0a50679ce9
Handle all iputs in zfs_purgedir() and zfs_inode_destroy() asynchronously to prevent deadlocks. When the iputs are allowed to run synchronously in the destroy call path deadlocks between xattr directory inodes and their parent file inodes are possible. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <ryao@gentoo.org> Closes #457
4604 lines
107 KiB
C
4604 lines
107 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2013 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/* Portions Copyright 2007 Jeremy Teo */
|
|
/* Portions Copyright 2010 Robert Milkowski */
|
|
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/time.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/vfs.h>
|
|
#include <sys/vfs_opreg.h>
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/taskq.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/vmsystm.h>
|
|
#include <sys/atomic.h>
|
|
#include <vm/pvn.h>
|
|
#include <sys/pathname.h>
|
|
#include <sys/cmn_err.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/zfs_dir.h>
|
|
#include <sys/zfs_acl.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/dirent.h>
|
|
#include <sys/policy.h>
|
|
#include <sys/sunddi.h>
|
|
#include <sys/sid.h>
|
|
#include <sys/mode.h>
|
|
#include "fs/fs_subr.h"
|
|
#include <sys/zfs_ctldir.h>
|
|
#include <sys/zfs_fuid.h>
|
|
#include <sys/zfs_sa.h>
|
|
#include <sys/zfs_vnops.h>
|
|
#include <sys/dnlc.h>
|
|
#include <sys/zfs_rlock.h>
|
|
#include <sys/extdirent.h>
|
|
#include <sys/kidmap.h>
|
|
#include <sys/cred.h>
|
|
#include <sys/attr.h>
|
|
#include <sys/zpl.h>
|
|
|
|
/*
|
|
* Programming rules.
|
|
*
|
|
* Each vnode op performs some logical unit of work. To do this, the ZPL must
|
|
* properly lock its in-core state, create a DMU transaction, do the work,
|
|
* record this work in the intent log (ZIL), commit the DMU transaction,
|
|
* and wait for the intent log to commit if it is a synchronous operation.
|
|
* Moreover, the vnode ops must work in both normal and log replay context.
|
|
* The ordering of events is important to avoid deadlocks and references
|
|
* to freed memory. The example below illustrates the following Big Rules:
|
|
*
|
|
* (1) A check must be made in each zfs thread for a mounted file system.
|
|
* This is done avoiding races using ZFS_ENTER(zsb).
|
|
* A ZFS_EXIT(zsb) is needed before all returns. Any znodes
|
|
* must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
|
|
* can return EIO from the calling function.
|
|
*
|
|
* (2) iput() should always be the last thing except for zil_commit()
|
|
* (if necessary) and ZFS_EXIT(). This is for 3 reasons:
|
|
* First, if it's the last reference, the vnode/znode
|
|
* can be freed, so the zp may point to freed memory. Second, the last
|
|
* reference will call zfs_zinactive(), which may induce a lot of work --
|
|
* pushing cached pages (which acquires range locks) and syncing out
|
|
* cached atime changes. Third, zfs_zinactive() may require a new tx,
|
|
* which could deadlock the system if you were already holding one.
|
|
* If you must call iput() within a tx then use zfs_iput_async().
|
|
*
|
|
* (3) All range locks must be grabbed before calling dmu_tx_assign(),
|
|
* as they can span dmu_tx_assign() calls.
|
|
*
|
|
* (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
|
|
* dmu_tx_assign(). This is critical because we don't want to block
|
|
* while holding locks.
|
|
*
|
|
* If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
|
|
* reduces lock contention and CPU usage when we must wait (note that if
|
|
* throughput is constrained by the storage, nearly every transaction
|
|
* must wait).
|
|
*
|
|
* Note, in particular, that if a lock is sometimes acquired before
|
|
* the tx assigns, and sometimes after (e.g. z_lock), then failing
|
|
* to use a non-blocking assign can deadlock the system. The scenario:
|
|
*
|
|
* Thread A has grabbed a lock before calling dmu_tx_assign().
|
|
* Thread B is in an already-assigned tx, and blocks for this lock.
|
|
* Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
|
|
* forever, because the previous txg can't quiesce until B's tx commits.
|
|
*
|
|
* If dmu_tx_assign() returns ERESTART and zsb->z_assign is TXG_NOWAIT,
|
|
* then drop all locks, call dmu_tx_wait(), and try again. On subsequent
|
|
* calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
|
|
* to indicate that this operation has already called dmu_tx_wait().
|
|
* This will ensure that we don't retry forever, waiting a short bit
|
|
* each time.
|
|
*
|
|
* (5) If the operation succeeded, generate the intent log entry for it
|
|
* before dropping locks. This ensures that the ordering of events
|
|
* in the intent log matches the order in which they actually occurred.
|
|
* During ZIL replay the zfs_log_* functions will update the sequence
|
|
* number to indicate the zil transaction has replayed.
|
|
*
|
|
* (6) At the end of each vnode op, the DMU tx must always commit,
|
|
* regardless of whether there were any errors.
|
|
*
|
|
* (7) After dropping all locks, invoke zil_commit(zilog, foid)
|
|
* to ensure that synchronous semantics are provided when necessary.
|
|
*
|
|
* In general, this is how things should be ordered in each vnode op:
|
|
*
|
|
* ZFS_ENTER(zsb); // exit if unmounted
|
|
* top:
|
|
* zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
|
|
* rw_enter(...); // grab any other locks you need
|
|
* tx = dmu_tx_create(...); // get DMU tx
|
|
* dmu_tx_hold_*(); // hold each object you might modify
|
|
* error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
|
|
* if (error) {
|
|
* rw_exit(...); // drop locks
|
|
* zfs_dirent_unlock(dl); // unlock directory entry
|
|
* iput(...); // release held vnodes
|
|
* if (error == ERESTART) {
|
|
* waited = B_TRUE;
|
|
* dmu_tx_wait(tx);
|
|
* dmu_tx_abort(tx);
|
|
* goto top;
|
|
* }
|
|
* dmu_tx_abort(tx); // abort DMU tx
|
|
* ZFS_EXIT(zsb); // finished in zfs
|
|
* return (error); // really out of space
|
|
* }
|
|
* error = do_real_work(); // do whatever this VOP does
|
|
* if (error == 0)
|
|
* zfs_log_*(...); // on success, make ZIL entry
|
|
* dmu_tx_commit(tx); // commit DMU tx -- error or not
|
|
* rw_exit(...); // drop locks
|
|
* zfs_dirent_unlock(dl); // unlock directory entry
|
|
* iput(...); // release held vnodes
|
|
* zil_commit(zilog, foid); // synchronous when necessary
|
|
* ZFS_EXIT(zsb); // finished in zfs
|
|
* return (error); // done, report error
|
|
*/
|
|
|
|
/*
|
|
* Virus scanning is unsupported. It would be possible to add a hook
|
|
* here to performance the required virus scan. This could be done
|
|
* entirely in the kernel or potentially as an update to invoke a
|
|
* scanning utility.
|
|
*/
|
|
static int
|
|
zfs_vscan(struct inode *ip, cred_t *cr, int async)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
/* Honor ZFS_APPENDONLY file attribute */
|
|
if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
|
|
((flag & O_APPEND) == 0)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EPERM));
|
|
}
|
|
|
|
/* Virus scan eligible files on open */
|
|
if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
|
|
!(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
|
|
if (zfs_vscan(ip, cr, 0) != 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EACCES));
|
|
}
|
|
}
|
|
|
|
/* Keep a count of the synchronous opens in the znode */
|
|
if (flag & O_SYNC)
|
|
atomic_inc_32(&zp->z_sync_cnt);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_open);
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_close(struct inode *ip, int flag, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
/* Decrement the synchronous opens in the znode */
|
|
if (flag & O_SYNC)
|
|
atomic_dec_32(&zp->z_sync_cnt);
|
|
|
|
if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) &&
|
|
!(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
|
|
VERIFY(zfs_vscan(ip, cr, 1) == 0);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_close);
|
|
|
|
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
|
|
/*
|
|
* Lseek support for finding holes (cmd == SEEK_HOLE) and
|
|
* data (cmd == SEEK_DATA). "off" is an in/out parameter.
|
|
*/
|
|
static int
|
|
zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
uint64_t noff = (uint64_t)*off; /* new offset */
|
|
uint64_t file_sz;
|
|
int error;
|
|
boolean_t hole;
|
|
|
|
file_sz = zp->z_size;
|
|
if (noff >= file_sz) {
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
if (cmd == SEEK_HOLE)
|
|
hole = B_TRUE;
|
|
else
|
|
hole = B_FALSE;
|
|
|
|
error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
|
|
|
|
/* end of file? */
|
|
if ((error == ESRCH) || (noff > file_sz)) {
|
|
/*
|
|
* Handle the virtual hole at the end of file.
|
|
*/
|
|
if (hole) {
|
|
*off = file_sz;
|
|
return (0);
|
|
}
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
if (noff < *off)
|
|
return (error);
|
|
*off = noff;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
zfs_holey(struct inode *ip, int cmd, loff_t *off)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
int error;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
error = zfs_holey_common(ip, cmd, off);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_holey);
|
|
#endif /* SEEK_HOLE && SEEK_DATA */
|
|
|
|
#if defined(_KERNEL)
|
|
/*
|
|
* When a file is memory mapped, we must keep the IO data synchronized
|
|
* between the DMU cache and the memory mapped pages. What this means:
|
|
*
|
|
* On Write: If we find a memory mapped page, we write to *both*
|
|
* the page and the dmu buffer.
|
|
*/
|
|
static void
|
|
update_pages(struct inode *ip, int64_t start, int len,
|
|
objset_t *os, uint64_t oid)
|
|
{
|
|
struct address_space *mp = ip->i_mapping;
|
|
struct page *pp;
|
|
uint64_t nbytes;
|
|
int64_t off;
|
|
void *pb;
|
|
|
|
off = start & (PAGE_CACHE_SIZE-1);
|
|
for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) {
|
|
nbytes = MIN(PAGE_CACHE_SIZE - off, len);
|
|
|
|
pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT);
|
|
if (pp) {
|
|
if (mapping_writably_mapped(mp))
|
|
flush_dcache_page(pp);
|
|
|
|
pb = kmap(pp);
|
|
(void) dmu_read(os, oid, start+off, nbytes, pb+off,
|
|
DMU_READ_PREFETCH);
|
|
kunmap(pp);
|
|
|
|
if (mapping_writably_mapped(mp))
|
|
flush_dcache_page(pp);
|
|
|
|
mark_page_accessed(pp);
|
|
SetPageUptodate(pp);
|
|
ClearPageError(pp);
|
|
unlock_page(pp);
|
|
page_cache_release(pp);
|
|
}
|
|
|
|
len -= nbytes;
|
|
off = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When a file is memory mapped, we must keep the IO data synchronized
|
|
* between the DMU cache and the memory mapped pages. What this means:
|
|
*
|
|
* On Read: We "read" preferentially from memory mapped pages,
|
|
* else we default from the dmu buffer.
|
|
*
|
|
* NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
|
|
* the file is memory mapped.
|
|
*/
|
|
static int
|
|
mappedread(struct inode *ip, int nbytes, uio_t *uio)
|
|
{
|
|
struct address_space *mp = ip->i_mapping;
|
|
struct page *pp;
|
|
znode_t *zp = ITOZ(ip);
|
|
objset_t *os = ITOZSB(ip)->z_os;
|
|
int64_t start, off;
|
|
uint64_t bytes;
|
|
int len = nbytes;
|
|
int error = 0;
|
|
void *pb;
|
|
|
|
start = uio->uio_loffset;
|
|
off = start & (PAGE_CACHE_SIZE-1);
|
|
for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) {
|
|
bytes = MIN(PAGE_CACHE_SIZE - off, len);
|
|
|
|
pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT);
|
|
if (pp) {
|
|
ASSERT(PageUptodate(pp));
|
|
|
|
pb = kmap(pp);
|
|
error = uiomove(pb + off, bytes, UIO_READ, uio);
|
|
kunmap(pp);
|
|
|
|
if (mapping_writably_mapped(mp))
|
|
flush_dcache_page(pp);
|
|
|
|
mark_page_accessed(pp);
|
|
unlock_page(pp);
|
|
page_cache_release(pp);
|
|
} else {
|
|
error = dmu_read_uio(os, zp->z_id, uio, bytes);
|
|
}
|
|
|
|
len -= bytes;
|
|
off = 0;
|
|
if (error)
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
#endif /* _KERNEL */
|
|
|
|
unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
|
|
|
|
/*
|
|
* Read bytes from specified file into supplied buffer.
|
|
*
|
|
* IN: ip - inode of file to be read from.
|
|
* uio - structure supplying read location, range info,
|
|
* and return buffer.
|
|
* ioflag - FSYNC flags; used to provide FRSYNC semantics.
|
|
* O_DIRECT flag; used to bypass page cache.
|
|
* cr - credentials of caller.
|
|
*
|
|
* OUT: uio - updated offset and range, buffer filled.
|
|
*
|
|
* RETURN: 0 on success, error code on failure.
|
|
*
|
|
* Side Effects:
|
|
* inode - atime updated if byte count > 0
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
objset_t *os;
|
|
ssize_t n, nbytes;
|
|
int error = 0;
|
|
rl_t *rl;
|
|
#ifdef HAVE_UIO_ZEROCOPY
|
|
xuio_t *xuio = NULL;
|
|
#endif /* HAVE_UIO_ZEROCOPY */
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
os = zsb->z_os;
|
|
|
|
if (zp->z_pflags & ZFS_AV_QUARANTINED) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EACCES));
|
|
}
|
|
|
|
/*
|
|
* Validate file offset
|
|
*/
|
|
if (uio->uio_loffset < (offset_t)0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Fasttrack empty reads
|
|
*/
|
|
if (uio->uio_resid == 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check for mandatory locks
|
|
*/
|
|
if (mandatory_lock(ip) &&
|
|
!lock_may_read(ip, uio->uio_loffset, uio->uio_resid)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EAGAIN));
|
|
}
|
|
|
|
/*
|
|
* If we're in FRSYNC mode, sync out this znode before reading it.
|
|
*/
|
|
if (ioflag & FRSYNC || zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zsb->z_log, zp->z_id);
|
|
|
|
/*
|
|
* Lock the range against changes.
|
|
*/
|
|
rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
|
|
|
|
/*
|
|
* If we are reading past end-of-file we can skip
|
|
* to the end; but we might still need to set atime.
|
|
*/
|
|
if (uio->uio_loffset >= zp->z_size) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(uio->uio_loffset < zp->z_size);
|
|
n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
|
|
|
|
#ifdef HAVE_UIO_ZEROCOPY
|
|
if ((uio->uio_extflg == UIO_XUIO) &&
|
|
(((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
|
|
int nblk;
|
|
int blksz = zp->z_blksz;
|
|
uint64_t offset = uio->uio_loffset;
|
|
|
|
xuio = (xuio_t *)uio;
|
|
if ((ISP2(blksz))) {
|
|
nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
|
|
blksz)) / blksz;
|
|
} else {
|
|
ASSERT(offset + n <= blksz);
|
|
nblk = 1;
|
|
}
|
|
(void) dmu_xuio_init(xuio, nblk);
|
|
|
|
if (vn_has_cached_data(ip)) {
|
|
/*
|
|
* For simplicity, we always allocate a full buffer
|
|
* even if we only expect to read a portion of a block.
|
|
*/
|
|
while (--nblk >= 0) {
|
|
(void) dmu_xuio_add(xuio,
|
|
dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
|
|
blksz), 0, blksz);
|
|
}
|
|
}
|
|
}
|
|
#endif /* HAVE_UIO_ZEROCOPY */
|
|
|
|
while (n > 0) {
|
|
nbytes = MIN(n, zfs_read_chunk_size -
|
|
P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
|
|
|
|
if (zp->z_is_mapped && !(ioflag & O_DIRECT))
|
|
error = mappedread(ip, nbytes, uio);
|
|
else
|
|
error = dmu_read_uio(os, zp->z_id, uio, nbytes);
|
|
|
|
if (error) {
|
|
/* convert checksum errors into IO errors */
|
|
if (error == ECKSUM)
|
|
error = SET_ERROR(EIO);
|
|
break;
|
|
}
|
|
|
|
n -= nbytes;
|
|
}
|
|
out:
|
|
zfs_range_unlock(rl);
|
|
|
|
ZFS_ACCESSTIME_STAMP(zsb, zp);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_read);
|
|
|
|
/*
|
|
* Write the bytes to a file.
|
|
*
|
|
* IN: ip - inode of file to be written to.
|
|
* uio - structure supplying write location, range info,
|
|
* and data buffer.
|
|
* ioflag - FAPPEND flag set if in append mode.
|
|
* O_DIRECT flag; used to bypass page cache.
|
|
* cr - credentials of caller.
|
|
*
|
|
* OUT: uio - updated offset and range.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*
|
|
* Timestamps:
|
|
* ip - ctime|mtime updated if byte count > 0
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
rlim64_t limit = uio->uio_limit;
|
|
ssize_t start_resid = uio->uio_resid;
|
|
ssize_t tx_bytes;
|
|
uint64_t end_size;
|
|
dmu_tx_t *tx;
|
|
zfs_sb_t *zsb = ZTOZSB(zp);
|
|
zilog_t *zilog;
|
|
offset_t woff;
|
|
ssize_t n, nbytes;
|
|
rl_t *rl;
|
|
int max_blksz = zsb->z_max_blksz;
|
|
int error = 0;
|
|
arc_buf_t *abuf;
|
|
iovec_t *aiov = NULL;
|
|
xuio_t *xuio = NULL;
|
|
int i_iov = 0;
|
|
iovec_t *iovp = uio->uio_iov;
|
|
int write_eof;
|
|
int count = 0;
|
|
sa_bulk_attr_t bulk[4];
|
|
uint64_t mtime[2], ctime[2];
|
|
ASSERTV(int iovcnt = uio->uio_iovcnt);
|
|
|
|
/*
|
|
* Fasttrack empty write
|
|
*/
|
|
n = start_resid;
|
|
if (n == 0)
|
|
return (0);
|
|
|
|
if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
|
|
limit = MAXOFFSET_T;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL, &zp->z_size, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
|
|
&zp->z_pflags, 8);
|
|
|
|
/*
|
|
* If immutable or not appending then return EPERM
|
|
*/
|
|
if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
|
|
((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
|
|
(uio->uio_loffset < zp->z_size))) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EPERM));
|
|
}
|
|
|
|
zilog = zsb->z_log;
|
|
|
|
/*
|
|
* Validate file offset
|
|
*/
|
|
woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
|
|
if (woff < 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Check for mandatory locks before calling zfs_range_lock()
|
|
* in order to prevent a deadlock with locks set via fcntl().
|
|
*/
|
|
if (mandatory_lock(ip) && !lock_may_write(ip, woff, n)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EAGAIN));
|
|
}
|
|
|
|
/*
|
|
* Pre-fault the pages to ensure slow (eg NFS) pages
|
|
* don't hold up txg.
|
|
* Skip this if uio contains loaned arc_buf.
|
|
*/
|
|
#ifdef HAVE_UIO_ZEROCOPY
|
|
if ((uio->uio_extflg == UIO_XUIO) &&
|
|
(((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
|
|
xuio = (xuio_t *)uio;
|
|
else
|
|
#endif
|
|
uio_prefaultpages(MIN(n, max_blksz), uio);
|
|
|
|
/*
|
|
* If in append mode, set the io offset pointer to eof.
|
|
*/
|
|
if (ioflag & FAPPEND) {
|
|
/*
|
|
* Obtain an appending range lock to guarantee file append
|
|
* semantics. We reset the write offset once we have the lock.
|
|
*/
|
|
rl = zfs_range_lock(zp, 0, n, RL_APPEND);
|
|
woff = rl->r_off;
|
|
if (rl->r_len == UINT64_MAX) {
|
|
/*
|
|
* We overlocked the file because this write will cause
|
|
* the file block size to increase.
|
|
* Note that zp_size cannot change with this lock held.
|
|
*/
|
|
woff = zp->z_size;
|
|
}
|
|
uio->uio_loffset = woff;
|
|
} else {
|
|
/*
|
|
* Note that if the file block size will change as a result of
|
|
* this write, then this range lock will lock the entire file
|
|
* so that we can re-write the block safely.
|
|
*/
|
|
rl = zfs_range_lock(zp, woff, n, RL_WRITER);
|
|
}
|
|
|
|
if (woff >= limit) {
|
|
zfs_range_unlock(rl);
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EFBIG));
|
|
}
|
|
|
|
if ((woff + n) > limit || woff > (limit - n))
|
|
n = limit - woff;
|
|
|
|
/* Will this write extend the file length? */
|
|
write_eof = (woff + n > zp->z_size);
|
|
|
|
end_size = MAX(zp->z_size, woff + n);
|
|
|
|
/*
|
|
* Write the file in reasonable size chunks. Each chunk is written
|
|
* in a separate transaction; this keeps the intent log records small
|
|
* and allows us to do more fine-grained space accounting.
|
|
*/
|
|
while (n > 0) {
|
|
abuf = NULL;
|
|
woff = uio->uio_loffset;
|
|
if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
|
|
zfs_owner_overquota(zsb, zp, B_TRUE)) {
|
|
if (abuf != NULL)
|
|
dmu_return_arcbuf(abuf);
|
|
error = SET_ERROR(EDQUOT);
|
|
break;
|
|
}
|
|
|
|
if (xuio && abuf == NULL) {
|
|
ASSERT(i_iov < iovcnt);
|
|
aiov = &iovp[i_iov];
|
|
abuf = dmu_xuio_arcbuf(xuio, i_iov);
|
|
dmu_xuio_clear(xuio, i_iov);
|
|
ASSERT((aiov->iov_base == abuf->b_data) ||
|
|
((char *)aiov->iov_base - (char *)abuf->b_data +
|
|
aiov->iov_len == arc_buf_size(abuf)));
|
|
i_iov++;
|
|
} else if (abuf == NULL && n >= max_blksz &&
|
|
woff >= zp->z_size &&
|
|
P2PHASE(woff, max_blksz) == 0 &&
|
|
zp->z_blksz == max_blksz) {
|
|
/*
|
|
* This write covers a full block. "Borrow" a buffer
|
|
* from the dmu so that we can fill it before we enter
|
|
* a transaction. This avoids the possibility of
|
|
* holding up the transaction if the data copy hangs
|
|
* up on a pagefault (e.g., from an NFS server mapping).
|
|
*/
|
|
size_t cbytes;
|
|
|
|
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
|
|
max_blksz);
|
|
ASSERT(abuf != NULL);
|
|
ASSERT(arc_buf_size(abuf) == max_blksz);
|
|
if ((error = uiocopy(abuf->b_data, max_blksz,
|
|
UIO_WRITE, uio, &cbytes))) {
|
|
dmu_return_arcbuf(abuf);
|
|
break;
|
|
}
|
|
ASSERT(cbytes == max_blksz);
|
|
}
|
|
|
|
/*
|
|
* Start a transaction.
|
|
*/
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
if (abuf != NULL)
|
|
dmu_return_arcbuf(abuf);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If zfs_range_lock() over-locked we grow the blocksize
|
|
* and then reduce the lock range. This will only happen
|
|
* on the first iteration since zfs_range_reduce() will
|
|
* shrink down r_len to the appropriate size.
|
|
*/
|
|
if (rl->r_len == UINT64_MAX) {
|
|
uint64_t new_blksz;
|
|
|
|
if (zp->z_blksz > max_blksz) {
|
|
ASSERT(!ISP2(zp->z_blksz));
|
|
new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
|
|
} else {
|
|
new_blksz = MIN(end_size, max_blksz);
|
|
}
|
|
zfs_grow_blocksize(zp, new_blksz, tx);
|
|
zfs_range_reduce(rl, woff, n);
|
|
}
|
|
|
|
/*
|
|
* XXX - should we really limit each write to z_max_blksz?
|
|
* Perhaps we should use SPA_MAXBLOCKSIZE chunks?
|
|
*/
|
|
nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
|
|
|
|
if (abuf == NULL) {
|
|
tx_bytes = uio->uio_resid;
|
|
error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
|
|
uio, nbytes, tx);
|
|
tx_bytes -= uio->uio_resid;
|
|
} else {
|
|
tx_bytes = nbytes;
|
|
ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
|
|
/*
|
|
* If this is not a full block write, but we are
|
|
* extending the file past EOF and this data starts
|
|
* block-aligned, use assign_arcbuf(). Otherwise,
|
|
* write via dmu_write().
|
|
*/
|
|
if (tx_bytes < max_blksz && (!write_eof ||
|
|
aiov->iov_base != abuf->b_data)) {
|
|
ASSERT(xuio);
|
|
dmu_write(zsb->z_os, zp->z_id, woff,
|
|
aiov->iov_len, aiov->iov_base, tx);
|
|
dmu_return_arcbuf(abuf);
|
|
xuio_stat_wbuf_copied();
|
|
} else {
|
|
ASSERT(xuio || tx_bytes == max_blksz);
|
|
dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
|
|
woff, abuf, tx);
|
|
}
|
|
ASSERT(tx_bytes <= uio->uio_resid);
|
|
uioskip(uio, tx_bytes);
|
|
}
|
|
|
|
if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT))
|
|
update_pages(ip, woff, tx_bytes, zsb->z_os, zp->z_id);
|
|
|
|
/*
|
|
* If we made no progress, we're done. If we made even
|
|
* partial progress, update the znode and ZIL accordingly.
|
|
*/
|
|
if (tx_bytes == 0) {
|
|
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
|
|
(void *)&zp->z_size, sizeof (uint64_t), tx);
|
|
dmu_tx_commit(tx);
|
|
ASSERT(error != 0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Clear Set-UID/Set-GID bits on successful write if not
|
|
* privileged and at least one of the excute bits is set.
|
|
*
|
|
* It would be nice to to this after all writes have
|
|
* been done, but that would still expose the ISUID/ISGID
|
|
* to another app after the partial write is committed.
|
|
*
|
|
* Note: we don't call zfs_fuid_map_id() here because
|
|
* user 0 is not an ephemeral uid.
|
|
*/
|
|
mutex_enter(&zp->z_acl_lock);
|
|
if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
|
|
(S_IXUSR >> 6))) != 0 &&
|
|
(zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
|
|
secpolicy_vnode_setid_retain(cr,
|
|
(zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
|
|
uint64_t newmode;
|
|
zp->z_mode &= ~(S_ISUID | S_ISGID);
|
|
newmode = zp->z_mode;
|
|
(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zsb),
|
|
(void *)&newmode, sizeof (uint64_t), tx);
|
|
}
|
|
mutex_exit(&zp->z_acl_lock);
|
|
|
|
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
|
|
B_TRUE);
|
|
|
|
/*
|
|
* Update the file size (zp_size) if it has changed;
|
|
* account for possible concurrent updates.
|
|
*/
|
|
while ((end_size = zp->z_size) < uio->uio_loffset) {
|
|
(void) atomic_cas_64(&zp->z_size, end_size,
|
|
uio->uio_loffset);
|
|
ASSERT(error == 0);
|
|
}
|
|
/*
|
|
* If we are replaying and eof is non zero then force
|
|
* the file size to the specified eof. Note, there's no
|
|
* concurrency during replay.
|
|
*/
|
|
if (zsb->z_replay && zsb->z_replay_eof != 0)
|
|
zp->z_size = zsb->z_replay_eof;
|
|
|
|
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
|
|
|
|
zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
|
|
NULL, NULL);
|
|
dmu_tx_commit(tx);
|
|
|
|
if (error != 0)
|
|
break;
|
|
ASSERT(tx_bytes == nbytes);
|
|
n -= nbytes;
|
|
|
|
if (!xuio && n > 0)
|
|
uio_prefaultpages(MIN(n, max_blksz), uio);
|
|
}
|
|
|
|
zfs_range_unlock(rl);
|
|
|
|
/*
|
|
* If we're in replay mode, or we made no progress, return error.
|
|
* Otherwise, it's at least a partial write, so it's successful.
|
|
*/
|
|
if (zsb->z_replay || uio->uio_resid == start_resid) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
if (ioflag & (FSYNC | FDSYNC) ||
|
|
zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, zp->z_id);
|
|
|
|
zfs_inode_update(zp);
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_write);
|
|
|
|
void
|
|
zfs_iput_async(struct inode *ip)
|
|
{
|
|
objset_t *os = ITOZSB(ip)->z_os;
|
|
|
|
ASSERT(atomic_read(&ip->i_count) > 0);
|
|
ASSERT(os != NULL);
|
|
|
|
if (atomic_read(&ip->i_count) == 1)
|
|
taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
|
|
(task_func_t *)iput, ip, TQ_PUSHPAGE);
|
|
else
|
|
iput(ip);
|
|
}
|
|
|
|
void
|
|
zfs_get_done(zgd_t *zgd, int error)
|
|
{
|
|
znode_t *zp = zgd->zgd_private;
|
|
|
|
if (zgd->zgd_db)
|
|
dmu_buf_rele(zgd->zgd_db, zgd);
|
|
|
|
zfs_range_unlock(zgd->zgd_rl);
|
|
|
|
/*
|
|
* Release the vnode asynchronously as we currently have the
|
|
* txg stopped from syncing.
|
|
*/
|
|
zfs_iput_async(ZTOI(zp));
|
|
|
|
if (error == 0 && zgd->zgd_bp)
|
|
zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
|
|
|
|
kmem_free(zgd, sizeof (zgd_t));
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static int zil_fault_io = 0;
|
|
#endif
|
|
|
|
/*
|
|
* Get data to generate a TX_WRITE intent log record.
|
|
*/
|
|
int
|
|
zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
|
|
{
|
|
zfs_sb_t *zsb = arg;
|
|
objset_t *os = zsb->z_os;
|
|
znode_t *zp;
|
|
uint64_t object = lr->lr_foid;
|
|
uint64_t offset = lr->lr_offset;
|
|
uint64_t size = lr->lr_length;
|
|
blkptr_t *bp = &lr->lr_blkptr;
|
|
dmu_buf_t *db;
|
|
zgd_t *zgd;
|
|
int error = 0;
|
|
|
|
ASSERT(zio != NULL);
|
|
ASSERT(size != 0);
|
|
|
|
/*
|
|
* Nothing to do if the file has been removed
|
|
*/
|
|
if (zfs_zget(zsb, object, &zp) != 0)
|
|
return (SET_ERROR(ENOENT));
|
|
if (zp->z_unlinked) {
|
|
/*
|
|
* Release the vnode asynchronously as we currently have the
|
|
* txg stopped from syncing.
|
|
*/
|
|
zfs_iput_async(ZTOI(zp));
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_PUSHPAGE);
|
|
zgd->zgd_zilog = zsb->z_log;
|
|
zgd->zgd_private = zp;
|
|
|
|
/*
|
|
* Write records come in two flavors: immediate and indirect.
|
|
* For small writes it's cheaper to store the data with the
|
|
* log record (immediate); for large writes it's cheaper to
|
|
* sync the data and get a pointer to it (indirect) so that
|
|
* we don't have to write the data twice.
|
|
*/
|
|
if (buf != NULL) { /* immediate write */
|
|
zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
|
|
/* test for truncation needs to be done while range locked */
|
|
if (offset >= zp->z_size) {
|
|
error = SET_ERROR(ENOENT);
|
|
} else {
|
|
error = dmu_read(os, object, offset, size, buf,
|
|
DMU_READ_NO_PREFETCH);
|
|
}
|
|
ASSERT(error == 0 || error == ENOENT);
|
|
} else { /* indirect write */
|
|
/*
|
|
* Have to lock the whole block to ensure when it's
|
|
* written out and it's checksum is being calculated
|
|
* that no one can change the data. We need to re-check
|
|
* blocksize after we get the lock in case it's changed!
|
|
*/
|
|
for (;;) {
|
|
uint64_t blkoff;
|
|
size = zp->z_blksz;
|
|
blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
|
|
offset -= blkoff;
|
|
zgd->zgd_rl = zfs_range_lock(zp, offset, size,
|
|
RL_READER);
|
|
if (zp->z_blksz == size)
|
|
break;
|
|
offset += blkoff;
|
|
zfs_range_unlock(zgd->zgd_rl);
|
|
}
|
|
/* test for truncation needs to be done while range locked */
|
|
if (lr->lr_offset >= zp->z_size)
|
|
error = SET_ERROR(ENOENT);
|
|
#ifdef DEBUG
|
|
if (zil_fault_io) {
|
|
error = SET_ERROR(EIO);
|
|
zil_fault_io = 0;
|
|
}
|
|
#endif
|
|
if (error == 0)
|
|
error = dmu_buf_hold(os, object, offset, zgd, &db,
|
|
DMU_READ_NO_PREFETCH);
|
|
|
|
if (error == 0) {
|
|
blkptr_t *obp = dmu_buf_get_blkptr(db);
|
|
if (obp) {
|
|
ASSERT(BP_IS_HOLE(bp));
|
|
*bp = *obp;
|
|
}
|
|
|
|
zgd->zgd_db = db;
|
|
zgd->zgd_bp = bp;
|
|
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == size);
|
|
|
|
error = dmu_sync(zio, lr->lr_common.lrc_txg,
|
|
zfs_get_done, zgd);
|
|
ASSERT(error || lr->lr_length <= zp->z_blksz);
|
|
|
|
/*
|
|
* On success, we need to wait for the write I/O
|
|
* initiated by dmu_sync() to complete before we can
|
|
* release this dbuf. We will finish everything up
|
|
* in the zfs_get_done() callback.
|
|
*/
|
|
if (error == 0)
|
|
return (0);
|
|
|
|
if (error == EALREADY) {
|
|
lr->lr_common.lrc_txtype = TX_WRITE2;
|
|
error = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
zfs_get_done(zgd, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
int error;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
if (flag & V_ACE_MASK)
|
|
error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
|
|
else
|
|
error = zfs_zaccess_rwx(zp, mode, flag, cr);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_access);
|
|
|
|
/*
|
|
* Lookup an entry in a directory, or an extended attribute directory.
|
|
* If it exists, return a held inode reference for it.
|
|
*
|
|
* IN: dip - inode of directory to search.
|
|
* nm - name of entry to lookup.
|
|
* flags - LOOKUP_XATTR set if looking for an attribute.
|
|
* cr - credentials of caller.
|
|
* direntflags - directory lookup flags
|
|
* realpnp - returned pathname.
|
|
*
|
|
* OUT: ipp - inode of located entry, NULL if not found.
|
|
*
|
|
* RETURN: 0 on success, error code on failure.
|
|
*
|
|
* Timestamps:
|
|
* NA
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
|
|
cred_t *cr, int *direntflags, pathname_t *realpnp)
|
|
{
|
|
znode_t *zdp = ITOZ(dip);
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
int error = 0;
|
|
|
|
/* fast path */
|
|
if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
|
|
|
|
if (!S_ISDIR(dip->i_mode)) {
|
|
return (SET_ERROR(ENOTDIR));
|
|
} else if (zdp->z_sa_hdl == NULL) {
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
|
|
error = zfs_fastaccesschk_execute(zdp, cr);
|
|
if (!error) {
|
|
*ipp = dip;
|
|
igrab(*ipp);
|
|
return (0);
|
|
}
|
|
return (error);
|
|
#ifdef HAVE_DNLC
|
|
} else {
|
|
vnode_t *tvp = dnlc_lookup(dvp, nm);
|
|
|
|
if (tvp) {
|
|
error = zfs_fastaccesschk_execute(zdp, cr);
|
|
if (error) {
|
|
iput(tvp);
|
|
return (error);
|
|
}
|
|
if (tvp == DNLC_NO_VNODE) {
|
|
iput(tvp);
|
|
return (SET_ERROR(ENOENT));
|
|
} else {
|
|
*vpp = tvp;
|
|
return (specvp_check(vpp, cr));
|
|
}
|
|
}
|
|
#endif /* HAVE_DNLC */
|
|
}
|
|
}
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zdp);
|
|
|
|
*ipp = NULL;
|
|
|
|
if (flags & LOOKUP_XATTR) {
|
|
/*
|
|
* We don't allow recursive attributes..
|
|
* Maybe someday we will.
|
|
*/
|
|
if (zdp->z_pflags & ZFS_XATTR) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Do we have permission to get into attribute directory?
|
|
*/
|
|
|
|
if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
|
|
B_FALSE, cr))) {
|
|
iput(*ipp);
|
|
*ipp = NULL;
|
|
}
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
if (!S_ISDIR(dip->i_mode)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(ENOTDIR));
|
|
}
|
|
|
|
/*
|
|
* Check accessibility of directory.
|
|
*/
|
|
|
|
if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
if (zsb->z_utf8 && u8_validate(nm, strlen(nm),
|
|
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EILSEQ));
|
|
}
|
|
|
|
error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
|
|
if ((error == 0) && (*ipp))
|
|
zfs_inode_update(ITOZ(*ipp));
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_lookup);
|
|
|
|
/*
|
|
* Attempt to create a new entry in a directory. If the entry
|
|
* already exists, truncate the file if permissible, else return
|
|
* an error. Return the ip of the created or trunc'd file.
|
|
*
|
|
* IN: dip - inode of directory to put new file entry in.
|
|
* name - name of new file entry.
|
|
* vap - attributes of new file.
|
|
* excl - flag indicating exclusive or non-exclusive mode.
|
|
* mode - mode to open file with.
|
|
* cr - credentials of caller.
|
|
* flag - large file flag [UNUSED].
|
|
* vsecp - ACL to be set
|
|
*
|
|
* OUT: ipp - inode of created or trunc'd entry.
|
|
*
|
|
* RETURN: 0 on success, error code on failure.
|
|
*
|
|
* Timestamps:
|
|
* dip - ctime|mtime updated if new entry created
|
|
* ip - ctime|mtime always, atime if new
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
|
|
int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
|
|
{
|
|
znode_t *zp, *dzp = ITOZ(dip);
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
zilog_t *zilog;
|
|
objset_t *os;
|
|
zfs_dirlock_t *dl;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
uid_t uid;
|
|
gid_t gid;
|
|
zfs_acl_ids_t acl_ids;
|
|
boolean_t fuid_dirtied;
|
|
boolean_t have_acl = B_FALSE;
|
|
boolean_t waited = B_FALSE;
|
|
|
|
/*
|
|
* If we have an ephemeral id, ACL, or XVATTR then
|
|
* make sure file system is at proper version
|
|
*/
|
|
|
|
gid = crgetgid(cr);
|
|
uid = crgetuid(cr);
|
|
|
|
if (zsb->z_use_fuids == B_FALSE &&
|
|
(vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(dzp);
|
|
os = zsb->z_os;
|
|
zilog = zsb->z_log;
|
|
|
|
if (zsb->z_utf8 && u8_validate(name, strlen(name),
|
|
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EILSEQ));
|
|
}
|
|
|
|
if (vap->va_mask & ATTR_XVATTR) {
|
|
if ((error = secpolicy_xvattr((xvattr_t *)vap,
|
|
crgetuid(cr), cr, vap->va_mode)) != 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
top:
|
|
*ipp = NULL;
|
|
if (*name == '\0') {
|
|
/*
|
|
* Null component name refers to the directory itself.
|
|
*/
|
|
igrab(dip);
|
|
zp = dzp;
|
|
dl = NULL;
|
|
error = 0;
|
|
} else {
|
|
/* possible igrab(zp) */
|
|
int zflg = 0;
|
|
|
|
if (flag & FIGNORECASE)
|
|
zflg |= ZCILOOK;
|
|
|
|
error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
|
|
NULL, NULL);
|
|
if (error) {
|
|
if (have_acl)
|
|
zfs_acl_ids_free(&acl_ids);
|
|
if (strcmp(name, "..") == 0)
|
|
error = SET_ERROR(EISDIR);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
if (zp == NULL) {
|
|
uint64_t txtype;
|
|
|
|
/*
|
|
* Create a new file object and update the directory
|
|
* to reference it.
|
|
*/
|
|
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
|
|
if (have_acl)
|
|
zfs_acl_ids_free(&acl_ids);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We only support the creation of regular files in
|
|
* extended attribute directories.
|
|
*/
|
|
|
|
if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
|
|
if (have_acl)
|
|
zfs_acl_ids_free(&acl_ids);
|
|
error = SET_ERROR(EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
|
|
cr, vsecp, &acl_ids)) != 0)
|
|
goto out;
|
|
have_acl = B_TRUE;
|
|
|
|
if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
|
|
zfs_acl_ids_free(&acl_ids);
|
|
error = SET_ERROR(EDQUOT);
|
|
goto out;
|
|
}
|
|
|
|
tx = dmu_tx_create(os);
|
|
|
|
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
|
|
ZFS_SA_BASE_ATTR_SIZE);
|
|
|
|
fuid_dirtied = zsb->z_fuid_dirty;
|
|
if (fuid_dirtied)
|
|
zfs_fuid_txhold(zsb, tx);
|
|
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
|
|
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
|
|
if (!zsb->z_use_sa &&
|
|
acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
|
|
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
|
|
0, acl_ids.z_aclp->z_acl_bytes);
|
|
}
|
|
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
|
|
if (error) {
|
|
zfs_dirent_unlock(dl);
|
|
if (error == ERESTART) {
|
|
waited = B_TRUE;
|
|
dmu_tx_wait(tx);
|
|
dmu_tx_abort(tx);
|
|
goto top;
|
|
}
|
|
zfs_acl_ids_free(&acl_ids);
|
|
dmu_tx_abort(tx);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
|
|
|
|
if (fuid_dirtied)
|
|
zfs_fuid_sync(zsb, tx);
|
|
|
|
(void) zfs_link_create(dl, zp, tx, ZNEW);
|
|
txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
|
|
if (flag & FIGNORECASE)
|
|
txtype |= TX_CI;
|
|
zfs_log_create(zilog, tx, txtype, dzp, zp, name,
|
|
vsecp, acl_ids.z_fuidp, vap);
|
|
zfs_acl_ids_free(&acl_ids);
|
|
dmu_tx_commit(tx);
|
|
} else {
|
|
int aflags = (flag & FAPPEND) ? V_APPEND : 0;
|
|
|
|
if (have_acl)
|
|
zfs_acl_ids_free(&acl_ids);
|
|
have_acl = B_FALSE;
|
|
|
|
/*
|
|
* A directory entry already exists for this name.
|
|
*/
|
|
/*
|
|
* Can't truncate an existing file if in exclusive mode.
|
|
*/
|
|
if (excl) {
|
|
error = SET_ERROR(EEXIST);
|
|
goto out;
|
|
}
|
|
/*
|
|
* Can't open a directory for writing.
|
|
*/
|
|
if (S_ISDIR(ZTOI(zp)->i_mode)) {
|
|
error = SET_ERROR(EISDIR);
|
|
goto out;
|
|
}
|
|
/*
|
|
* Verify requested access to file.
|
|
*/
|
|
if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
|
|
goto out;
|
|
}
|
|
|
|
mutex_enter(&dzp->z_lock);
|
|
dzp->z_seq++;
|
|
mutex_exit(&dzp->z_lock);
|
|
|
|
/*
|
|
* Truncate regular files if requested.
|
|
*/
|
|
if (S_ISREG(ZTOI(zp)->i_mode) &&
|
|
(vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
|
|
/* we can't hold any locks when calling zfs_freesp() */
|
|
zfs_dirent_unlock(dl);
|
|
dl = NULL;
|
|
error = zfs_freesp(zp, 0, 0, mode, TRUE);
|
|
}
|
|
}
|
|
out:
|
|
|
|
if (dl)
|
|
zfs_dirent_unlock(dl);
|
|
|
|
if (error) {
|
|
if (zp)
|
|
iput(ZTOI(zp));
|
|
} else {
|
|
zfs_inode_update(dzp);
|
|
zfs_inode_update(zp);
|
|
*ipp = ZTOI(zp);
|
|
}
|
|
|
|
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_create);
|
|
|
|
/*
|
|
* Remove an entry from a directory.
|
|
*
|
|
* IN: dip - inode of directory to remove entry from.
|
|
* name - name of entry to remove.
|
|
* cr - credentials of caller.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*
|
|
* Timestamps:
|
|
* dip - ctime|mtime
|
|
* ip - ctime (if nlink > 0)
|
|
*/
|
|
|
|
uint64_t null_xattr = 0;
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_remove(struct inode *dip, char *name, cred_t *cr)
|
|
{
|
|
znode_t *zp, *dzp = ITOZ(dip);
|
|
znode_t *xzp;
|
|
struct inode *ip;
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
zilog_t *zilog;
|
|
uint64_t xattr_obj;
|
|
uint64_t xattr_obj_unlinked = 0;
|
|
uint64_t obj = 0;
|
|
zfs_dirlock_t *dl;
|
|
dmu_tx_t *tx;
|
|
boolean_t unlinked;
|
|
uint64_t txtype;
|
|
pathname_t *realnmp = NULL;
|
|
#ifdef HAVE_PN_UTILS
|
|
pathname_t realnm;
|
|
#endif /* HAVE_PN_UTILS */
|
|
int error;
|
|
int zflg = ZEXISTS;
|
|
boolean_t waited = B_FALSE;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(dzp);
|
|
zilog = zsb->z_log;
|
|
|
|
#ifdef HAVE_PN_UTILS
|
|
if (flags & FIGNORECASE) {
|
|
zflg |= ZCILOOK;
|
|
pn_alloc(&realnm);
|
|
realnmp = &realnm;
|
|
}
|
|
#endif /* HAVE_PN_UTILS */
|
|
|
|
top:
|
|
xattr_obj = 0;
|
|
xzp = NULL;
|
|
/*
|
|
* Attempt to lock directory; fail if entry doesn't exist.
|
|
*/
|
|
if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
|
|
NULL, realnmp))) {
|
|
#ifdef HAVE_PN_UTILS
|
|
if (realnmp)
|
|
pn_free(realnmp);
|
|
#endif /* HAVE_PN_UTILS */
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
ip = ZTOI(zp);
|
|
|
|
if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Need to use rmdir for removing directories.
|
|
*/
|
|
if (S_ISDIR(ip->i_mode)) {
|
|
error = SET_ERROR(EPERM);
|
|
goto out;
|
|
}
|
|
|
|
#ifdef HAVE_DNLC
|
|
if (realnmp)
|
|
dnlc_remove(dvp, realnmp->pn_buf);
|
|
else
|
|
dnlc_remove(dvp, name);
|
|
#endif /* HAVE_DNLC */
|
|
|
|
/*
|
|
* We never delete the znode and always place it in the unlinked
|
|
* set. The dentry cache will always hold the last reference and
|
|
* is responsible for safely freeing the znode.
|
|
*/
|
|
obj = zp->z_id;
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
zfs_sa_upgrade_txholds(tx, dzp);
|
|
|
|
/* are there any extended attributes? */
|
|
error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
|
|
&xattr_obj, sizeof (xattr_obj));
|
|
if (error == 0 && xattr_obj) {
|
|
error = zfs_zget(zsb, xattr_obj, &xzp);
|
|
ASSERT0(error);
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
|
|
dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
|
|
}
|
|
|
|
/* charge as an update -- would be nice not to charge at all */
|
|
dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
|
|
|
|
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
|
|
if (error) {
|
|
zfs_dirent_unlock(dl);
|
|
iput(ip);
|
|
if (xzp)
|
|
iput(ZTOI(xzp));
|
|
if (error == ERESTART) {
|
|
waited = B_TRUE;
|
|
dmu_tx_wait(tx);
|
|
dmu_tx_abort(tx);
|
|
goto top;
|
|
}
|
|
#ifdef HAVE_PN_UTILS
|
|
if (realnmp)
|
|
pn_free(realnmp);
|
|
#endif /* HAVE_PN_UTILS */
|
|
dmu_tx_abort(tx);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Remove the directory entry.
|
|
*/
|
|
error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
|
|
|
|
if (error) {
|
|
dmu_tx_commit(tx);
|
|
goto out;
|
|
}
|
|
|
|
if (unlinked) {
|
|
/*
|
|
* Hold z_lock so that we can make sure that the ACL obj
|
|
* hasn't changed. Could have been deleted due to
|
|
* zfs_sa_upgrade().
|
|
*/
|
|
mutex_enter(&zp->z_lock);
|
|
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
|
|
&xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
|
|
mutex_exit(&zp->z_lock);
|
|
zfs_unlinked_add(zp, tx);
|
|
}
|
|
|
|
txtype = TX_REMOVE;
|
|
#ifdef HAVE_PN_UTILS
|
|
if (flags & FIGNORECASE)
|
|
txtype |= TX_CI;
|
|
#endif /* HAVE_PN_UTILS */
|
|
zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
|
|
|
|
dmu_tx_commit(tx);
|
|
out:
|
|
#ifdef HAVE_PN_UTILS
|
|
if (realnmp)
|
|
pn_free(realnmp);
|
|
#endif /* HAVE_PN_UTILS */
|
|
|
|
zfs_dirent_unlock(dl);
|
|
zfs_inode_update(dzp);
|
|
zfs_inode_update(zp);
|
|
if (xzp)
|
|
zfs_inode_update(xzp);
|
|
|
|
iput(ip);
|
|
if (xzp)
|
|
iput(ZTOI(xzp));
|
|
|
|
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_remove);
|
|
|
|
/*
|
|
* Create a new directory and insert it into dip using the name
|
|
* provided. Return a pointer to the inserted directory.
|
|
*
|
|
* IN: dip - inode of directory to add subdir to.
|
|
* dirname - name of new directory.
|
|
* vap - attributes of new directory.
|
|
* cr - credentials of caller.
|
|
* vsecp - ACL to be set
|
|
*
|
|
* OUT: ipp - inode of created directory.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*
|
|
* Timestamps:
|
|
* dip - ctime|mtime updated
|
|
* ipp - ctime|mtime|atime updated
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
|
|
cred_t *cr, int flags, vsecattr_t *vsecp)
|
|
{
|
|
znode_t *zp, *dzp = ITOZ(dip);
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
zilog_t *zilog;
|
|
zfs_dirlock_t *dl;
|
|
uint64_t txtype;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
int zf = ZNEW;
|
|
uid_t uid;
|
|
gid_t gid = crgetgid(cr);
|
|
zfs_acl_ids_t acl_ids;
|
|
boolean_t fuid_dirtied;
|
|
boolean_t waited = B_FALSE;
|
|
|
|
ASSERT(S_ISDIR(vap->va_mode));
|
|
|
|
/*
|
|
* If we have an ephemeral id, ACL, or XVATTR then
|
|
* make sure file system is at proper version
|
|
*/
|
|
|
|
uid = crgetuid(cr);
|
|
if (zsb->z_use_fuids == B_FALSE &&
|
|
(vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(dzp);
|
|
zilog = zsb->z_log;
|
|
|
|
if (dzp->z_pflags & ZFS_XATTR) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (zsb->z_utf8 && u8_validate(dirname,
|
|
strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EILSEQ));
|
|
}
|
|
if (flags & FIGNORECASE)
|
|
zf |= ZCILOOK;
|
|
|
|
if (vap->va_mask & ATTR_XVATTR) {
|
|
if ((error = secpolicy_xvattr((xvattr_t *)vap,
|
|
crgetuid(cr), cr, vap->va_mode)) != 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
|
|
vsecp, &acl_ids)) != 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
/*
|
|
* First make sure the new directory doesn't exist.
|
|
*
|
|
* Existence is checked first to make sure we don't return
|
|
* EACCES instead of EEXIST which can cause some applications
|
|
* to fail.
|
|
*/
|
|
top:
|
|
*ipp = NULL;
|
|
|
|
if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
|
|
NULL, NULL))) {
|
|
zfs_acl_ids_free(&acl_ids);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
|
|
zfs_acl_ids_free(&acl_ids);
|
|
zfs_dirent_unlock(dl);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
|
|
zfs_acl_ids_free(&acl_ids);
|
|
zfs_dirent_unlock(dl);
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EDQUOT));
|
|
}
|
|
|
|
/*
|
|
* Add a new entry to the directory.
|
|
*/
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
|
|
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
|
|
fuid_dirtied = zsb->z_fuid_dirty;
|
|
if (fuid_dirtied)
|
|
zfs_fuid_txhold(zsb, tx);
|
|
if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
|
|
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
|
|
acl_ids.z_aclp->z_acl_bytes);
|
|
}
|
|
|
|
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
|
|
ZFS_SA_BASE_ATTR_SIZE);
|
|
|
|
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
|
|
if (error) {
|
|
zfs_dirent_unlock(dl);
|
|
if (error == ERESTART) {
|
|
waited = B_TRUE;
|
|
dmu_tx_wait(tx);
|
|
dmu_tx_abort(tx);
|
|
goto top;
|
|
}
|
|
zfs_acl_ids_free(&acl_ids);
|
|
dmu_tx_abort(tx);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create new node.
|
|
*/
|
|
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
|
|
|
|
if (fuid_dirtied)
|
|
zfs_fuid_sync(zsb, tx);
|
|
|
|
/*
|
|
* Now put new name in parent dir.
|
|
*/
|
|
(void) zfs_link_create(dl, zp, tx, ZNEW);
|
|
|
|
*ipp = ZTOI(zp);
|
|
|
|
txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
|
|
if (flags & FIGNORECASE)
|
|
txtype |= TX_CI;
|
|
zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
|
|
acl_ids.z_fuidp, vap);
|
|
|
|
zfs_acl_ids_free(&acl_ids);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
zfs_dirent_unlock(dl);
|
|
|
|
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
zfs_inode_update(dzp);
|
|
zfs_inode_update(zp);
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_mkdir);
|
|
|
|
/*
|
|
* Remove a directory subdir entry. If the current working
|
|
* directory is the same as the subdir to be removed, the
|
|
* remove will fail.
|
|
*
|
|
* IN: dip - inode of directory to remove from.
|
|
* name - name of directory to be removed.
|
|
* cwd - inode of current working directory.
|
|
* cr - credentials of caller.
|
|
* flags - case flags
|
|
*
|
|
* RETURN: 0 on success, error code on failure.
|
|
*
|
|
* Timestamps:
|
|
* dip - ctime|mtime updated
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
|
|
int flags)
|
|
{
|
|
znode_t *dzp = ITOZ(dip);
|
|
znode_t *zp;
|
|
struct inode *ip;
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
zilog_t *zilog;
|
|
zfs_dirlock_t *dl;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
int zflg = ZEXISTS;
|
|
boolean_t waited = B_FALSE;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(dzp);
|
|
zilog = zsb->z_log;
|
|
|
|
if (flags & FIGNORECASE)
|
|
zflg |= ZCILOOK;
|
|
top:
|
|
zp = NULL;
|
|
|
|
/*
|
|
* Attempt to lock directory; fail if entry doesn't exist.
|
|
*/
|
|
if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
|
|
NULL, NULL))) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
ip = ZTOI(zp);
|
|
|
|
if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
|
|
goto out;
|
|
}
|
|
|
|
if (!S_ISDIR(ip->i_mode)) {
|
|
error = SET_ERROR(ENOTDIR);
|
|
goto out;
|
|
}
|
|
|
|
if (ip == cwd) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Grab a lock on the directory to make sure that noone is
|
|
* trying to add (or lookup) entries while we are removing it.
|
|
*/
|
|
rw_enter(&zp->z_name_lock, RW_WRITER);
|
|
|
|
/*
|
|
* Grab a lock on the parent pointer to make sure we play well
|
|
* with the treewalk and directory rename code.
|
|
*/
|
|
rw_enter(&zp->z_parent_lock, RW_WRITER);
|
|
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
zfs_sa_upgrade_txholds(tx, dzp);
|
|
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
|
|
if (error) {
|
|
rw_exit(&zp->z_parent_lock);
|
|
rw_exit(&zp->z_name_lock);
|
|
zfs_dirent_unlock(dl);
|
|
iput(ip);
|
|
if (error == ERESTART) {
|
|
waited = B_TRUE;
|
|
dmu_tx_wait(tx);
|
|
dmu_tx_abort(tx);
|
|
goto top;
|
|
}
|
|
dmu_tx_abort(tx);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
|
|
|
|
if (error == 0) {
|
|
uint64_t txtype = TX_RMDIR;
|
|
if (flags & FIGNORECASE)
|
|
txtype |= TX_CI;
|
|
zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
rw_exit(&zp->z_parent_lock);
|
|
rw_exit(&zp->z_name_lock);
|
|
out:
|
|
zfs_dirent_unlock(dl);
|
|
|
|
zfs_inode_update(dzp);
|
|
zfs_inode_update(zp);
|
|
iput(ip);
|
|
|
|
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_rmdir);
|
|
|
|
/*
|
|
* Read as many directory entries as will fit into the provided
|
|
* dirent buffer from the given directory cursor position.
|
|
*
|
|
* IN: ip - inode of directory to read.
|
|
* dirent - buffer for directory entries.
|
|
*
|
|
* OUT: dirent - filler buffer of directory entries.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*
|
|
* Timestamps:
|
|
* ip - atime updated
|
|
*
|
|
* Note that the low 4 bits of the cookie returned by zap is always zero.
|
|
* This allows us to use the low range for "special" directory entries:
|
|
* We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
|
|
* we use the offset 2 for the '.zfs' directory.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
objset_t *os;
|
|
zap_cursor_t zc;
|
|
zap_attribute_t zap;
|
|
int error;
|
|
uint8_t prefetch;
|
|
uint8_t type;
|
|
int done = 0;
|
|
uint64_t parent;
|
|
uint64_t offset; /* must be unsigned; checks for < 1 */
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zsb),
|
|
&parent, sizeof (parent))) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Quit if directory has been removed (posix)
|
|
*/
|
|
if (zp->z_unlinked)
|
|
goto out;
|
|
|
|
error = 0;
|
|
os = zsb->z_os;
|
|
offset = ctx->pos;
|
|
prefetch = zp->z_zn_prefetch;
|
|
|
|
/*
|
|
* Initialize the iterator cursor.
|
|
*/
|
|
if (offset <= 3) {
|
|
/*
|
|
* Start iteration from the beginning of the directory.
|
|
*/
|
|
zap_cursor_init(&zc, os, zp->z_id);
|
|
} else {
|
|
/*
|
|
* The offset is a serialized cursor.
|
|
*/
|
|
zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
|
|
}
|
|
|
|
/*
|
|
* Transform to file-system independent format
|
|
*/
|
|
while (!done) {
|
|
uint64_t objnum;
|
|
/*
|
|
* Special case `.', `..', and `.zfs'.
|
|
*/
|
|
if (offset == 0) {
|
|
(void) strcpy(zap.za_name, ".");
|
|
zap.za_normalization_conflict = 0;
|
|
objnum = zp->z_id;
|
|
type = DT_DIR;
|
|
} else if (offset == 1) {
|
|
(void) strcpy(zap.za_name, "..");
|
|
zap.za_normalization_conflict = 0;
|
|
objnum = parent;
|
|
type = DT_DIR;
|
|
} else if (offset == 2 && zfs_show_ctldir(zp)) {
|
|
(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
|
|
zap.za_normalization_conflict = 0;
|
|
objnum = ZFSCTL_INO_ROOT;
|
|
type = DT_DIR;
|
|
} else {
|
|
/*
|
|
* Grab next entry.
|
|
*/
|
|
if ((error = zap_cursor_retrieve(&zc, &zap))) {
|
|
if (error == ENOENT)
|
|
break;
|
|
else
|
|
goto update;
|
|
}
|
|
|
|
/*
|
|
* Allow multiple entries provided the first entry is
|
|
* the object id. Non-zpl consumers may safely make
|
|
* use of the additional space.
|
|
*
|
|
* XXX: This should be a feature flag for compatibility
|
|
*/
|
|
if (zap.za_integer_length != 8 ||
|
|
zap.za_num_integers == 0) {
|
|
cmn_err(CE_WARN, "zap_readdir: bad directory "
|
|
"entry, obj = %lld, offset = %lld, "
|
|
"length = %d, num = %lld\n",
|
|
(u_longlong_t)zp->z_id,
|
|
(u_longlong_t)offset,
|
|
zap.za_integer_length,
|
|
(u_longlong_t)zap.za_num_integers);
|
|
error = SET_ERROR(ENXIO);
|
|
goto update;
|
|
}
|
|
|
|
objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
|
|
type = ZFS_DIRENT_TYPE(zap.za_first_integer);
|
|
}
|
|
|
|
done = !dir_emit(ctx, zap.za_name, strlen(zap.za_name),
|
|
objnum, type);
|
|
if (done)
|
|
break;
|
|
|
|
/* Prefetch znode */
|
|
if (prefetch) {
|
|
dmu_prefetch(os, objnum, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* Move to the next entry, fill in the previous offset.
|
|
*/
|
|
if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
|
|
zap_cursor_advance(&zc);
|
|
offset = zap_cursor_serialize(&zc);
|
|
} else {
|
|
offset += 1;
|
|
}
|
|
ctx->pos = offset;
|
|
}
|
|
zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
|
|
|
|
update:
|
|
zap_cursor_fini(&zc);
|
|
if (error == ENOENT)
|
|
error = 0;
|
|
|
|
ZFS_ACCESSTIME_STAMP(zsb, zp);
|
|
|
|
out:
|
|
ZFS_EXIT(zsb);
|
|
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_readdir);
|
|
|
|
ulong_t zfs_fsync_sync_cnt = 4;
|
|
|
|
int
|
|
zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
|
|
(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
|
|
|
|
if (zsb->z_os->os_sync != ZFS_SYNC_DISABLED) {
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
zil_commit(zsb->z_log, zp->z_id);
|
|
ZFS_EXIT(zsb);
|
|
}
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_fsync);
|
|
|
|
|
|
/*
|
|
* Get the requested file attributes and place them in the provided
|
|
* vattr structure.
|
|
*
|
|
* IN: ip - inode of file.
|
|
* vap - va_mask identifies requested attributes.
|
|
* If ATTR_XVATTR set, then optional attrs are requested
|
|
* flags - ATTR_NOACLCHECK (CIFS server context)
|
|
* cr - credentials of caller.
|
|
*
|
|
* OUT: vap - attribute values.
|
|
*
|
|
* RETURN: 0 (always succeeds)
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
int error = 0;
|
|
uint64_t links;
|
|
uint64_t mtime[2], ctime[2];
|
|
xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
|
|
xoptattr_t *xoap = NULL;
|
|
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
|
|
sa_bulk_attr_t bulk[2];
|
|
int count = 0;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
|
|
|
|
if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
|
|
* Also, if we are the owner don't bother, since owner should
|
|
* always be allowed to read basic attributes of file.
|
|
*/
|
|
if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
|
|
(vap->va_uid != crgetuid(cr))) {
|
|
if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
|
|
skipaclchk, cr))) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return all attributes. It's cheaper to provide the answer
|
|
* than to determine whether we were asked the question.
|
|
*/
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
vap->va_type = vn_mode_to_vtype(zp->z_mode);
|
|
vap->va_mode = zp->z_mode;
|
|
vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
|
|
vap->va_nodeid = zp->z_id;
|
|
if ((zp->z_id == zsb->z_root) && zfs_show_ctldir(zp))
|
|
links = zp->z_links + 1;
|
|
else
|
|
links = zp->z_links;
|
|
vap->va_nlink = MIN(links, ZFS_LINK_MAX);
|
|
vap->va_size = i_size_read(ip);
|
|
vap->va_rdev = ip->i_rdev;
|
|
vap->va_seq = ip->i_generation;
|
|
|
|
/*
|
|
* Add in any requested optional attributes and the create time.
|
|
* Also set the corresponding bits in the returned attribute bitmap.
|
|
*/
|
|
if ((xoap = xva_getxoptattr(xvap)) != NULL && zsb->z_use_fuids) {
|
|
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
|
|
xoap->xoa_archive =
|
|
((zp->z_pflags & ZFS_ARCHIVE) != 0);
|
|
XVA_SET_RTN(xvap, XAT_ARCHIVE);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
|
|
xoap->xoa_readonly =
|
|
((zp->z_pflags & ZFS_READONLY) != 0);
|
|
XVA_SET_RTN(xvap, XAT_READONLY);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
|
|
xoap->xoa_system =
|
|
((zp->z_pflags & ZFS_SYSTEM) != 0);
|
|
XVA_SET_RTN(xvap, XAT_SYSTEM);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
|
|
xoap->xoa_hidden =
|
|
((zp->z_pflags & ZFS_HIDDEN) != 0);
|
|
XVA_SET_RTN(xvap, XAT_HIDDEN);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
|
|
xoap->xoa_nounlink =
|
|
((zp->z_pflags & ZFS_NOUNLINK) != 0);
|
|
XVA_SET_RTN(xvap, XAT_NOUNLINK);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
|
|
xoap->xoa_immutable =
|
|
((zp->z_pflags & ZFS_IMMUTABLE) != 0);
|
|
XVA_SET_RTN(xvap, XAT_IMMUTABLE);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
|
|
xoap->xoa_appendonly =
|
|
((zp->z_pflags & ZFS_APPENDONLY) != 0);
|
|
XVA_SET_RTN(xvap, XAT_APPENDONLY);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
|
|
xoap->xoa_nodump =
|
|
((zp->z_pflags & ZFS_NODUMP) != 0);
|
|
XVA_SET_RTN(xvap, XAT_NODUMP);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
|
|
xoap->xoa_opaque =
|
|
((zp->z_pflags & ZFS_OPAQUE) != 0);
|
|
XVA_SET_RTN(xvap, XAT_OPAQUE);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
|
|
xoap->xoa_av_quarantined =
|
|
((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
|
|
XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
|
|
xoap->xoa_av_modified =
|
|
((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
|
|
XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
|
|
S_ISREG(ip->i_mode)) {
|
|
zfs_sa_get_scanstamp(zp, xvap);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
|
|
uint64_t times[2];
|
|
|
|
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zsb),
|
|
times, sizeof (times));
|
|
ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
|
|
XVA_SET_RTN(xvap, XAT_CREATETIME);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
|
|
xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
|
|
XVA_SET_RTN(xvap, XAT_REPARSE);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
|
|
xoap->xoa_generation = zp->z_gen;
|
|
XVA_SET_RTN(xvap, XAT_GEN);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
|
|
xoap->xoa_offline =
|
|
((zp->z_pflags & ZFS_OFFLINE) != 0);
|
|
XVA_SET_RTN(xvap, XAT_OFFLINE);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
|
|
xoap->xoa_sparse =
|
|
((zp->z_pflags & ZFS_SPARSE) != 0);
|
|
XVA_SET_RTN(xvap, XAT_SPARSE);
|
|
}
|
|
}
|
|
|
|
ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
|
|
ZFS_TIME_DECODE(&vap->va_mtime, mtime);
|
|
ZFS_TIME_DECODE(&vap->va_ctime, ctime);
|
|
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
|
|
|
|
if (zp->z_blksz == 0) {
|
|
/*
|
|
* Block size hasn't been set; suggest maximal I/O transfers.
|
|
*/
|
|
vap->va_blksize = zsb->z_max_blksz;
|
|
}
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_getattr);
|
|
|
|
/*
|
|
* Get the basic file attributes and place them in the provided kstat
|
|
* structure. The inode is assumed to be the authoritative source
|
|
* for most of the attributes. However, the znode currently has the
|
|
* authoritative atime, blksize, and block count.
|
|
*
|
|
* IN: ip - inode of file.
|
|
*
|
|
* OUT: sp - kstat values.
|
|
*
|
|
* RETURN: 0 (always succeeds)
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_getattr_fast(struct inode *ip, struct kstat *sp)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
uint32_t blksize;
|
|
u_longlong_t nblocks;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
|
|
generic_fillattr(ip, sp);
|
|
ZFS_TIME_DECODE(&sp->atime, zp->z_atime);
|
|
|
|
sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
|
|
sp->blksize = blksize;
|
|
sp->blocks = nblocks;
|
|
|
|
if (unlikely(zp->z_blksz == 0)) {
|
|
/*
|
|
* Block size hasn't been set; suggest maximal I/O transfers.
|
|
*/
|
|
sp->blksize = zsb->z_max_blksz;
|
|
}
|
|
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
ZFS_EXIT(zsb);
|
|
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_getattr_fast);
|
|
|
|
/*
|
|
* Set the file attributes to the values contained in the
|
|
* vattr structure.
|
|
*
|
|
* IN: ip - inode of file to be modified.
|
|
* vap - new attribute values.
|
|
* If ATTR_XVATTR set, then optional attrs are being set
|
|
* flags - ATTR_UTIME set if non-default time values provided.
|
|
* - ATTR_NOACLCHECK (CIFS context only).
|
|
* cr - credentials of caller.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*
|
|
* Timestamps:
|
|
* ip - ctime updated, mtime updated if size changed.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
zilog_t *zilog;
|
|
dmu_tx_t *tx;
|
|
vattr_t oldva;
|
|
xvattr_t *tmpxvattr;
|
|
uint_t mask = vap->va_mask;
|
|
uint_t saved_mask = 0;
|
|
int trim_mask = 0;
|
|
uint64_t new_mode;
|
|
uint64_t new_uid, new_gid;
|
|
uint64_t xattr_obj;
|
|
uint64_t mtime[2], ctime[2];
|
|
znode_t *attrzp;
|
|
int need_policy = FALSE;
|
|
int err, err2;
|
|
zfs_fuid_info_t *fuidp = NULL;
|
|
xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
|
|
xoptattr_t *xoap;
|
|
zfs_acl_t *aclp;
|
|
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
|
|
boolean_t fuid_dirtied = B_FALSE;
|
|
sa_bulk_attr_t *bulk, *xattr_bulk;
|
|
int count = 0, xattr_count = 0;
|
|
|
|
if (mask == 0)
|
|
return (0);
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
zilog = zsb->z_log;
|
|
|
|
/*
|
|
* Make sure that if we have ephemeral uid/gid or xvattr specified
|
|
* that file system is at proper version level
|
|
*/
|
|
|
|
if (zsb->z_use_fuids == B_FALSE &&
|
|
(((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
|
|
((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
|
|
(mask & ATTR_XVATTR))) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EISDIR));
|
|
}
|
|
|
|
if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* If this is an xvattr_t, then get a pointer to the structure of
|
|
* optional attributes. If this is NULL, then we have a vattr_t.
|
|
*/
|
|
xoap = xva_getxoptattr(xvap);
|
|
|
|
tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
|
|
xva_init(tmpxvattr);
|
|
|
|
bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
|
|
xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
|
|
|
|
/*
|
|
* Immutable files can only alter immutable bit and atime
|
|
*/
|
|
if ((zp->z_pflags & ZFS_IMMUTABLE) &&
|
|
((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
|
|
((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
|
|
err = EPERM;
|
|
goto out3;
|
|
}
|
|
|
|
if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
|
|
err = EPERM;
|
|
goto out3;
|
|
}
|
|
|
|
/*
|
|
* Verify timestamps doesn't overflow 32 bits.
|
|
* ZFS can handle large timestamps, but 32bit syscalls can't
|
|
* handle times greater than 2039. This check should be removed
|
|
* once large timestamps are fully supported.
|
|
*/
|
|
if (mask & (ATTR_ATIME | ATTR_MTIME)) {
|
|
if (((mask & ATTR_ATIME) &&
|
|
TIMESPEC_OVERFLOW(&vap->va_atime)) ||
|
|
((mask & ATTR_MTIME) &&
|
|
TIMESPEC_OVERFLOW(&vap->va_mtime))) {
|
|
err = EOVERFLOW;
|
|
goto out3;
|
|
}
|
|
}
|
|
|
|
top:
|
|
attrzp = NULL;
|
|
aclp = NULL;
|
|
|
|
/* Can this be moved to before the top label? */
|
|
if (zfs_is_readonly(zsb)) {
|
|
err = EROFS;
|
|
goto out3;
|
|
}
|
|
|
|
/*
|
|
* First validate permissions
|
|
*/
|
|
|
|
if (mask & ATTR_SIZE) {
|
|
err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
|
|
if (err)
|
|
goto out3;
|
|
|
|
truncate_setsize(ip, vap->va_size);
|
|
|
|
/*
|
|
* XXX - Note, we are not providing any open
|
|
* mode flags here (like FNDELAY), so we may
|
|
* block if there are locks present... this
|
|
* should be addressed in openat().
|
|
*/
|
|
/* XXX - would it be OK to generate a log record here? */
|
|
err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
|
|
if (err)
|
|
goto out3;
|
|
}
|
|
|
|
if (mask & (ATTR_ATIME|ATTR_MTIME) ||
|
|
((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
|
|
XVA_ISSET_REQ(xvap, XAT_READONLY) ||
|
|
XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
|
|
XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
|
|
XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
|
|
XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
|
|
XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
|
|
need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
|
|
skipaclchk, cr);
|
|
}
|
|
|
|
if (mask & (ATTR_UID|ATTR_GID)) {
|
|
int idmask = (mask & (ATTR_UID|ATTR_GID));
|
|
int take_owner;
|
|
int take_group;
|
|
|
|
/*
|
|
* NOTE: even if a new mode is being set,
|
|
* we may clear S_ISUID/S_ISGID bits.
|
|
*/
|
|
|
|
if (!(mask & ATTR_MODE))
|
|
vap->va_mode = zp->z_mode;
|
|
|
|
/*
|
|
* Take ownership or chgrp to group we are a member of
|
|
*/
|
|
|
|
take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
|
|
take_group = (mask & ATTR_GID) &&
|
|
zfs_groupmember(zsb, vap->va_gid, cr);
|
|
|
|
/*
|
|
* If both ATTR_UID and ATTR_GID are set then take_owner and
|
|
* take_group must both be set in order to allow taking
|
|
* ownership.
|
|
*
|
|
* Otherwise, send the check through secpolicy_vnode_setattr()
|
|
*
|
|
*/
|
|
|
|
if (((idmask == (ATTR_UID|ATTR_GID)) &&
|
|
take_owner && take_group) ||
|
|
((idmask == ATTR_UID) && take_owner) ||
|
|
((idmask == ATTR_GID) && take_group)) {
|
|
if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
|
|
skipaclchk, cr) == 0) {
|
|
/*
|
|
* Remove setuid/setgid for non-privileged users
|
|
*/
|
|
(void) secpolicy_setid_clear(vap, cr);
|
|
trim_mask = (mask & (ATTR_UID|ATTR_GID));
|
|
} else {
|
|
need_policy = TRUE;
|
|
}
|
|
} else {
|
|
need_policy = TRUE;
|
|
}
|
|
}
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
oldva.va_mode = zp->z_mode;
|
|
zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
|
|
if (mask & ATTR_XVATTR) {
|
|
/*
|
|
* Update xvattr mask to include only those attributes
|
|
* that are actually changing.
|
|
*
|
|
* the bits will be restored prior to actually setting
|
|
* the attributes so the caller thinks they were set.
|
|
*/
|
|
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
|
|
if (xoap->xoa_appendonly !=
|
|
((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
|
|
need_policy = TRUE;
|
|
} else {
|
|
XVA_CLR_REQ(xvap, XAT_APPENDONLY);
|
|
XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
|
|
}
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
|
|
if (xoap->xoa_nounlink !=
|
|
((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
|
|
need_policy = TRUE;
|
|
} else {
|
|
XVA_CLR_REQ(xvap, XAT_NOUNLINK);
|
|
XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
|
|
}
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
|
|
if (xoap->xoa_immutable !=
|
|
((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
|
|
need_policy = TRUE;
|
|
} else {
|
|
XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
|
|
XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
|
|
}
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
|
|
if (xoap->xoa_nodump !=
|
|
((zp->z_pflags & ZFS_NODUMP) != 0)) {
|
|
need_policy = TRUE;
|
|
} else {
|
|
XVA_CLR_REQ(xvap, XAT_NODUMP);
|
|
XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
|
|
}
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
|
|
if (xoap->xoa_av_modified !=
|
|
((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
|
|
need_policy = TRUE;
|
|
} else {
|
|
XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
|
|
XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
|
|
}
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
|
|
if ((!S_ISREG(ip->i_mode) &&
|
|
xoap->xoa_av_quarantined) ||
|
|
xoap->xoa_av_quarantined !=
|
|
((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
|
|
need_policy = TRUE;
|
|
} else {
|
|
XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
|
|
XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
|
|
}
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
|
|
mutex_exit(&zp->z_lock);
|
|
err = EPERM;
|
|
goto out3;
|
|
}
|
|
|
|
if (need_policy == FALSE &&
|
|
(XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
|
|
XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
|
|
need_policy = TRUE;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
if (mask & ATTR_MODE) {
|
|
if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
|
|
err = secpolicy_setid_setsticky_clear(ip, vap,
|
|
&oldva, cr);
|
|
if (err)
|
|
goto out3;
|
|
|
|
trim_mask |= ATTR_MODE;
|
|
} else {
|
|
need_policy = TRUE;
|
|
}
|
|
}
|
|
|
|
if (need_policy) {
|
|
/*
|
|
* If trim_mask is set then take ownership
|
|
* has been granted or write_acl is present and user
|
|
* has the ability to modify mode. In that case remove
|
|
* UID|GID and or MODE from mask so that
|
|
* secpolicy_vnode_setattr() doesn't revoke it.
|
|
*/
|
|
|
|
if (trim_mask) {
|
|
saved_mask = vap->va_mask;
|
|
vap->va_mask &= ~trim_mask;
|
|
}
|
|
err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
|
|
(int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
|
|
if (err)
|
|
goto out3;
|
|
|
|
if (trim_mask)
|
|
vap->va_mask |= saved_mask;
|
|
}
|
|
|
|
/*
|
|
* secpolicy_vnode_setattr, or take ownership may have
|
|
* changed va_mask
|
|
*/
|
|
mask = vap->va_mask;
|
|
|
|
if ((mask & (ATTR_UID | ATTR_GID))) {
|
|
err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
|
|
&xattr_obj, sizeof (xattr_obj));
|
|
|
|
if (err == 0 && xattr_obj) {
|
|
err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
|
|
if (err)
|
|
goto out2;
|
|
}
|
|
if (mask & ATTR_UID) {
|
|
new_uid = zfs_fuid_create(zsb,
|
|
(uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
|
|
if (new_uid != zp->z_uid &&
|
|
zfs_fuid_overquota(zsb, B_FALSE, new_uid)) {
|
|
if (attrzp)
|
|
iput(ZTOI(attrzp));
|
|
err = EDQUOT;
|
|
goto out2;
|
|
}
|
|
}
|
|
|
|
if (mask & ATTR_GID) {
|
|
new_gid = zfs_fuid_create(zsb, (uint64_t)vap->va_gid,
|
|
cr, ZFS_GROUP, &fuidp);
|
|
if (new_gid != zp->z_gid &&
|
|
zfs_fuid_overquota(zsb, B_TRUE, new_gid)) {
|
|
if (attrzp)
|
|
iput(ZTOI(attrzp));
|
|
err = EDQUOT;
|
|
goto out2;
|
|
}
|
|
}
|
|
}
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
|
|
if (mask & ATTR_MODE) {
|
|
uint64_t pmode = zp->z_mode;
|
|
uint64_t acl_obj;
|
|
new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
|
|
|
|
zfs_acl_chmod_setattr(zp, &aclp, new_mode);
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
|
|
/*
|
|
* Are we upgrading ACL from old V0 format
|
|
* to V1 format?
|
|
*/
|
|
if (zsb->z_version >= ZPL_VERSION_FUID &&
|
|
zfs_znode_acl_version(zp) ==
|
|
ZFS_ACL_VERSION_INITIAL) {
|
|
dmu_tx_hold_free(tx, acl_obj, 0,
|
|
DMU_OBJECT_END);
|
|
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
|
|
0, aclp->z_acl_bytes);
|
|
} else {
|
|
dmu_tx_hold_write(tx, acl_obj, 0,
|
|
aclp->z_acl_bytes);
|
|
}
|
|
} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
|
|
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
|
|
0, aclp->z_acl_bytes);
|
|
}
|
|
mutex_exit(&zp->z_lock);
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
|
|
} else {
|
|
if ((mask & ATTR_XVATTR) &&
|
|
XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
|
|
else
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
}
|
|
|
|
if (attrzp) {
|
|
dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
|
|
}
|
|
|
|
fuid_dirtied = zsb->z_fuid_dirty;
|
|
if (fuid_dirtied)
|
|
zfs_fuid_txhold(zsb, tx);
|
|
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err)
|
|
goto out;
|
|
|
|
count = 0;
|
|
/*
|
|
* Set each attribute requested.
|
|
* We group settings according to the locks they need to acquire.
|
|
*
|
|
* Note: you cannot set ctime directly, although it will be
|
|
* updated as a side-effect of calling this function.
|
|
*/
|
|
|
|
|
|
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
|
|
mutex_enter(&zp->z_acl_lock);
|
|
mutex_enter(&zp->z_lock);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
|
|
&zp->z_pflags, sizeof (zp->z_pflags));
|
|
|
|
if (attrzp) {
|
|
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
|
|
mutex_enter(&attrzp->z_acl_lock);
|
|
mutex_enter(&attrzp->z_lock);
|
|
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
|
|
SA_ZPL_FLAGS(zsb), NULL, &attrzp->z_pflags,
|
|
sizeof (attrzp->z_pflags));
|
|
}
|
|
|
|
if (mask & (ATTR_UID|ATTR_GID)) {
|
|
|
|
if (mask & ATTR_UID) {
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL,
|
|
&new_uid, sizeof (new_uid));
|
|
zp->z_uid = new_uid;
|
|
if (attrzp) {
|
|
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
|
|
SA_ZPL_UID(zsb), NULL, &new_uid,
|
|
sizeof (new_uid));
|
|
attrzp->z_uid = new_uid;
|
|
}
|
|
}
|
|
|
|
if (mask & ATTR_GID) {
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb),
|
|
NULL, &new_gid, sizeof (new_gid));
|
|
zp->z_gid = new_gid;
|
|
if (attrzp) {
|
|
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
|
|
SA_ZPL_GID(zsb), NULL, &new_gid,
|
|
sizeof (new_gid));
|
|
attrzp->z_gid = new_gid;
|
|
}
|
|
}
|
|
if (!(mask & ATTR_MODE)) {
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb),
|
|
NULL, &new_mode, sizeof (new_mode));
|
|
new_mode = zp->z_mode;
|
|
}
|
|
err = zfs_acl_chown_setattr(zp);
|
|
ASSERT(err == 0);
|
|
if (attrzp) {
|
|
err = zfs_acl_chown_setattr(attrzp);
|
|
ASSERT(err == 0);
|
|
}
|
|
}
|
|
|
|
if (mask & ATTR_MODE) {
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL,
|
|
&new_mode, sizeof (new_mode));
|
|
zp->z_mode = new_mode;
|
|
ASSERT3P(aclp, !=, NULL);
|
|
err = zfs_aclset_common(zp, aclp, cr, tx);
|
|
ASSERT0(err);
|
|
if (zp->z_acl_cached)
|
|
zfs_acl_free(zp->z_acl_cached);
|
|
zp->z_acl_cached = aclp;
|
|
aclp = NULL;
|
|
}
|
|
|
|
|
|
if (mask & ATTR_ATIME) {
|
|
ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
|
|
&zp->z_atime, sizeof (zp->z_atime));
|
|
}
|
|
|
|
if (mask & ATTR_MTIME) {
|
|
ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL,
|
|
mtime, sizeof (mtime));
|
|
}
|
|
|
|
/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
|
|
if (mask & ATTR_SIZE && !(mask & ATTR_MTIME)) {
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb),
|
|
NULL, mtime, sizeof (mtime));
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
|
|
&ctime, sizeof (ctime));
|
|
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
|
|
B_TRUE);
|
|
} else if (mask != 0) {
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
|
|
&ctime, sizeof (ctime));
|
|
zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
|
|
B_TRUE);
|
|
if (attrzp) {
|
|
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
|
|
SA_ZPL_CTIME(zsb), NULL,
|
|
&ctime, sizeof (ctime));
|
|
zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
|
|
mtime, ctime, B_TRUE);
|
|
}
|
|
}
|
|
/*
|
|
* Do this after setting timestamps to prevent timestamp
|
|
* update from toggling bit
|
|
*/
|
|
|
|
if (xoap && (mask & ATTR_XVATTR)) {
|
|
|
|
/*
|
|
* restore trimmed off masks
|
|
* so that return masks can be set for caller.
|
|
*/
|
|
|
|
if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
|
|
XVA_SET_REQ(xvap, XAT_APPENDONLY);
|
|
}
|
|
if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
|
|
XVA_SET_REQ(xvap, XAT_NOUNLINK);
|
|
}
|
|
if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
|
|
XVA_SET_REQ(xvap, XAT_IMMUTABLE);
|
|
}
|
|
if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
|
|
XVA_SET_REQ(xvap, XAT_NODUMP);
|
|
}
|
|
if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
|
|
XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
|
|
}
|
|
if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
|
|
XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
|
|
ASSERT(S_ISREG(ip->i_mode));
|
|
|
|
zfs_xvattr_set(zp, xvap, tx);
|
|
}
|
|
|
|
if (fuid_dirtied)
|
|
zfs_fuid_sync(zsb, tx);
|
|
|
|
if (mask != 0)
|
|
zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
|
|
|
|
mutex_exit(&zp->z_lock);
|
|
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
|
|
mutex_exit(&zp->z_acl_lock);
|
|
|
|
if (attrzp) {
|
|
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
|
|
mutex_exit(&attrzp->z_acl_lock);
|
|
mutex_exit(&attrzp->z_lock);
|
|
}
|
|
out:
|
|
if (err == 0 && attrzp) {
|
|
err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
|
|
xattr_count, tx);
|
|
ASSERT(err2 == 0);
|
|
}
|
|
|
|
if (attrzp)
|
|
iput(ZTOI(attrzp));
|
|
if (aclp)
|
|
zfs_acl_free(aclp);
|
|
|
|
if (fuidp) {
|
|
zfs_fuid_info_free(fuidp);
|
|
fuidp = NULL;
|
|
}
|
|
|
|
if (err) {
|
|
dmu_tx_abort(tx);
|
|
if (err == ERESTART)
|
|
goto top;
|
|
} else {
|
|
err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
|
|
dmu_tx_commit(tx);
|
|
zfs_inode_update(zp);
|
|
}
|
|
|
|
out2:
|
|
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
out3:
|
|
kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * 7);
|
|
kmem_free(bulk, sizeof (sa_bulk_attr_t) * 7);
|
|
kmem_free(tmpxvattr, sizeof (xvattr_t));
|
|
ZFS_EXIT(zsb);
|
|
return (err);
|
|
}
|
|
EXPORT_SYMBOL(zfs_setattr);
|
|
|
|
typedef struct zfs_zlock {
|
|
krwlock_t *zl_rwlock; /* lock we acquired */
|
|
znode_t *zl_znode; /* znode we held */
|
|
struct zfs_zlock *zl_next; /* next in list */
|
|
} zfs_zlock_t;
|
|
|
|
/*
|
|
* Drop locks and release vnodes that were held by zfs_rename_lock().
|
|
*/
|
|
static void
|
|
zfs_rename_unlock(zfs_zlock_t **zlpp)
|
|
{
|
|
zfs_zlock_t *zl;
|
|
|
|
while ((zl = *zlpp) != NULL) {
|
|
if (zl->zl_znode != NULL)
|
|
iput(ZTOI(zl->zl_znode));
|
|
rw_exit(zl->zl_rwlock);
|
|
*zlpp = zl->zl_next;
|
|
kmem_free(zl, sizeof (*zl));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Search back through the directory tree, using the ".." entries.
|
|
* Lock each directory in the chain to prevent concurrent renames.
|
|
* Fail any attempt to move a directory into one of its own descendants.
|
|
* XXX - z_parent_lock can overlap with map or grow locks
|
|
*/
|
|
static int
|
|
zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
|
|
{
|
|
zfs_zlock_t *zl;
|
|
znode_t *zp = tdzp;
|
|
uint64_t rootid = ZTOZSB(zp)->z_root;
|
|
uint64_t oidp = zp->z_id;
|
|
krwlock_t *rwlp = &szp->z_parent_lock;
|
|
krw_t rw = RW_WRITER;
|
|
|
|
/*
|
|
* First pass write-locks szp and compares to zp->z_id.
|
|
* Later passes read-lock zp and compare to zp->z_parent.
|
|
*/
|
|
do {
|
|
if (!rw_tryenter(rwlp, rw)) {
|
|
/*
|
|
* Another thread is renaming in this path.
|
|
* Note that if we are a WRITER, we don't have any
|
|
* parent_locks held yet.
|
|
*/
|
|
if (rw == RW_READER && zp->z_id > szp->z_id) {
|
|
/*
|
|
* Drop our locks and restart
|
|
*/
|
|
zfs_rename_unlock(&zl);
|
|
*zlpp = NULL;
|
|
zp = tdzp;
|
|
oidp = zp->z_id;
|
|
rwlp = &szp->z_parent_lock;
|
|
rw = RW_WRITER;
|
|
continue;
|
|
} else {
|
|
/*
|
|
* Wait for other thread to drop its locks
|
|
*/
|
|
rw_enter(rwlp, rw);
|
|
}
|
|
}
|
|
|
|
zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
|
|
zl->zl_rwlock = rwlp;
|
|
zl->zl_znode = NULL;
|
|
zl->zl_next = *zlpp;
|
|
*zlpp = zl;
|
|
|
|
if (oidp == szp->z_id) /* We're a descendant of szp */
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (oidp == rootid) /* We've hit the top */
|
|
return (0);
|
|
|
|
if (rw == RW_READER) { /* i.e. not the first pass */
|
|
int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
|
|
if (error)
|
|
return (error);
|
|
zl->zl_znode = zp;
|
|
}
|
|
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
|
|
&oidp, sizeof (oidp));
|
|
rwlp = &zp->z_parent_lock;
|
|
rw = RW_READER;
|
|
|
|
} while (zp->z_id != sdzp->z_id);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Move an entry from the provided source directory to the target
|
|
* directory. Change the entry name as indicated.
|
|
*
|
|
* IN: sdip - Source directory containing the "old entry".
|
|
* snm - Old entry name.
|
|
* tdip - Target directory to contain the "new entry".
|
|
* tnm - New entry name.
|
|
* cr - credentials of caller.
|
|
* flags - case flags
|
|
*
|
|
* RETURN: 0 on success, error code on failure.
|
|
*
|
|
* Timestamps:
|
|
* sdip,tdip - ctime|mtime updated
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
|
|
cred_t *cr, int flags)
|
|
{
|
|
znode_t *tdzp, *szp, *tzp;
|
|
znode_t *sdzp = ITOZ(sdip);
|
|
zfs_sb_t *zsb = ITOZSB(sdip);
|
|
zilog_t *zilog;
|
|
zfs_dirlock_t *sdl, *tdl;
|
|
dmu_tx_t *tx;
|
|
zfs_zlock_t *zl;
|
|
int cmp, serr, terr;
|
|
int error = 0;
|
|
int zflg = 0;
|
|
boolean_t waited = B_FALSE;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(sdzp);
|
|
zilog = zsb->z_log;
|
|
|
|
if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
|
|
tdzp = ITOZ(tdip);
|
|
ZFS_VERIFY_ZP(tdzp);
|
|
if (zsb->z_utf8 && u8_validate(tnm,
|
|
strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EILSEQ));
|
|
}
|
|
|
|
if (flags & FIGNORECASE)
|
|
zflg |= ZCILOOK;
|
|
|
|
top:
|
|
szp = NULL;
|
|
tzp = NULL;
|
|
zl = NULL;
|
|
|
|
/*
|
|
* This is to prevent the creation of links into attribute space
|
|
* by renaming a linked file into/outof an attribute directory.
|
|
* See the comment in zfs_link() for why this is considered bad.
|
|
*/
|
|
if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Lock source and target directory entries. To prevent deadlock,
|
|
* a lock ordering must be defined. We lock the directory with
|
|
* the smallest object id first, or if it's a tie, the one with
|
|
* the lexically first name.
|
|
*/
|
|
if (sdzp->z_id < tdzp->z_id) {
|
|
cmp = -1;
|
|
} else if (sdzp->z_id > tdzp->z_id) {
|
|
cmp = 1;
|
|
} else {
|
|
/*
|
|
* First compare the two name arguments without
|
|
* considering any case folding.
|
|
*/
|
|
int nofold = (zsb->z_norm & ~U8_TEXTPREP_TOUPPER);
|
|
|
|
cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
|
|
ASSERT(error == 0 || !zsb->z_utf8);
|
|
if (cmp == 0) {
|
|
/*
|
|
* POSIX: "If the old argument and the new argument
|
|
* both refer to links to the same existing file,
|
|
* the rename() function shall return successfully
|
|
* and perform no other action."
|
|
*/
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
/*
|
|
* If the file system is case-folding, then we may
|
|
* have some more checking to do. A case-folding file
|
|
* system is either supporting mixed case sensitivity
|
|
* access or is completely case-insensitive. Note
|
|
* that the file system is always case preserving.
|
|
*
|
|
* In mixed sensitivity mode case sensitive behavior
|
|
* is the default. FIGNORECASE must be used to
|
|
* explicitly request case insensitive behavior.
|
|
*
|
|
* If the source and target names provided differ only
|
|
* by case (e.g., a request to rename 'tim' to 'Tim'),
|
|
* we will treat this as a special case in the
|
|
* case-insensitive mode: as long as the source name
|
|
* is an exact match, we will allow this to proceed as
|
|
* a name-change request.
|
|
*/
|
|
if ((zsb->z_case == ZFS_CASE_INSENSITIVE ||
|
|
(zsb->z_case == ZFS_CASE_MIXED &&
|
|
flags & FIGNORECASE)) &&
|
|
u8_strcmp(snm, tnm, 0, zsb->z_norm, U8_UNICODE_LATEST,
|
|
&error) == 0) {
|
|
/*
|
|
* case preserving rename request, require exact
|
|
* name matches
|
|
*/
|
|
zflg |= ZCIEXACT;
|
|
zflg &= ~ZCILOOK;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the source and destination directories are the same, we should
|
|
* grab the z_name_lock of that directory only once.
|
|
*/
|
|
if (sdzp == tdzp) {
|
|
zflg |= ZHAVELOCK;
|
|
rw_enter(&sdzp->z_name_lock, RW_READER);
|
|
}
|
|
|
|
if (cmp < 0) {
|
|
serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
|
|
ZEXISTS | zflg, NULL, NULL);
|
|
terr = zfs_dirent_lock(&tdl,
|
|
tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
|
|
} else {
|
|
terr = zfs_dirent_lock(&tdl,
|
|
tdzp, tnm, &tzp, zflg, NULL, NULL);
|
|
serr = zfs_dirent_lock(&sdl,
|
|
sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
|
|
NULL, NULL);
|
|
}
|
|
|
|
if (serr) {
|
|
/*
|
|
* Source entry invalid or not there.
|
|
*/
|
|
if (!terr) {
|
|
zfs_dirent_unlock(tdl);
|
|
if (tzp)
|
|
iput(ZTOI(tzp));
|
|
}
|
|
|
|
if (sdzp == tdzp)
|
|
rw_exit(&sdzp->z_name_lock);
|
|
|
|
if (strcmp(snm, "..") == 0)
|
|
serr = EINVAL;
|
|
ZFS_EXIT(zsb);
|
|
return (serr);
|
|
}
|
|
if (terr) {
|
|
zfs_dirent_unlock(sdl);
|
|
iput(ZTOI(szp));
|
|
|
|
if (sdzp == tdzp)
|
|
rw_exit(&sdzp->z_name_lock);
|
|
|
|
if (strcmp(tnm, "..") == 0)
|
|
terr = EINVAL;
|
|
ZFS_EXIT(zsb);
|
|
return (terr);
|
|
}
|
|
|
|
/*
|
|
* Must have write access at the source to remove the old entry
|
|
* and write access at the target to create the new entry.
|
|
* Note that if target and source are the same, this can be
|
|
* done in a single check.
|
|
*/
|
|
|
|
if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
|
|
goto out;
|
|
|
|
if (S_ISDIR(ZTOI(szp)->i_mode)) {
|
|
/*
|
|
* Check to make sure rename is valid.
|
|
* Can't do a move like this: /usr/a/b to /usr/a/b/c/d
|
|
*/
|
|
if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Does target exist?
|
|
*/
|
|
if (tzp) {
|
|
/*
|
|
* Source and target must be the same type.
|
|
*/
|
|
if (S_ISDIR(ZTOI(szp)->i_mode)) {
|
|
if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
|
|
error = SET_ERROR(ENOTDIR);
|
|
goto out;
|
|
}
|
|
} else {
|
|
if (S_ISDIR(ZTOI(tzp)->i_mode)) {
|
|
error = SET_ERROR(EISDIR);
|
|
goto out;
|
|
}
|
|
}
|
|
/*
|
|
* POSIX dictates that when the source and target
|
|
* entries refer to the same file object, rename
|
|
* must do nothing and exit without error.
|
|
*/
|
|
if (szp->z_id == tzp->z_id) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
|
|
dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
|
|
dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
|
|
dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
|
|
if (sdzp != tdzp) {
|
|
dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
|
|
zfs_sa_upgrade_txholds(tx, tdzp);
|
|
}
|
|
if (tzp) {
|
|
dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
|
|
zfs_sa_upgrade_txholds(tx, tzp);
|
|
}
|
|
|
|
zfs_sa_upgrade_txholds(tx, szp);
|
|
dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
|
|
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
|
|
if (error) {
|
|
if (zl != NULL)
|
|
zfs_rename_unlock(&zl);
|
|
zfs_dirent_unlock(sdl);
|
|
zfs_dirent_unlock(tdl);
|
|
|
|
if (sdzp == tdzp)
|
|
rw_exit(&sdzp->z_name_lock);
|
|
|
|
iput(ZTOI(szp));
|
|
if (tzp)
|
|
iput(ZTOI(tzp));
|
|
if (error == ERESTART) {
|
|
waited = B_TRUE;
|
|
dmu_tx_wait(tx);
|
|
dmu_tx_abort(tx);
|
|
goto top;
|
|
}
|
|
dmu_tx_abort(tx);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
if (tzp) /* Attempt to remove the existing target */
|
|
error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
|
|
|
|
if (error == 0) {
|
|
error = zfs_link_create(tdl, szp, tx, ZRENAMING);
|
|
if (error == 0) {
|
|
szp->z_pflags |= ZFS_AV_MODIFIED;
|
|
|
|
error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zsb),
|
|
(void *)&szp->z_pflags, sizeof (uint64_t), tx);
|
|
ASSERT0(error);
|
|
|
|
error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
|
|
if (error == 0) {
|
|
zfs_log_rename(zilog, tx, TX_RENAME |
|
|
(flags & FIGNORECASE ? TX_CI : 0), sdzp,
|
|
sdl->dl_name, tdzp, tdl->dl_name, szp);
|
|
} else {
|
|
/*
|
|
* At this point, we have successfully created
|
|
* the target name, but have failed to remove
|
|
* the source name. Since the create was done
|
|
* with the ZRENAMING flag, there are
|
|
* complications; for one, the link count is
|
|
* wrong. The easiest way to deal with this
|
|
* is to remove the newly created target, and
|
|
* return the original error. This must
|
|
* succeed; fortunately, it is very unlikely to
|
|
* fail, since we just created it.
|
|
*/
|
|
VERIFY3U(zfs_link_destroy(tdl, szp, tx,
|
|
ZRENAMING, NULL), ==, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
out:
|
|
if (zl != NULL)
|
|
zfs_rename_unlock(&zl);
|
|
|
|
zfs_dirent_unlock(sdl);
|
|
zfs_dirent_unlock(tdl);
|
|
|
|
zfs_inode_update(sdzp);
|
|
if (sdzp == tdzp)
|
|
rw_exit(&sdzp->z_name_lock);
|
|
|
|
if (sdzp != tdzp)
|
|
zfs_inode_update(tdzp);
|
|
|
|
zfs_inode_update(szp);
|
|
iput(ZTOI(szp));
|
|
if (tzp) {
|
|
zfs_inode_update(tzp);
|
|
iput(ZTOI(tzp));
|
|
}
|
|
|
|
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_rename);
|
|
|
|
/*
|
|
* Insert the indicated symbolic reference entry into the directory.
|
|
*
|
|
* IN: dip - Directory to contain new symbolic link.
|
|
* link - Name for new symlink entry.
|
|
* vap - Attributes of new entry.
|
|
* target - Target path of new symlink.
|
|
*
|
|
* cr - credentials of caller.
|
|
* flags - case flags
|
|
*
|
|
* RETURN: 0 on success, error code on failure.
|
|
*
|
|
* Timestamps:
|
|
* dip - ctime|mtime updated
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
|
|
struct inode **ipp, cred_t *cr, int flags)
|
|
{
|
|
znode_t *zp, *dzp = ITOZ(dip);
|
|
zfs_dirlock_t *dl;
|
|
dmu_tx_t *tx;
|
|
zfs_sb_t *zsb = ITOZSB(dip);
|
|
zilog_t *zilog;
|
|
uint64_t len = strlen(link);
|
|
int error;
|
|
int zflg = ZNEW;
|
|
zfs_acl_ids_t acl_ids;
|
|
boolean_t fuid_dirtied;
|
|
uint64_t txtype = TX_SYMLINK;
|
|
boolean_t waited = B_FALSE;
|
|
|
|
ASSERT(S_ISLNK(vap->va_mode));
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(dzp);
|
|
zilog = zsb->z_log;
|
|
|
|
if (zsb->z_utf8 && u8_validate(name, strlen(name),
|
|
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EILSEQ));
|
|
}
|
|
if (flags & FIGNORECASE)
|
|
zflg |= ZCILOOK;
|
|
|
|
if (len > MAXPATHLEN) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(ENAMETOOLONG));
|
|
}
|
|
|
|
if ((error = zfs_acl_ids_create(dzp, 0,
|
|
vap, cr, NULL, &acl_ids)) != 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
top:
|
|
*ipp = NULL;
|
|
|
|
/*
|
|
* Attempt to lock directory; fail if entry already exists.
|
|
*/
|
|
error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
|
|
if (error) {
|
|
zfs_acl_ids_free(&acl_ids);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
|
|
zfs_acl_ids_free(&acl_ids);
|
|
zfs_dirent_unlock(dl);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
|
|
zfs_acl_ids_free(&acl_ids);
|
|
zfs_dirent_unlock(dl);
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EDQUOT));
|
|
}
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
fuid_dirtied = zsb->z_fuid_dirty;
|
|
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
|
|
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
|
|
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
|
|
ZFS_SA_BASE_ATTR_SIZE + len);
|
|
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
|
|
if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
|
|
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
|
|
acl_ids.z_aclp->z_acl_bytes);
|
|
}
|
|
if (fuid_dirtied)
|
|
zfs_fuid_txhold(zsb, tx);
|
|
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
|
|
if (error) {
|
|
zfs_dirent_unlock(dl);
|
|
if (error == ERESTART) {
|
|
waited = B_TRUE;
|
|
dmu_tx_wait(tx);
|
|
dmu_tx_abort(tx);
|
|
goto top;
|
|
}
|
|
zfs_acl_ids_free(&acl_ids);
|
|
dmu_tx_abort(tx);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create a new object for the symlink.
|
|
* for version 4 ZPL datsets the symlink will be an SA attribute
|
|
*/
|
|
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
|
|
|
|
if (fuid_dirtied)
|
|
zfs_fuid_sync(zsb, tx);
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
if (zp->z_is_sa)
|
|
error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zsb),
|
|
link, len, tx);
|
|
else
|
|
zfs_sa_symlink(zp, link, len, tx);
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
zp->z_size = len;
|
|
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
|
|
&zp->z_size, sizeof (zp->z_size), tx);
|
|
/*
|
|
* Insert the new object into the directory.
|
|
*/
|
|
(void) zfs_link_create(dl, zp, tx, ZNEW);
|
|
|
|
if (flags & FIGNORECASE)
|
|
txtype |= TX_CI;
|
|
zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
|
|
|
|
zfs_inode_update(dzp);
|
|
zfs_inode_update(zp);
|
|
|
|
zfs_acl_ids_free(&acl_ids);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
zfs_dirent_unlock(dl);
|
|
|
|
*ipp = ZTOI(zp);
|
|
|
|
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_symlink);
|
|
|
|
/*
|
|
* Return, in the buffer contained in the provided uio structure,
|
|
* the symbolic path referred to by ip.
|
|
*
|
|
* IN: ip - inode of symbolic link
|
|
* uio - structure to contain the link path.
|
|
* cr - credentials of caller.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*
|
|
* Timestamps:
|
|
* ip - atime updated
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
int error;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
if (zp->z_is_sa)
|
|
error = sa_lookup_uio(zp->z_sa_hdl,
|
|
SA_ZPL_SYMLINK(zsb), uio);
|
|
else
|
|
error = zfs_sa_readlink(zp, uio);
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
ZFS_ACCESSTIME_STAMP(zsb, zp);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_readlink);
|
|
|
|
/*
|
|
* Insert a new entry into directory tdip referencing sip.
|
|
*
|
|
* IN: tdip - Directory to contain new entry.
|
|
* sip - inode of new entry.
|
|
* name - name of new entry.
|
|
* cr - credentials of caller.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*
|
|
* Timestamps:
|
|
* tdip - ctime|mtime updated
|
|
* sip - ctime updated
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr)
|
|
{
|
|
znode_t *dzp = ITOZ(tdip);
|
|
znode_t *tzp, *szp;
|
|
zfs_sb_t *zsb = ITOZSB(tdip);
|
|
zilog_t *zilog;
|
|
zfs_dirlock_t *dl;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
int zf = ZNEW;
|
|
uint64_t parent;
|
|
uid_t owner;
|
|
boolean_t waited = B_FALSE;
|
|
|
|
ASSERT(S_ISDIR(tdip->i_mode));
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(dzp);
|
|
zilog = zsb->z_log;
|
|
|
|
/*
|
|
* POSIX dictates that we return EPERM here.
|
|
* Better choices include ENOTSUP or EISDIR.
|
|
*/
|
|
if (S_ISDIR(sip->i_mode)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EPERM));
|
|
}
|
|
|
|
if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
|
|
szp = ITOZ(sip);
|
|
ZFS_VERIFY_ZP(szp);
|
|
|
|
/* Prevent links to .zfs/shares files */
|
|
|
|
if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zsb),
|
|
&parent, sizeof (uint64_t))) != 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
if (parent == zsb->z_shares_dir) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EPERM));
|
|
}
|
|
|
|
if (zsb->z_utf8 && u8_validate(name,
|
|
strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EILSEQ));
|
|
}
|
|
#ifdef HAVE_PN_UTILS
|
|
if (flags & FIGNORECASE)
|
|
zf |= ZCILOOK;
|
|
#endif /* HAVE_PN_UTILS */
|
|
|
|
/*
|
|
* We do not support links between attributes and non-attributes
|
|
* because of the potential security risk of creating links
|
|
* into "normal" file space in order to circumvent restrictions
|
|
* imposed in attribute space.
|
|
*/
|
|
if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
owner = zfs_fuid_map_id(zsb, szp->z_uid, cr, ZFS_OWNER);
|
|
if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EPERM));
|
|
}
|
|
|
|
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
top:
|
|
/*
|
|
* Attempt to lock directory; fail if entry already exists.
|
|
*/
|
|
error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
|
|
if (error) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
|
|
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
|
|
zfs_sa_upgrade_txholds(tx, szp);
|
|
zfs_sa_upgrade_txholds(tx, dzp);
|
|
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
|
|
if (error) {
|
|
zfs_dirent_unlock(dl);
|
|
if (error == ERESTART) {
|
|
waited = B_TRUE;
|
|
dmu_tx_wait(tx);
|
|
dmu_tx_abort(tx);
|
|
goto top;
|
|
}
|
|
dmu_tx_abort(tx);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
error = zfs_link_create(dl, szp, tx, 0);
|
|
|
|
if (error == 0) {
|
|
uint64_t txtype = TX_LINK;
|
|
#ifdef HAVE_PN_UTILS
|
|
if (flags & FIGNORECASE)
|
|
txtype |= TX_CI;
|
|
#endif /* HAVE_PN_UTILS */
|
|
zfs_log_link(zilog, tx, txtype, dzp, szp, name);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
zfs_dirent_unlock(dl);
|
|
|
|
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
zfs_inode_update(dzp);
|
|
zfs_inode_update(szp);
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_link);
|
|
|
|
static void
|
|
zfs_putpage_commit_cb(void *arg)
|
|
{
|
|
struct page *pp = arg;
|
|
|
|
ClearPageError(pp);
|
|
end_page_writeback(pp);
|
|
}
|
|
|
|
/*
|
|
* Push a page out to disk, once the page is on stable storage the
|
|
* registered commit callback will be run as notification of completion.
|
|
*
|
|
* IN: ip - page mapped for inode.
|
|
* pp - page to push (page is locked)
|
|
* wbc - writeback control data
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*
|
|
* Timestamps:
|
|
* ip - ctime|mtime updated
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
loff_t offset;
|
|
loff_t pgoff;
|
|
unsigned int pglen;
|
|
rl_t *rl;
|
|
dmu_tx_t *tx;
|
|
caddr_t va;
|
|
int err = 0;
|
|
uint64_t mtime[2], ctime[2];
|
|
sa_bulk_attr_t bulk[3];
|
|
int cnt = 0;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
ASSERT(PageLocked(pp));
|
|
|
|
pgoff = page_offset(pp); /* Page byte-offset in file */
|
|
offset = i_size_read(ip); /* File length in bytes */
|
|
pglen = MIN(PAGE_CACHE_SIZE, /* Page length in bytes */
|
|
P2ROUNDUP(offset, PAGE_CACHE_SIZE)-pgoff);
|
|
|
|
/* Page is beyond end of file */
|
|
if (pgoff >= offset) {
|
|
unlock_page(pp);
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
|
|
/* Truncate page length to end of file */
|
|
if (pgoff + pglen > offset)
|
|
pglen = offset - pgoff;
|
|
|
|
#if 0
|
|
/*
|
|
* FIXME: Allow mmap writes past its quota. The correct fix
|
|
* is to register a page_mkwrite() handler to count the page
|
|
* against its quota when it is about to be dirtied.
|
|
*/
|
|
if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
|
|
zfs_owner_overquota(zsb, zp, B_TRUE)) {
|
|
err = EDQUOT;
|
|
}
|
|
#endif
|
|
|
|
set_page_writeback(pp);
|
|
unlock_page(pp);
|
|
|
|
rl = zfs_range_lock(zp, pgoff, pglen, RL_WRITER);
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
|
|
dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
|
|
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
err = dmu_tx_assign(tx, TXG_NOWAIT);
|
|
if (err != 0) {
|
|
if (err == ERESTART)
|
|
dmu_tx_wait(tx);
|
|
|
|
dmu_tx_abort(tx);
|
|
__set_page_dirty_nobuffers(pp);
|
|
ClearPageError(pp);
|
|
end_page_writeback(pp);
|
|
zfs_range_unlock(rl);
|
|
ZFS_EXIT(zsb);
|
|
return (err);
|
|
}
|
|
|
|
va = kmap(pp);
|
|
ASSERT3U(pglen, <=, PAGE_CACHE_SIZE);
|
|
dmu_write(zsb->z_os, zp->z_id, pgoff, pglen, va, tx);
|
|
kunmap(pp);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zsb), NULL, &zp->z_pflags, 8);
|
|
|
|
/* Preserve the mtime and ctime provided by the inode */
|
|
ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
|
|
ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
|
|
zp->z_atime_dirty = 0;
|
|
zp->z_seq++;
|
|
|
|
err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
|
|
|
|
zfs_log_write(zsb->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
|
|
zfs_putpage_commit_cb, pp);
|
|
dmu_tx_commit(tx);
|
|
|
|
zfs_range_unlock(rl);
|
|
|
|
if (wbc->sync_mode != WB_SYNC_NONE) {
|
|
/*
|
|
* Note that this is rarely called under writepages(), because
|
|
* writepages() normally handles the entire commit for
|
|
* performance reasons.
|
|
*/
|
|
if (zsb->z_log != NULL)
|
|
zil_commit(zsb->z_log, zp->z_id);
|
|
}
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Update the system attributes when the inode has been dirtied. For the
|
|
* moment we only update the mode, atime, mtime, and ctime.
|
|
*/
|
|
int
|
|
zfs_dirty_inode(struct inode *ip, int flags)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
dmu_tx_t *tx;
|
|
uint64_t mode, atime[2], mtime[2], ctime[2];
|
|
sa_bulk_attr_t bulk[4];
|
|
int error;
|
|
int cnt = 0;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
tx = dmu_tx_create(zsb->z_os);
|
|
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
goto out;
|
|
}
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zsb), NULL, &mode, 8);
|
|
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zsb), NULL, &atime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
|
|
|
|
/* Preserve the mode, mtime and ctime provided by the inode */
|
|
ZFS_TIME_ENCODE(&ip->i_atime, atime);
|
|
ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
|
|
ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
|
|
mode = ip->i_mode;
|
|
|
|
zp->z_mode = mode;
|
|
zp->z_atime_dirty = 0;
|
|
|
|
error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
dmu_tx_commit(tx);
|
|
out:
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_dirty_inode);
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
zfs_inactive(struct inode *ip)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
int error;
|
|
|
|
if (zfsctl_is_node(ip)) {
|
|
zfsctl_inode_inactive(ip);
|
|
return;
|
|
}
|
|
|
|
rw_enter(&zsb->z_teardown_inactive_lock, RW_READER);
|
|
if (zp->z_sa_hdl == NULL) {
|
|
rw_exit(&zsb->z_teardown_inactive_lock);
|
|
return;
|
|
}
|
|
|
|
if (zp->z_atime_dirty && zp->z_unlinked == 0) {
|
|
dmu_tx_t *tx = dmu_tx_create(zsb->z_os);
|
|
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
mutex_enter(&zp->z_lock);
|
|
(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zsb),
|
|
(void *)&zp->z_atime, sizeof (zp->z_atime), tx);
|
|
zp->z_atime_dirty = 0;
|
|
mutex_exit(&zp->z_lock);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
}
|
|
|
|
zfs_zinactive(zp);
|
|
rw_exit(&zsb->z_teardown_inactive_lock);
|
|
}
|
|
EXPORT_SYMBOL(zfs_inactive);
|
|
|
|
/*
|
|
* Bounds-check the seek operation.
|
|
*
|
|
* IN: ip - inode seeking within
|
|
* ooff - old file offset
|
|
* noffp - pointer to new file offset
|
|
* ct - caller context
|
|
*
|
|
* RETURN: 0 if success
|
|
* EINVAL if new offset invalid
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
|
|
{
|
|
if (S_ISDIR(ip->i_mode))
|
|
return (0);
|
|
return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_seek);
|
|
|
|
/*
|
|
* Fill pages with data from the disk.
|
|
*/
|
|
static int
|
|
zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
objset_t *os;
|
|
struct page *cur_pp;
|
|
u_offset_t io_off, total;
|
|
size_t io_len;
|
|
loff_t i_size;
|
|
unsigned page_idx;
|
|
int err;
|
|
|
|
os = zsb->z_os;
|
|
io_len = nr_pages << PAGE_CACHE_SHIFT;
|
|
i_size = i_size_read(ip);
|
|
io_off = page_offset(pl[0]);
|
|
|
|
if (io_off + io_len > i_size)
|
|
io_len = i_size - io_off;
|
|
|
|
/*
|
|
* Iterate over list of pages and read each page individually.
|
|
*/
|
|
page_idx = 0;
|
|
cur_pp = pl[0];
|
|
for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
|
|
caddr_t va;
|
|
|
|
va = kmap(cur_pp);
|
|
err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
|
|
DMU_READ_PREFETCH);
|
|
kunmap(cur_pp);
|
|
if (err) {
|
|
/* convert checksum errors into IO errors */
|
|
if (err == ECKSUM)
|
|
err = SET_ERROR(EIO);
|
|
return (err);
|
|
}
|
|
cur_pp = pl[++page_idx];
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Uses zfs_fillpage to read data from the file and fill the pages.
|
|
*
|
|
* IN: ip - inode of file to get data from.
|
|
* pl - list of pages to read
|
|
* nr_pages - number of pages to read
|
|
*
|
|
* RETURN: 0 on success, error code on failure.
|
|
*
|
|
* Timestamps:
|
|
* vp - atime updated
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
int err;
|
|
|
|
if (pl == NULL)
|
|
return (0);
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
err = zfs_fillpage(ip, pl, nr_pages);
|
|
|
|
if (!err)
|
|
ZFS_ACCESSTIME_STAMP(zsb, zp);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (err);
|
|
}
|
|
EXPORT_SYMBOL(zfs_getpage);
|
|
|
|
/*
|
|
* Check ZFS specific permissions to memory map a section of a file.
|
|
*
|
|
* IN: ip - inode of the file to mmap
|
|
* off - file offset
|
|
* addrp - start address in memory region
|
|
* len - length of memory region
|
|
* vm_flags- address flags
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*/
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
|
|
unsigned long vm_flags)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
if ((vm_flags & VM_WRITE) && (zp->z_pflags &
|
|
(ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EPERM));
|
|
}
|
|
|
|
if ((vm_flags & (VM_READ | VM_EXEC)) &&
|
|
(zp->z_pflags & ZFS_AV_QUARANTINED)) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EACCES));
|
|
}
|
|
|
|
if (off < 0 || len > MAXOFFSET_T - off) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_map);
|
|
|
|
/*
|
|
* convoff - converts the given data (start, whence) to the
|
|
* given whence.
|
|
*/
|
|
int
|
|
convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
|
|
{
|
|
vattr_t vap;
|
|
int error;
|
|
|
|
if ((lckdat->l_whence == 2) || (whence == 2)) {
|
|
if ((error = zfs_getattr(ip, &vap, 0, CRED()) != 0))
|
|
return (error);
|
|
}
|
|
|
|
switch (lckdat->l_whence) {
|
|
case 1:
|
|
lckdat->l_start += offset;
|
|
break;
|
|
case 2:
|
|
lckdat->l_start += vap.va_size;
|
|
/* FALLTHRU */
|
|
case 0:
|
|
break;
|
|
default:
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (lckdat->l_start < 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
switch (whence) {
|
|
case 1:
|
|
lckdat->l_start -= offset;
|
|
break;
|
|
case 2:
|
|
lckdat->l_start -= vap.va_size;
|
|
/* FALLTHRU */
|
|
case 0:
|
|
break;
|
|
default:
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
lckdat->l_whence = (short)whence;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free or allocate space in a file. Currently, this function only
|
|
* supports the `F_FREESP' command. However, this command is somewhat
|
|
* misnamed, as its functionality includes the ability to allocate as
|
|
* well as free space.
|
|
*
|
|
* IN: ip - inode of file to free data in.
|
|
* cmd - action to take (only F_FREESP supported).
|
|
* bfp - section of file to free/alloc.
|
|
* flag - current file open mode flags.
|
|
* offset - current file offset.
|
|
* cr - credentials of caller [UNUSED].
|
|
*
|
|
* RETURN: 0 on success, error code on failure.
|
|
*
|
|
* Timestamps:
|
|
* ip - ctime|mtime updated
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
|
|
offset_t offset, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
uint64_t off, len;
|
|
int error;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
if (cmd != F_FREESP) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if ((error = convoff(ip, bfp, 0, offset))) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
if (bfp->l_len < 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Permissions aren't checked on Solaris because on this OS
|
|
* zfs_space() can only be called with an opened file handle.
|
|
* On Linux we can get here through truncate_range() which
|
|
* operates directly on inodes, so we need to check access rights.
|
|
*/
|
|
if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
off = bfp->l_start;
|
|
len = bfp->l_len; /* 0 means from off to end of file */
|
|
|
|
error = zfs_freesp(zp, off, len, flag, TRUE);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_space);
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_fid(struct inode *ip, fid_t *fidp)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
uint32_t gen;
|
|
uint64_t gen64;
|
|
uint64_t object = zp->z_id;
|
|
zfid_short_t *zfid;
|
|
int size, i, error;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb),
|
|
&gen64, sizeof (uint64_t))) != 0) {
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
|
|
gen = (uint32_t)gen64;
|
|
|
|
size = (zsb->z_parent != zsb) ? LONG_FID_LEN : SHORT_FID_LEN;
|
|
if (fidp->fid_len < size) {
|
|
fidp->fid_len = size;
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
zfid = (zfid_short_t *)fidp;
|
|
|
|
zfid->zf_len = size;
|
|
|
|
for (i = 0; i < sizeof (zfid->zf_object); i++)
|
|
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
|
|
|
|
/* Must have a non-zero generation number to distinguish from .zfs */
|
|
if (gen == 0)
|
|
gen = 1;
|
|
for (i = 0; i < sizeof (zfid->zf_gen); i++)
|
|
zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
|
|
|
|
if (size == LONG_FID_LEN) {
|
|
uint64_t objsetid = dmu_objset_id(zsb->z_os);
|
|
zfid_long_t *zlfid;
|
|
|
|
zlfid = (zfid_long_t *)fidp;
|
|
|
|
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
|
|
zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
|
|
|
|
/* XXX - this should be the generation number for the objset */
|
|
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
|
|
zlfid->zf_setgen[i] = 0;
|
|
}
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zfs_fid);
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
int error;
|
|
boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
error = zfs_getacl(zp, vsecp, skipaclchk, cr);
|
|
ZFS_EXIT(zsb);
|
|
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_getsecattr);
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
int error;
|
|
boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
|
|
zilog_t *zilog = zsb->z_log;
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
|
|
error = zfs_setacl(zp, vsecp, skipaclchk, cr);
|
|
|
|
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
ZFS_EXIT(zsb);
|
|
return (error);
|
|
}
|
|
EXPORT_SYMBOL(zfs_setsecattr);
|
|
|
|
#ifdef HAVE_UIO_ZEROCOPY
|
|
/*
|
|
* Tunable, both must be a power of 2.
|
|
*
|
|
* zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
|
|
* zcr_blksz_max: if set to less than the file block size, allow loaning out of
|
|
* an arcbuf for a partial block read
|
|
*/
|
|
int zcr_blksz_min = (1 << 10); /* 1K */
|
|
int zcr_blksz_max = (1 << 17); /* 128K */
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
|
|
{
|
|
znode_t *zp = ITOZ(ip);
|
|
zfs_sb_t *zsb = ITOZSB(ip);
|
|
int max_blksz = zsb->z_max_blksz;
|
|
uio_t *uio = &xuio->xu_uio;
|
|
ssize_t size = uio->uio_resid;
|
|
offset_t offset = uio->uio_loffset;
|
|
int blksz;
|
|
int fullblk, i;
|
|
arc_buf_t *abuf;
|
|
ssize_t maxsize;
|
|
int preamble, postamble;
|
|
|
|
if (xuio->xu_type != UIOTYPE_ZEROCOPY)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ZFS_ENTER(zsb);
|
|
ZFS_VERIFY_ZP(zp);
|
|
switch (ioflag) {
|
|
case UIO_WRITE:
|
|
/*
|
|
* Loan out an arc_buf for write if write size is bigger than
|
|
* max_blksz, and the file's block size is also max_blksz.
|
|
*/
|
|
blksz = max_blksz;
|
|
if (size < blksz || zp->z_blksz != blksz) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
/*
|
|
* Caller requests buffers for write before knowing where the
|
|
* write offset might be (e.g. NFS TCP write).
|
|
*/
|
|
if (offset == -1) {
|
|
preamble = 0;
|
|
} else {
|
|
preamble = P2PHASE(offset, blksz);
|
|
if (preamble) {
|
|
preamble = blksz - preamble;
|
|
size -= preamble;
|
|
}
|
|
}
|
|
|
|
postamble = P2PHASE(size, blksz);
|
|
size -= postamble;
|
|
|
|
fullblk = size / blksz;
|
|
(void) dmu_xuio_init(xuio,
|
|
(preamble != 0) + fullblk + (postamble != 0));
|
|
|
|
/*
|
|
* Have to fix iov base/len for partial buffers. They
|
|
* currently represent full arc_buf's.
|
|
*/
|
|
if (preamble) {
|
|
/* data begins in the middle of the arc_buf */
|
|
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
|
|
blksz);
|
|
ASSERT(abuf);
|
|
(void) dmu_xuio_add(xuio, abuf,
|
|
blksz - preamble, preamble);
|
|
}
|
|
|
|
for (i = 0; i < fullblk; i++) {
|
|
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
|
|
blksz);
|
|
ASSERT(abuf);
|
|
(void) dmu_xuio_add(xuio, abuf, 0, blksz);
|
|
}
|
|
|
|
if (postamble) {
|
|
/* data ends in the middle of the arc_buf */
|
|
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
|
|
blksz);
|
|
ASSERT(abuf);
|
|
(void) dmu_xuio_add(xuio, abuf, 0, postamble);
|
|
}
|
|
break;
|
|
case UIO_READ:
|
|
/*
|
|
* Loan out an arc_buf for read if the read size is larger than
|
|
* the current file block size. Block alignment is not
|
|
* considered. Partial arc_buf will be loaned out for read.
|
|
*/
|
|
blksz = zp->z_blksz;
|
|
if (blksz < zcr_blksz_min)
|
|
blksz = zcr_blksz_min;
|
|
if (blksz > zcr_blksz_max)
|
|
blksz = zcr_blksz_max;
|
|
/* avoid potential complexity of dealing with it */
|
|
if (blksz > max_blksz) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
maxsize = zp->z_size - uio->uio_loffset;
|
|
if (size > maxsize)
|
|
size = maxsize;
|
|
|
|
if (size < blksz) {
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
break;
|
|
default:
|
|
ZFS_EXIT(zsb);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
uio->uio_extflg = UIO_XUIO;
|
|
XUIO_XUZC_RW(xuio) = ioflag;
|
|
ZFS_EXIT(zsb);
|
|
return (0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
|
|
{
|
|
int i;
|
|
arc_buf_t *abuf;
|
|
int ioflag = XUIO_XUZC_RW(xuio);
|
|
|
|
ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
|
|
|
|
i = dmu_xuio_cnt(xuio);
|
|
while (i-- > 0) {
|
|
abuf = dmu_xuio_arcbuf(xuio, i);
|
|
/*
|
|
* if abuf == NULL, it must be a write buffer
|
|
* that has been returned in zfs_write().
|
|
*/
|
|
if (abuf)
|
|
dmu_return_arcbuf(abuf);
|
|
ASSERT(abuf || ioflag == UIO_WRITE);
|
|
}
|
|
|
|
dmu_xuio_fini(xuio);
|
|
return (0);
|
|
}
|
|
#endif /* HAVE_UIO_ZEROCOPY */
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
module_param(zfs_read_chunk_size, long, 0644);
|
|
MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
|
|
#endif
|