freebsd-dev/sys/netinet/in_pcbgroup.c
Robert Watson 7527624efa Several years after initial development, merge prototype support for
linking NIC Receive Side Scaling (RSS) to the network stack's
connection-group implementation.  This prototype (and derived patches)
are in use at Juniper and several other FreeBSD-using companies, so
despite some reservations about its maturity, merge the patch to the
base tree so that it can be iteratively refined in collaboration rather
than maintained as a set of gradually diverging patch sets.

(1) Merge a software implementation of the Toeplitz hash specified in
    RSS implemented by David Malone.  This is used to allow suitable
    pcbgroup placement of connections before the first packet is
    received from the NIC.  Software hashing is generally avoided,
    however, due to high cost of the hash on general-purpose CPUs.

(2) In in_rss.c, maintain authoritative versions of RSS state intended
    to be pushed to each NIC, including keying material, hash
    algorithm/ configuration, and buckets.  Provide software-facing
    interfaces to hash 2- and 4-tuples for IPv4 and IPv6 using both
    the RSS standardised Toeplitz and a 'naive' variation with a hash
    efficient in software but with poor distribution properties.
    Implement rss_m2cpuid()to be used by netisr and other load
    balancing code to look up the CPU on which an mbuf should be
    processed.

(3) In the Ethernet link layer, allow netisr distribution using RSS as
    a source of policy as an alternative to source ordering; continue
    to default to direct dispatch (i.e., don't try and requeue packets
    for processing on the 'right' CPU if they arrive in a directly
    dispatchable context).

(4) Allow RSS to control tuning of connection groups in order to align
    groups with RSS buckets.  If a packet arrives on a protocol using
    connection groups, and contains a suitable hardware-generated
    hash, use that hash value to select the connection group for pcb
    lookup for both IPv4 and IPv6.  If no hardware-generated Toeplitz
    hash is available, we fall back on regular PCB lookup risking
    contention rather than pay the cost of Toeplitz in software --
    this is a less scalable but, at my last measurement, faster
    approach.  As core counts go up, we may want to revise this
    strategy despite CPU overhead.

Where device drivers suitably configure NICs, and connection groups /
RSS are enabled, this should avoid both lock and line contention during
connection lookup for TCP.  This commit does not modify any device
drivers to tune device RSS configuration to the global RSS
configuration; patches are in circulation to do this for at least
Chelsio T3 and Intel 1G/10G drivers.  Currently, the KPI for device
drivers is not particularly robust, nor aware of more advanced features
such as runtime reconfiguration/rebalancing.  This will hopefully prove
a useful starting point for refinement.

No MFC is scheduled as we will first want to nail down a more mature
and maintainable KPI/KBI for device drivers.

Sponsored by:   Juniper Networks (original work)
Sponsored by:   EMC/Isilon (patch update and merge)
2014-03-15 00:57:50 +00:00

523 lines
16 KiB
C

/*-
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* All rights reserved.
*
* This software was developed by Robert N. M. Watson under contract
* to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet6.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <sys/socketvar.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/in_rss.h>
#ifdef INET6
#include <netinet6/in6_pcb.h>
#endif /* INET6 */
/*
* pcbgroups, or "connection groups" are based on Willman, Rixner, and Cox's
* 2006 USENIX paper, "An Evaluation of Network Stack Parallelization
* Strategies in Modern Operating Systems". This implementation differs
* significantly from that described in the paper, in that it attempts to
* introduce not just notions of affinity for connections and distribute work
* so as to reduce lock contention, but also align those notions with
* hardware work distribution strategies such as RSS. In this construction,
* connection groups supplement, rather than replace, existing reservation
* tables for protocol 4-tuples, offering CPU-affine lookup tables with
* minimal cache line migration and lock contention during steady state
* operation.
*
* Hardware-offloaded checksums are often inefficient in software -- for
* example, Toeplitz, specified by RSS, introduced a significant overhead if
* performed during per-packge processing. It is therefore desirable to fall
* back on traditional reservation table lookups without affinity where
* hardware-offloaded checksums aren't available, such as for traffic over
* non-RSS interfaces.
*
* Internet protocols, such as UDP and TCP, register to use connection groups
* by providing an ipi_hashfields value other than IPI_HASHFIELDS_NONE; this
* indicates to the connection group code whether a 2-tuple or 4-tuple is
* used as an argument to hashes that assign a connection to a particular
* group. This must be aligned with any hardware offloaded distribution
* model, such as RSS or similar approaches taken in embedded network boards.
* Wildcard sockets require special handling, as in Willman 2006, and are
* shared between connection groups -- while being protected by group-local
* locks. This means that connection establishment and teardown can be
* signficantly more expensive than without connection groups, but that
* steady-state processing can be significantly faster.
*
* When RSS is used, certain connection group parameters, such as the number
* of groups, are provided by the RSS implementation, found in in_rss.c.
* Otherwise, in_pcbgroup.c selects possible sensible parameters
* corresponding to the degree of parallelism exposed by netisr.
*
* Most of the implementation of connection groups is in this file; however,
* connection group lookup is implemented in in_pcb.c alongside reservation
* table lookups -- see in_pcblookup_group().
*
* TODO:
*
* Implement dynamic rebalancing of buckets with connection groups; when
* load is unevenly distributed, search for more optimal balancing on
* demand. This might require scaling up the number of connection groups
* by <<1.
*
* Provide an IP 2-tuple or 4-tuple netisr m2cpu handler based on connection
* groups for ip_input and ip6_input, allowing non-offloaded work
* distribution.
*
* Expose effective CPU affinity of connections to userspace using socket
* options.
*
* Investigate per-connection affinity overrides based on socket options; an
* option could be set, certainly resulting in work being distributed
* differently in software, and possibly propagated to supporting hardware
* with TCAMs or hardware hash tables. This might require connections to
* exist in more than one connection group at a time.
*
* Hook netisr thread reconfiguration events, and propagate those to RSS so
* that rebalancing can occur when the thread pool grows or shrinks.
*
* Expose per-pcbgroup statistics to userspace monitoring tools such as
* netstat, in order to allow better debugging and profiling.
*/
void
in_pcbgroup_init(struct inpcbinfo *pcbinfo, u_int hashfields,
int hash_nelements)
{
struct inpcbgroup *pcbgroup;
u_int numpcbgroups, pgn;
/*
* Only enable connection groups for a protocol if it has been
* specifically requested.
*/
if (hashfields == IPI_HASHFIELDS_NONE)
return;
/*
* Connection groups are about multi-processor load distribution,
* lock contention, and connection CPU affinity. As such, no point
* in turning them on for a uniprocessor machine, it only wastes
* memory.
*/
if (mp_ncpus == 1)
return;
#ifdef RSS
/*
* If we're using RSS, then RSS determines the number of connection
* groups to use: one connection group per RSS bucket. If for some
* reason RSS isn't able to provide a number of buckets, disable
* connection groups entirely.
*
* XXXRW: Can this ever happen?
*/
numpcbgroups = rss_getnumbuckets();
if (numpcbgroups == 0)
return;
#else
/*
* Otherwise, we'll just use one per CPU for now. If we decide to
* do dynamic rebalancing a la RSS, we'll need similar logic here.
*/
numpcbgroups = mp_ncpus;
#endif
pcbinfo->ipi_hashfields = hashfields;
pcbinfo->ipi_pcbgroups = malloc(numpcbgroups *
sizeof(*pcbinfo->ipi_pcbgroups), M_PCB, M_WAITOK | M_ZERO);
pcbinfo->ipi_npcbgroups = numpcbgroups;
pcbinfo->ipi_wildbase = hashinit(hash_nelements, M_PCB,
&pcbinfo->ipi_wildmask);
for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++) {
pcbgroup = &pcbinfo->ipi_pcbgroups[pgn];
pcbgroup->ipg_hashbase = hashinit(hash_nelements, M_PCB,
&pcbgroup->ipg_hashmask);
INP_GROUP_LOCK_INIT(pcbgroup, "pcbgroup");
/*
* Initialise notional affinity of the pcbgroup -- for RSS,
* we want the same notion of affinity as NICs to be used. In
* the non-RSS case, just round robin for the time being.
*
* XXXRW: The notion of a bucket to CPU mapping is common at
* both pcbgroup and RSS layers -- does that mean that we
* should migrate it all from RSS to here, and just leave RSS
* responsible only for providing hashing and mapping funtions?
*/
#ifdef RSS
pcbgroup->ipg_cpu = rss_getcpu(pgn);
#else
pcbgroup->ipg_cpu = (pgn % mp_ncpus);
#endif
}
}
void
in_pcbgroup_destroy(struct inpcbinfo *pcbinfo)
{
struct inpcbgroup *pcbgroup;
u_int pgn;
if (pcbinfo->ipi_npcbgroups == 0)
return;
for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++) {
pcbgroup = &pcbinfo->ipi_pcbgroups[pgn];
KASSERT(LIST_EMPTY(pcbinfo->ipi_listhead),
("in_pcbinfo_destroy: listhead not empty"));
INP_GROUP_LOCK_DESTROY(pcbgroup);
hashdestroy(pcbgroup->ipg_hashbase, M_PCB,
pcbgroup->ipg_hashmask);
}
hashdestroy(pcbinfo->ipi_wildbase, M_PCB, pcbinfo->ipi_wildmask);
free(pcbinfo->ipi_pcbgroups, M_PCB);
pcbinfo->ipi_pcbgroups = NULL;
pcbinfo->ipi_npcbgroups = 0;
pcbinfo->ipi_hashfields = 0;
}
/*
* Given a hash of whatever the covered tuple might be, return a pcbgroup
* index. Where RSS is supported, try to align bucket selection with RSS CPU
* affinity strategy.
*/
static __inline u_int
in_pcbgroup_getbucket(struct inpcbinfo *pcbinfo, uint32_t hash)
{
#ifdef RSS
return (rss_getbucket(hash));
#else
return (hash % pcbinfo->ipi_npcbgroups);
#endif
}
/*
* Map a (hashtype, hash) tuple into a connection group, or NULL if the hash
* information is insufficient to identify the pcbgroup. This might occur if
* a TCP packet turns up with a 2-tuple hash, or if an RSS hash is present but
* RSS is not compiled into the kernel.
*/
struct inpcbgroup *
in_pcbgroup_byhash(struct inpcbinfo *pcbinfo, u_int hashtype, uint32_t hash)
{
#ifdef RSS
if ((pcbinfo->ipi_hashfields == IPI_HASHFIELDS_4TUPLE &&
hashtype == M_HASHTYPE_RSS_TCP_IPV4) ||
(pcbinfo->ipi_hashfields == IPI_HASHFIELDS_2TUPLE &&
hashtype == M_HASHTYPE_RSS_IPV4))
return (&pcbinfo->ipi_pcbgroups[
in_pcbgroup_getbucket(pcbinfo, hash)]);
#endif
return (NULL);
}
static struct inpcbgroup *
in_pcbgroup_bymbuf(struct inpcbinfo *pcbinfo, struct mbuf *m)
{
return (in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
m->m_pkthdr.flowid));
}
struct inpcbgroup *
in_pcbgroup_bytuple(struct inpcbinfo *pcbinfo, struct in_addr laddr,
u_short lport, struct in_addr faddr, u_short fport)
{
uint32_t hash;
/*
* RSS note: we pass foreign addr/port as source, and local addr/port
* as destination, as we want to align with what the hardware is
* doing.
*/
switch (pcbinfo->ipi_hashfields) {
case IPI_HASHFIELDS_4TUPLE:
#ifdef RSS
hash = rss_hash_ip4_4tuple(faddr, fport, laddr, lport);
#else
hash = faddr.s_addr ^ fport;
#endif
break;
case IPI_HASHFIELDS_2TUPLE:
#ifdef RSS
hash = rss_hash_ip4_2tuple(faddr, laddr);
#else
hash = faddr.s_addr ^ laddr.s_addr;
#endif
break;
default:
hash = 0;
}
return (&pcbinfo->ipi_pcbgroups[in_pcbgroup_getbucket(pcbinfo,
hash)]);
}
struct inpcbgroup *
in_pcbgroup_byinpcb(struct inpcb *inp)
{
return (in_pcbgroup_bytuple(inp->inp_pcbinfo, inp->inp_laddr,
inp->inp_lport, inp->inp_faddr, inp->inp_fport));
}
static void
in_pcbwild_add(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo;
struct inpcbhead *head;
u_int pgn;
INP_WLOCK_ASSERT(inp);
KASSERT(!(inp->inp_flags2 & INP_PCBGROUPWILD),
("%s: is wild",__func__));
pcbinfo = inp->inp_pcbinfo;
for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++)
INP_GROUP_LOCK(&pcbinfo->ipi_pcbgroups[pgn]);
head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, inp->inp_lport,
0, pcbinfo->ipi_wildmask)];
LIST_INSERT_HEAD(head, inp, inp_pcbgroup_wild);
inp->inp_flags2 |= INP_PCBGROUPWILD;
for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++)
INP_GROUP_UNLOCK(&pcbinfo->ipi_pcbgroups[pgn]);
}
static void
in_pcbwild_remove(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo;
u_int pgn;
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags2 & INP_PCBGROUPWILD),
("%s: not wild", __func__));
pcbinfo = inp->inp_pcbinfo;
for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++)
INP_GROUP_LOCK(&pcbinfo->ipi_pcbgroups[pgn]);
LIST_REMOVE(inp, inp_pcbgroup_wild);
for (pgn = 0; pgn < pcbinfo->ipi_npcbgroups; pgn++)
INP_GROUP_UNLOCK(&pcbinfo->ipi_pcbgroups[pgn]);
inp->inp_flags2 &= ~INP_PCBGROUPWILD;
}
static __inline int
in_pcbwild_needed(struct inpcb *inp)
{
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
return (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr));
else
#endif
return (inp->inp_faddr.s_addr == htonl(INADDR_ANY));
}
static void
in_pcbwild_update_internal(struct inpcb *inp)
{
int wildcard_needed;
wildcard_needed = in_pcbwild_needed(inp);
if (wildcard_needed && !(inp->inp_flags2 & INP_PCBGROUPWILD))
in_pcbwild_add(inp);
else if (!wildcard_needed && (inp->inp_flags2 & INP_PCBGROUPWILD))
in_pcbwild_remove(inp);
}
/*
* Update the pcbgroup of an inpcb, which might include removing an old
* pcbgroup reference and/or adding a new one. Wildcard processing is not
* performed here, although ideally we'll never install a pcbgroup for a
* wildcard inpcb (asserted below).
*/
static void
in_pcbgroup_update_internal(struct inpcbinfo *pcbinfo,
struct inpcbgroup *newpcbgroup, struct inpcb *inp)
{
struct inpcbgroup *oldpcbgroup;
struct inpcbhead *pcbhash;
uint32_t hashkey_faddr;
INP_WLOCK_ASSERT(inp);
oldpcbgroup = inp->inp_pcbgroup;
if (oldpcbgroup != NULL && oldpcbgroup != newpcbgroup) {
INP_GROUP_LOCK(oldpcbgroup);
LIST_REMOVE(inp, inp_pcbgrouphash);
inp->inp_pcbgroup = NULL;
INP_GROUP_UNLOCK(oldpcbgroup);
}
if (newpcbgroup != NULL && oldpcbgroup != newpcbgroup) {
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = inp->in6p_faddr.s6_addr32[3]; /* XXX */
else
#endif
hashkey_faddr = inp->inp_faddr.s_addr;
INP_GROUP_LOCK(newpcbgroup);
pcbhash = &newpcbgroup->ipg_hashbase[
INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport,
newpcbgroup->ipg_hashmask)];
LIST_INSERT_HEAD(pcbhash, inp, inp_pcbgrouphash);
inp->inp_pcbgroup = newpcbgroup;
INP_GROUP_UNLOCK(newpcbgroup);
}
KASSERT(!(newpcbgroup != NULL && in_pcbwild_needed(inp)),
("%s: pcbgroup and wildcard!", __func__));
}
/*
* Two update paths: one in which the 4-tuple on an inpcb has been updated
* and therefore connection groups may need to change (or a wildcard entry
* may needed to be installed), and another in which the 4-tuple has been
* set as a result of a packet received, in which case we may be able to use
* the hash on the mbuf to avoid doing a software hash calculation for RSS.
*
* In each case: first, let the wildcard code have a go at placing it as a
* wildcard socket. If it was a wildcard, or if the connection has been
* dropped, then no pcbgroup is required (so potentially clear it);
* otherwise, calculate and update the pcbgroup for the inpcb.
*/
void
in_pcbgroup_update(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo;
struct inpcbgroup *newpcbgroup;
INP_WLOCK_ASSERT(inp);
pcbinfo = inp->inp_pcbinfo;
if (!in_pcbgroup_enabled(pcbinfo))
return;
in_pcbwild_update_internal(inp);
if (!(inp->inp_flags2 & INP_PCBGROUPWILD) &&
!(inp->inp_flags & INP_DROPPED)) {
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
newpcbgroup = in6_pcbgroup_byinpcb(inp);
else
#endif
newpcbgroup = in_pcbgroup_byinpcb(inp);
} else
newpcbgroup = NULL;
in_pcbgroup_update_internal(pcbinfo, newpcbgroup, inp);
}
void
in_pcbgroup_update_mbuf(struct inpcb *inp, struct mbuf *m)
{
struct inpcbinfo *pcbinfo;
struct inpcbgroup *newpcbgroup;
INP_WLOCK_ASSERT(inp);
pcbinfo = inp->inp_pcbinfo;
if (!in_pcbgroup_enabled(pcbinfo))
return;
/*
* Possibly should assert !INP_PCBGROUPWILD rather than testing for
* it; presumably this function should never be called for anything
* other than non-wildcard socket?
*/
in_pcbwild_update_internal(inp);
if (!(inp->inp_flags2 & INP_PCBGROUPWILD) &&
!(inp->inp_flags & INP_DROPPED)) {
newpcbgroup = in_pcbgroup_bymbuf(pcbinfo, m);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
if (newpcbgroup == NULL)
newpcbgroup = in6_pcbgroup_byinpcb(inp);
} else {
#endif
if (newpcbgroup == NULL)
newpcbgroup = in_pcbgroup_byinpcb(inp);
#ifdef INET6
}
#endif
} else
newpcbgroup = NULL;
in_pcbgroup_update_internal(pcbinfo, newpcbgroup, inp);
}
/*
* Remove pcbgroup entry and optional pcbgroup wildcard entry for this inpcb.
*/
void
in_pcbgroup_remove(struct inpcb *inp)
{
struct inpcbgroup *pcbgroup;
INP_WLOCK_ASSERT(inp);
if (!in_pcbgroup_enabled(inp->inp_pcbinfo))
return;
if (inp->inp_flags2 & INP_PCBGROUPWILD)
in_pcbwild_remove(inp);
pcbgroup = inp->inp_pcbgroup;
if (pcbgroup != NULL) {
INP_GROUP_LOCK(pcbgroup);
LIST_REMOVE(inp, inp_pcbgrouphash);
inp->inp_pcbgroup = NULL;
INP_GROUP_UNLOCK(pcbgroup);
}
}
/*
* Query whether or not it is appropriate to use pcbgroups to look up inpcbs
* for a protocol.
*/
int
in_pcbgroup_enabled(struct inpcbinfo *pcbinfo)
{
return (pcbinfo->ipi_npcbgroups > 0);
}