a36cc8d242
CID 147626: Type:Dereference before null check CID 147628: Type:Dereference before null check Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov Reviewed-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: cao.xuewen <cao.xuewen@zte.com.cn> Closes #5304
1033 lines
30 KiB
C
1033 lines
30 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2012 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/vdev.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zio_checksum.h>
|
|
|
|
#include <sys/fm/fs/zfs.h>
|
|
#include <sys/fm/protocol.h>
|
|
#include <sys/fm/util.h>
|
|
#include <sys/sysevent.h>
|
|
|
|
/*
|
|
* This general routine is responsible for generating all the different ZFS
|
|
* ereports. The payload is dependent on the class, and which arguments are
|
|
* supplied to the function:
|
|
*
|
|
* EREPORT POOL VDEV IO
|
|
* block X X X
|
|
* data X X
|
|
* device X X
|
|
* pool X
|
|
*
|
|
* If we are in a loading state, all errors are chained together by the same
|
|
* SPA-wide ENA (Error Numeric Association).
|
|
*
|
|
* For isolated I/O requests, we get the ENA from the zio_t. The propagation
|
|
* gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
|
|
* to chain together all ereports associated with a logical piece of data. For
|
|
* read I/Os, there are basically three 'types' of I/O, which form a roughly
|
|
* layered diagram:
|
|
*
|
|
* +---------------+
|
|
* | Aggregate I/O | No associated logical data or device
|
|
* +---------------+
|
|
* |
|
|
* V
|
|
* +---------------+ Reads associated with a piece of logical data.
|
|
* | Read I/O | This includes reads on behalf of RAID-Z,
|
|
* +---------------+ mirrors, gang blocks, retries, etc.
|
|
* |
|
|
* V
|
|
* +---------------+ Reads associated with a particular device, but
|
|
* | Physical I/O | no logical data. Issued as part of vdev caching
|
|
* +---------------+ and I/O aggregation.
|
|
*
|
|
* Note that 'physical I/O' here is not the same terminology as used in the rest
|
|
* of ZIO. Typically, 'physical I/O' simply means that there is no attached
|
|
* blockpointer. But I/O with no associated block pointer can still be related
|
|
* to a logical piece of data (i.e. RAID-Z requests).
|
|
*
|
|
* Purely physical I/O always have unique ENAs. They are not related to a
|
|
* particular piece of logical data, and therefore cannot be chained together.
|
|
* We still generate an ereport, but the DE doesn't correlate it with any
|
|
* logical piece of data. When such an I/O fails, the delegated I/O requests
|
|
* will issue a retry, which will trigger the 'real' ereport with the correct
|
|
* ENA.
|
|
*
|
|
* We keep track of the ENA for a ZIO chain through the 'io_logical' member.
|
|
* When a new logical I/O is issued, we set this to point to itself. Child I/Os
|
|
* then inherit this pointer, so that when it is first set subsequent failures
|
|
* will use the same ENA. For vdev cache fill and queue aggregation I/O,
|
|
* this pointer is set to NULL, and no ereport will be generated (since it
|
|
* doesn't actually correspond to any particular device or piece of data,
|
|
* and the caller will always retry without caching or queueing anyway).
|
|
*
|
|
* For checksum errors, we want to include more information about the actual
|
|
* error which occurs. Accordingly, we build an ereport when the error is
|
|
* noticed, but instead of sending it in immediately, we hang it off of the
|
|
* io_cksum_report field of the logical IO. When the logical IO completes
|
|
* (successfully or not), zfs_ereport_finish_checksum() is called with the
|
|
* good and bad versions of the buffer (if available), and we annotate the
|
|
* ereport with information about the differences.
|
|
*/
|
|
#ifdef _KERNEL
|
|
static void
|
|
zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
|
|
{
|
|
if (nvl)
|
|
fm_nvlist_destroy(nvl, FM_NVA_FREE);
|
|
|
|
if (detector)
|
|
fm_nvlist_destroy(detector, FM_NVA_FREE);
|
|
}
|
|
|
|
/*
|
|
* We want to rate limit ZIO delay and checksum events so as to not
|
|
* flood ZED when a disk is acting up.
|
|
*
|
|
* Returns 1 if we're ratelimiting, 0 if not.
|
|
*/
|
|
static int
|
|
zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
|
|
{
|
|
int rc = 0;
|
|
/*
|
|
* __ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
|
|
* are. Invert it to get our return value.
|
|
*/
|
|
if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
|
|
rc = !zfs_ratelimit(&vd->vdev_delay_rl);
|
|
} else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
|
|
rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
|
|
}
|
|
|
|
if (rc) {
|
|
/* We're rate limiting */
|
|
fm_erpt_dropped_increment();
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static void
|
|
zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
|
|
const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
|
|
uint64_t stateoroffset, uint64_t size)
|
|
{
|
|
nvlist_t *ereport, *detector;
|
|
|
|
uint64_t ena;
|
|
char class[64];
|
|
|
|
/*
|
|
* If we are doing a spa_tryimport() or in recovery mode,
|
|
* ignore errors.
|
|
*/
|
|
if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
|
|
spa_load_state(spa) == SPA_LOAD_RECOVER)
|
|
return;
|
|
|
|
/*
|
|
* If we are in the middle of opening a pool, and the previous attempt
|
|
* failed, don't bother logging any new ereports - we're just going to
|
|
* get the same diagnosis anyway.
|
|
*/
|
|
if (spa_load_state(spa) != SPA_LOAD_NONE &&
|
|
spa->spa_last_open_failed)
|
|
return;
|
|
|
|
if (zio != NULL) {
|
|
/*
|
|
* If this is not a read or write zio, ignore the error. This
|
|
* can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
|
|
*/
|
|
if (zio->io_type != ZIO_TYPE_READ &&
|
|
zio->io_type != ZIO_TYPE_WRITE)
|
|
return;
|
|
|
|
if (vd != NULL) {
|
|
/*
|
|
* If the vdev has already been marked as failing due
|
|
* to a failed probe, then ignore any subsequent I/O
|
|
* errors, as the DE will automatically fault the vdev
|
|
* on the first such failure. This also catches cases
|
|
* where vdev_remove_wanted is set and the device has
|
|
* not yet been asynchronously placed into the REMOVED
|
|
* state.
|
|
*/
|
|
if (zio->io_vd == vd && !vdev_accessible(vd, zio))
|
|
return;
|
|
|
|
/*
|
|
* Ignore checksum errors for reads from DTL regions of
|
|
* leaf vdevs.
|
|
*/
|
|
if (zio->io_type == ZIO_TYPE_READ &&
|
|
zio->io_error == ECKSUM &&
|
|
vd->vdev_ops->vdev_op_leaf &&
|
|
vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For probe failure, we want to avoid posting ereports if we've
|
|
* already removed the device in the meantime.
|
|
*/
|
|
if (vd != NULL &&
|
|
strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
|
|
(vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
|
|
return;
|
|
|
|
if ((ereport = fm_nvlist_create(NULL)) == NULL)
|
|
return;
|
|
|
|
if ((detector = fm_nvlist_create(NULL)) == NULL) {
|
|
fm_nvlist_destroy(ereport, FM_NVA_FREE);
|
|
return;
|
|
}
|
|
|
|
if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
|
|
(zio != NULL) && (!zio->io_timestamp)) {
|
|
/* Ignore bogus delay events */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Serialize ereport generation
|
|
*/
|
|
mutex_enter(&spa->spa_errlist_lock);
|
|
|
|
/*
|
|
* Determine the ENA to use for this event. If we are in a loading
|
|
* state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
|
|
* a root zio-wide ENA. Otherwise, simply use a unique ENA.
|
|
*/
|
|
if (spa_load_state(spa) != SPA_LOAD_NONE) {
|
|
if (spa->spa_ena == 0)
|
|
spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
|
|
ena = spa->spa_ena;
|
|
} else if (zio != NULL && zio->io_logical != NULL) {
|
|
if (zio->io_logical->io_ena == 0)
|
|
zio->io_logical->io_ena =
|
|
fm_ena_generate(0, FM_ENA_FMT1);
|
|
ena = zio->io_logical->io_ena;
|
|
} else {
|
|
ena = fm_ena_generate(0, FM_ENA_FMT1);
|
|
}
|
|
|
|
/*
|
|
* Construct the full class, detector, and other standard FMA fields.
|
|
*/
|
|
(void) snprintf(class, sizeof (class), "%s.%s",
|
|
ZFS_ERROR_CLASS, subclass);
|
|
|
|
fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
|
|
vd != NULL ? vd->vdev_guid : 0);
|
|
|
|
fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
|
|
|
|
/*
|
|
* Construct the per-ereport payload, depending on which parameters are
|
|
* passed in.
|
|
*/
|
|
|
|
/*
|
|
* Generic payload members common to all ereports.
|
|
*/
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
|
|
DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
|
|
DATA_TYPE_UINT64, spa_guid(spa),
|
|
FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
|
|
spa_load_state(spa), NULL);
|
|
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
|
|
DATA_TYPE_STRING,
|
|
spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
|
|
FM_EREPORT_FAILMODE_WAIT :
|
|
spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
|
|
FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
|
|
NULL);
|
|
|
|
if (vd != NULL) {
|
|
vdev_t *pvd = vd->vdev_parent;
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
vdev_t *spare_vd;
|
|
uint64_t *spare_guids;
|
|
char **spare_paths;
|
|
int i, spare_count;
|
|
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
|
|
DATA_TYPE_UINT64, vd->vdev_guid,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
|
|
DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
|
|
if (vd->vdev_path != NULL)
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
|
|
DATA_TYPE_STRING, vd->vdev_path, NULL);
|
|
if (vd->vdev_devid != NULL)
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
|
|
DATA_TYPE_STRING, vd->vdev_devid, NULL);
|
|
if (vd->vdev_fru != NULL)
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
|
|
DATA_TYPE_STRING, vd->vdev_fru, NULL);
|
|
if (vd->vdev_enc_sysfs_path != NULL)
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
|
|
DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
|
|
if (vd->vdev_ashift)
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
|
|
DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
|
|
|
|
if (vq != NULL) {
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
|
|
DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
|
|
DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
|
|
}
|
|
|
|
if (vs != NULL) {
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
|
|
DATA_TYPE_UINT64, vs->vs_read_errors,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
|
|
DATA_TYPE_UINT64, vs->vs_write_errors,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
|
|
DATA_TYPE_UINT64, vs->vs_checksum_errors, NULL);
|
|
}
|
|
|
|
if (pvd != NULL) {
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
|
|
DATA_TYPE_UINT64, pvd->vdev_guid,
|
|
FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
|
|
DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
|
|
NULL);
|
|
if (pvd->vdev_path)
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
|
|
DATA_TYPE_STRING, pvd->vdev_path, NULL);
|
|
if (pvd->vdev_devid)
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
|
|
DATA_TYPE_STRING, pvd->vdev_devid, NULL);
|
|
}
|
|
|
|
spare_count = spa->spa_spares.sav_count;
|
|
spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
|
|
KM_SLEEP);
|
|
spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
|
|
KM_SLEEP);
|
|
|
|
for (i = 0; i < spare_count; i++) {
|
|
spare_vd = spa->spa_spares.sav_vdevs[i];
|
|
if (spare_vd) {
|
|
spare_paths[i] = spare_vd->vdev_path;
|
|
spare_guids[i] = spare_vd->vdev_guid;
|
|
}
|
|
}
|
|
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
|
|
DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
|
|
DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
|
|
|
|
kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
|
|
kmem_free(spare_paths, sizeof (char *) * spare_count);
|
|
}
|
|
|
|
if (zio != NULL) {
|
|
/*
|
|
* Payload common to all I/Os.
|
|
*/
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
|
|
DATA_TYPE_INT32, zio->io_error, NULL);
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
|
|
DATA_TYPE_INT32, zio->io_flags, NULL);
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
|
|
DATA_TYPE_UINT32, zio->io_stage, NULL);
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
|
|
DATA_TYPE_UINT32, zio->io_pipeline, NULL);
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
|
|
DATA_TYPE_UINT64, zio->io_delay, NULL);
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
|
|
DATA_TYPE_UINT64, zio->io_timestamp, NULL);
|
|
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
|
|
DATA_TYPE_UINT64, zio->io_delta, NULL);
|
|
|
|
/*
|
|
* If the 'size' parameter is non-zero, it indicates this is a
|
|
* RAID-Z or other I/O where the physical offset and length are
|
|
* provided for us, instead of within the zio_t.
|
|
*/
|
|
if (vd != NULL) {
|
|
if (size)
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
|
|
DATA_TYPE_UINT64, stateoroffset,
|
|
FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
|
|
DATA_TYPE_UINT64, size, NULL);
|
|
else
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
|
|
DATA_TYPE_UINT64, zio->io_offset,
|
|
FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
|
|
DATA_TYPE_UINT64, zio->io_size, NULL);
|
|
}
|
|
|
|
/*
|
|
* Payload for I/Os with corresponding logical information.
|
|
*/
|
|
if (zio->io_logical != NULL)
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
|
|
DATA_TYPE_UINT64,
|
|
zio->io_logical->io_bookmark.zb_objset,
|
|
FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
|
|
DATA_TYPE_UINT64,
|
|
zio->io_logical->io_bookmark.zb_object,
|
|
FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
|
|
DATA_TYPE_INT64,
|
|
zio->io_logical->io_bookmark.zb_level,
|
|
FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
|
|
DATA_TYPE_UINT64,
|
|
zio->io_logical->io_bookmark.zb_blkid, NULL);
|
|
} else if (vd != NULL) {
|
|
/*
|
|
* If we have a vdev but no zio, this is a device fault, and the
|
|
* 'stateoroffset' parameter indicates the previous state of the
|
|
* vdev.
|
|
*/
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
|
|
DATA_TYPE_UINT64, stateoroffset, NULL);
|
|
}
|
|
|
|
mutex_exit(&spa->spa_errlist_lock);
|
|
|
|
*ereport_out = ereport;
|
|
*detector_out = detector;
|
|
}
|
|
|
|
/* if it's <= 128 bytes, save the corruption directly */
|
|
#define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
|
|
|
|
#define MAX_RANGES 16
|
|
|
|
typedef struct zfs_ecksum_info {
|
|
/* histograms of set and cleared bits by bit number in a 64-bit word */
|
|
uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY];
|
|
uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
|
|
|
|
/* inline arrays of bits set and cleared. */
|
|
uint64_t zei_bits_set[ZFM_MAX_INLINE];
|
|
uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
|
|
|
|
/*
|
|
* for each range, the number of bits set and cleared. The Hamming
|
|
* distance between the good and bad buffers is the sum of them all.
|
|
*/
|
|
uint32_t zei_range_sets[MAX_RANGES];
|
|
uint32_t zei_range_clears[MAX_RANGES];
|
|
|
|
struct zei_ranges {
|
|
uint32_t zr_start;
|
|
uint32_t zr_end;
|
|
} zei_ranges[MAX_RANGES];
|
|
|
|
size_t zei_range_count;
|
|
uint32_t zei_mingap;
|
|
uint32_t zei_allowed_mingap;
|
|
|
|
} zfs_ecksum_info_t;
|
|
|
|
static void
|
|
update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count)
|
|
{
|
|
size_t i;
|
|
size_t bits = 0;
|
|
uint64_t value = BE_64(value_arg);
|
|
|
|
/* We store the bits in big-endian (largest-first) order */
|
|
for (i = 0; i < 64; i++) {
|
|
if (value & (1ull << i)) {
|
|
if (hist[63 - i] < UINT16_MAX)
|
|
hist[63 - i]++;
|
|
++bits;
|
|
}
|
|
}
|
|
/* update the count of bits changed */
|
|
*count += bits;
|
|
}
|
|
|
|
/*
|
|
* We've now filled up the range array, and need to increase "mingap" and
|
|
* shrink the range list accordingly. zei_mingap is always the smallest
|
|
* distance between array entries, so we set the new_allowed_gap to be
|
|
* one greater than that. We then go through the list, joining together
|
|
* any ranges which are closer than the new_allowed_gap.
|
|
*
|
|
* By construction, there will be at least one. We also update zei_mingap
|
|
* to the new smallest gap, to prepare for our next invocation.
|
|
*/
|
|
static void
|
|
zei_shrink_ranges(zfs_ecksum_info_t *eip)
|
|
{
|
|
uint32_t mingap = UINT32_MAX;
|
|
uint32_t new_allowed_gap = eip->zei_mingap + 1;
|
|
|
|
size_t idx, output;
|
|
size_t max = eip->zei_range_count;
|
|
|
|
struct zei_ranges *r = eip->zei_ranges;
|
|
|
|
ASSERT3U(eip->zei_range_count, >, 0);
|
|
ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
|
|
|
|
output = idx = 0;
|
|
while (idx < max - 1) {
|
|
uint32_t start = r[idx].zr_start;
|
|
uint32_t end = r[idx].zr_end;
|
|
|
|
while (idx < max - 1) {
|
|
uint32_t nstart, nend, gap;
|
|
|
|
idx++;
|
|
nstart = r[idx].zr_start;
|
|
nend = r[idx].zr_end;
|
|
|
|
gap = nstart - end;
|
|
if (gap < new_allowed_gap) {
|
|
end = nend;
|
|
continue;
|
|
}
|
|
if (gap < mingap)
|
|
mingap = gap;
|
|
break;
|
|
}
|
|
r[output].zr_start = start;
|
|
r[output].zr_end = end;
|
|
output++;
|
|
}
|
|
ASSERT3U(output, <, eip->zei_range_count);
|
|
eip->zei_range_count = output;
|
|
eip->zei_mingap = mingap;
|
|
eip->zei_allowed_mingap = new_allowed_gap;
|
|
}
|
|
|
|
static void
|
|
zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
|
|
{
|
|
struct zei_ranges *r = eip->zei_ranges;
|
|
size_t count = eip->zei_range_count;
|
|
|
|
if (count >= MAX_RANGES) {
|
|
zei_shrink_ranges(eip);
|
|
count = eip->zei_range_count;
|
|
}
|
|
if (count == 0) {
|
|
eip->zei_mingap = UINT32_MAX;
|
|
eip->zei_allowed_mingap = 1;
|
|
} else {
|
|
int gap = start - r[count - 1].zr_end;
|
|
|
|
if (gap < eip->zei_allowed_mingap) {
|
|
r[count - 1].zr_end = end;
|
|
return;
|
|
}
|
|
if (gap < eip->zei_mingap)
|
|
eip->zei_mingap = gap;
|
|
}
|
|
r[count].zr_start = start;
|
|
r[count].zr_end = end;
|
|
eip->zei_range_count++;
|
|
}
|
|
|
|
static size_t
|
|
zei_range_total_size(zfs_ecksum_info_t *eip)
|
|
{
|
|
struct zei_ranges *r = eip->zei_ranges;
|
|
size_t count = eip->zei_range_count;
|
|
size_t result = 0;
|
|
size_t idx;
|
|
|
|
for (idx = 0; idx < count; idx++)
|
|
result += (r[idx].zr_end - r[idx].zr_start);
|
|
|
|
return (result);
|
|
}
|
|
|
|
static zfs_ecksum_info_t *
|
|
annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
|
|
const uint8_t *goodbuf, const uint8_t *badbuf, size_t size,
|
|
boolean_t drop_if_identical)
|
|
{
|
|
const uint64_t *good = (const uint64_t *)goodbuf;
|
|
const uint64_t *bad = (const uint64_t *)badbuf;
|
|
|
|
uint64_t allset = 0;
|
|
uint64_t allcleared = 0;
|
|
|
|
size_t nui64s = size / sizeof (uint64_t);
|
|
|
|
size_t inline_size;
|
|
int no_inline = 0;
|
|
size_t idx;
|
|
size_t range;
|
|
|
|
size_t offset = 0;
|
|
ssize_t start = -1;
|
|
|
|
zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
|
|
|
|
/* don't do any annotation for injected checksum errors */
|
|
if (info != NULL && info->zbc_injected)
|
|
return (eip);
|
|
|
|
if (info != NULL && info->zbc_has_cksum) {
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
|
|
DATA_TYPE_UINT64_ARRAY,
|
|
sizeof (info->zbc_expected) / sizeof (uint64_t),
|
|
(uint64_t *)&info->zbc_expected,
|
|
FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
|
|
DATA_TYPE_UINT64_ARRAY,
|
|
sizeof (info->zbc_actual) / sizeof (uint64_t),
|
|
(uint64_t *)&info->zbc_actual,
|
|
FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
|
|
DATA_TYPE_STRING,
|
|
info->zbc_checksum_name,
|
|
NULL);
|
|
|
|
if (info->zbc_byteswapped) {
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
|
|
DATA_TYPE_BOOLEAN, 1,
|
|
NULL);
|
|
}
|
|
}
|
|
|
|
if (badbuf == NULL || goodbuf == NULL)
|
|
return (eip);
|
|
|
|
ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
|
|
ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
ASSERT3U(size, <=, UINT32_MAX);
|
|
|
|
/* build up the range list by comparing the two buffers. */
|
|
for (idx = 0; idx < nui64s; idx++) {
|
|
if (good[idx] == bad[idx]) {
|
|
if (start == -1)
|
|
continue;
|
|
|
|
zei_add_range(eip, start, idx);
|
|
start = -1;
|
|
} else {
|
|
if (start != -1)
|
|
continue;
|
|
|
|
start = idx;
|
|
}
|
|
}
|
|
if (start != -1)
|
|
zei_add_range(eip, start, idx);
|
|
|
|
/* See if it will fit in our inline buffers */
|
|
inline_size = zei_range_total_size(eip);
|
|
if (inline_size > ZFM_MAX_INLINE)
|
|
no_inline = 1;
|
|
|
|
/*
|
|
* If there is no change and we want to drop if the buffers are
|
|
* identical, do so.
|
|
*/
|
|
if (inline_size == 0 && drop_if_identical) {
|
|
kmem_free(eip, sizeof (*eip));
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Now walk through the ranges, filling in the details of the
|
|
* differences. Also convert our uint64_t-array offsets to byte
|
|
* offsets.
|
|
*/
|
|
for (range = 0; range < eip->zei_range_count; range++) {
|
|
size_t start = eip->zei_ranges[range].zr_start;
|
|
size_t end = eip->zei_ranges[range].zr_end;
|
|
|
|
for (idx = start; idx < end; idx++) {
|
|
uint64_t set, cleared;
|
|
|
|
// bits set in bad, but not in good
|
|
set = ((~good[idx]) & bad[idx]);
|
|
// bits set in good, but not in bad
|
|
cleared = (good[idx] & (~bad[idx]));
|
|
|
|
allset |= set;
|
|
allcleared |= cleared;
|
|
|
|
if (!no_inline) {
|
|
ASSERT3U(offset, <, inline_size);
|
|
eip->zei_bits_set[offset] = set;
|
|
eip->zei_bits_cleared[offset] = cleared;
|
|
offset++;
|
|
}
|
|
|
|
update_histogram(set, eip->zei_histogram_set,
|
|
&eip->zei_range_sets[range]);
|
|
update_histogram(cleared, eip->zei_histogram_cleared,
|
|
&eip->zei_range_clears[range]);
|
|
}
|
|
|
|
/* convert to byte offsets */
|
|
eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
|
|
eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
|
|
}
|
|
eip->zei_allowed_mingap *= sizeof (uint64_t);
|
|
inline_size *= sizeof (uint64_t);
|
|
|
|
/* fill in ereport */
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
|
|
DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
|
|
(uint32_t *)eip->zei_ranges,
|
|
FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
|
|
DATA_TYPE_UINT32, eip->zei_allowed_mingap,
|
|
FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
|
|
DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
|
|
FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
|
|
DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
|
|
NULL);
|
|
|
|
if (!no_inline) {
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
|
|
DATA_TYPE_UINT8_ARRAY,
|
|
inline_size, (uint8_t *)eip->zei_bits_set,
|
|
FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
|
|
DATA_TYPE_UINT8_ARRAY,
|
|
inline_size, (uint8_t *)eip->zei_bits_cleared,
|
|
NULL);
|
|
} else {
|
|
fm_payload_set(ereport,
|
|
FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
|
|
DATA_TYPE_UINT16_ARRAY,
|
|
NBBY * sizeof (uint64_t), eip->zei_histogram_set,
|
|
FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
|
|
DATA_TYPE_UINT16_ARRAY,
|
|
NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
|
|
NULL);
|
|
}
|
|
return (eip);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
|
|
uint64_t stateoroffset, uint64_t size)
|
|
{
|
|
#ifdef _KERNEL
|
|
nvlist_t *ereport = NULL;
|
|
nvlist_t *detector = NULL;
|
|
|
|
zfs_ereport_start(&ereport, &detector,
|
|
subclass, spa, vd, zio, stateoroffset, size);
|
|
|
|
if (ereport == NULL)
|
|
return;
|
|
|
|
if (zfs_is_ratelimiting_event(subclass, vd))
|
|
return;
|
|
|
|
/* Cleanup is handled by the callback function */
|
|
zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd,
|
|
struct zio *zio, uint64_t offset, uint64_t length, void *arg,
|
|
zio_bad_cksum_t *info)
|
|
{
|
|
zio_cksum_report_t *report;
|
|
|
|
|
|
#ifdef _KERNEL
|
|
if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
|
|
return;
|
|
#endif
|
|
|
|
report = kmem_zalloc(sizeof (*report), KM_SLEEP);
|
|
|
|
if (zio->io_vsd != NULL)
|
|
zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
|
|
else
|
|
zio_vsd_default_cksum_report(zio, report, arg);
|
|
|
|
/* copy the checksum failure information if it was provided */
|
|
if (info != NULL) {
|
|
report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
|
|
bcopy(info, report->zcr_ckinfo, sizeof (*info));
|
|
}
|
|
|
|
report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
|
|
report->zcr_length = length;
|
|
|
|
#ifdef _KERNEL
|
|
zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
|
|
FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
|
|
|
|
if (report->zcr_ereport == NULL) {
|
|
zfs_ereport_free_checksum(report);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
mutex_enter(&spa->spa_errlist_lock);
|
|
report->zcr_next = zio->io_logical->io_cksum_report;
|
|
zio->io_logical->io_cksum_report = report;
|
|
mutex_exit(&spa->spa_errlist_lock);
|
|
}
|
|
|
|
void
|
|
zfs_ereport_finish_checksum(zio_cksum_report_t *report,
|
|
const void *good_data, const void *bad_data, boolean_t drop_if_identical)
|
|
{
|
|
#ifdef _KERNEL
|
|
zfs_ecksum_info_t *info;
|
|
|
|
info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
|
|
good_data, bad_data, report->zcr_length, drop_if_identical);
|
|
if (info != NULL)
|
|
zfs_zevent_post(report->zcr_ereport,
|
|
report->zcr_detector, zfs_zevent_post_cb);
|
|
else
|
|
zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
|
|
|
|
report->zcr_ereport = report->zcr_detector = NULL;
|
|
if (info != NULL)
|
|
kmem_free(info, sizeof (*info));
|
|
#endif
|
|
}
|
|
|
|
void
|
|
zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
|
|
{
|
|
#ifdef _KERNEL
|
|
if (rpt->zcr_ereport != NULL) {
|
|
fm_nvlist_destroy(rpt->zcr_ereport,
|
|
FM_NVA_FREE);
|
|
fm_nvlist_destroy(rpt->zcr_detector,
|
|
FM_NVA_FREE);
|
|
}
|
|
#endif
|
|
rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
|
|
|
|
if (rpt->zcr_ckinfo != NULL)
|
|
kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
|
|
|
|
kmem_free(rpt, sizeof (*rpt));
|
|
}
|
|
|
|
|
|
void
|
|
zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd,
|
|
struct zio *zio, uint64_t offset, uint64_t length,
|
|
const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc)
|
|
{
|
|
#ifdef _KERNEL
|
|
nvlist_t *ereport = NULL;
|
|
nvlist_t *detector = NULL;
|
|
zfs_ecksum_info_t *info;
|
|
|
|
zfs_ereport_start(&ereport, &detector,
|
|
FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length);
|
|
|
|
if (ereport == NULL)
|
|
return;
|
|
|
|
info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
|
|
B_FALSE);
|
|
|
|
if (info != NULL) {
|
|
zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
|
|
kmem_free(info, sizeof (*info));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
|
|
nvlist_t *aux)
|
|
{
|
|
#ifdef _KERNEL
|
|
nvlist_t *resource;
|
|
char class[64];
|
|
|
|
if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
|
|
return;
|
|
|
|
if ((resource = fm_nvlist_create(NULL)) == NULL)
|
|
return;
|
|
|
|
(void) snprintf(class, sizeof (class), "%s.%s.%s", type,
|
|
ZFS_ERROR_CLASS, name);
|
|
VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
|
|
VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
|
|
VERIFY0(nvlist_add_uint64(resource,
|
|
FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
|
|
VERIFY0(nvlist_add_int32(resource,
|
|
FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
|
|
|
|
if (vd) {
|
|
VERIFY0(nvlist_add_uint64(resource,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
|
|
VERIFY0(nvlist_add_uint64(resource,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
|
|
if (vd->vdev_path != NULL)
|
|
VERIFY0(nvlist_add_string(resource,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
|
|
if (vd->vdev_devid != NULL)
|
|
VERIFY0(nvlist_add_string(resource,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
|
|
if (vd->vdev_fru != NULL)
|
|
VERIFY0(nvlist_add_string(resource,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
|
|
if (vd->vdev_enc_sysfs_path != NULL)
|
|
VERIFY0(nvlist_add_string(resource,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
|
|
vd->vdev_enc_sysfs_path));
|
|
/* also copy any optional payload data */
|
|
if (aux) {
|
|
nvpair_t *elem = NULL;
|
|
|
|
while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
|
|
(void) nvlist_add_nvpair(resource, elem);
|
|
}
|
|
}
|
|
|
|
zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
|
|
* has been removed from the system. This will cause the DE to ignore any
|
|
* recent I/O errors, inferring that they are due to the asynchronous device
|
|
* removal.
|
|
*/
|
|
void
|
|
zfs_post_remove(spa_t *spa, vdev_t *vd)
|
|
{
|
|
zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
|
|
}
|
|
|
|
/*
|
|
* The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
|
|
* has the 'autoreplace' property set, and therefore any broken vdevs will be
|
|
* handled by higher level logic, and no vdev fault should be generated.
|
|
*/
|
|
void
|
|
zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
|
|
{
|
|
zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
|
|
}
|
|
|
|
/*
|
|
* The 'resource.fs.zfs.statechange' event is an internal signal that the
|
|
* given vdev has transitioned its state to DEGRADED or HEALTHY. This will
|
|
* cause the retire agent to repair any outstanding fault management cases
|
|
* open because the device was not found (fault.fs.zfs.device).
|
|
*/
|
|
void
|
|
zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
|
|
{
|
|
#ifdef _KERNEL
|
|
nvlist_t *aux;
|
|
|
|
/*
|
|
* Add optional supplemental keys to payload
|
|
*/
|
|
aux = fm_nvlist_create(NULL);
|
|
if (vd && aux) {
|
|
if (vd->vdev_physpath) {
|
|
(void) nvlist_add_string(aux,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
|
|
vd->vdev_physpath);
|
|
}
|
|
if (vd->vdev_enc_sysfs_path) {
|
|
(void) nvlist_add_string(aux,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
|
|
vd->vdev_enc_sysfs_path);
|
|
}
|
|
|
|
(void) nvlist_add_uint64(aux,
|
|
FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
|
|
}
|
|
|
|
zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
|
|
aux);
|
|
|
|
if (aux)
|
|
fm_nvlist_destroy(aux, FM_NVA_FREE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
|
|
* change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h
|
|
* and are designed to be consumed by the ZFS Event Daemon (ZED). For
|
|
* additional details refer to the zed(8) man page.
|
|
*/
|
|
void
|
|
zfs_post_sysevent(spa_t *spa, vdev_t *vd, const char *name)
|
|
{
|
|
zfs_post_common(spa, vd, FM_SYSEVENT_CLASS, name, NULL);
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
EXPORT_SYMBOL(zfs_ereport_post);
|
|
EXPORT_SYMBOL(zfs_ereport_post_checksum);
|
|
EXPORT_SYMBOL(zfs_post_remove);
|
|
EXPORT_SYMBOL(zfs_post_autoreplace);
|
|
EXPORT_SYMBOL(zfs_post_state_change);
|
|
EXPORT_SYMBOL(zfs_post_sysevent);
|
|
#endif /* _KERNEL */
|