freebsd-dev/sys/dev/usb/net/if_cue.c

630 lines
15 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate
* adapters and others.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The
* RX filter uses a 512-bit multicast hash table, single perfect entry
* for the station address, and promiscuous mode. Unlike the ADMtek
* and KLSI chips, the CATC ASIC supports read and write combining
* mode where multiple packets can be transfered using a single bulk
* transaction, which helps performance a great deal.
*/
#include "usbdevs.h"
#include <dev/usb/usb.h>
#include <dev/usb/usb_mfunc.h>
#include <dev/usb/usb_error.h>
#define USB_DEBUG_VAR cue_debug
#include <dev/usb/usb_core.h>
#include <dev/usb/usb_lookup.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_request.h>
#include <dev/usb/usb_busdma.h>
#include <dev/usb/usb_util.h>
#include <dev/usb/net/usb_ethernet.h>
#include <dev/usb/net/if_cuereg.h>
/*
* Various supported device vendors/products.
*/
/* Belkin F5U111 adapter covered by NETMATE entry */
static const struct usb_device_id cue_devs[] = {
{USB_VPI(USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE, 0)},
{USB_VPI(USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2, 0)},
{USB_VPI(USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK, 0)},
};
/* prototypes */
static device_probe_t cue_probe;
static device_attach_t cue_attach;
static device_detach_t cue_detach;
static usb_callback_t cue_bulk_read_callback;
static usb_callback_t cue_bulk_write_callback;
static uether_fn_t cue_attach_post;
static uether_fn_t cue_init;
static uether_fn_t cue_stop;
static uether_fn_t cue_start;
static uether_fn_t cue_tick;
static uether_fn_t cue_setmulti;
static uether_fn_t cue_setpromisc;
static uint8_t cue_csr_read_1(struct cue_softc *, uint16_t);
static uint16_t cue_csr_read_2(struct cue_softc *, uint8_t);
static int cue_csr_write_1(struct cue_softc *, uint16_t, uint16_t);
static int cue_mem(struct cue_softc *, uint8_t, uint16_t, void *, int);
static int cue_getmac(struct cue_softc *, void *);
static uint32_t cue_mchash(const uint8_t *);
static void cue_reset(struct cue_softc *);
#if USB_DEBUG
static int cue_debug = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, cue, CTLFLAG_RW, 0, "USB cue");
SYSCTL_INT(_hw_usb_cue, OID_AUTO, debug, CTLFLAG_RW, &cue_debug, 0,
"Debug level");
#endif
static const struct usb_config cue_config[CUE_N_TRANSFER] = {
[CUE_BULK_DT_WR] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = (MCLBYTES + 2),
.flags = {.pipe_bof = 1,},
.callback = cue_bulk_write_callback,
.timeout = 10000, /* 10 seconds */
},
[CUE_BULK_DT_RD] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = (MCLBYTES + 2),
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = cue_bulk_read_callback,
},
};
static device_method_t cue_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cue_probe),
DEVMETHOD(device_attach, cue_attach),
DEVMETHOD(device_detach, cue_detach),
{0, 0}
};
static driver_t cue_driver = {
.name = "cue",
.methods = cue_methods,
.size = sizeof(struct cue_softc),
};
static devclass_t cue_devclass;
DRIVER_MODULE(cue, uhub, cue_driver, cue_devclass, NULL, 0);
MODULE_DEPEND(cue, uether, 1, 1, 1);
MODULE_DEPEND(cue, usb, 1, 1, 1);
MODULE_DEPEND(cue, ether, 1, 1, 1);
static const struct usb_ether_methods cue_ue_methods = {
.ue_attach_post = cue_attach_post,
.ue_start = cue_start,
.ue_init = cue_init,
.ue_stop = cue_stop,
.ue_tick = cue_tick,
.ue_setmulti = cue_setmulti,
.ue_setpromisc = cue_setpromisc,
};
#define CUE_SETBIT(sc, reg, x) \
cue_csr_write_1(sc, reg, cue_csr_read_1(sc, reg) | (x))
#define CUE_CLRBIT(sc, reg, x) \
cue_csr_write_1(sc, reg, cue_csr_read_1(sc, reg) & ~(x))
static uint8_t
cue_csr_read_1(struct cue_softc *sc, uint16_t reg)
{
struct usb_device_request req;
uint8_t val;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
if (uether_do_request(&sc->sc_ue, &req, &val, 1000)) {
/* ignore any errors */
}
return (val);
}
static uint16_t
cue_csr_read_2(struct cue_softc *sc, uint8_t reg)
{
struct usb_device_request req;
uint16_t val;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
(void)uether_do_request(&sc->sc_ue, &req, &val, 1000);
return (le16toh(val));
}
static int
cue_csr_write_1(struct cue_softc *sc, uint16_t reg, uint16_t val)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
return (uether_do_request(&sc->sc_ue, &req, NULL, 1000));
}
static int
cue_mem(struct cue_softc *sc, uint8_t cmd, uint16_t addr, void *buf, int len)
{
struct usb_device_request req;
if (cmd == CUE_CMD_READSRAM)
req.bmRequestType = UT_READ_VENDOR_DEVICE;
else
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = cmd;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
return (uether_do_request(&sc->sc_ue, &req, buf, 1000));
}
static int
cue_getmac(struct cue_softc *sc, void *buf)
{
struct usb_device_request req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_GET_MACADDR;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, ETHER_ADDR_LEN);
return (uether_do_request(&sc->sc_ue, &req, buf, 1000));
}
#define CUE_BITS 9
static uint32_t
cue_mchash(const uint8_t *addr)
{
uint32_t crc;
/* Compute CRC for the address value. */
crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
return (crc & ((1 << CUE_BITS) - 1));
}
static void
cue_setpromisc(struct usb_ether *ue)
{
struct cue_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
CUE_LOCK_ASSERT(sc, MA_OWNED);
/* if we want promiscuous mode, set the allframes bit */
if (ifp->if_flags & IFF_PROMISC)
CUE_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
else
CUE_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
/* write multicast hash-bits */
cue_setmulti(ue);
}
static void
cue_setmulti(struct usb_ether *ue)
{
struct cue_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
struct ifmultiaddr *ifma;
uint32_t h = 0, i;
uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
CUE_LOCK_ASSERT(sc, MA_OWNED);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
for (i = 0; i < 8; i++)
hashtbl[i] = 0xff;
cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR,
&hashtbl, 8);
return;
}
/* now program new ones */
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
{
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = cue_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
hashtbl[h >> 3] |= 1 << (h & 0x7);
}
IF_ADDR_UNLOCK(ifp);
/*
* Also include the broadcast address in the filter
* so we can receive broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
h = cue_mchash(ifp->if_broadcastaddr);
hashtbl[h >> 3] |= 1 << (h & 0x7);
}
cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR, &hashtbl, 8);
}
static void
cue_reset(struct cue_softc *sc)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_RESET;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
if (uether_do_request(&sc->sc_ue, &req, NULL, 1000)) {
/* ignore any errors */
}
/*
* wait a little while for the chip to get its brains in order:
*/
uether_pause(&sc->sc_ue, hz / 100);
}
static void
cue_attach_post(struct usb_ether *ue)
{
struct cue_softc *sc = uether_getsc(ue);
cue_getmac(sc, ue->ue_eaddr);
}
static int
cue_probe(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != CUE_CONFIG_IDX)
return (ENXIO);
if (uaa->info.bIfaceIndex != CUE_IFACE_IDX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(cue_devs, sizeof(cue_devs), uaa));
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
cue_attach(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct cue_softc *sc = device_get_softc(dev);
struct usb_ether *ue = &sc->sc_ue;
uint8_t iface_index;
int error;
device_set_usb_desc(dev);
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);
iface_index = CUE_IFACE_IDX;
error = usbd_transfer_setup(uaa->device, &iface_index,
sc->sc_xfer, cue_config, CUE_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(dev, "allocating USB transfers failed!\n");
goto detach;
}
ue->ue_sc = sc;
ue->ue_dev = dev;
ue->ue_udev = uaa->device;
ue->ue_mtx = &sc->sc_mtx;
ue->ue_methods = &cue_ue_methods;
error = uether_ifattach(ue);
if (error) {
device_printf(dev, "could not attach interface\n");
goto detach;
}
return (0); /* success */
detach:
cue_detach(dev);
return (ENXIO); /* failure */
}
static int
cue_detach(device_t dev)
{
struct cue_softc *sc = device_get_softc(dev);
struct usb_ether *ue = &sc->sc_ue;
usbd_transfer_unsetup(sc->sc_xfer, CUE_N_TRANSFER);
uether_ifdetach(ue);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static void
cue_bulk_read_callback(struct usb_xfer *xfer)
{
struct cue_softc *sc = xfer->priv_sc;
struct usb_ether *ue = &sc->sc_ue;
struct ifnet *ifp = uether_getifp(ue);
uint8_t buf[2];
int len;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
if (xfer->actlen <= (2 + sizeof(struct ether_header))) {
ifp->if_ierrors++;
goto tr_setup;
}
usbd_copy_out(xfer->frbuffers, 0, buf, 2);
xfer->actlen -= 2;
len = buf[0] | (buf[1] << 8);
len = min(xfer->actlen, len);
uether_rxbuf(ue, xfer->frbuffers, 2, len);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
xfer->frlengths[0] = xfer->max_data_length;
usbd_transfer_submit(xfer);
uether_rxflush(ue);
return;
default: /* Error */
DPRINTF("bulk read error, %s\n",
usbd_errstr(xfer->error));
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
xfer->flags.stall_pipe = 1;
goto tr_setup;
}
return;
}
}
static void
cue_bulk_write_callback(struct usb_xfer *xfer)
{
struct cue_softc *sc = xfer->priv_sc;
struct ifnet *ifp = uether_getifp(&sc->sc_ue);
struct mbuf *m;
uint8_t buf[2];
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(11, "transfer complete\n");
ifp->if_opackets++;
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
return;
if (m->m_pkthdr.len > MCLBYTES)
m->m_pkthdr.len = MCLBYTES;
xfer->frlengths[0] = (m->m_pkthdr.len + 2);
/* the first two bytes are the frame length */
buf[0] = (uint8_t)(m->m_pkthdr.len);
buf[1] = (uint8_t)(m->m_pkthdr.len >> 8);
usbd_copy_in(xfer->frbuffers, 0, buf, 2);
usbd_m_copy_in(xfer->frbuffers, 2,
m, 0, m->m_pkthdr.len);
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m);
m_freem(m);
usbd_transfer_submit(xfer);
return;
default: /* Error */
DPRINTFN(11, "transfer error, %s\n",
usbd_errstr(xfer->error));
ifp->if_oerrors++;
if (xfer->error != USB_ERR_CANCELLED) {
/* try to clear stall first */
xfer->flags.stall_pipe = 1;
goto tr_setup;
}
return;
}
}
static void
cue_tick(struct usb_ether *ue)
{
struct cue_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
CUE_LOCK_ASSERT(sc, MA_OWNED);
ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_SINGLECOLL);
ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_MULTICOLL);
ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_EXCESSCOLL);
if (cue_csr_read_2(sc, CUE_RX_FRAMEERR))
ifp->if_ierrors++;
}
static void
cue_start(struct usb_ether *ue)
{
struct cue_softc *sc = uether_getsc(ue);
/*
* start the USB transfers, if not already started:
*/
usbd_transfer_start(sc->sc_xfer[CUE_BULK_DT_RD]);
usbd_transfer_start(sc->sc_xfer[CUE_BULK_DT_WR]);
}
static void
cue_init(struct usb_ether *ue)
{
struct cue_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
int i;
CUE_LOCK_ASSERT(sc, MA_OWNED);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
cue_stop(ue);
#if 0
cue_reset(sc);
#endif
/* Set MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++)
cue_csr_write_1(sc, CUE_PAR0 - i, IF_LLADDR(ifp)[i]);
/* Enable RX logic. */
cue_csr_write_1(sc, CUE_ETHCTL, CUE_ETHCTL_RX_ON | CUE_ETHCTL_MCAST_ON);
/* Load the multicast filter */
cue_setpromisc(ue);
/*
* Set the number of RX and TX buffers that we want
* to reserve inside the ASIC.
*/
cue_csr_write_1(sc, CUE_RX_BUFPKTS, CUE_RX_FRAMES);
cue_csr_write_1(sc, CUE_TX_BUFPKTS, CUE_TX_FRAMES);
/* Set advanced operation modes. */
cue_csr_write_1(sc, CUE_ADVANCED_OPMODES,
CUE_AOP_EMBED_RXLEN | 0x01);/* 1 wait state */
/* Program the LED operation. */
cue_csr_write_1(sc, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK);
usbd_transfer_set_stall(sc->sc_xfer[CUE_BULK_DT_WR]);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
cue_start(ue);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
cue_stop(struct usb_ether *ue)
{
struct cue_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
CUE_LOCK_ASSERT(sc, MA_OWNED);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
/*
* stop all the transfers, if not already stopped:
*/
usbd_transfer_stop(sc->sc_xfer[CUE_BULK_DT_WR]);
usbd_transfer_stop(sc->sc_xfer[CUE_BULK_DT_RD]);
cue_csr_write_1(sc, CUE_ETHCTL, 0);
cue_reset(sc);
}