f9d186edc8
world. This should be considered highly experimental. Approved-by: re
674 lines
26 KiB
C
674 lines
26 KiB
C
/* $FreeBSD$ */
|
|
/* $NetBSD: rf_parityloggingdags.c,v 1.4 2000/01/07 03:41:04 oster Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: William V. Courtright II
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
#include <dev/raidframe/rf_archs.h>
|
|
|
|
#if RF_INCLUDE_PARITYLOGGING > 0
|
|
|
|
/*
|
|
DAGs specific to parity logging are created here
|
|
*/
|
|
|
|
#include <dev/raidframe/rf_types.h>
|
|
#include <dev/raidframe/rf_raid.h>
|
|
#include <dev/raidframe/rf_dag.h>
|
|
#include <dev/raidframe/rf_dagutils.h>
|
|
#include <dev/raidframe/rf_dagfuncs.h>
|
|
#include <dev/raidframe/rf_debugMem.h>
|
|
#include <dev/raidframe/rf_paritylog.h>
|
|
#include <dev/raidframe/rf_memchunk.h>
|
|
#include <dev/raidframe/rf_general.h>
|
|
|
|
#include <dev/raidframe/rf_parityloggingdags.h>
|
|
|
|
/******************************************************************************
|
|
*
|
|
* creates a DAG to perform a large-write operation:
|
|
*
|
|
* / Rod \ / Wnd \
|
|
* H -- NIL- Rod - NIL - Wnd ------ NIL - T
|
|
* \ Rod / \ Xor - Lpo /
|
|
*
|
|
* The writes are not done until the reads complete because if they were done in
|
|
* parallel, a failure on one of the reads could leave the parity in an inconsistent
|
|
* state, so that the retry with a new DAG would produce erroneous parity.
|
|
*
|
|
* Note: this DAG has the nasty property that none of the buffers allocated for reading
|
|
* old data can be freed until the XOR node fires. Need to fix this.
|
|
*
|
|
* The last two arguments are the number of faults tolerated, and function for the
|
|
* redundancy calculation. The undo for the redundancy calc is assumed to be null
|
|
*
|
|
*****************************************************************************/
|
|
|
|
void
|
|
rf_CommonCreateParityLoggingLargeWriteDAG(
|
|
RF_Raid_t * raidPtr,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_DagHeader_t * dag_h,
|
|
void *bp,
|
|
RF_RaidAccessFlags_t flags,
|
|
RF_AllocListElem_t * allocList,
|
|
int nfaults,
|
|
int (*redFunc) (RF_DagNode_t *))
|
|
{
|
|
RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
|
|
*lpoNode, *blockNode, *unblockNode, *termNode;
|
|
int nWndNodes, nRodNodes, i;
|
|
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
|
|
RF_AccessStripeMapHeader_t *new_asm_h[2];
|
|
int nodeNum, asmNum;
|
|
RF_ReconUnitNum_t which_ru;
|
|
char *sosBuffer, *eosBuffer;
|
|
RF_PhysDiskAddr_t *pda;
|
|
RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
|
|
|
|
if (rf_dagDebug)
|
|
printf("[Creating parity-logging large-write DAG]\n");
|
|
RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
|
|
dag_h->creator = "ParityLoggingLargeWriteDAG";
|
|
|
|
/* alloc the Wnd nodes, the xor node, and the Lpo node */
|
|
nWndNodes = asmap->numStripeUnitsAccessed;
|
|
RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
|
|
i = 0;
|
|
wndNodes = &nodes[i];
|
|
i += nWndNodes;
|
|
xorNode = &nodes[i];
|
|
i += 1;
|
|
lpoNode = &nodes[i];
|
|
i += 1;
|
|
blockNode = &nodes[i];
|
|
i += 1;
|
|
syncNode = &nodes[i];
|
|
i += 1;
|
|
unblockNode = &nodes[i];
|
|
i += 1;
|
|
termNode = &nodes[i];
|
|
i += 1;
|
|
|
|
dag_h->numCommitNodes = nWndNodes + 1;
|
|
dag_h->numCommits = 0;
|
|
dag_h->numSuccedents = 1;
|
|
|
|
rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
|
|
if (nRodNodes > 0)
|
|
RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
|
|
|
|
/* begin node initialization */
|
|
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
|
|
rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
|
|
rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
|
|
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
|
|
|
|
/* initialize the Rod nodes */
|
|
for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
|
|
if (new_asm_h[asmNum]) {
|
|
pda = new_asm_h[asmNum]->stripeMap->physInfo;
|
|
while (pda) {
|
|
rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
|
|
rodNodes[nodeNum].params[0].p = pda;
|
|
rodNodes[nodeNum].params[1].p = pda->bufPtr;
|
|
rodNodes[nodeNum].params[2].v = parityStripeID;
|
|
rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
nodeNum++;
|
|
pda = pda->next;
|
|
}
|
|
}
|
|
}
|
|
RF_ASSERT(nodeNum == nRodNodes);
|
|
|
|
/* initialize the wnd nodes */
|
|
pda = asmap->physInfo;
|
|
for (i = 0; i < nWndNodes; i++) {
|
|
rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
|
|
RF_ASSERT(pda != NULL);
|
|
wndNodes[i].params[0].p = pda;
|
|
wndNodes[i].params[1].p = pda->bufPtr;
|
|
wndNodes[i].params[2].v = parityStripeID;
|
|
wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
pda = pda->next;
|
|
}
|
|
|
|
/* initialize the redundancy node */
|
|
rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
|
|
xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
|
|
for (i = 0; i < nWndNodes; i++) {
|
|
xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
|
|
xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
|
|
}
|
|
for (i = 0; i < nRodNodes; i++) {
|
|
xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
|
|
xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
|
|
}
|
|
xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get
|
|
* at RAID information */
|
|
|
|
/* look for an Rod node that reads a complete SU. If none, alloc a
|
|
* buffer to receive the parity info. Note that we can't use a new
|
|
* data buffer because it will not have gotten written when the xor
|
|
* occurs. */
|
|
for (i = 0; i < nRodNodes; i++)
|
|
if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
|
|
break;
|
|
if (i == nRodNodes) {
|
|
RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
|
|
} else {
|
|
xorNode->results[0] = rodNodes[i].params[1].p;
|
|
}
|
|
|
|
/* initialize the Lpo node */
|
|
rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
|
|
|
|
lpoNode->params[0].p = asmap->parityInfo;
|
|
lpoNode->params[1].p = xorNode->results[0];
|
|
RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
|
|
* describe entire
|
|
* parity unit */
|
|
|
|
/* connect nodes to form graph */
|
|
|
|
/* connect dag header to block node */
|
|
RF_ASSERT(dag_h->numSuccedents == 1);
|
|
RF_ASSERT(blockNode->numAntecedents == 0);
|
|
dag_h->succedents[0] = blockNode;
|
|
|
|
/* connect the block node to the Rod nodes */
|
|
RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
|
|
for (i = 0; i < nRodNodes; i++) {
|
|
RF_ASSERT(rodNodes[i].numAntecedents == 1);
|
|
blockNode->succedents[i] = &rodNodes[i];
|
|
rodNodes[i].antecedents[0] = blockNode;
|
|
rodNodes[i].antType[0] = rf_control;
|
|
}
|
|
|
|
/* connect the block node to the sync node */
|
|
/* necessary if nRodNodes == 0 */
|
|
RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
|
|
blockNode->succedents[nRodNodes] = syncNode;
|
|
syncNode->antecedents[0] = blockNode;
|
|
syncNode->antType[0] = rf_control;
|
|
|
|
/* connect the Rod nodes to the syncNode */
|
|
for (i = 0; i < nRodNodes; i++) {
|
|
rodNodes[i].succedents[0] = syncNode;
|
|
syncNode->antecedents[1 + i] = &rodNodes[i];
|
|
syncNode->antType[1 + i] = rf_control;
|
|
}
|
|
|
|
/* connect the sync node to the xor node */
|
|
RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
|
|
RF_ASSERT(xorNode->numAntecedents == 1);
|
|
syncNode->succedents[0] = xorNode;
|
|
xorNode->antecedents[0] = syncNode;
|
|
xorNode->antType[0] = rf_trueData; /* carry forward from sync */
|
|
|
|
/* connect the sync node to the Wnd nodes */
|
|
for (i = 0; i < nWndNodes; i++) {
|
|
RF_ASSERT(wndNodes->numAntecedents == 1);
|
|
syncNode->succedents[1 + i] = &wndNodes[i];
|
|
wndNodes[i].antecedents[0] = syncNode;
|
|
wndNodes[i].antType[0] = rf_control;
|
|
}
|
|
|
|
/* connect the xor node to the Lpo node */
|
|
RF_ASSERT(xorNode->numSuccedents == 1);
|
|
RF_ASSERT(lpoNode->numAntecedents == 1);
|
|
xorNode->succedents[0] = lpoNode;
|
|
lpoNode->antecedents[0] = xorNode;
|
|
lpoNode->antType[0] = rf_trueData;
|
|
|
|
/* connect the Wnd nodes to the unblock node */
|
|
RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
|
|
for (i = 0; i < nWndNodes; i++) {
|
|
RF_ASSERT(wndNodes->numSuccedents == 1);
|
|
wndNodes[i].succedents[0] = unblockNode;
|
|
unblockNode->antecedents[i] = &wndNodes[i];
|
|
unblockNode->antType[i] = rf_control;
|
|
}
|
|
|
|
/* connect the Lpo node to the unblock node */
|
|
RF_ASSERT(lpoNode->numSuccedents == 1);
|
|
lpoNode->succedents[0] = unblockNode;
|
|
unblockNode->antecedents[nWndNodes] = lpoNode;
|
|
unblockNode->antType[nWndNodes] = rf_control;
|
|
|
|
/* connect unblock node to terminator */
|
|
RF_ASSERT(unblockNode->numSuccedents == 1);
|
|
RF_ASSERT(termNode->numAntecedents == 1);
|
|
RF_ASSERT(termNode->numSuccedents == 0);
|
|
unblockNode->succedents[0] = termNode;
|
|
termNode->antecedents[0] = unblockNode;
|
|
termNode->antType[0] = rf_control;
|
|
}
|
|
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
*
|
|
* creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
|
|
*
|
|
* Header
|
|
* |
|
|
* Block
|
|
* / | ... \ \
|
|
* / | \ \
|
|
* Rod Rod Rod Rop
|
|
* | \ /| \ / | \/ |
|
|
* | | | /\ |
|
|
* Wnd Wnd Wnd X
|
|
* | \ / |
|
|
* | \ / |
|
|
* \ \ / Lpo
|
|
* \ \ / /
|
|
* +-> Unblock <-+
|
|
* |
|
|
* T
|
|
*
|
|
*
|
|
* R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
|
|
* When the access spans a stripe unit boundary and is less than one SU in size, there will
|
|
* be two Rop -- X -- Wnp branches. I call this the "double-XOR" case.
|
|
* The second output from each Rod node goes to the X node. In the double-XOR
|
|
* case, there are exactly 2 Rod nodes, and each sends one output to one X node.
|
|
* There is one Rod -- Wnd -- T branch for each stripe unit being updated.
|
|
*
|
|
* The block and unblock nodes are unused. See comment above CreateFaultFreeReadDAG.
|
|
*
|
|
* Note: this DAG ignores all the optimizations related to making the RMWs atomic.
|
|
* it also has the nasty property that none of the buffers allocated for reading
|
|
* old data & parity can be freed until the XOR node fires. Need to fix this.
|
|
*
|
|
* A null qfuncs indicates single fault tolerant
|
|
*****************************************************************************/
|
|
|
|
void
|
|
rf_CommonCreateParityLoggingSmallWriteDAG(
|
|
RF_Raid_t * raidPtr,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_DagHeader_t * dag_h,
|
|
void *bp,
|
|
RF_RaidAccessFlags_t flags,
|
|
RF_AllocListElem_t * allocList,
|
|
RF_RedFuncs_t * pfuncs,
|
|
RF_RedFuncs_t * qfuncs)
|
|
{
|
|
RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
|
|
RF_DagNode_t *readDataNodes, *readParityNodes;
|
|
RF_DagNode_t *writeDataNodes, *lpuNodes;
|
|
RF_DagNode_t *unlockDataNodes = NULL, *termNode;
|
|
RF_PhysDiskAddr_t *pda = asmap->physInfo;
|
|
int numDataNodes = asmap->numStripeUnitsAccessed;
|
|
int numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
|
|
int i, j, nNodes, totalNumNodes;
|
|
RF_ReconUnitNum_t which_ru;
|
|
int (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
|
|
int (*qfunc) (RF_DagNode_t * node);
|
|
char *name, *qname;
|
|
RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
|
|
long nfaults = qfuncs ? 2 : 1;
|
|
int lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
|
|
|
|
if (rf_dagDebug)
|
|
printf("[Creating parity-logging small-write DAG]\n");
|
|
RF_ASSERT(numDataNodes > 0);
|
|
RF_ASSERT(nfaults == 1);
|
|
dag_h->creator = "ParityLoggingSmallWriteDAG";
|
|
|
|
/* DAG creation occurs in three steps: 1. count the number of nodes in
|
|
* the DAG 2. create the nodes 3. initialize the nodes 4. connect the
|
|
* nodes */
|
|
|
|
/* Step 1. compute number of nodes in the graph */
|
|
|
|
/* number of nodes: a read and write for each data unit a redundancy
|
|
* computation node for each parity node a read and Lpu for each
|
|
* parity unit a block and unblock node (2) a terminator node if
|
|
* atomic RMW an unlock node for each data unit, redundancy unit */
|
|
totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
|
|
if (lu_flag)
|
|
totalNumNodes += numDataNodes;
|
|
|
|
nNodes = numDataNodes + numParityNodes;
|
|
|
|
dag_h->numCommitNodes = numDataNodes + numParityNodes;
|
|
dag_h->numCommits = 0;
|
|
dag_h->numSuccedents = 1;
|
|
|
|
/* Step 2. create the nodes */
|
|
RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
|
|
i = 0;
|
|
blockNode = &nodes[i];
|
|
i += 1;
|
|
unblockNode = &nodes[i];
|
|
i += 1;
|
|
readDataNodes = &nodes[i];
|
|
i += numDataNodes;
|
|
readParityNodes = &nodes[i];
|
|
i += numParityNodes;
|
|
writeDataNodes = &nodes[i];
|
|
i += numDataNodes;
|
|
lpuNodes = &nodes[i];
|
|
i += numParityNodes;
|
|
xorNodes = &nodes[i];
|
|
i += numParityNodes;
|
|
termNode = &nodes[i];
|
|
i += 1;
|
|
if (lu_flag) {
|
|
unlockDataNodes = &nodes[i];
|
|
i += numDataNodes;
|
|
}
|
|
RF_ASSERT(i == totalNumNodes);
|
|
|
|
/* Step 3. initialize the nodes */
|
|
/* initialize block node (Nil) */
|
|
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
|
|
|
|
/* initialize unblock node (Nil) */
|
|
rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
|
|
|
|
/* initialize terminatory node (Trm) */
|
|
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
|
|
|
|
/* initialize nodes which read old data (Rod) */
|
|
for (i = 0; i < numDataNodes; i++) {
|
|
rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
|
|
RF_ASSERT(pda != NULL);
|
|
readDataNodes[i].params[0].p = pda; /* physical disk addr
|
|
* desc */
|
|
readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
|
|
* data */
|
|
readDataNodes[i].params[2].v = parityStripeID;
|
|
readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
|
|
pda = pda->next;
|
|
readDataNodes[i].propList[0] = NULL;
|
|
readDataNodes[i].propList[1] = NULL;
|
|
}
|
|
|
|
/* initialize nodes which read old parity (Rop) */
|
|
pda = asmap->parityInfo;
|
|
i = 0;
|
|
for (i = 0; i < numParityNodes; i++) {
|
|
RF_ASSERT(pda != NULL);
|
|
rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
|
|
readParityNodes[i].params[0].p = pda;
|
|
readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
|
|
* parity */
|
|
readParityNodes[i].params[2].v = parityStripeID;
|
|
readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
readParityNodes[i].propList[0] = NULL;
|
|
pda = pda->next;
|
|
}
|
|
|
|
/* initialize nodes which write new data (Wnd) */
|
|
pda = asmap->physInfo;
|
|
for (i = 0; i < numDataNodes; i++) {
|
|
RF_ASSERT(pda != NULL);
|
|
rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
|
|
writeDataNodes[i].params[0].p = pda; /* physical disk addr
|
|
* desc */
|
|
writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new
|
|
* data to be written */
|
|
writeDataNodes[i].params[2].v = parityStripeID;
|
|
writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
|
|
if (lu_flag) {
|
|
/* initialize node to unlock the disk queue */
|
|
rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
|
|
unlockDataNodes[i].params[0].p = pda; /* physical disk addr
|
|
* desc */
|
|
unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
|
|
}
|
|
pda = pda->next;
|
|
}
|
|
|
|
|
|
/* initialize nodes which compute new parity */
|
|
/* we use the simple XOR func in the double-XOR case, and when we're
|
|
* accessing only a portion of one stripe unit. the distinction
|
|
* between the two is that the regular XOR func assumes that the
|
|
* targbuf is a full SU in size, and examines the pda associated with
|
|
* the buffer to decide where within the buffer to XOR the data,
|
|
* whereas the simple XOR func just XORs the data into the start of
|
|
* the buffer. */
|
|
if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
|
|
func = pfuncs->simple;
|
|
undoFunc = rf_NullNodeUndoFunc;
|
|
name = pfuncs->SimpleName;
|
|
if (qfuncs) {
|
|
qfunc = qfuncs->simple;
|
|
qname = qfuncs->SimpleName;
|
|
}
|
|
} else {
|
|
func = pfuncs->regular;
|
|
undoFunc = rf_NullNodeUndoFunc;
|
|
name = pfuncs->RegularName;
|
|
if (qfuncs) {
|
|
qfunc = qfuncs->regular;
|
|
qname = qfuncs->RegularName;
|
|
}
|
|
}
|
|
/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
|
|
* nodes, and raidPtr */
|
|
if (numParityNodes == 2) { /* double-xor case */
|
|
for (i = 0; i < numParityNodes; i++) {
|
|
rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for
|
|
* xor */
|
|
xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
|
|
xorNodes[i].params[0] = readDataNodes[i].params[0];
|
|
xorNodes[i].params[1] = readDataNodes[i].params[1];
|
|
xorNodes[i].params[2] = readParityNodes[i].params[0];
|
|
xorNodes[i].params[3] = readParityNodes[i].params[1];
|
|
xorNodes[i].params[4] = writeDataNodes[i].params[0];
|
|
xorNodes[i].params[5] = writeDataNodes[i].params[1];
|
|
xorNodes[i].params[6].p = raidPtr;
|
|
xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as
|
|
* target buf */
|
|
}
|
|
} else {
|
|
/* there is only one xor node in this case */
|
|
rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
|
|
xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
|
|
for (i = 0; i < numDataNodes + 1; i++) {
|
|
/* set up params related to Rod and Rop nodes */
|
|
xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
|
|
xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
|
|
}
|
|
for (i = 0; i < numDataNodes; i++) {
|
|
/* set up params related to Wnd and Wnp nodes */
|
|
xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
|
|
xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
|
|
}
|
|
xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
|
|
* at RAID information */
|
|
xorNodes[0].results[0] = readParityNodes[0].params[1].p;
|
|
}
|
|
|
|
/* initialize the log node(s) */
|
|
pda = asmap->parityInfo;
|
|
for (i = 0; i < numParityNodes; i++) {
|
|
RF_ASSERT(pda);
|
|
rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
|
|
lpuNodes[i].params[0].p = pda; /* PhysDiskAddr of parity */
|
|
lpuNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer to
|
|
* parity */
|
|
pda = pda->next;
|
|
}
|
|
|
|
|
|
/* Step 4. connect the nodes */
|
|
|
|
/* connect header to block node */
|
|
RF_ASSERT(dag_h->numSuccedents == 1);
|
|
RF_ASSERT(blockNode->numAntecedents == 0);
|
|
dag_h->succedents[0] = blockNode;
|
|
|
|
/* connect block node to read old data nodes */
|
|
RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
|
|
for (i = 0; i < numDataNodes; i++) {
|
|
blockNode->succedents[i] = &readDataNodes[i];
|
|
RF_ASSERT(readDataNodes[i].numAntecedents == 1);
|
|
readDataNodes[i].antecedents[0] = blockNode;
|
|
readDataNodes[i].antType[0] = rf_control;
|
|
}
|
|
|
|
/* connect block node to read old parity nodes */
|
|
for (i = 0; i < numParityNodes; i++) {
|
|
blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
|
|
RF_ASSERT(readParityNodes[i].numAntecedents == 1);
|
|
readParityNodes[i].antecedents[0] = blockNode;
|
|
readParityNodes[i].antType[0] = rf_control;
|
|
}
|
|
|
|
/* connect read old data nodes to write new data nodes */
|
|
for (i = 0; i < numDataNodes; i++) {
|
|
RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
|
|
for (j = 0; j < numDataNodes; j++) {
|
|
RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
|
|
readDataNodes[i].succedents[j] = &writeDataNodes[j];
|
|
writeDataNodes[j].antecedents[i] = &readDataNodes[i];
|
|
if (i == j)
|
|
writeDataNodes[j].antType[i] = rf_antiData;
|
|
else
|
|
writeDataNodes[j].antType[i] = rf_control;
|
|
}
|
|
}
|
|
|
|
/* connect read old data nodes to xor nodes */
|
|
for (i = 0; i < numDataNodes; i++)
|
|
for (j = 0; j < numParityNodes; j++) {
|
|
RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
|
|
readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
|
|
xorNodes[j].antecedents[i] = &readDataNodes[i];
|
|
xorNodes[j].antType[i] = rf_trueData;
|
|
}
|
|
|
|
/* connect read old parity nodes to write new data nodes */
|
|
for (i = 0; i < numParityNodes; i++) {
|
|
RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
|
|
for (j = 0; j < numDataNodes; j++) {
|
|
readParityNodes[i].succedents[j] = &writeDataNodes[j];
|
|
writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
|
|
writeDataNodes[j].antType[numDataNodes + i] = rf_control;
|
|
}
|
|
}
|
|
|
|
/* connect read old parity nodes to xor nodes */
|
|
for (i = 0; i < numParityNodes; i++)
|
|
for (j = 0; j < numParityNodes; j++) {
|
|
readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
|
|
xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
|
|
xorNodes[j].antType[numDataNodes + i] = rf_trueData;
|
|
}
|
|
|
|
/* connect xor nodes to write new parity nodes */
|
|
for (i = 0; i < numParityNodes; i++) {
|
|
RF_ASSERT(xorNodes[i].numSuccedents == 1);
|
|
RF_ASSERT(lpuNodes[i].numAntecedents == 1);
|
|
xorNodes[i].succedents[0] = &lpuNodes[i];
|
|
lpuNodes[i].antecedents[0] = &xorNodes[i];
|
|
lpuNodes[i].antType[0] = rf_trueData;
|
|
}
|
|
|
|
for (i = 0; i < numDataNodes; i++) {
|
|
if (lu_flag) {
|
|
/* connect write new data nodes to unlock nodes */
|
|
RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
|
|
RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
|
|
writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
|
|
unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
|
|
unlockDataNodes[i].antType[0] = rf_control;
|
|
|
|
/* connect unlock nodes to unblock node */
|
|
RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
|
|
RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
|
|
unlockDataNodes[i].succedents[0] = unblockNode;
|
|
unblockNode->antecedents[i] = &unlockDataNodes[i];
|
|
unblockNode->antType[i] = rf_control;
|
|
} else {
|
|
/* connect write new data nodes to unblock node */
|
|
RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
|
|
RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
|
|
writeDataNodes[i].succedents[0] = unblockNode;
|
|
unblockNode->antecedents[i] = &writeDataNodes[i];
|
|
unblockNode->antType[i] = rf_control;
|
|
}
|
|
}
|
|
|
|
/* connect write new parity nodes to unblock node */
|
|
for (i = 0; i < numParityNodes; i++) {
|
|
RF_ASSERT(lpuNodes[i].numSuccedents == 1);
|
|
lpuNodes[i].succedents[0] = unblockNode;
|
|
unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
|
|
unblockNode->antType[numDataNodes + i] = rf_control;
|
|
}
|
|
|
|
/* connect unblock node to terminator */
|
|
RF_ASSERT(unblockNode->numSuccedents == 1);
|
|
RF_ASSERT(termNode->numAntecedents == 1);
|
|
RF_ASSERT(termNode->numSuccedents == 0);
|
|
unblockNode->succedents[0] = termNode;
|
|
termNode->antecedents[0] = unblockNode;
|
|
termNode->antType[0] = rf_control;
|
|
}
|
|
|
|
|
|
void
|
|
rf_CreateParityLoggingSmallWriteDAG(
|
|
RF_Raid_t * raidPtr,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_DagHeader_t * dag_h,
|
|
void *bp,
|
|
RF_RaidAccessFlags_t flags,
|
|
RF_AllocListElem_t * allocList,
|
|
RF_RedFuncs_t * pfuncs,
|
|
RF_RedFuncs_t * qfuncs)
|
|
{
|
|
dag_h->creator = "ParityLoggingSmallWriteDAG";
|
|
rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
|
|
}
|
|
|
|
|
|
void
|
|
rf_CreateParityLoggingLargeWriteDAG(
|
|
RF_Raid_t * raidPtr,
|
|
RF_AccessStripeMap_t * asmap,
|
|
RF_DagHeader_t * dag_h,
|
|
void *bp,
|
|
RF_RaidAccessFlags_t flags,
|
|
RF_AllocListElem_t * allocList,
|
|
int nfaults,
|
|
int (*redFunc) (RF_DagNode_t *))
|
|
{
|
|
dag_h->creator = "ParityLoggingSmallWriteDAG";
|
|
rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
|
|
}
|
|
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
|