set up hardware VLAN tagging.
*/
mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
if (mtag != NULL)
sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
return (0);
}
static void
vge_tx_task(arg, npending)
void *arg;
int npending;
{
struct ifnet *ifp;
ifp = arg;
vge_start(ifp);
return;
}
/*
* Main transmit routine.
*/
static void
vge_start(ifp)
struct ifnet *ifp;
{
struct vge_softc *sc;
struct mbuf *m_head = NULL;
int idx, pidx = 0;
sc = ifp->if_softc;
VGE_LOCK(sc);
if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) {
VGE_UNLOCK(sc);
return;
}
#if __FreeBSD_version < 502114
if (ifp->if_snd.ifq_head == NULL) {
#else
if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
#endif
VGE_UNLOCK(sc);
return;
}
idx = sc->vge_ldata.vge_tx_prodidx;
pidx = idx - 1;
if (pidx < 0)
pidx = VGE_TX_DESC_CNT - 1;
while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
#if __FreeBSD_version < 502114
IF_DEQUEUE(&ifp->if_snd, m_head);
#else
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
#endif
if (m_head == NULL)
break;
if (vge_encap(sc, m_head, idx)) {
#if __FreeBSD_version >= 502114
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
#else
IF_PREPEND(&ifp->if_snd, m_head);
#endif
ifp->if_flags |= IFF_OACTIVE;
break;
}
sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
htole16(VGE_TXDESC_Q);
pidx = idx;
VGE_TX_DESC_INC(idx);
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (idx == sc->vge_ldata.vge_tx_prodidx) {
VGE_UNLOCK(sc);
return;
}
/* Flush the TX descriptors */
bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
sc->vge_ldata.vge_tx_list_map,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
/* Issue a transmit command. */
CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
sc->vge_ldata.vge_tx_prodidx = idx;
/*
* Use the countdown timer for interrupt moderation.
* 'TX done' interrupts are disabled. Instead, we reset the
* countdown timer, which will begin counting until it hits
* the value in the SSTIMER register, and then trigger an
* interrupt. Each time we set the TIMER0_ENABLE bit, the
* the timer count is reloaded. Only when the transmitter
* is idle will the timer hit 0 and an interrupt fire.
*/
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
VGE_UNLOCK(sc);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void
vge_init(xsc)
void *xsc;
{
struct vge_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
int i;
VGE_LOCK(sc);
mii = device_get_softc(sc->vge_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
vge_stop(sc);
vge_reset(sc);
/*
* Initialize the RX and TX descriptors and mbufs.
*/
vge_rx_list_init(sc);
vge_tx_list_init(sc);
/* Set our station address */
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
/*
* Set receive FIFO threshold. Also allow transmission and
* reception of VLAN tagged frames.
*/
CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
/* Set DMA burst length */
CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
/* Set collision backoff algorithm */
CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
/* Disable LPSEL field in priority resolution */
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
/*
* Load the addresses of the DMA queues into the chip.
* Note that we only use one transmit queue.
*/
CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
/* Enable and wake up the RX descriptor queue */
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
/* Enable the TX descriptor queue */
CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
/* Set up the receive filter -- allow large frames for VLANs. */
CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
}
/* Set capture broadcast bit to capture broadcast frames. */
if (ifp->if_flags & IFF_BROADCAST) {
CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
}
/* Set multicast bit to capture multicast frames. */
if (ifp->if_flags & IFF_MULTICAST) {
CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
}
/* Init the cam filter. */
vge_cam_clear(sc);
/* Init the multicast filter. */
vge_setmulti(sc);
/* Enable flow control */
CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
/* Enable jumbo frame reception (if desired) */
/* Start the MAC. */
CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
CSR_WRITE_1(sc, VGE_CRS0,
VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
/*
* Configure one-shot timer for microsecond
* resulution and load it for 500 usecs.
*/
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
CSR_WRITE_2(sc, VGE_SSTIMER, 400);
/*
* Configure interrupt moderation for receive. Enable
* the holdoff counter and load it, and set the RX
* suppression count to the number of descriptors we
* want to allow before triggering an interrupt.
* The holdoff timer is in units of 20 usecs.
*/
#ifdef notyet
CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
/* Select the interrupt holdoff timer page. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
/* Enable use of the holdoff timer. */
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
/* Select the RX suppression threshold page. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
/* Restore the page select bits. */
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
#endif
#ifdef DEVICE_POLLING
/*
* Disable interrupts if we are polling.
*/
if (ifp->if_flags & IFF_POLLING) {
CSR_WRITE_4(sc, VGE_IMR, 0);
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
} else /* otherwise ... */
#endif /* DEVICE_POLLING */
{
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
CSR_WRITE_4(sc, VGE_ISR, 0);
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
}
mii_mediachg(mii);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->vge_if_flags = 0;
sc->vge_link = 0;
VGE_UNLOCK(sc);
return;
}
/*
* Set media options.
*/
static int
vge_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct vge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->vge_miibus);
mii_mediachg(mii);
return (0);
}
/*
* Report current media status.
*/
static void
vge_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct vge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->vge_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static void
vge_miibus_statchg(dev)
device_t dev;
{
struct vge_softc *sc;
struct mii_data *mii;
struct ifmedia_entry *ife;
sc = device_get_softc(dev);
mii = device_get_softc(sc->vge_miibus);
ife = mii->mii_media.ifm_cur;
/*
* If the user manually selects a media mode, we need to turn
* on the forced MAC mode bit in the DIAGCTL register. If the
* user happens to choose a full duplex mode, we also need to
* set the 'force full duplex' bit. This applies only to
* 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
* mode is disabled, and in 1000baseT mode, full duplex is
* always implied, so we turn on the forced mode bit but leave
* the FDX bit cleared.
*/
switch (IFM_SUBTYPE(ife->ifm_media)) {
case IFM_AUTO:
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
break;
case IFM_1000_T:
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
break;
case IFM_100_TX:
case IFM_10_T:
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
} else {
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
}
break;
default:
device_printf(dev, "unknown media type: %x\n",
IFM_SUBTYPE(ife->ifm_media));
break;
}
return;
}
static int
vge_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct vge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
switch (command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > VGE_JUMBO_MTU)
error = EINVAL;
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->vge_if_flags & IFF_PROMISC)) {
CSR_SETBIT_1(sc, VGE_RXCTL,
VGE_RXCTL_RX_PROMISC);
vge_setmulti(sc);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->vge_if_flags & IFF_PROMISC) {
CSR_CLRBIT_1(sc, VGE_RXCTL,
VGE_RXCTL_RX_PROMISC);
vge_setmulti(sc);
} else
vge_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
vge_stop(sc);
}
sc->vge_if_flags = ifp->if_flags;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
vge_setmulti(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->vge_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
#ifdef IFCAP_POLLING
ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
#else
ifp->if_capenable &= ~(IFCAP_HWCSUM);
#endif
ifp->if_capenable |=
#ifdef IFCAP_POLLING
ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
#else
ifr->ifr_reqcap & (IFCAP_HWCSUM);
#endif
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist = VGE_CSUM_FEATURES;
else
ifp->if_hwassist = 0;
if (ifp->if_flags & IFF_RUNNING)
vge_init(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
vge_watchdog(ifp)
struct ifnet *ifp;
{
struct vge_softc *sc;
sc = ifp->if_softc;
VGE_LOCK(sc);
printf("vge%d: watchdog timeout\n", sc->vge_unit);
ifp->if_oerrors++;
vge_txeof(sc);
vge_rxeof(sc);
vge_init(sc);
VGE_UNLOCK(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
vge_stop(sc)
struct vge_softc *sc;
{
register int i;
struct ifnet *ifp;
VGE_LOCK(sc);
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
#ifdef DEVICE_POLLING
ether_poll_deregister(ifp);
#endif /* DEVICE_POLLING */
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
if (sc->vge_head != NULL) {
m_freem(sc->vge_head);
sc->vge_head = sc->vge_tail = NULL;
}
/* Free the TX list buffers. */
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
bus_dmamap_unload(sc->vge_ldata.vge_mtag,
sc->vge_ldata.vge_tx_dmamap[i]);
m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
sc->vge_ldata.vge_tx_mbuf[i] = NULL;
}
}
/* Free the RX list buffers. */
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
bus_dmamap_unload(sc->vge_ldata.vge_mtag,
sc->vge_ldata.vge_rx_dmamap[i]);
m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
sc->vge_ldata.vge_rx_mbuf[i] = NULL;
}
}
VGE_UNLOCK(sc);
return;
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
vge_suspend(dev)
device_t dev;
{
struct vge_softc *sc;
int i;
sc = device_get_softc(dev);
vge_stop(sc);
for (i = 0; i < 5; i++)
sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
sc->suspended = 1;
return (0);
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
vge_resume(dev)
device_t dev;
{
struct vge_softc *sc;
struct ifnet *ifp;
int i;
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
/* better way to do this? */
for (i = 0; i < 5; i++)
pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
/* reenable busmastering */
pci_enable_busmaster(dev);
pci_enable_io(dev, SYS_RES_MEMORY);
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
vge_init(sc);
sc->suspended = 0;
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
vge_shutdown(dev)
device_t dev;
{
struct vge_softc *sc;
sc = device_get_softc(dev);
vge_stop(sc);
}