freebsd-dev/sys/dev/cxgbe/t4_sge.c
Navdeep Parhar 38035ed6dc cxgbe(4): significant rx rework.
- More flexible cluster size selection, including the ability to fall
  back to a safe cluster size (PAGE_SIZE from zone_jumbop by default) in
  case an allocation of a larger size fails.
- A single get_fl_payload() function that assembles the payload into an
  mbuf chain for any kind of freelist.  This replaces two variants: one
  for freelists with buffer packing enabled and another for those without.
- Buffer packing with any sized cluster.  It was limited to 4K clusters
  only before this change.
- Enable buffer packing for TOE rx queues as well.
- Statistics and tunables to go with all these changes.  The driver's
  man page will be updated separately.

MFC after:	5 weeks
2014-03-18 20:14:13 +00:00

4287 lines
111 KiB
C

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/types.h>
#include <sys/eventhandler.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/kernel.h>
#include <sys/kdb.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <machine/md_var.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include "common/common.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "common/t4_msg.h"
#ifdef T4_PKT_TIMESTAMP
#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
#else
#define RX_COPY_THRESHOLD MINCLSIZE
#endif
/*
* Ethernet frames are DMA'd at this byte offset into the freelist buffer.
* 0-7 are valid values.
*/
static int fl_pktshift = 2;
TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
/*
* Pad ethernet payload up to this boundary.
* -1: driver should figure out a good value.
* 0: disable padding.
* Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
*/
static int fl_pad = -1;
TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
/*
* Status page length.
* -1: driver should figure out a good value.
* 64 or 128 are the only other valid values.
*/
static int spg_len = -1;
TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
/*
* Congestion drops.
* -1: no congestion feedback (not recommended).
* 0: backpressure the channel instead of dropping packets right away.
* 1: no backpressure, drop packets for the congested queue immediately.
*/
static int cong_drop = 0;
TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
/*
* Deliver multiple frames in the same free list buffer if they fit.
* -1: let the driver decide whether to enable buffer packing or not.
* 0: disable buffer packing.
* 1: enable buffer packing.
*/
static int buffer_packing = -1;
TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
/*
* Start next frame in a packed buffer at this boundary.
* -1: driver should figure out a good value.
* T4:
* ---
* if fl_pad != 0
* value specified here will be overridden by fl_pad.
* else
* power of 2 from 32 to 4096 (both inclusive) is a valid value here.
* T5:
* ---
* 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
*/
static int fl_pack = -1;
static int t4_fl_pack;
static int t5_fl_pack;
TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
/*
* Allow the driver to create mbuf(s) in a cluster allocated for rx.
* 0: never; always allocate mbufs from the zone_mbuf UMA zone.
* 1: ok to create mbuf(s) within a cluster if there is room.
*/
static int allow_mbufs_in_cluster = 1;
TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
/*
* Largest rx cluster size that the driver is allowed to allocate.
*/
static int largest_rx_cluster = MJUM16BYTES;
TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
/*
* Size of cluster allocation that's most likely to succeed. The driver will
* fall back to this size if it fails to allocate clusters larger than this.
*/
static int safest_rx_cluster = PAGE_SIZE;
TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
/* Used to track coalesced tx work request */
struct txpkts {
uint64_t *flitp; /* ptr to flit where next pkt should start */
uint8_t npkt; /* # of packets in this work request */
uint8_t nflits; /* # of flits used by this work request */
uint16_t plen; /* total payload (sum of all packets) */
};
/* A packet's SGL. This + m_pkthdr has all info needed for tx */
struct sgl {
int nsegs; /* # of segments in the SGL, 0 means imm. tx */
int nflits; /* # of flits needed for the SGL */
bus_dma_segment_t seg[TX_SGL_SEGS];
};
static int service_iq(struct sge_iq *, int);
static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
int *);
static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
int);
static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
char *);
static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
char *);
static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
bus_addr_t *, void **);
static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
void *);
static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
int, int);
static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
struct sge_fl *);
static int alloc_fwq(struct adapter *);
static int free_fwq(struct adapter *);
static int alloc_mgmtq(struct adapter *);
static int free_mgmtq(struct adapter *);
static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
struct sysctl_oid *);
static int free_rxq(struct port_info *, struct sge_rxq *);
#ifdef TCP_OFFLOAD
static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
struct sysctl_oid *);
static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
#endif
static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
#ifdef TCP_OFFLOAD
static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
#endif
static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
static int free_eq(struct adapter *, struct sge_eq *);
static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
struct sysctl_oid *);
static int free_wrq(struct adapter *, struct sge_wrq *);
static int alloc_txq(struct port_info *, struct sge_txq *, int,
struct sysctl_oid *);
static int free_txq(struct port_info *, struct sge_txq *);
static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
static inline void iq_next(struct sge_iq *);
static inline void ring_fl_db(struct adapter *, struct sge_fl *);
static int refill_fl(struct adapter *, struct sge_fl *, int);
static void refill_sfl(void *);
static int alloc_fl_sdesc(struct sge_fl *);
static void free_fl_sdesc(struct adapter *, struct sge_fl *);
static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
static void find_safe_refill_source(struct adapter *, struct sge_fl *);
static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
static int free_pkt_sgl(struct sge_txq *, struct sgl *);
static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
struct sgl *);
static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
struct mbuf *, struct sgl *);
static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
struct txpkts *, struct mbuf *, struct sgl *);
static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
static inline void ring_eq_db(struct adapter *, struct sge_eq *);
static inline int reclaimable(struct sge_eq *);
static int reclaim_tx_descs(struct sge_txq *, int, int);
static void write_eqflush_wr(struct sge_eq *);
static __be64 get_flit(bus_dma_segment_t *, int, int);
static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
/*
* Called on MOD_LOAD. Validates and calculates the SGE tunables.
*/
void
t4_sge_modload(void)
{
int pad;
/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
#if defined(__i386__) || defined(__amd64__)
pad = max(cpu_clflush_line_size, 16);
#else
pad = max(CACHE_LINE_SIZE, 16);
#endif
pad = min(pad, 4096);
if (fl_pktshift < 0 || fl_pktshift > 7) {
printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
" using 2 instead.\n", fl_pktshift);
fl_pktshift = 2;
}
if (fl_pad != 0 &&
(fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
if (fl_pad != -1) {
printf("Invalid hw.cxgbe.fl_pad value (%d),"
" using %d instead.\n", fl_pad, max(pad, 32));
}
fl_pad = max(pad, 32);
}
/*
* T4 has the same pad and pack boundary. If a pad boundary is set,
* pack boundary must be set to the same value. Otherwise take the
* specified value or auto-calculate something reasonable.
*/
if (fl_pad)
t4_fl_pack = fl_pad;
else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
t4_fl_pack = max(pad, 32);
else
t4_fl_pack = fl_pack;
/* T5's pack boundary is independent of the pad boundary. */
if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
!powerof2(fl_pack))
t5_fl_pack = max(pad, CACHE_LINE_SIZE);
else
t5_fl_pack = fl_pack;
if (spg_len != 64 && spg_len != 128) {
int len;
#if defined(__i386__) || defined(__amd64__)
len = cpu_clflush_line_size > 64 ? 128 : 64;
#else
len = 64;
#endif
if (spg_len != -1) {
printf("Invalid hw.cxgbe.spg_len value (%d),"
" using %d instead.\n", spg_len, len);
}
spg_len = len;
}
if (cong_drop < -1 || cong_drop > 1) {
printf("Invalid hw.cxgbe.cong_drop value (%d),"
" using 0 instead.\n", cong_drop);
cong_drop = 0;
}
}
void
t4_init_sge_cpl_handlers(struct adapter *sc)
{
t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
}
/*
* adap->params.vpd.cclk must be set up before this is called.
*/
void
t4_tweak_chip_settings(struct adapter *sc)
{
int i;
uint32_t v, m;
int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
static int sge_flbuf_sizes[] = {
MCLBYTES,
#if MJUMPAGESIZE != MCLBYTES
MJUMPAGESIZE,
MJUMPAGESIZE - CL_METADATA_SIZE,
MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
#endif
MJUM9BYTES,
MJUM16BYTES,
MCLBYTES - MSIZE - CL_METADATA_SIZE,
MJUM9BYTES - CL_METADATA_SIZE,
MJUM16BYTES - CL_METADATA_SIZE,
};
KASSERT(sc->flags & MASTER_PF,
("%s: trying to change chip settings when not master.", __func__));
m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
V_EGRSTATUSPAGESIZE(spg_len == 128);
if (is_t4(sc) && (fl_pad || buffer_packing)) {
/* t4_fl_pack has the correct value even when fl_pad = 0 */
m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
} else if (is_t5(sc) && fl_pad) {
m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
}
t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
if (is_t5(sc) && buffer_packing) {
m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
if (t5_fl_pack == 16)
v = V_INGPACKBOUNDARY(0);
else
v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
}
v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
("%s: hw buffer size table too big", __func__));
for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
sge_flbuf_sizes[i]);
}
v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
KASSERT(intr_timer[0] <= timer_max,
("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
timer_max));
for (i = 1; i < nitems(intr_timer); i++) {
KASSERT(intr_timer[i] >= intr_timer[i - 1],
("%s: timers not listed in increasing order (%d)",
__func__, i));
while (intr_timer[i] > timer_max) {
if (i == nitems(intr_timer) - 1) {
intr_timer[i] = timer_max;
break;
}
intr_timer[i] += intr_timer[i - 1];
intr_timer[i] /= 2;
}
}
v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
if (cong_drop == 0) {
m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
F_TUNNELCNGDROP3;
t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
}
/* 4K, 16K, 64K, 256K DDP "page sizes" */
v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
m = v = F_TDDPTAGTCB;
t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
F_RESETDDPOFFSET;
v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
}
/*
* SGE wants the buffer to be at least 64B and then a multiple of the pad
* boundary or 16, whichever is greater.
*/
static inline int
hwsz_ok(int hwsz)
{
int mask = max(fl_pad, 16) - 1;
return (hwsz >= 64 && (hwsz & mask) == 0);
}
/*
* XXX: driver really should be able to deal with unexpected settings.
*/
int
t4_read_chip_settings(struct adapter *sc)
{
struct sge *s = &sc->sge;
int i, j, n, rc = 0;
uint32_t m, v, r;
uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
static int sw_buf_sizes[] = { /* Sorted by size */
MCLBYTES,
#if MJUMPAGESIZE != MCLBYTES
MJUMPAGESIZE,
#endif
MJUM9BYTES,
MJUM16BYTES
};
struct sw_zone_info *swz, *safe_swz;
struct hw_buf_info *hwb;
m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
V_EGRSTATUSPAGESIZE(spg_len == 128);
if (is_t4(sc) && (fl_pad || buffer_packing)) {
m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
} else if (is_t5(sc) && fl_pad) {
m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
}
r = t4_read_reg(sc, A_SGE_CONTROL);
if ((r & m) != v) {
device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
rc = EINVAL;
}
if (is_t5(sc) && buffer_packing) {
m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
if (t5_fl_pack == 16)
v = V_INGPACKBOUNDARY(0);
else
v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
r = t4_read_reg(sc, A_SGE_CONTROL2);
if ((r & m) != v) {
device_printf(sc->dev,
"invalid SGE_CONTROL2(0x%x)\n", r);
rc = EINVAL;
}
}
s->pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
if (r != v) {
device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
rc = EINVAL;
}
/* Filter out unusable hw buffer sizes entirely (mark with -2). */
hwb = &s->hw_buf_info[0];
for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
hwb->size = r;
hwb->zidx = hwsz_ok(r) ? -1 : -2;
hwb->next = -1;
}
/*
* Create a sorted list in decreasing order of hw buffer sizes (and so
* increasing order of spare area) for each software zone.
*/
n = 0; /* no usable buffer size to begin with */
swz = &s->sw_zone_info[0];
safe_swz = NULL;
for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
int8_t head = -1, tail = -1;
swz->size = sw_buf_sizes[i];
swz->zone = m_getzone(swz->size);
swz->type = m_gettype(swz->size);
if (swz->size == safest_rx_cluster)
safe_swz = swz;
hwb = &s->hw_buf_info[0];
for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
if (hwb->zidx != -1 || hwb->size > swz->size)
continue;
hwb->zidx = i;
if (head == -1)
head = tail = j;
else if (hwb->size < s->hw_buf_info[tail].size) {
s->hw_buf_info[tail].next = j;
tail = j;
} else {
int8_t *cur;
struct hw_buf_info *t;
for (cur = &head; *cur != -1; cur = &t->next) {
t = &s->hw_buf_info[*cur];
if (hwb->size == t->size) {
hwb->zidx = -2;
break;
}
if (hwb->size > t->size) {
hwb->next = *cur;
*cur = j;
break;
}
}
}
}
swz->head_hwidx = head;
swz->tail_hwidx = tail;
if (tail != -1) {
n++;
if (swz->size - s->hw_buf_info[tail].size >=
CL_METADATA_SIZE)
sc->flags |= BUF_PACKING_OK;
}
}
if (n == 0) {
device_printf(sc->dev, "no usable SGE FL buffer size.\n");
rc = EINVAL;
}
s->safe_hwidx1 = -1;
s->safe_hwidx2 = -1;
if (safe_swz != NULL) {
s->safe_hwidx1 = safe_swz->head_hwidx;
for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
int spare;
hwb = &s->hw_buf_info[i];
spare = safe_swz->size - hwb->size;
if (spare < CL_METADATA_SIZE)
continue;
if (s->safe_hwidx2 == -1 ||
spare == CL_METADATA_SIZE + MSIZE)
s->safe_hwidx2 = i;
if (spare >= CL_METADATA_SIZE + MSIZE)
break;
}
}
r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
s->counter_val[0] = G_THRESHOLD_0(r);
s->counter_val[1] = G_THRESHOLD_1(r);
s->counter_val[2] = G_THRESHOLD_2(r);
s->counter_val[3] = G_THRESHOLD_3(r);
r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
if (cong_drop == 0) {
m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
F_TUNNELCNGDROP3;
r = t4_read_reg(sc, A_TP_PARA_REG3);
if (r & m) {
device_printf(sc->dev,
"invalid TP_PARA_REG3(0x%x)\n", r);
rc = EINVAL;
}
}
v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
if (r != v) {
device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
rc = EINVAL;
}
m = v = F_TDDPTAGTCB;
r = t4_read_reg(sc, A_ULP_RX_CTL);
if ((r & m) != v) {
device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
rc = EINVAL;
}
m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
F_RESETDDPOFFSET;
v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
r = t4_read_reg(sc, A_TP_PARA_REG5);
if ((r & m) != v) {
device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
rc = EINVAL;
}
r = t4_read_reg(sc, A_SGE_CONM_CTRL);
s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
if (is_t4(sc))
s->fl_starve_threshold2 = s->fl_starve_threshold;
else
s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
/* egress queues: log2 of # of doorbells per BAR2 page */
r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
r >>= S_QUEUESPERPAGEPF0 +
(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
/* ingress queues: log2 of # of doorbells per BAR2 page */
r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
r >>= S_QUEUESPERPAGEPF0 +
(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
t4_init_tp_params(sc);
t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
return (rc);
}
int
t4_create_dma_tag(struct adapter *sc)
{
int rc;
rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
NULL, &sc->dmat);
if (rc != 0) {
device_printf(sc->dev,
"failed to create main DMA tag: %d\n", rc);
}
return (rc);
}
static inline int
enable_buffer_packing(struct adapter *sc)
{
if (sc->flags & BUF_PACKING_OK &&
((is_t5(sc) && buffer_packing) || /* 1 or -1 both ok for T5 */
(is_t4(sc) && buffer_packing == 1)))
return (1);
return (0);
}
void
t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *children)
{
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
"freelist buffer sizes");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
NULL, fl_pad, "payload pad boundary (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
NULL, spg_len, "status page size (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
NULL, cong_drop, "congestion drop setting");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
NULL, enable_buffer_packing(sc),
"pack multiple frames in one fl buffer");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
}
int
t4_destroy_dma_tag(struct adapter *sc)
{
if (sc->dmat)
bus_dma_tag_destroy(sc->dmat);
return (0);
}
/*
* Allocate and initialize the firmware event queue and the management queue.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*/
int
t4_setup_adapter_queues(struct adapter *sc)
{
int rc;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
sysctl_ctx_init(&sc->ctx);
sc->flags |= ADAP_SYSCTL_CTX;
/*
* Firmware event queue
*/
rc = alloc_fwq(sc);
if (rc != 0)
return (rc);
/*
* Management queue. This is just a control queue that uses the fwq as
* its associated iq.
*/
rc = alloc_mgmtq(sc);
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_adapter_queues(struct adapter *sc)
{
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
/* Do this before freeing the queue */
if (sc->flags & ADAP_SYSCTL_CTX) {
sysctl_ctx_free(&sc->ctx);
sc->flags &= ~ADAP_SYSCTL_CTX;
}
free_mgmtq(sc);
free_fwq(sc);
return (0);
}
static inline int
first_vector(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
int rc = T4_EXTRA_INTR, i;
if (sc->intr_count == 1)
return (0);
for_each_port(sc, i) {
struct port_info *p = sc->port[i];
if (i == pi->port_id)
break;
#ifdef TCP_OFFLOAD
if (sc->flags & INTR_DIRECT)
rc += p->nrxq + p->nofldrxq;
else
rc += max(p->nrxq, p->nofldrxq);
#else
/*
* Not compiled with offload support and intr_count > 1. Only
* NIC queues exist and they'd better be taking direct
* interrupts.
*/
KASSERT(sc->flags & INTR_DIRECT,
("%s: intr_count %d, !INTR_DIRECT", __func__,
sc->intr_count));
rc += p->nrxq;
#endif
}
return (rc);
}
/*
* Given an arbitrary "index," come up with an iq that can be used by other
* queues (of this port) for interrupt forwarding, SGE egress updates, etc.
* The iq returned is guaranteed to be something that takes direct interrupts.
*/
static struct sge_iq *
port_intr_iq(struct port_info *pi, int idx)
{
struct adapter *sc = pi->adapter;
struct sge *s = &sc->sge;
struct sge_iq *iq = NULL;
if (sc->intr_count == 1)
return (&sc->sge.fwq);
#ifdef TCP_OFFLOAD
if (sc->flags & INTR_DIRECT) {
idx %= pi->nrxq + pi->nofldrxq;
if (idx >= pi->nrxq) {
idx -= pi->nrxq;
iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
} else
iq = &s->rxq[pi->first_rxq + idx].iq;
} else {
idx %= max(pi->nrxq, pi->nofldrxq);
if (pi->nrxq >= pi->nofldrxq)
iq = &s->rxq[pi->first_rxq + idx].iq;
else
iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
}
#else
/*
* Not compiled with offload support and intr_count > 1. Only NIC
* queues exist and they'd better be taking direct interrupts.
*/
KASSERT(sc->flags & INTR_DIRECT,
("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count));
idx %= pi->nrxq;
iq = &s->rxq[pi->first_rxq + idx].iq;
#endif
KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__));
return (iq);
}
/* Maximum payload that can be delivered with a single iq descriptor */
static inline int
mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
{
int payload;
#ifdef TCP_OFFLOAD
if (toe) {
payload = sc->tt.rx_coalesce ?
G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
} else {
#endif
/* large enough even when hw VLAN extraction is disabled */
payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
mtu;
#ifdef TCP_OFFLOAD
}
#endif
payload = roundup2(payload, fl_pad);
return (payload);
}
int
t4_setup_port_queues(struct port_info *pi)
{
int rc = 0, i, j, intr_idx, iqid;
struct sge_rxq *rxq;
struct sge_txq *txq;
struct sge_wrq *ctrlq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
struct sge_wrq *ofld_txq;
struct sysctl_oid *oid2 = NULL;
#endif
char name[16];
struct adapter *sc = pi->adapter;
struct ifnet *ifp = pi->ifp;
struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
int maxp, pack, mtu = ifp->if_mtu;
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD,
NULL, "rx queues");
#ifdef TCP_OFFLOAD
if (is_offload(sc)) {
oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
CTLFLAG_RD, NULL,
"rx queues for offloaded TCP connections");
}
#endif
/* Interrupt vector to start from (when using multiple vectors) */
intr_idx = first_vector(pi);
/*
* First pass over all rx queues (NIC and TOE):
* a) initialize iq and fl
* b) allocate queue iff it will take direct interrupts.
*/
maxp = mtu_to_max_payload(sc, mtu, 0);
pack = enable_buffer_packing(sc);
for_each_rxq(pi, i, rxq) {
init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
RX_IQ_ESIZE);
snprintf(name, sizeof(name), "%s rxq%d-fl",
device_get_nameunit(pi->dev), i);
init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
if (sc->flags & INTR_DIRECT
#ifdef TCP_OFFLOAD
|| (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
#endif
) {
rxq->iq.flags |= IQ_INTR;
rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
intr_idx++;
}
}
#ifdef TCP_OFFLOAD
maxp = mtu_to_max_payload(sc, mtu, 1);
for_each_ofld_rxq(pi, i, ofld_rxq) {
init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
pi->qsize_rxq, RX_IQ_ESIZE);
snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
device_get_nameunit(pi->dev), i);
init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
if (sc->flags & INTR_DIRECT ||
(sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
ofld_rxq->iq.flags |= IQ_INTR;
rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
if (rc != 0)
goto done;
intr_idx++;
}
}
#endif
/*
* Second pass over all rx queues (NIC and TOE). The queues forwarding
* their interrupts are allocated now.
*/
j = 0;
for_each_rxq(pi, i, rxq) {
if (rxq->iq.flags & IQ_INTR)
continue;
intr_idx = port_intr_iq(pi, j)->abs_id;
rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
j++;
}
#ifdef TCP_OFFLOAD
for_each_ofld_rxq(pi, i, ofld_rxq) {
if (ofld_rxq->iq.flags & IQ_INTR)
continue;
intr_idx = port_intr_iq(pi, j)->abs_id;
rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
if (rc != 0)
goto done;
j++;
}
#endif
/*
* Now the tx queues. Only one pass needed.
*/
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
NULL, "tx queues");
j = 0;
for_each_txq(pi, i, txq) {
uint16_t iqid;
iqid = port_intr_iq(pi, j)->cntxt_id;
snprintf(name, sizeof(name), "%s txq%d",
device_get_nameunit(pi->dev), i);
init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
name);
rc = alloc_txq(pi, txq, i, oid);
if (rc != 0)
goto done;
j++;
}
#ifdef TCP_OFFLOAD
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
for_each_ofld_txq(pi, i, ofld_txq) {
uint16_t iqid;
iqid = port_intr_iq(pi, j)->cntxt_id;
snprintf(name, sizeof(name), "%s ofld_txq%d",
device_get_nameunit(pi->dev), i);
init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
iqid, name);
snprintf(name, sizeof(name), "%d", i);
oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
name, CTLFLAG_RD, NULL, "offload tx queue");
rc = alloc_wrq(sc, pi, ofld_txq, oid2);
if (rc != 0)
goto done;
j++;
}
#endif
/*
* Finally, the control queue.
*/
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
NULL, "ctrl queue");
ctrlq = &sc->sge.ctrlq[pi->port_id];
iqid = port_intr_iq(pi, 0)->cntxt_id;
snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
rc = alloc_wrq(sc, pi, ctrlq, oid);
done:
if (rc)
t4_teardown_port_queues(pi);
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_port_queues(struct port_info *pi)
{
int i;
struct adapter *sc = pi->adapter;
struct sge_rxq *rxq;
struct sge_txq *txq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
struct sge_wrq *ofld_txq;
#endif
/* Do this before freeing the queues */
if (pi->flags & PORT_SYSCTL_CTX) {
sysctl_ctx_free(&pi->ctx);
pi->flags &= ~PORT_SYSCTL_CTX;
}
/*
* Take down all the tx queues first, as they reference the rx queues
* (for egress updates, etc.).
*/
free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
for_each_txq(pi, i, txq) {
free_txq(pi, txq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_txq(pi, i, ofld_txq) {
free_wrq(sc, ofld_txq);
}
#endif
/*
* Then take down the rx queues that forward their interrupts, as they
* reference other rx queues.
*/
for_each_rxq(pi, i, rxq) {
if ((rxq->iq.flags & IQ_INTR) == 0)
free_rxq(pi, rxq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_rxq(pi, i, ofld_rxq) {
if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
free_ofld_rxq(pi, ofld_rxq);
}
#endif
/*
* Then take down the rx queues that take direct interrupts.
*/
for_each_rxq(pi, i, rxq) {
if (rxq->iq.flags & IQ_INTR)
free_rxq(pi, rxq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_rxq(pi, i, ofld_rxq) {
if (ofld_rxq->iq.flags & IQ_INTR)
free_ofld_rxq(pi, ofld_rxq);
}
#endif
return (0);
}
/*
* Deals with errors and the firmware event queue. All data rx queues forward
* their interrupt to the firmware event queue.
*/
void
t4_intr_all(void *arg)
{
struct adapter *sc = arg;
struct sge_iq *fwq = &sc->sge.fwq;
t4_intr_err(arg);
if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
service_iq(fwq, 0);
atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
}
}
/* Deals with error interrupts */
void
t4_intr_err(void *arg)
{
struct adapter *sc = arg;
t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
t4_slow_intr_handler(sc);
}
void
t4_intr_evt(void *arg)
{
struct sge_iq *iq = arg;
if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
service_iq(iq, 0);
atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
}
}
void
t4_intr(void *arg)
{
struct sge_iq *iq = arg;
if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
service_iq(iq, 0);
atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
}
}
/*
* Deals with anything and everything on the given ingress queue.
*/
static int
service_iq(struct sge_iq *iq, int budget)
{
struct sge_iq *q;
struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */
struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */
struct adapter *sc = iq->adapter;
struct rsp_ctrl *ctrl;
const struct rss_header *rss;
int ndescs = 0, limit, fl_bufs_used = 0;
int rsp_type;
uint32_t lq;
struct mbuf *m0;
STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
#if defined(INET) || defined(INET6)
const struct timeval lro_timeout = {0, sc->lro_timeout};
#endif
limit = budget ? budget : iq->qsize / 8;
KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
/*
* We always come back and check the descriptor ring for new indirect
* interrupts and other responses after running a single handler.
*/
for (;;) {
while (is_new_response(iq, &ctrl)) {
rmb();
m0 = NULL;
rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
lq = be32toh(ctrl->pldbuflen_qid);
rss = (const void *)iq->cdesc;
switch (rsp_type) {
case X_RSPD_TYPE_FLBUF:
KASSERT(iq->flags & IQ_HAS_FL,
("%s: data for an iq (%p) with no freelist",
__func__, iq));
m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
if (__predict_false(m0 == NULL))
goto process_iql;
#ifdef T4_PKT_TIMESTAMP
/*
* 60 bit timestamp for the payload is
* *(uint64_t *)m0->m_pktdat. Note that it is
* in the leading free-space in the mbuf. The
* kernel can clobber it during a pullup,
* m_copymdata, etc. You need to make sure that
* the mbuf reaches you unmolested if you care
* about the timestamp.
*/
*(uint64_t *)m0->m_pktdat =
be64toh(ctrl->u.last_flit) &
0xfffffffffffffff;
#endif
/* fall through */
case X_RSPD_TYPE_CPL:
KASSERT(rss->opcode < NUM_CPL_CMDS,
("%s: bad opcode %02x.", __func__,
rss->opcode));
sc->cpl_handler[rss->opcode](iq, rss, m0);
break;
case X_RSPD_TYPE_INTR:
/*
* Interrupts should be forwarded only to queues
* that are not forwarding their interrupts.
* This means service_iq can recurse but only 1
* level deep.
*/
KASSERT(budget == 0,
("%s: budget %u, rsp_type %u", __func__,
budget, rsp_type));
/*
* There are 1K interrupt-capable queues (qids 0
* through 1023). A response type indicating a
* forwarded interrupt with a qid >= 1K is an
* iWARP async notification.
*/
if (lq >= 1024) {
sc->an_handler(iq, ctrl);
break;
}
q = sc->sge.iqmap[lq - sc->sge.iq_start];
if (atomic_cmpset_int(&q->state, IQS_IDLE,
IQS_BUSY)) {
if (service_iq(q, q->qsize / 8) == 0) {
atomic_cmpset_int(&q->state,
IQS_BUSY, IQS_IDLE);
} else {
STAILQ_INSERT_TAIL(&iql, q,
link);
}
}
break;
default:
KASSERT(0,
("%s: illegal response type %d on iq %p",
__func__, rsp_type, iq));
log(LOG_ERR,
"%s: illegal response type %d on iq %p",
device_get_nameunit(sc->dev), rsp_type, iq);
break;
}
if (fl_bufs_used >= 16) {
FL_LOCK(fl);
fl->needed += fl_bufs_used;
refill_fl(sc, fl, 32);
FL_UNLOCK(fl);
fl_bufs_used = 0;
}
iq_next(iq);
if (++ndescs == limit) {
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
V_CIDXINC(ndescs) |
V_INGRESSQID(iq->cntxt_id) |
V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
ndescs = 0;
#if defined(INET) || defined(INET6)
if (iq->flags & IQ_LRO_ENABLED &&
sc->lro_timeout != 0) {
tcp_lro_flush_inactive(&rxq->lro,
&lro_timeout);
}
#endif
if (budget)
return (EINPROGRESS);
}
}
process_iql:
if (STAILQ_EMPTY(&iql))
break;
/*
* Process the head only, and send it to the back of the list if
* it's still not done.
*/
q = STAILQ_FIRST(&iql);
STAILQ_REMOVE_HEAD(&iql, link);
if (service_iq(q, q->qsize / 8) == 0)
atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
else
STAILQ_INSERT_TAIL(&iql, q, link);
}
#if defined(INET) || defined(INET6)
if (iq->flags & IQ_LRO_ENABLED) {
struct lro_ctrl *lro = &rxq->lro;
struct lro_entry *l;
while (!SLIST_EMPTY(&lro->lro_active)) {
l = SLIST_FIRST(&lro->lro_active);
SLIST_REMOVE_HEAD(&lro->lro_active, next);
tcp_lro_flush(lro, l);
}
}
#endif
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
if (iq->flags & IQ_HAS_FL) {
int starved;
FL_LOCK(fl);
fl->needed += fl_bufs_used;
starved = refill_fl(sc, fl, 64);
FL_UNLOCK(fl);
if (__predict_false(starved != 0))
add_fl_to_sfl(sc, fl);
}
return (0);
}
static inline int
cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
{
int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
if (rc)
MPASS(cll->region3 >= CL_METADATA_SIZE);
return (rc);
}
static inline struct cluster_metadata *
cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
caddr_t cl)
{
if (cl_has_metadata(fl, cll)) {
struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
return ((struct cluster_metadata *)(cl + swz->size) - 1);
}
return (NULL);
}
static int
rxb_free(struct mbuf *m, void *arg1, void *arg2)
{
uma_zone_t zone = arg1;
caddr_t cl = arg2;
uma_zfree(zone, cl);
return (EXT_FREE_OK);
}
/*
* The mbuf returned by this function could be allocated from zone_mbuf or
* constructed in spare room in the cluster.
*
* The mbuf carries the payload in one of these ways
* a) frame inside the mbuf (mbuf from zone_mbuf)
* b) m_cljset (for clusters without metadata) zone_mbuf
* c) m_extaddref (cluster with metadata) inline mbuf
* d) m_extaddref (cluster with metadata) zone_mbuf
*/
static struct mbuf *
get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int total, int flags)
{
struct mbuf *m;
struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
struct cluster_layout *cll = &sd->cll;
struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
int len, padded_len;
caddr_t payload;
len = min(total, hwb->size - fl->rx_offset);
padded_len = roundup2(len, fl_pad);
payload = sd->cl + cll->region1 + fl->rx_offset;
if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
/*
* Copy payload into a freshly allocated mbuf.
*/
m = flags & M_PKTHDR ?
m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
if (m == NULL)
return (NULL);
fl->mbuf_allocated++;
#ifdef T4_PKT_TIMESTAMP
/* Leave room for a timestamp */
m->m_data += 8;
#endif
/* copy data to mbuf */
bcopy(payload, mtod(m, caddr_t), len);
} else if (sd->nmbuf * MSIZE < cll->region1) {
/*
* There's spare room in the cluster for an mbuf. Create one
* and associate it with the payload that's in the cluster too.
*/
MPASS(clm != NULL);
m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
/* No bzero required */
if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, flags | M_NOFREE))
return (NULL);
fl->mbuf_inlined++;
m_extaddref(m, payload, padded_len, &clm->refcount, rxb_free,
swz->zone, sd->cl);
sd->nmbuf++;
} else {
/*
* Grab an mbuf from zone_mbuf and associate it with the
* payload in the cluster.
*/
m = flags & M_PKTHDR ?
m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
if (m == NULL)
return (NULL);
fl->mbuf_allocated++;
if (clm != NULL)
m_extaddref(m, payload, padded_len, &clm->refcount,
rxb_free, swz->zone, sd->cl);
else {
m_cljset(m, sd->cl, swz->type);
sd->cl = NULL; /* consumed, not a recycle candidate */
}
}
if (flags & M_PKTHDR)
m->m_pkthdr.len = total;
m->m_len = len;
if (fl->flags & FL_BUF_PACKING) {
fl->rx_offset += roundup2(padded_len, sc->sge.pack_boundary);
MPASS(fl->rx_offset <= hwb->size);
if (fl->rx_offset < hwb->size)
return (m); /* without advancing the cidx */
}
if (__predict_false(++fl->cidx == fl->cap))
fl->cidx = 0;
fl->rx_offset = 0;
return (m);
}
static struct mbuf *
get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
int *fl_bufs_used)
{
struct mbuf *m0, *m, **pnext;
u_int nbuf, len;
/*
* No assertion for the fl lock because we don't need it. This routine
* is called only from the rx interrupt handler and it only updates
* fl->cidx. (Contrast that with fl->pidx/fl->needed which could be
* updated in the rx interrupt handler or the starvation helper routine.
* That's why code that manipulates fl->pidx/fl->needed needs the fl
* lock but this routine does not).
*/
nbuf = 0;
len = G_RSPD_LEN(len_newbuf);
if (__predict_false(fl->m0 != NULL)) {
MPASS(len == fl->m0->m_pkthdr.len);
MPASS(fl->remaining < len);
m0 = fl->m0;
pnext = fl->pnext;
len = fl->remaining;
fl->m0 = NULL;
goto get_segment;
}
if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
nbuf++;
fl->rx_offset = 0;
if (__predict_false(++fl->cidx == fl->cap))
fl->cidx = 0;
}
/*
* Payload starts at rx_offset in the current hw buffer. Its length is
* 'len' and it may span multiple hw buffers.
*/
m0 = get_scatter_segment(sc, fl, len, M_PKTHDR);
len -= m0->m_len;
pnext = &m0->m_next;
while (len > 0) {
nbuf++;
get_segment:
MPASS(fl->rx_offset == 0);
m = get_scatter_segment(sc, fl, len, 0);
if (m == NULL) {
fl->m0 = m0;
fl->pnext = pnext;
fl->remaining = len;
return (NULL);
}
*pnext = m;
pnext = &m->m_next;
len -= m->m_len;
}
*pnext = NULL;
if (fl->rx_offset == 0)
nbuf++;
(*fl_bufs_used) += nbuf;
return (m0);
}
static int
t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
{
struct sge_rxq *rxq = iq_to_rxq(iq);
struct ifnet *ifp = rxq->ifp;
const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
#if defined(INET) || defined(INET6)
struct lro_ctrl *lro = &rxq->lro;
#endif
KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
rss->opcode));
m0->m_pkthdr.len -= fl_pktshift;
m0->m_len -= fl_pktshift;
m0->m_data += fl_pktshift;
m0->m_pkthdr.rcvif = ifp;
m0->m_flags |= M_FLOWID;
m0->m_pkthdr.flowid = be32toh(rss->hash_val);
if (cpl->csum_calc && !cpl->err_vec) {
if (ifp->if_capenable & IFCAP_RXCSUM &&
cpl->l2info & htobe32(F_RXF_IP)) {
m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
rxq->rxcsum++;
} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
cpl->l2info & htobe32(F_RXF_IP6)) {
m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
CSUM_PSEUDO_HDR);
rxq->rxcsum++;
}
if (__predict_false(cpl->ip_frag))
m0->m_pkthdr.csum_data = be16toh(cpl->csum);
else
m0->m_pkthdr.csum_data = 0xffff;
}
if (cpl->vlan_ex) {
m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
m0->m_flags |= M_VLANTAG;
rxq->vlan_extraction++;
}
#if defined(INET) || defined(INET6)
if (cpl->l2info & htobe32(F_RXF_LRO) &&
iq->flags & IQ_LRO_ENABLED &&
tcp_lro_rx(lro, m0, 0) == 0) {
/* queued for LRO */
} else
#endif
ifp->if_input(ifp, m0);
return (0);
}
/*
* Doesn't fail. Holds on to work requests it can't send right away.
*/
void
t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
{
struct sge_eq *eq = &wrq->eq;
int can_reclaim;
caddr_t dst;
TXQ_LOCK_ASSERT_OWNED(wrq);
#ifdef TCP_OFFLOAD
KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
(eq->flags & EQ_TYPEMASK) == EQ_CTRL,
("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
#else
KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
#endif
if (__predict_true(wr != NULL))
STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
can_reclaim = reclaimable(eq);
if (__predict_false(eq->flags & EQ_STALLED)) {
if (can_reclaim < tx_resume_threshold(eq))
return;
eq->flags &= ~EQ_STALLED;
eq->unstalled++;
}
eq->cidx += can_reclaim;
eq->avail += can_reclaim;
if (__predict_false(eq->cidx >= eq->cap))
eq->cidx -= eq->cap;
while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
int ndesc;
if (__predict_false(wr->wr_len < 0 ||
wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
#ifdef INVARIANTS
panic("%s: work request with length %d", __func__,
wr->wr_len);
#endif
#ifdef KDB
kdb_backtrace();
#endif
log(LOG_ERR, "%s: %s work request with length %d",
device_get_nameunit(sc->dev), __func__, wr->wr_len);
STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
free_wrqe(wr);
continue;
}
ndesc = howmany(wr->wr_len, EQ_ESIZE);
if (eq->avail < ndesc) {
wrq->no_desc++;
break;
}
dst = (void *)&eq->desc[eq->pidx];
copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
eq->pidx += ndesc;
eq->avail -= ndesc;
if (__predict_false(eq->pidx >= eq->cap))
eq->pidx -= eq->cap;
eq->pending += ndesc;
if (eq->pending >= 8)
ring_eq_db(sc, eq);
wrq->tx_wrs++;
STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
free_wrqe(wr);
if (eq->avail < 8) {
can_reclaim = reclaimable(eq);
eq->cidx += can_reclaim;
eq->avail += can_reclaim;
if (__predict_false(eq->cidx >= eq->cap))
eq->cidx -= eq->cap;
}
}
if (eq->pending)
ring_eq_db(sc, eq);
if (wr != NULL) {
eq->flags |= EQ_STALLED;
if (callout_pending(&eq->tx_callout) == 0)
callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
}
}
/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
#define TXPKTS_PKT_HDR ((\
sizeof(struct ulp_txpkt) + \
sizeof(struct ulptx_idata) + \
sizeof(struct cpl_tx_pkt_core) \
) / 8)
/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
#define TXPKTS_WR_HDR (\
sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
TXPKTS_PKT_HDR)
/* Header of a tx WR, before SGL of first packet (in flits) */
#define TXPKT_WR_HDR ((\
sizeof(struct fw_eth_tx_pkt_wr) + \
sizeof(struct cpl_tx_pkt_core) \
) / 8 )
/* Header of a tx LSO WR, before SGL of first packet (in flits) */
#define TXPKT_LSO_WR_HDR ((\
sizeof(struct fw_eth_tx_pkt_wr) + \
sizeof(struct cpl_tx_pkt_lso_core) + \
sizeof(struct cpl_tx_pkt_core) \
) / 8 )
int
t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
{
struct port_info *pi = (void *)ifp->if_softc;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
struct buf_ring *br = txq->br;
struct mbuf *next;
int rc, coalescing, can_reclaim;
struct txpkts txpkts;
struct sgl sgl;
TXQ_LOCK_ASSERT_OWNED(txq);
KASSERT(m, ("%s: called with nothing to do.", __func__));
KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
prefetch(&eq->desc[eq->pidx]);
prefetch(&txq->sdesc[eq->pidx]);
txpkts.npkt = 0;/* indicates there's nothing in txpkts */
coalescing = 0;
can_reclaim = reclaimable(eq);
if (__predict_false(eq->flags & EQ_STALLED)) {
if (can_reclaim < tx_resume_threshold(eq)) {
txq->m = m;
return (0);
}
eq->flags &= ~EQ_STALLED;
eq->unstalled++;
}
if (__predict_false(eq->flags & EQ_DOOMED)) {
m_freem(m);
while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
m_freem(m);
return (ENETDOWN);
}
if (eq->avail < 8 && can_reclaim)
reclaim_tx_descs(txq, can_reclaim, 32);
for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
if (eq->avail < 8)
break;
next = m->m_nextpkt;
m->m_nextpkt = NULL;
if (next || buf_ring_peek(br))
coalescing = 1;
rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
if (rc != 0) {
if (rc == ENOMEM) {
/* Short of resources, suspend tx */
m->m_nextpkt = next;
break;
}
/*
* Unrecoverable error for this packet, throw it away
* and move on to the next. get_pkt_sgl may already
* have freed m (it will be NULL in that case and the
* m_freem here is still safe).
*/
m_freem(m);
continue;
}
if (coalescing &&
add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
/* Successfully absorbed into txpkts */
write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
goto doorbell;
}
/*
* We weren't coalescing to begin with, or current frame could
* not be coalesced (add_to_txpkts flushes txpkts if a frame
* given to it can't be coalesced). Either way there should be
* nothing in txpkts.
*/
KASSERT(txpkts.npkt == 0,
("%s: txpkts not empty: %d", __func__, txpkts.npkt));
/* We're sending out individual packets now */
coalescing = 0;
if (eq->avail < 8)
reclaim_tx_descs(txq, 0, 8);
rc = write_txpkt_wr(pi, txq, m, &sgl);
if (rc != 0) {
/* Short of hardware descriptors, suspend tx */
/*
* This is an unlikely but expensive failure. We've
* done all the hard work (DMA mappings etc.) and now we
* can't send out the packet. What's worse, we have to
* spend even more time freeing up everything in sgl.
*/
txq->no_desc++;
free_pkt_sgl(txq, &sgl);
m->m_nextpkt = next;
break;
}
ETHER_BPF_MTAP(ifp, m);
if (sgl.nsegs == 0)
m_freem(m);
doorbell:
if (eq->pending >= 8)
ring_eq_db(sc, eq);
can_reclaim = reclaimable(eq);
if (can_reclaim >= 32)
reclaim_tx_descs(txq, can_reclaim, 64);
}
if (txpkts.npkt > 0)
write_txpkts_wr(txq, &txpkts);
/*
* m not NULL means there was an error but we haven't thrown it away.
* This can happen when we're short of tx descriptors (no_desc) or maybe
* even DMA maps (no_dmamap). Either way, a credit flush and reclaim
* will get things going again.
*/
if (m && !(eq->flags & EQ_CRFLUSHED)) {
struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
/*
* If EQ_CRFLUSHED is not set then we know we have at least one
* available descriptor because any WR that reduces eq->avail to
* 0 also sets EQ_CRFLUSHED.
*/
KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
txsd->desc_used = 1;
txsd->credits = 0;
write_eqflush_wr(eq);
}
txq->m = m;
if (eq->pending)
ring_eq_db(sc, eq);
reclaim_tx_descs(txq, 0, 128);
if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
return (0);
}
void
t4_update_fl_bufsize(struct ifnet *ifp)
{
struct port_info *pi = ifp->if_softc;
struct adapter *sc = pi->adapter;
struct sge_rxq *rxq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
#endif
struct sge_fl *fl;
int i, maxp, mtu = ifp->if_mtu;
maxp = mtu_to_max_payload(sc, mtu, 0);
for_each_rxq(pi, i, rxq) {
fl = &rxq->fl;
FL_LOCK(fl);
find_best_refill_source(sc, fl, maxp);
FL_UNLOCK(fl);
}
#ifdef TCP_OFFLOAD
maxp = mtu_to_max_payload(sc, mtu, 1);
for_each_ofld_rxq(pi, i, ofld_rxq) {
fl = &ofld_rxq->fl;
FL_LOCK(fl);
find_best_refill_source(sc, fl, maxp);
FL_UNLOCK(fl);
}
#endif
}
int
can_resume_tx(struct sge_eq *eq)
{
return (reclaimable(eq) >= tx_resume_threshold(eq));
}
static inline void
init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
int qsize, int esize)
{
KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
("%s: bad tmr_idx %d", __func__, tmr_idx));
KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */
("%s: bad pktc_idx %d", __func__, pktc_idx));
iq->flags = 0;
iq->adapter = sc;
iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
if (pktc_idx >= 0) {
iq->intr_params |= F_QINTR_CNT_EN;
iq->intr_pktc_idx = pktc_idx;
}
iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */
iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */
}
static inline void
init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, int pack,
char *name)
{
fl->qsize = qsize;
strlcpy(fl->lockname, name, sizeof(fl->lockname));
if (pack)
fl->flags |= FL_BUF_PACKING;
find_best_refill_source(sc, fl, maxp);
find_safe_refill_source(sc, fl);
}
static inline void
init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
uint16_t iqid, char *name)
{
KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
eq->flags = eqtype & EQ_TYPEMASK;
eq->tx_chan = tx_chan;
eq->iqid = iqid;
eq->qsize = qsize;
strlcpy(eq->lockname, name, sizeof(eq->lockname));
TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
}
static int
alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
bus_dmamap_t *map, bus_addr_t *pa, void **va)
{
int rc;
rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
if (rc != 0) {
device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
goto done;
}
rc = bus_dmamem_alloc(*tag, va,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
if (rc != 0) {
device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
goto done;
}
rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
if (rc != 0) {
device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
goto done;
}
done:
if (rc)
free_ring(sc, *tag, *map, *pa, *va);
return (rc);
}
static int
free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
bus_addr_t pa, void *va)
{
if (pa)
bus_dmamap_unload(tag, map);
if (va)
bus_dmamem_free(tag, va, map);
if (tag)
bus_dma_tag_destroy(tag);
return (0);
}
/*
* Allocates the ring for an ingress queue and an optional freelist. If the
* freelist is specified it will be allocated and then associated with the
* ingress queue.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*
* If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
* the intr_idx specifies the vector, starting from 0. Otherwise it specifies
* the abs_id of the ingress queue to which its interrupts should be forwarded.
*/
static int
alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
int intr_idx, int cong)
{
int rc, i, cntxt_id;
size_t len;
struct fw_iq_cmd c;
struct adapter *sc = iq->adapter;
__be32 v = 0;
len = iq->qsize * iq->esize;
rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
(void **)&iq->desc);
if (rc != 0)
return (rc);
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
V_FW_IQ_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
FW_LEN16(c));
/* Special handling for firmware event queue */
if (iq == &sc->sge.fwq)
v |= F_FW_IQ_CMD_IQASYNCH;
if (iq->flags & IQ_INTR) {
KASSERT(intr_idx < sc->intr_count,
("%s: invalid direct intr_idx %d", __func__, intr_idx));
} else
v |= F_FW_IQ_CMD_IQANDST;
v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
c.type_to_iqandstindex = htobe32(v |
V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
V_FW_IQ_CMD_VIID(pi->viid) |
V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
F_FW_IQ_CMD_IQGTSMODE |
V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
c.iqsize = htobe16(iq->qsize);
c.iqaddr = htobe64(iq->ba);
if (cong >= 0)
c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
if (fl) {
mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
len = fl->qsize * RX_FL_ESIZE;
rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
&fl->ba, (void **)&fl->desc);
if (rc)
return (rc);
/* Allocate space for one software descriptor per buffer. */
fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
rc = alloc_fl_sdesc(fl);
if (rc != 0) {
device_printf(sc->dev,
"failed to setup fl software descriptors: %d\n",
rc);
return (rc);
}
fl->needed = fl->cap;
fl->lowat = fl->flags & FL_BUF_PACKING ?
roundup2(sc->sge.fl_starve_threshold2, 8) :
roundup2(sc->sge.fl_starve_threshold, 8);
c.iqns_to_fl0congen |=
htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
0));
if (cong >= 0) {
c.iqns_to_fl0congen |=
htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
F_FW_IQ_CMD_FL0CONGCIF |
F_FW_IQ_CMD_FL0CONGEN);
}
c.fl0dcaen_to_fl0cidxfthresh =
htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
c.fl0size = htobe16(fl->qsize);
c.fl0addr = htobe64(fl->ba);
}
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(sc->dev,
"failed to create ingress queue: %d\n", rc);
return (rc);
}
iq->cdesc = iq->desc;
iq->cidx = 0;
iq->gen = 1;
iq->intr_next = iq->intr_params;
iq->cntxt_id = be16toh(c.iqid);
iq->abs_id = be16toh(c.physiqid);
iq->flags |= IQ_ALLOCATED;
cntxt_id = iq->cntxt_id - sc->sge.iq_start;
if (cntxt_id >= sc->sge.niq) {
panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.niq - 1);
}
sc->sge.iqmap[cntxt_id] = iq;
if (fl) {
fl->cntxt_id = be16toh(c.fl0id);
fl->pidx = fl->cidx = 0;
cntxt_id = fl->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq) {
panic("%s: fl->cntxt_id (%d) more than the max (%d)",
__func__, cntxt_id, sc->sge.neq - 1);
}
sc->sge.eqmap[cntxt_id] = (void *)fl;
FL_LOCK(fl);
/* Enough to make sure the SGE doesn't think it's starved */
refill_fl(sc, fl, fl->lowat);
FL_UNLOCK(fl);
iq->flags |= IQ_HAS_FL;
}
if (is_t5(sc) && cong >= 0) {
uint32_t param, val;
param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
if (cong == 0)
val = 1 << 19;
else {
val = 2 << 19;
for (i = 0; i < 4; i++) {
if (cong & (1 << i))
val |= 1 << (i << 2);
}
}
rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
if (rc != 0) {
/* report error but carry on */
device_printf(sc->dev,
"failed to set congestion manager context for "
"ingress queue %d: %d\n", iq->cntxt_id, rc);
}
}
/* Enable IQ interrupts */
atomic_store_rel_int(&iq->state, IQS_IDLE);
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
V_INGRESSQID(iq->cntxt_id));
return (0);
}
static int
free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
{
int rc;
struct adapter *sc = iq->adapter;
device_t dev;
if (sc == NULL)
return (0); /* nothing to do */
dev = pi ? pi->dev : sc->dev;
if (iq->flags & IQ_ALLOCATED) {
rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
fl ? fl->cntxt_id : 0xffff, 0xffff);
if (rc != 0) {
device_printf(dev,
"failed to free queue %p: %d\n", iq, rc);
return (rc);
}
iq->flags &= ~IQ_ALLOCATED;
}
free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
bzero(iq, sizeof(*iq));
if (fl) {
free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
fl->desc);
if (fl->sdesc)
free_fl_sdesc(sc, fl);
if (mtx_initialized(&fl->fl_lock))
mtx_destroy(&fl->fl_lock);
bzero(fl, sizeof(*fl));
}
return (0);
}
static void
add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
struct sge_fl *fl)
{
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
"freelist");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the freelist");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
0, "consumer index");
if (fl->flags & FL_BUF_PACKING) {
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
}
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
0, "producer index");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
}
static int
alloc_fwq(struct adapter *sc)
{
int rc, intr_idx;
struct sge_iq *fwq = &sc->sge.fwq;
struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
fwq->flags |= IQ_INTR; /* always */
intr_idx = sc->intr_count > 1 ? 1 : 0;
rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
if (rc != 0) {
device_printf(sc->dev,
"failed to create firmware event queue: %d\n", rc);
return (rc);
}
oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
NULL, "firmware event queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
"absolute id of the queue");
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the queue");
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
"consumer index");
return (0);
}
static int
free_fwq(struct adapter *sc)
{
return free_iq_fl(NULL, &sc->sge.fwq, NULL);
}
static int
alloc_mgmtq(struct adapter *sc)
{
int rc;
struct sge_wrq *mgmtq = &sc->sge.mgmtq;
char name[16];
struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
NULL, "management queue");
snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
sc->sge.fwq.cntxt_id, name);
rc = alloc_wrq(sc, NULL, mgmtq, oid);
if (rc != 0) {
device_printf(sc->dev,
"failed to create management queue: %d\n", rc);
return (rc);
}
return (0);
}
static int
free_mgmtq(struct adapter *sc)
{
return free_wrq(sc, &sc->sge.mgmtq);
}
static inline int
tnl_cong(struct port_info *pi)
{
if (cong_drop == -1)
return (-1);
else if (cong_drop == 1)
return (0);
else
return (pi->rx_chan_map);
}
static int
alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
struct sysctl_oid *oid)
{
int rc;
struct sysctl_oid_list *children;
char name[16];
rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
if (rc != 0)
return (rc);
FL_LOCK(&rxq->fl);
refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
FL_UNLOCK(&rxq->fl);
#if defined(INET) || defined(INET6)
rc = tcp_lro_init(&rxq->lro);
if (rc != 0)
return (rc);
rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
if (pi->ifp->if_capenable & IFCAP_LRO)
rxq->iq.flags |= IQ_LRO_ENABLED;
#endif
rxq->ifp = pi->ifp;
children = SYSCTL_CHILDREN(oid);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "rx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
"absolute id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
"consumer index");
#if defined(INET) || defined(INET6)
SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
&rxq->lro.lro_queued, 0, NULL);
SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
&rxq->lro.lro_flushed, 0, NULL);
#endif
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
&rxq->rxcsum, "# of times hardware assisted with checksum");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
CTLFLAG_RD, &rxq->vlan_extraction,
"# of times hardware extracted 802.1Q tag");
add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
return (rc);
}
static int
free_rxq(struct port_info *pi, struct sge_rxq *rxq)
{
int rc;
#if defined(INET) || defined(INET6)
if (rxq->lro.ifp) {
tcp_lro_free(&rxq->lro);
rxq->lro.ifp = NULL;
}
#endif
rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
if (rc == 0)
bzero(rxq, sizeof(*rxq));
return (rc);
}
#ifdef TCP_OFFLOAD
static int
alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
int intr_idx, int idx, struct sysctl_oid *oid)
{
int rc;
struct sysctl_oid_list *children;
char name[16];
rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
pi->rx_chan_map);
if (rc != 0)
return (rc);
children = SYSCTL_CHILDREN(oid);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "rx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
"I", "absolute id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
"I", "SGE context id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
"consumer index");
add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
return (rc);
}
static int
free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
{
int rc;
rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
if (rc == 0)
bzero(ofld_rxq, sizeof(*ofld_rxq));
return (rc);
}
#endif
static int
ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_ctrl_cmd c;
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
V_FW_EQ_CTRL_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
c.physeqid_pkd = htobe32(0);
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(sc->dev,
"failed to create control queue %d: %d\n", eq->tx_chan, rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
static int
eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_eth_cmd c;
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
V_FW_EQ_ETH_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
V_FW_EQ_ETH_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(pi->dev,
"failed to create Ethernet egress queue: %d\n", rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
#ifdef TCP_OFFLOAD
static int
ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_ofld_cmd c;
bzero(&c, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
V_FW_EQ_OFLD_CMD_VFN(0));
c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
c.fetchszm_to_iqid =
htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(pi->dev,
"failed to create egress queue for TCP offload: %d\n", rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
#endif
static int
alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
{
int rc;
size_t len;
mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
len = eq->qsize * EQ_ESIZE;
rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
&eq->ba, (void **)&eq->desc);
if (rc)
return (rc);
eq->cap = eq->qsize - spg_len / EQ_ESIZE;
eq->spg = (void *)&eq->desc[eq->cap];
eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */
eq->pidx = eq->cidx = 0;
eq->doorbells = sc->doorbells;
switch (eq->flags & EQ_TYPEMASK) {
case EQ_CTRL:
rc = ctrl_eq_alloc(sc, eq);
break;
case EQ_ETH:
rc = eth_eq_alloc(sc, pi, eq);
break;
#ifdef TCP_OFFLOAD
case EQ_OFLD:
rc = ofld_eq_alloc(sc, pi, eq);
break;
#endif
default:
panic("%s: invalid eq type %d.", __func__,
eq->flags & EQ_TYPEMASK);
}
if (rc != 0) {
device_printf(sc->dev,
"failed to allocate egress queue(%d): %d",
eq->flags & EQ_TYPEMASK, rc);
}
eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
if (isset(&eq->doorbells, DOORBELL_UDB) ||
isset(&eq->doorbells, DOORBELL_UDBWC) ||
isset(&eq->doorbells, DOORBELL_WCWR)) {
uint32_t s_qpp = sc->sge.eq_s_qpp;
uint32_t mask = (1 << s_qpp) - 1;
volatile uint8_t *udb;
udb = sc->udbs_base + UDBS_DB_OFFSET;
udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */
eq->udb_qid = eq->cntxt_id & mask; /* id in page */
if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
clrbit(&eq->doorbells, DOORBELL_WCWR);
else {
udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */
eq->udb_qid = 0;
}
eq->udb = (volatile void *)udb;
}
return (rc);
}
static int
free_eq(struct adapter *sc, struct sge_eq *eq)
{
int rc;
if (eq->flags & EQ_ALLOCATED) {
switch (eq->flags & EQ_TYPEMASK) {
case EQ_CTRL:
rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
case EQ_ETH:
rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
#ifdef TCP_OFFLOAD
case EQ_OFLD:
rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
#endif
default:
panic("%s: invalid eq type %d.", __func__,
eq->flags & EQ_TYPEMASK);
}
if (rc != 0) {
device_printf(sc->dev,
"failed to free egress queue (%d): %d\n",
eq->flags & EQ_TYPEMASK, rc);
return (rc);
}
eq->flags &= ~EQ_ALLOCATED;
}
free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
if (mtx_initialized(&eq->eq_lock))
mtx_destroy(&eq->eq_lock);
bzero(eq, sizeof(*eq));
return (0);
}
static int
alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
struct sysctl_oid *oid)
{
int rc;
struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
rc = alloc_eq(sc, pi, &wrq->eq);
if (rc)
return (rc);
wrq->adapter = sc;
STAILQ_INIT(&wrq->wr_list);
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&wrq->eq.cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
"consumer index");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
"producer index");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
&wrq->tx_wrs, "# of work requests");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
&wrq->no_desc, 0,
"# of times queue ran out of hardware descriptors");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
&wrq->eq.unstalled, 0, "# of times queue recovered after stall");
return (rc);
}
static int
free_wrq(struct adapter *sc, struct sge_wrq *wrq)
{
int rc;
rc = free_eq(sc, &wrq->eq);
if (rc)
return (rc);
bzero(wrq, sizeof(*wrq));
return (0);
}
static int
alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
struct sysctl_oid *oid)
{
int rc;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
char name[16];
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
rc = alloc_eq(sc, pi, eq);
if (rc)
return (rc);
txq->ifp = pi->ifp;
txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
M_ZERO | M_WAITOK);
txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
if (rc != 0) {
device_printf(sc->dev,
"failed to create tx DMA tag: %d\n", rc);
return (rc);
}
/*
* We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
* limit for any WR). txq->no_dmamap events shouldn't occur if maps is
* sized for the worst case.
*/
rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
M_WAITOK);
if (rc != 0) {
device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
return (rc);
}
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "tx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&eq->cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
"consumer index");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
"producer index");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
&txq->txcsum, "# of times hardware assisted with checksum");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
CTLFLAG_RD, &txq->vlan_insertion,
"# of times hardware inserted 802.1Q tag");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
&txq->tso_wrs, "# of TSO work requests");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
&txq->imm_wrs, "# of work requests with immediate data");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
&txq->sgl_wrs, "# of work requests with direct SGL");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
&txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
&txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
&txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
&txq->br->br_drops, "# of drops in the buf_ring for this queue");
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
&txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
&txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
&eq->egr_update, 0, "egress update notifications from the SGE");
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
&eq->unstalled, 0, "# of times txq recovered after stall");
return (rc);
}
static int
free_txq(struct port_info *pi, struct sge_txq *txq)
{
int rc;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
rc = free_eq(sc, eq);
if (rc)
return (rc);
free(txq->sdesc, M_CXGBE);
if (txq->txmaps.maps)
t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
buf_ring_free(txq->br, M_CXGBE);
if (txq->tx_tag)
bus_dma_tag_destroy(txq->tx_tag);
bzero(txq, sizeof(*txq));
return (0);
}
static void
oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *ba = arg;
KASSERT(nseg == 1,
("%s meant for single segment mappings only.", __func__));
*ba = error ? 0 : segs->ds_addr;
}
static inline bool
is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
{
*ctrl = (void *)((uintptr_t)iq->cdesc +
(iq->esize - sizeof(struct rsp_ctrl)));
return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
}
static inline void
iq_next(struct sge_iq *iq)
{
iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
if (__predict_false(++iq->cidx == iq->qsize - 1)) {
iq->cidx = 0;
iq->gen ^= 1;
iq->cdesc = iq->desc;
}
}
#define FL_HW_IDX(x) ((x) >> 3)
static inline void
ring_fl_db(struct adapter *sc, struct sge_fl *fl)
{
int ndesc = fl->pending / 8;
uint32_t v;
if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
ndesc--; /* hold back one credit */
if (ndesc <= 0)
return; /* nothing to do */
v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
if (is_t5(sc))
v |= F_DBTYPE;
wmb();
t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
fl->pending -= ndesc * 8;
}
/*
* Fill up the freelist by upto nbufs and maybe ring its doorbell.
*
* Returns non-zero to indicate that it should be added to the list of starving
* freelists.
*/
static int
refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
{
__be64 *d = &fl->desc[fl->pidx];
struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
uintptr_t pa;
caddr_t cl;
struct cluster_layout *cll = &fl->cll_def; /* default layout */
struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
struct cluster_metadata *clm;
FL_LOCK_ASSERT_OWNED(fl);
if (nbufs > fl->needed)
nbufs = fl->needed;
nbufs -= (fl->pidx + nbufs) % 8;
while (nbufs--) {
if (sd->cl != NULL) {
if (sd->nmbuf == 0) {
/*
* Fast recycle without involving any atomics on
* the cluster's metadata (if the cluster has
* metadata). This happens when all frames
* received in the cluster were small enough to
* fit within a single mbuf each.
*/
fl->cl_fast_recycled++;
goto recycled_fast;
}
/*
* Cluster is guaranteed to have metadata. Clusters
* without metadata always take the fast recycle path
* when they're recycled.
*/
clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
MPASS(clm != NULL);
if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
fl->cl_recycled++;
goto recycled;
}
sd->cl = NULL; /* gave up my reference */
}
MPASS(sd->cl == NULL);
alloc:
cl = uma_zalloc(swz->zone, M_NOWAIT);
if (__predict_false(cl == NULL)) {
if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
fl->cll_def.zidx == fl->cll_alt.zidx)
break;
/* fall back to the safe zone */
cll = &fl->cll_alt;
swz = &sc->sge.sw_zone_info[cll->zidx];
goto alloc;
}
fl->cl_allocated++;
pa = pmap_kextract((vm_offset_t)cl);
pa += cll->region1;
sd->cl = cl;
sd->cll = *cll;
*d = htobe64(pa | cll->hwidx);
clm = cl_metadata(sc, fl, cll, cl);
if (clm != NULL) {
recycled:
#ifdef INVARIANTS
clm->sd = sd;
#endif
clm->refcount = 1;
}
sd->nmbuf = 0;
recycled_fast:
fl->pending++;
fl->needed--;
d++;
sd++;
if (__predict_false(++fl->pidx == fl->cap)) {
fl->pidx = 0;
sd = fl->sdesc;
d = fl->desc;
}
}
if (fl->pending >= 8)
ring_fl_db(sc, fl);
return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
}
/*
* Attempt to refill all starving freelists.
*/
static void
refill_sfl(void *arg)
{
struct adapter *sc = arg;
struct sge_fl *fl, *fl_temp;
mtx_lock(&sc->sfl_lock);
TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
FL_LOCK(fl);
refill_fl(sc, fl, 64);
if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
TAILQ_REMOVE(&sc->sfl, fl, link);
fl->flags &= ~FL_STARVING;
}
FL_UNLOCK(fl);
}
if (!TAILQ_EMPTY(&sc->sfl))
callout_schedule(&sc->sfl_callout, hz / 5);
mtx_unlock(&sc->sfl_lock);
}
static int
alloc_fl_sdesc(struct sge_fl *fl)
{
fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
M_ZERO | M_WAITOK);
return (0);
}
static void
free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
{
struct fl_sdesc *sd;
struct cluster_metadata *clm;
struct cluster_layout *cll;
int i;
sd = fl->sdesc;
for (i = 0; i < fl->cap; i++, sd++) {
if (sd->cl == NULL)
continue;
cll = &sd->cll;
clm = cl_metadata(sc, fl, cll, sd->cl);
if (sd->nmbuf == 0 ||
(clm && atomic_fetchadd_int(&clm->refcount, -1) == 1)) {
uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
}
sd->cl = NULL;
}
free(fl->sdesc, M_CXGBE);
fl->sdesc = NULL;
}
int
t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
int flags)
{
struct tx_map *txm;
int i, rc;
txmaps->map_total = txmaps->map_avail = count;
txmaps->map_cidx = txmaps->map_pidx = 0;
txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
M_ZERO | flags);
txm = txmaps->maps;
for (i = 0; i < count; i++, txm++) {
rc = bus_dmamap_create(tx_tag, 0, &txm->map);
if (rc != 0)
goto failed;
}
return (0);
failed:
while (--i >= 0) {
txm--;
bus_dmamap_destroy(tx_tag, txm->map);
}
KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
free(txmaps->maps, M_CXGBE);
txmaps->maps = NULL;
return (rc);
}
void
t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
{
struct tx_map *txm;
int i;
txm = txmaps->maps;
for (i = 0; i < txmaps->map_total; i++, txm++) {
if (txm->m) {
bus_dmamap_unload(tx_tag, txm->map);
m_freem(txm->m);
txm->m = NULL;
}
bus_dmamap_destroy(tx_tag, txm->map);
}
free(txmaps->maps, M_CXGBE);
txmaps->maps = NULL;
}
/*
* We'll do immediate data tx for non-TSO, but only when not coalescing. We're
* willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
* of immediate data.
*/
#define IMM_LEN ( \
2 * EQ_ESIZE \
- sizeof(struct fw_eth_tx_pkt_wr) \
- sizeof(struct cpl_tx_pkt_core))
/*
* Returns non-zero on failure, no need to cleanup anything in that case.
*
* Note 1: We always try to defrag the mbuf if required and return EFBIG only
* if the resulting chain still won't fit in a tx descriptor.
*
* Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
* does not have the TCP header in it.
*/
static int
get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
int sgl_only)
{
struct mbuf *m = *fp;
struct tx_maps *txmaps;
struct tx_map *txm;
int rc, defragged = 0, n;
TXQ_LOCK_ASSERT_OWNED(txq);
if (m->m_pkthdr.tso_segsz)
sgl_only = 1; /* Do not allow immediate data with LSO */
start: sgl->nsegs = 0;
if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
return (0); /* nsegs = 0 tells caller to use imm. tx */
txmaps = &txq->txmaps;
if (txmaps->map_avail == 0) {
txq->no_dmamap++;
return (ENOMEM);
}
txm = &txmaps->maps[txmaps->map_pidx];
if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
*fp = m_pullup(m, 50);
m = *fp;
if (m == NULL)
return (ENOBUFS);
}
rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
&sgl->nsegs, BUS_DMA_NOWAIT);
if (rc == EFBIG && defragged == 0) {
m = m_defrag(m, M_NOWAIT);
if (m == NULL)
return (EFBIG);
defragged = 1;
*fp = m;
goto start;
}
if (rc != 0)
return (rc);
txm->m = m;
txmaps->map_avail--;
if (++txmaps->map_pidx == txmaps->map_total)
txmaps->map_pidx = 0;
KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
/*
* Store the # of flits required to hold this frame's SGL in nflits. An
* SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
* multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used
* then len1 must be set to 0.
*/
n = sgl->nsegs - 1;
sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
return (0);
}
/*
* Releases all the txq resources used up in the specified sgl.
*/
static int
free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
{
struct tx_maps *txmaps;
struct tx_map *txm;
TXQ_LOCK_ASSERT_OWNED(txq);
if (sgl->nsegs == 0)
return (0); /* didn't use any map */
txmaps = &txq->txmaps;
/* 1 pkt uses exactly 1 map, back it out */
txmaps->map_avail++;
if (txmaps->map_pidx > 0)
txmaps->map_pidx--;
else
txmaps->map_pidx = txmaps->map_total - 1;
txm = &txmaps->maps[txmaps->map_pidx];
bus_dmamap_unload(txq->tx_tag, txm->map);
txm->m = NULL;
return (0);
}
static int
write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
struct sgl *sgl)
{
struct sge_eq *eq = &txq->eq;
struct fw_eth_tx_pkt_wr *wr;
struct cpl_tx_pkt_core *cpl;
uint32_t ctrl; /* used in many unrelated places */
uint64_t ctrl1;
int nflits, ndesc, pktlen;
struct tx_sdesc *txsd;
caddr_t dst;
TXQ_LOCK_ASSERT_OWNED(txq);
pktlen = m->m_pkthdr.len;
/*
* Do we have enough flits to send this frame out?
*/
ctrl = sizeof(struct cpl_tx_pkt_core);
if (m->m_pkthdr.tso_segsz) {
nflits = TXPKT_LSO_WR_HDR;
ctrl += sizeof(struct cpl_tx_pkt_lso_core);
} else
nflits = TXPKT_WR_HDR;
if (sgl->nsegs > 0)
nflits += sgl->nflits;
else {
nflits += howmany(pktlen, 8);
ctrl += pktlen;
}
ndesc = howmany(nflits, 8);
if (ndesc > eq->avail)
return (ENOMEM);
/* Firmware work request header */
wr = (void *)&eq->desc[eq->pidx];
wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
if (eq->avail == ndesc) {
if (!(eq->flags & EQ_CRFLUSHED)) {
ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
eq->flags |= EQ_CRFLUSHED;
}
eq->flags |= EQ_STALLED;
}
wr->equiq_to_len16 = htobe32(ctrl);
wr->r3 = 0;
if (m->m_pkthdr.tso_segsz) {
struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
struct ether_header *eh;
void *l3hdr;
#if defined(INET) || defined(INET6)
struct tcphdr *tcp;
#endif
uint16_t eh_type;
ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
F_LSO_LAST_SLICE;
eh = mtod(m, struct ether_header *);
eh_type = ntohs(eh->ether_type);
if (eh_type == ETHERTYPE_VLAN) {
struct ether_vlan_header *evh = (void *)eh;
ctrl |= V_LSO_ETHHDR_LEN(1);
l3hdr = evh + 1;
eh_type = ntohs(evh->evl_proto);
} else
l3hdr = eh + 1;
switch (eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
{
struct ip6_hdr *ip6 = l3hdr;
/*
* XXX-BZ For now we do not pretend to support
* IPv6 extension headers.
*/
KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
"with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
tcp = (struct tcphdr *)(ip6 + 1);
ctrl |= F_LSO_IPV6;
ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
V_LSO_TCPHDR_LEN(tcp->th_off);
break;
}
#endif
#ifdef INET
case ETHERTYPE_IP:
{
struct ip *ip = l3hdr;
tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
V_LSO_TCPHDR_LEN(tcp->th_off);
break;
}
#endif
default:
panic("%s: CSUM_TSO but no supported IP version "
"(0x%04x)", __func__, eh_type);
}
lso->lso_ctrl = htobe32(ctrl);
lso->ipid_ofst = htobe16(0);
lso->mss = htobe16(m->m_pkthdr.tso_segsz);
lso->seqno_offset = htobe32(0);
lso->len = htobe32(pktlen);
cpl = (void *)(lso + 1);
txq->tso_wrs++;
} else
cpl = (void *)(wr + 1);
/* Checksum offload */
ctrl1 = 0;
if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
ctrl1 |= F_TXPKT_IPCSUM_DIS;
if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
CSUM_TCP_IPV6 | CSUM_TSO)))
ctrl1 |= F_TXPKT_L4CSUM_DIS;
if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (m->m_flags & M_VLANTAG) {
ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
cpl->pack = 0;
cpl->len = htobe16(pktlen);
cpl->ctrl1 = htobe64(ctrl1);
/* Software descriptor */
txsd = &txq->sdesc[eq->pidx];
txsd->desc_used = ndesc;
eq->pending += ndesc;
eq->avail -= ndesc;
eq->pidx += ndesc;
if (eq->pidx >= eq->cap)
eq->pidx -= eq->cap;
/* SGL */
dst = (void *)(cpl + 1);
if (sgl->nsegs > 0) {
txsd->credits = 1;
txq->sgl_wrs++;
write_sgl_to_txd(eq, sgl, &dst);
} else {
txsd->credits = 0;
txq->imm_wrs++;
for (; m; m = m->m_next) {
copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
#ifdef INVARIANTS
pktlen -= m->m_len;
#endif
}
#ifdef INVARIANTS
KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
#endif
}
txq->txpkt_wrs++;
return (0);
}
/*
* Returns 0 to indicate that m has been accepted into a coalesced tx work
* request. It has either been folded into txpkts or txpkts was flushed and m
* has started a new coalesced work request (as the first frame in a fresh
* txpkts).
*
* Returns non-zero to indicate a failure - caller is responsible for
* transmitting m, if there was anything in txpkts it has been flushed.
*/
static int
add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
struct mbuf *m, struct sgl *sgl)
{
struct sge_eq *eq = &txq->eq;
int can_coalesce;
struct tx_sdesc *txsd;
int flits;
TXQ_LOCK_ASSERT_OWNED(txq);
KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
if (txpkts->npkt > 0) {
flits = TXPKTS_PKT_HDR + sgl->nflits;
can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
txpkts->nflits + flits <= TX_WR_FLITS &&
txpkts->nflits + flits <= eq->avail * 8 &&
txpkts->plen + m->m_pkthdr.len < 65536;
if (can_coalesce) {
txpkts->npkt++;
txpkts->nflits += flits;
txpkts->plen += m->m_pkthdr.len;
txsd = &txq->sdesc[eq->pidx];
txsd->credits++;
return (0);
}
/*
* Couldn't coalesce m into txpkts. The first order of business
* is to send txpkts on its way. Then we'll revisit m.
*/
write_txpkts_wr(txq, txpkts);
}
/*
* Check if we can start a new coalesced tx work request with m as
* the first packet in it.
*/
KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
flits = TXPKTS_WR_HDR + sgl->nflits;
can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
if (can_coalesce == 0)
return (EINVAL);
/*
* Start a fresh coalesced tx WR with m as the first frame in it.
*/
txpkts->npkt = 1;
txpkts->nflits = flits;
txpkts->flitp = &eq->desc[eq->pidx].flit[2];
txpkts->plen = m->m_pkthdr.len;
txsd = &txq->sdesc[eq->pidx];
txsd->credits = 1;
return (0);
}
/*
* Note that write_txpkts_wr can never run out of hardware descriptors (but
* write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for
* coalescing only if sufficient hardware descriptors are available.
*/
static void
write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
{
struct sge_eq *eq = &txq->eq;
struct fw_eth_tx_pkts_wr *wr;
struct tx_sdesc *txsd;
uint32_t ctrl;
int ndesc;
TXQ_LOCK_ASSERT_OWNED(txq);
ndesc = howmany(txpkts->nflits, 8);
wr = (void *)&eq->desc[eq->pidx];
wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
if (eq->avail == ndesc) {
if (!(eq->flags & EQ_CRFLUSHED)) {
ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
eq->flags |= EQ_CRFLUSHED;
}
eq->flags |= EQ_STALLED;
}
wr->equiq_to_len16 = htobe32(ctrl);
wr->plen = htobe16(txpkts->plen);
wr->npkt = txpkts->npkt;
wr->r3 = wr->type = 0;
/* Everything else already written */
txsd = &txq->sdesc[eq->pidx];
txsd->desc_used = ndesc;
KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
eq->pending += ndesc;
eq->avail -= ndesc;
eq->pidx += ndesc;
if (eq->pidx >= eq->cap)
eq->pidx -= eq->cap;
txq->txpkts_pkts += txpkts->npkt;
txq->txpkts_wrs++;
txpkts->npkt = 0; /* emptied */
}
static inline void
write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
{
struct ulp_txpkt *ulpmc;
struct ulptx_idata *ulpsc;
struct cpl_tx_pkt_core *cpl;
struct sge_eq *eq = &txq->eq;
uintptr_t flitp, start, end;
uint64_t ctrl;
caddr_t dst;
KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
start = (uintptr_t)eq->desc;
end = (uintptr_t)eq->spg;
/* Checksum offload */
ctrl = 0;
if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
ctrl |= F_TXPKT_IPCSUM_DIS;
if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
CSUM_TCP_IPV6 | CSUM_TSO)))
ctrl |= F_TXPKT_L4CSUM_DIS;
if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (m->m_flags & M_VLANTAG) {
ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/*
* The previous packet's SGL must have ended at a 16 byte boundary (this
* is required by the firmware/hardware). It follows that flitp cannot
* wrap around between the ULPTX master command and ULPTX subcommand (8
* bytes each), and that it can not wrap around in the middle of the
* cpl_tx_pkt_core either.
*/
flitp = (uintptr_t)txpkts->flitp;
KASSERT((flitp & 0xf) == 0,
("%s: last SGL did not end at 16 byte boundary: %p",
__func__, txpkts->flitp));
/* ULP master command */
ulpmc = (void *)flitp;
ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
V_ULP_TXPKT_FID(eq->iqid));
ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
sizeof(*cpl) + 8 * sgl->nflits, 16));
/* ULP subcommand */
ulpsc = (void *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
F_ULP_TX_SC_MORE);
ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
if (flitp == end)
flitp = start;
/* CPL_TX_PKT */
cpl = (void *)flitp;
cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
cpl->pack = 0;
cpl->len = htobe16(m->m_pkthdr.len);
cpl->ctrl1 = htobe64(ctrl);
flitp += sizeof(*cpl);
if (flitp == end)
flitp = start;
/* SGL for this frame */
dst = (caddr_t)flitp;
txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
txpkts->flitp = (void *)dst;
KASSERT(((uintptr_t)dst & 0xf) == 0,
("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
}
/*
* If the SGL ends on an address that is not 16 byte aligned, this function will
* add a 0 filled flit at the end. It returns 1 in that case.
*/
static int
write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
{
__be64 *flitp, *end;
struct ulptx_sgl *usgl;
bus_dma_segment_t *seg;
int i, padded;
KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
("%s: bad SGL - nsegs=%d, nflits=%d",
__func__, sgl->nsegs, sgl->nflits));
KASSERT(((uintptr_t)(*to) & 0xf) == 0,
("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
flitp = (__be64 *)(*to);
end = flitp + sgl->nflits;
seg = &sgl->seg[0];
usgl = (void *)flitp;
/*
* We start at a 16 byte boundary somewhere inside the tx descriptor
* ring, so we're at least 16 bytes away from the status page. There is
* no chance of a wrap around in the middle of usgl (which is 16 bytes).
*/
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(sgl->nsegs));
usgl->len0 = htobe32(seg->ds_len);
usgl->addr0 = htobe64(seg->ds_addr);
seg++;
if ((uintptr_t)end <= (uintptr_t)eq->spg) {
/* Won't wrap around at all */
for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
}
if (i & 1)
usgl->sge[i / 2].len[1] = htobe32(0);
} else {
/* Will wrap somewhere in the rest of the SGL */
/* 2 flits already written, write the rest flit by flit */
flitp = (void *)(usgl + 1);
for (i = 0; i < sgl->nflits - 2; i++) {
if ((uintptr_t)flitp == (uintptr_t)eq->spg)
flitp = (void *)eq->desc;
*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
}
end = flitp;
}
if ((uintptr_t)end & 0xf) {
*(uint64_t *)end = 0;
end++;
padded = 1;
} else
padded = 0;
if ((uintptr_t)end == (uintptr_t)eq->spg)
*to = (void *)eq->desc;
else
*to = (void *)end;
return (padded);
}
static inline void
copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
{
if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
bcopy(from, *to, len);
(*to) += len;
} else {
int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
bcopy(from, *to, portion);
from += portion;
portion = len - portion; /* remaining */
bcopy(from, (void *)eq->desc, portion);
(*to) = (caddr_t)eq->desc + portion;
}
}
static inline void
ring_eq_db(struct adapter *sc, struct sge_eq *eq)
{
u_int db, pending;
db = eq->doorbells;
pending = eq->pending;
if (pending > 1)
clrbit(&db, DOORBELL_WCWR);
eq->pending = 0;
wmb();
switch (ffs(db) - 1) {
case DOORBELL_UDB:
*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
return;
case DOORBELL_WCWR: {
volatile uint64_t *dst, *src;
int i;
/*
* Queues whose 128B doorbell segment fits in the page do not
* use relative qid (udb_qid is always 0). Only queues with
* doorbell segments can do WCWR.
*/
KASSERT(eq->udb_qid == 0 && pending == 1,
("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
__func__, eq->doorbells, pending, eq->pidx, eq));
dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
UDBS_DB_OFFSET);
i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
src = (void *)&eq->desc[i];
while (src != (void *)&eq->desc[i + 1])
*dst++ = *src++;
wmb();
return;
}
case DOORBELL_UDBWC:
*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
wmb();
return;
case DOORBELL_KDB:
t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
V_QID(eq->cntxt_id) | V_PIDX(pending));
return;
}
}
static inline int
reclaimable(struct sge_eq *eq)
{
unsigned int cidx;
cidx = eq->spg->cidx; /* stable snapshot */
cidx = be16toh(cidx);
if (cidx >= eq->cidx)
return (cidx - eq->cidx);
else
return (cidx + eq->cap - eq->cidx);
}
/*
* There are "can_reclaim" tx descriptors ready to be reclaimed. Reclaim as
* many as possible but stop when there are around "n" mbufs to free.
*
* The actual number reclaimed is provided as the return value.
*/
static int
reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
{
struct tx_sdesc *txsd;
struct tx_maps *txmaps;
struct tx_map *txm;
unsigned int reclaimed, maps;
struct sge_eq *eq = &txq->eq;
TXQ_LOCK_ASSERT_OWNED(txq);
if (can_reclaim == 0)
can_reclaim = reclaimable(eq);
maps = reclaimed = 0;
while (can_reclaim && maps < n) {
int ndesc;
txsd = &txq->sdesc[eq->cidx];
ndesc = txsd->desc_used;
/* Firmware doesn't return "partial" credits. */
KASSERT(can_reclaim >= ndesc,
("%s: unexpected number of credits: %d, %d",
__func__, can_reclaim, ndesc));
maps += txsd->credits;
reclaimed += ndesc;
can_reclaim -= ndesc;
eq->cidx += ndesc;
if (__predict_false(eq->cidx >= eq->cap))
eq->cidx -= eq->cap;
}
txmaps = &txq->txmaps;
txm = &txmaps->maps[txmaps->map_cidx];
if (maps)
prefetch(txm->m);
eq->avail += reclaimed;
KASSERT(eq->avail < eq->cap, /* avail tops out at (cap - 1) */
("%s: too many descriptors available", __func__));
txmaps->map_avail += maps;
KASSERT(txmaps->map_avail <= txmaps->map_total,
("%s: too many maps available", __func__));
while (maps--) {
struct tx_map *next;
next = txm + 1;
if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
next = txmaps->maps;
prefetch(next->m);
bus_dmamap_unload(txq->tx_tag, txm->map);
m_freem(txm->m);
txm->m = NULL;
txm = next;
if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
txmaps->map_cidx = 0;
}
return (reclaimed);
}
static void
write_eqflush_wr(struct sge_eq *eq)
{
struct fw_eq_flush_wr *wr;
EQ_LOCK_ASSERT_OWNED(eq);
KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
wr = (void *)&eq->desc[eq->pidx];
bzero(wr, sizeof(*wr));
wr->opcode = FW_EQ_FLUSH_WR;
wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
eq->pending++;
eq->avail--;
if (++eq->pidx == eq->cap)
eq->pidx = 0;
}
static __be64
get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
{
int i = (idx / 3) * 2;
switch (idx % 3) {
case 0: {
__be64 rc;
rc = htobe32(sgl[i].ds_len);
if (i + 1 < nsegs)
rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
return (rc);
}
case 1:
return htobe64(sgl[i].ds_addr);
case 2:
return htobe64(sgl[i + 1].ds_addr);
}
return (0);
}
static void
find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
{
int8_t zidx, hwidx, idx;
uint16_t region1, region3;
int spare, spare_needed, n;
struct sw_zone_info *swz;
struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
/*
* Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
* large enough for the max payload and cluster metadata. Otherwise
* settle for the largest bufsize that leaves enough room in the cluster
* for metadata.
*
* Without buffer packing: Look for the smallest zone which has a
* bufsize large enough for the max payload. Settle for the largest
* bufsize available if there's nothing big enough for max payload.
*/
spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
swz = &sc->sge.sw_zone_info[0];
hwidx = -1;
for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
if (swz->size > largest_rx_cluster) {
if (__predict_true(hwidx != -1))
break;
/*
* This is a misconfiguration. largest_rx_cluster is
* preventing us from finding a refill source. See
* dev.t5nex.<n>.buffer_sizes to figure out why.
*/
device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
" refill source for fl %p (dma %u). Ignored.\n",
largest_rx_cluster, fl, maxp);
}
for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
hwb = &hwb_list[idx];
spare = swz->size - hwb->size;
if (spare < spare_needed)
continue;
hwidx = idx; /* best option so far */
if (hwb->size >= maxp) {
if ((fl->flags & FL_BUF_PACKING) == 0)
goto done; /* stop looking (not packing) */
if (swz->size >= safest_rx_cluster)
goto done; /* stop looking (packing) */
}
break; /* keep looking, next zone */
}
}
done:
/* A usable hwidx has been located. */
MPASS(hwidx != -1);
hwb = &hwb_list[hwidx];
zidx = hwb->zidx;
swz = &sc->sge.sw_zone_info[zidx];
region1 = 0;
region3 = swz->size - hwb->size;
/*
* Stay within this zone and see if there is a better match when mbuf
* inlining is allowed. Remember that the hwidx's are sorted in
* decreasing order of size (so in increasing order of spare area).
*/
for (idx = hwidx; idx != -1; idx = hwb->next) {
hwb = &hwb_list[idx];
spare = swz->size - hwb->size;
if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
break;
if (spare < CL_METADATA_SIZE + MSIZE)
continue;
n = (spare - CL_METADATA_SIZE) / MSIZE;
if (n > howmany(hwb->size, maxp))
break;
hwidx = idx;
if (fl->flags & FL_BUF_PACKING) {
region1 = n * MSIZE;
region3 = spare - region1;
} else {
region1 = MSIZE;
region3 = spare - region1;
break;
}
}
KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
sc->sge.sw_zone_info[zidx].size,
("%s: bad buffer layout for fl %p, maxp %d. "
"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
sc->sge.sw_zone_info[zidx].size, region1,
sc->sge.hw_buf_info[hwidx].size, region3));
if (fl->flags & FL_BUF_PACKING || region1 > 0) {
KASSERT(region3 >= CL_METADATA_SIZE,
("%s: no room for metadata. fl %p, maxp %d; "
"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
sc->sge.sw_zone_info[zidx].size, region1,
sc->sge.hw_buf_info[hwidx].size, region3));
KASSERT(region1 % MSIZE == 0,
("%s: bad mbuf region for fl %p, maxp %d. "
"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
sc->sge.sw_zone_info[zidx].size, region1,
sc->sge.hw_buf_info[hwidx].size, region3));
}
fl->cll_def.zidx = zidx;
fl->cll_def.hwidx = hwidx;
fl->cll_def.region1 = region1;
fl->cll_def.region3 = region3;
}
static void
find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
{
struct sge *s = &sc->sge;
struct hw_buf_info *hwb;
struct sw_zone_info *swz;
int spare;
int8_t hwidx;
if (fl->flags & FL_BUF_PACKING)
hwidx = s->safe_hwidx2; /* with room for metadata */
else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
hwidx = s->safe_hwidx2;
hwb = &s->hw_buf_info[hwidx];
swz = &s->sw_zone_info[hwb->zidx];
spare = swz->size - hwb->size;
/* no good if there isn't room for an mbuf as well */
if (spare < CL_METADATA_SIZE + MSIZE)
hwidx = s->safe_hwidx1;
} else
hwidx = s->safe_hwidx1;
if (hwidx == -1) {
/* No fallback source */
fl->cll_alt.hwidx = -1;
fl->cll_alt.zidx = -1;
return;
}
hwb = &s->hw_buf_info[hwidx];
swz = &s->sw_zone_info[hwb->zidx];
spare = swz->size - hwb->size;
fl->cll_alt.hwidx = hwidx;
fl->cll_alt.zidx = hwb->zidx;
if (allow_mbufs_in_cluster)
fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
else
fl->cll_alt.region1 = 0;
fl->cll_alt.region3 = spare - fl->cll_alt.region1;
}
static void
add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
{
mtx_lock(&sc->sfl_lock);
FL_LOCK(fl);
if ((fl->flags & FL_DOOMED) == 0) {
fl->flags |= FL_STARVING;
TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
}
FL_UNLOCK(fl);
mtx_unlock(&sc->sfl_lock);
}
static int
handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
struct adapter *sc = iq->adapter;
struct sge *s = &sc->sge;
struct sge_eq *eq;
KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
rss->opcode));
eq = s->eqmap[qid - s->eq_start];
EQ_LOCK(eq);
KASSERT(eq->flags & EQ_CRFLUSHED,
("%s: unsolicited egress update", __func__));
eq->flags &= ~EQ_CRFLUSHED;
eq->egr_update++;
if (__predict_false(eq->flags & EQ_DOOMED))
wakeup_one(eq);
else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
EQ_UNLOCK(eq);
return (0);
}
/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
offsetof(struct cpl_fw6_msg, data));
static int
handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
rss->opcode));
if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
const struct rss_header *rss2;
rss2 = (const struct rss_header *)&cpl->data[0];
return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
}
return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
}
static int
sysctl_uint16(SYSCTL_HANDLER_ARGS)
{
uint16_t *id = arg1;
int i = *id;
return sysctl_handle_int(oidp, &i, 0, req);
}
static int
sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
{
struct sge *s = arg1;
struct hw_buf_info *hwb = &s->hw_buf_info[0];
struct sw_zone_info *swz = &s->sw_zone_info[0];
int i, rc;
struct sbuf sb;
char c;
sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
c = '*';
else
c = '\0';
sbuf_printf(&sb, "%u%c ", hwb->size, c);
}
sbuf_trim(&sb);
sbuf_finish(&sb);
rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
sbuf_delete(&sb);
return (rc);
}