freebsd-dev/sys/dev/e1000/igb_txrx.c
Eric Joyner 088a0b27ad intel iflib drivers: correct initialization of tx_cidx_processed
From Jake:

In r341156 ("Fix first-packet completion", 2018-11-28) a hack to work
around a delta calculation determining how many descriptors were used
was added to ixl_isc_tx_credits_update_dwb.

The same fix was also applied to the em and igb drivers in r340310, and
to ix in r341156.

The hack checked the case where prev and cur were equal, and then added
one. This works, because by the time we do the delta check, we already
know there is at least one packet available, so the delta should be at
least one.

However, it's not a complete fix, and as indicated by the comment is
really a hack to work around the real bug.

The real problem is that the first time that we transmit a packet,
tx_cidx_processed will be set to point to the start of the ring.
Ultimately, the credits_update function expects it to point to the
*last* descriptor that was processed. Since we haven't yet processed any
descriptors, pointing it to 0 results in this incorrect calculation.

Fix the initialization code to have it point to the end of the ring
instead. One way to think about this, is that we are setting the value
to be one prior to the first available descriptor.

Doing so, corrects the delta calculation in all cases. The original fix
only works if the first packet has exactly one descriptor. Otherwise, we
will report 1 less than the correct value.

As part of this fix, also update the MPASS assertions to match the real
expectations. First, ensure that prev is not equal to cur, since this
should never happen. Second, remove the assertion about prev==0 || delta
!= 0. It looks like that originated from when the em driver was
converted to iflib. It seems like it was supposed to ensure that delta
was non-zero. However, because we originally returned 0 delta for the
first calculation, the "prev == 0" was tacked on.

Instead, replace this with a check that delta is greater than zero,
after the correction necessary when the ring pointers wrap around.

This new solution should fix the same bug as r341156 did, but in a more
robust way.

Submitted by:	Jacob Keller <jacob.e.keller@intel.com>
Reviewed by:	shurd@
Sponsored by:	Intel Corporation
Differential Revision:	https://reviews.freebsd.org/D18545
2019-01-24 01:03:00 +00:00

581 lines
17 KiB
C

/*-
* Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* $FreeBSD$ */
#include "if_em.h"
#ifdef RSS
#include <net/rss_config.h>
#include <netinet/in_rss.h>
#endif
#ifdef VERBOSE_DEBUG
#define DPRINTF device_printf
#else
#define DPRINTF(...)
#endif
/*********************************************************************
* Local Function prototypes
*********************************************************************/
static int igb_isc_txd_encap(void *arg, if_pkt_info_t pi);
static void igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
static int igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
static void igb_isc_rxd_refill(void *arg, if_rxd_update_t iru);
static void igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx);
static int igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget);
static int igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
static int igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status);
static int igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status);
static void igb_rx_checksum(u32 staterr, if_rxd_info_t ri, u32 ptype);
static int igb_determine_rsstype(u16 pkt_info);
extern void igb_if_enable_intr(if_ctx_t ctx);
extern int em_intr(void *arg);
struct if_txrx igb_txrx = {
.ift_txd_encap = igb_isc_txd_encap,
.ift_txd_flush = igb_isc_txd_flush,
.ift_txd_credits_update = igb_isc_txd_credits_update,
.ift_rxd_available = igb_isc_rxd_available,
.ift_rxd_pkt_get = igb_isc_rxd_pkt_get,
.ift_rxd_refill = igb_isc_rxd_refill,
.ift_rxd_flush = igb_isc_rxd_flush,
.ift_legacy_intr = em_intr
};
extern if_shared_ctx_t em_sctx;
/**********************************************************************
*
* Setup work for hardware segmentation offload (TSO) on
* adapters using advanced tx descriptors
*
**********************************************************************/
static int
igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status)
{
struct e1000_adv_tx_context_desc *TXD;
struct adapter *adapter = txr->adapter;
u32 type_tucmd_mlhl = 0, vlan_macip_lens = 0;
u32 mss_l4len_idx = 0;
u32 paylen;
switch(pi->ipi_etype) {
case ETHERTYPE_IPV6:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
break;
case ETHERTYPE_IP:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
/* Tell transmit desc to also do IPv4 checksum. */
*olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
break;
default:
panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
__func__, ntohs(pi->ipi_etype));
break;
}
TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
/* This is used in the transmit desc in encap */
paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen - pi->ipi_tcp_hlen;
/* VLAN MACLEN IPLEN */
if (pi->ipi_mflags & M_VLANTAG) {
vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
}
vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
vlan_macip_lens |= pi->ipi_ip_hlen;
TXD->vlan_macip_lens = htole32(vlan_macip_lens);
/* ADV DTYPE TUCMD */
type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
/* MSS L4LEN IDX */
mss_l4len_idx |= (pi->ipi_tso_segsz << E1000_ADVTXD_MSS_SHIFT);
mss_l4len_idx |= (pi->ipi_tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
/* 82575 needs the queue index added */
if (adapter->hw.mac.type == e1000_82575)
mss_l4len_idx |= txr->me << 4;
TXD->mss_l4len_idx = htole32(mss_l4len_idx);
TXD->seqnum_seed = htole32(0);
*cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
*olinfo_status |= paylen << E1000_ADVTXD_PAYLEN_SHIFT;
return (1);
}
/*********************************************************************
*
* Advanced Context Descriptor setup for VLAN, CSUM or TSO
*
**********************************************************************/
static int
igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, u32 *cmd_type_len, u32 *olinfo_status)
{
struct e1000_adv_tx_context_desc *TXD;
struct adapter *adapter = txr->adapter;
u32 vlan_macip_lens, type_tucmd_mlhl;
u32 mss_l4len_idx;
mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
/* First check if TSO is to be used */
if (pi->ipi_csum_flags & CSUM_TSO)
return (igb_tso_setup(txr, pi, cmd_type_len, olinfo_status));
/* Indicate the whole packet as payload when not doing TSO */
*olinfo_status |= pi->ipi_len << E1000_ADVTXD_PAYLEN_SHIFT;
/* Now ready a context descriptor */
TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
/*
** In advanced descriptors the vlan tag must
** be placed into the context descriptor. Hence
** we need to make one even if not doing offloads.
*/
if (pi->ipi_mflags & M_VLANTAG) {
vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
} else if ((pi->ipi_csum_flags & IGB_CSUM_OFFLOAD) == 0) {
return (0);
}
/* Set the ether header length */
vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
switch(pi->ipi_etype) {
case ETHERTYPE_IP:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
break;
case ETHERTYPE_IPV6:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
break;
default:
break;
}
vlan_macip_lens |= pi->ipi_ip_hlen;
type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
switch (pi->ipi_ipproto) {
case IPPROTO_TCP:
if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
}
break;
case IPPROTO_UDP:
if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
}
break;
case IPPROTO_SCTP:
if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
}
break;
default:
break;
}
/* 82575 needs the queue index added */
if (adapter->hw.mac.type == e1000_82575)
mss_l4len_idx = txr->me << 4;
/* Now copy bits into descriptor */
TXD->vlan_macip_lens = htole32(vlan_macip_lens);
TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
TXD->seqnum_seed = htole32(0);
TXD->mss_l4len_idx = htole32(mss_l4len_idx);
return (1);
}
static int
igb_isc_txd_encap(void *arg, if_pkt_info_t pi)
{
struct adapter *sc = arg;
if_softc_ctx_t scctx = sc->shared;
struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
struct tx_ring *txr = &que->txr;
int nsegs = pi->ipi_nsegs;
bus_dma_segment_t *segs = pi->ipi_segs;
union e1000_adv_tx_desc *txd = NULL;
int i, j, pidx_last;
u32 olinfo_status, cmd_type_len, txd_flags;
qidx_t ntxd;
pidx_last = olinfo_status = 0;
/* Basic descriptor defines */
cmd_type_len = (E1000_ADVTXD_DTYP_DATA |
E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT);
if (pi->ipi_mflags & M_VLANTAG)
cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
i = pi->ipi_pidx;
ntxd = scctx->isc_ntxd[0];
txd_flags = pi->ipi_flags & IPI_TX_INTR ? E1000_ADVTXD_DCMD_RS : 0;
/* Consume the first descriptor */
i += igb_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
if (i == scctx->isc_ntxd[0])
i = 0;
/* 82575 needs the queue index added */
if (sc->hw.mac.type == e1000_82575)
olinfo_status |= txr->me << 4;
for (j = 0; j < nsegs; j++) {
bus_size_t seglen;
bus_addr_t segaddr;
txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
seglen = segs[j].ds_len;
segaddr = htole64(segs[j].ds_addr);
txd->read.buffer_addr = segaddr;
txd->read.cmd_type_len = htole32(E1000_TXD_CMD_IFCS |
cmd_type_len | seglen);
txd->read.olinfo_status = htole32(olinfo_status);
pidx_last = i;
if (++i == scctx->isc_ntxd[0]) {
i = 0;
}
}
if (txd_flags) {
txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
}
txd->read.cmd_type_len |= htole32(E1000_TXD_CMD_EOP | txd_flags);
pi->ipi_new_pidx = i;
return (0);
}
static void
igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
{
struct adapter *adapter = arg;
struct em_tx_queue *que = &adapter->tx_queues[txqid];
struct tx_ring *txr = &que->txr;
E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), pidx);
}
static int
igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
{
struct adapter *adapter = arg;
if_softc_ctx_t scctx = adapter->shared;
struct em_tx_queue *que = &adapter->tx_queues[txqid];
struct tx_ring *txr = &que->txr;
qidx_t processed = 0;
int updated;
qidx_t cur, prev, ntxd, rs_cidx;
int32_t delta;
uint8_t status;
rs_cidx = txr->tx_rs_cidx;
if (rs_cidx == txr->tx_rs_pidx)
return (0);
cur = txr->tx_rsq[rs_cidx];
status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
updated = !!(status & E1000_TXD_STAT_DD);
if (!updated)
return (0);
/* If clear is false just let caller know that there
* are descriptors to reclaim */
if (!clear)
return (1);
prev = txr->tx_cidx_processed;
ntxd = scctx->isc_ntxd[0];
do {
MPASS(prev != cur);
delta = (int32_t)cur - (int32_t)prev;
if (delta < 0)
delta += ntxd;
MPASS(delta > 0);
processed += delta;
prev = cur;
rs_cidx = (rs_cidx + 1) & (ntxd-1);
if (rs_cidx == txr->tx_rs_pidx)
break;
cur = txr->tx_rsq[rs_cidx];
status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
} while ((status & E1000_TXD_STAT_DD));
txr->tx_rs_cidx = rs_cidx;
txr->tx_cidx_processed = prev;
return (processed);
}
static void
igb_isc_rxd_refill(void *arg, if_rxd_update_t iru)
{
struct adapter *sc = arg;
if_softc_ctx_t scctx = sc->shared;
uint16_t rxqid = iru->iru_qsidx;
struct em_rx_queue *que = &sc->rx_queues[rxqid];
union e1000_adv_rx_desc *rxd;
struct rx_ring *rxr = &que->rxr;
uint64_t *paddrs;
uint32_t next_pidx, pidx;
uint16_t count;
int i;
paddrs = iru->iru_paddrs;
pidx = iru->iru_pidx;
count = iru->iru_count;
for (i = 0, next_pidx = pidx; i < count; i++) {
rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[next_pidx];
rxd->read.pkt_addr = htole64(paddrs[i]);
if (++next_pidx == scctx->isc_nrxd[0])
next_pidx = 0;
}
}
static void
igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
{
struct adapter *sc = arg;
struct em_rx_queue *que = &sc->rx_queues[rxqid];
struct rx_ring *rxr = &que->rxr;
E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
}
static int
igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
{
struct adapter *sc = arg;
if_softc_ctx_t scctx = sc->shared;
struct em_rx_queue *que = &sc->rx_queues[rxqid];
struct rx_ring *rxr = &que->rxr;
union e1000_adv_rx_desc *rxd;
u32 staterr = 0;
int cnt, i;
for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[i];
staterr = le32toh(rxd->wb.upper.status_error);
if ((staterr & E1000_RXD_STAT_DD) == 0)
break;
if (++i == scctx->isc_nrxd[0])
i = 0;
if (staterr & E1000_RXD_STAT_EOP)
cnt++;
}
return (cnt);
}
/****************************************************************
* Routine sends data which has been dma'ed into host memory
* to upper layer. Initialize ri structure.
*
* Returns 0 upon success, errno on failure
***************************************************************/
static int
igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
{
struct adapter *adapter = arg;
if_softc_ctx_t scctx = adapter->shared;
struct em_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
struct rx_ring *rxr = &que->rxr;
struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
union e1000_adv_rx_desc *rxd;
u16 pkt_info, len;
u16 vtag = 0;
u32 ptype;
u32 staterr = 0;
bool eop;
int i = 0;
int cidx = ri->iri_cidx;
do {
rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[cidx];
staterr = le32toh(rxd->wb.upper.status_error);
pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
len = le16toh(rxd->wb.upper.length);
ptype = le32toh(rxd->wb.lower.lo_dword.data) & IGB_PKTTYPE_MASK;
ri->iri_len += len;
rxr->rx_bytes += ri->iri_len;
rxd->wb.upper.status_error = 0;
eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
if (((adapter->hw.mac.type == e1000_i350) ||
(adapter->hw.mac.type == e1000_i354)) &&
(staterr & E1000_RXDEXT_STATERR_LB))
vtag = be16toh(rxd->wb.upper.vlan);
else
vtag = le16toh(rxd->wb.upper.vlan);
/* Make sure bad packets are discarded */
if (eop && ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0)) {
adapter->dropped_pkts++;
++rxr->rx_discarded;
return (EBADMSG);
}
ri->iri_frags[i].irf_flid = 0;
ri->iri_frags[i].irf_idx = cidx;
ri->iri_frags[i].irf_len = len;
if (++cidx == scctx->isc_nrxd[0])
cidx = 0;
#ifdef notyet
if (rxr->hdr_split == TRUE) {
ri->iri_frags[i].irf_flid = 1;
ri->iri_frags[i].irf_idx = cidx;
if (++cidx == scctx->isc_nrxd[0])
cidx = 0;
}
#endif
i++;
} while (!eop);
rxr->rx_packets++;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
igb_rx_checksum(staterr, ri, ptype);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(staterr & E1000_RXD_STAT_VP) != 0) {
ri->iri_vtag = vtag;
ri->iri_flags |= M_VLANTAG;
}
ri->iri_flowid =
le32toh(rxd->wb.lower.hi_dword.rss);
ri->iri_rsstype = igb_determine_rsstype(pkt_info);
ri->iri_nfrags = i;
return (0);
}
/*********************************************************************
*
* Verify that the hardware indicated that the checksum is valid.
* Inform the stack about the status of checksum so that stack
* doesn't spend time verifying the checksum.
*
*********************************************************************/
static void
igb_rx_checksum(u32 staterr, if_rxd_info_t ri, u32 ptype)
{
u16 status = (u16)staterr;
u8 errors = (u8) (staterr >> 24);
bool sctp = FALSE;
/* Ignore Checksum bit is set */
if (status & E1000_RXD_STAT_IXSM) {
ri->iri_csum_flags = 0;
return;
}
if ((ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
(ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)
sctp = 1;
else
sctp = 0;
if (status & E1000_RXD_STAT_IPCS) {
/* Did it pass? */
if (!(errors & E1000_RXD_ERR_IPE)) {
/* IP Checksum Good */
ri->iri_csum_flags = CSUM_IP_CHECKED;
ri->iri_csum_flags |= CSUM_IP_VALID;
} else
ri->iri_csum_flags = 0;
}
if (status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
u64 type = (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
if (sctp) /* reassign */
type = CSUM_SCTP_VALID;
/* Did it pass? */
if (!(errors & E1000_RXD_ERR_TCPE)) {
ri->iri_csum_flags |= type;
if (sctp == 0)
ri->iri_csum_data = htons(0xffff);
}
}
return;
}
/********************************************************************
*
* Parse the packet type to determine the appropriate hash
*
******************************************************************/
static int
igb_determine_rsstype(u16 pkt_info)
{
switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) {
case E1000_RXDADV_RSSTYPE_IPV4_TCP:
return M_HASHTYPE_RSS_TCP_IPV4;
case E1000_RXDADV_RSSTYPE_IPV4:
return M_HASHTYPE_RSS_IPV4;
case E1000_RXDADV_RSSTYPE_IPV6_TCP:
return M_HASHTYPE_RSS_TCP_IPV6;
case E1000_RXDADV_RSSTYPE_IPV6_EX:
return M_HASHTYPE_RSS_IPV6_EX;
case E1000_RXDADV_RSSTYPE_IPV6:
return M_HASHTYPE_RSS_IPV6;
case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX:
return M_HASHTYPE_RSS_TCP_IPV6_EX;
default:
return M_HASHTYPE_OPAQUE;
}
}