freebsd-dev/lib/libprocstat/libprocstat.c
Konstantin Belousov 039d1496b0 libprocstat: add procstat_getadvlock(3)
For now, only for sysctl target.  This is not a new situation, for
instance kstacks also work for sysctl only.

Reviewed by:	markj, rmacklem
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D34756
2022-04-10 00:47:49 +03:00

2782 lines
65 KiB
C

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (c) 2017 Dell EMC
* Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org>
* Copyright (c) 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/elf.h>
#include <sys/time.h>
#include <sys/resourcevar.h>
#define _WANT_UCRED
#include <sys/ucred.h>
#undef _WANT_UCRED
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/vnode.h>
#include <sys/socket.h>
#define _WANT_SOCKET
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/un.h>
#define _WANT_UNPCB
#include <sys/unpcb.h>
#include <sys/sysctl.h>
#include <sys/tty.h>
#include <sys/filedesc.h>
#include <sys/queue.h>
#define _WANT_FILE
#include <sys/file.h>
#include <sys/conf.h>
#include <sys/ksem.h>
#include <sys/mman.h>
#include <sys/capsicum.h>
#include <sys/ptrace.h>
#define _WANT_MOUNT
#include <sys/mount.h>
#include <sys/filedesc.h>
#include <sys/pipe.h>
#include <fs/devfs/devfs.h>
#include <fs/devfs/devfs_int.h>
#include <nfs/nfsproto.h>
#include <nfsclient/nfs.h>
#include <nfsclient/nfsnode.h>
#include <vm/vm.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#define _WANT_INPCB
#include <netinet/in_pcb.h>
#include <assert.h>
#include <ctype.h>
#include <err.h>
#include <fcntl.h>
#include <kvm.h>
#include <libutil.h>
#include <limits.h>
#include <paths.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <libprocstat.h>
#include "libprocstat_internal.h"
#include "common_kvm.h"
#include "core.h"
int statfs(const char *, struct statfs *); /* XXX */
#define PROCSTAT_KVM 1
#define PROCSTAT_SYSCTL 2
#define PROCSTAT_CORE 3
static char **getargv(struct procstat *procstat, struct kinfo_proc *kp,
size_t nchr, int env);
static char *getmnton(kvm_t *kd, struct mount *m);
static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core,
int *cntp);
static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core,
unsigned int *cntp);
static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp);
static struct filestat_list *procstat_getfiles_kvm(
struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
static struct filestat_list *procstat_getfiles_sysctl(
struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
static int procstat_get_pipe_info_sysctl(struct filestat *fst,
struct pipestat *pipe, char *errbuf);
static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
struct pipestat *pipe, char *errbuf);
static int procstat_get_pts_info_sysctl(struct filestat *fst,
struct ptsstat *pts, char *errbuf);
static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
struct ptsstat *pts, char *errbuf);
static int procstat_get_sem_info_sysctl(struct filestat *fst,
struct semstat *sem, char *errbuf);
static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
struct semstat *sem, char *errbuf);
static int procstat_get_shm_info_sysctl(struct filestat *fst,
struct shmstat *shm, char *errbuf);
static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
struct shmstat *shm, char *errbuf);
static int procstat_get_socket_info_sysctl(struct filestat *fst,
struct sockstat *sock, char *errbuf);
static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
struct sockstat *sock, char *errbuf);
static int to_filestat_flags(int flags);
static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
struct vnstat *vn, char *errbuf);
static int procstat_get_vnode_info_sysctl(struct filestat *fst,
struct vnstat *vn, char *errbuf);
static gid_t *procstat_getgroups_core(struct procstat_core *core,
unsigned int *count);
static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp,
unsigned int *count);
static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count);
static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid,
int *cntp);
static int procstat_getosrel_core(struct procstat_core *core,
int *osrelp);
static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp,
int *osrelp);
static int procstat_getosrel_sysctl(pid_t pid, int *osrelp);
static int procstat_getpathname_core(struct procstat_core *core,
char *pathname, size_t maxlen);
static int procstat_getpathname_sysctl(pid_t pid, char *pathname,
size_t maxlen);
static int procstat_getrlimit_core(struct procstat_core *core, int which,
struct rlimit* rlimit);
static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp,
int which, struct rlimit* rlimit);
static int procstat_getrlimit_sysctl(pid_t pid, int which,
struct rlimit* rlimit);
static int procstat_getumask_core(struct procstat_core *core,
unsigned short *maskp);
static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp,
unsigned short *maskp);
static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp);
static int vntype2psfsttype(int type);
void
procstat_close(struct procstat *procstat)
{
assert(procstat);
if (procstat->type == PROCSTAT_KVM)
kvm_close(procstat->kd);
else if (procstat->type == PROCSTAT_CORE)
procstat_core_close(procstat->core);
procstat_freeargv(procstat);
procstat_freeenvv(procstat);
free(procstat);
}
struct procstat *
procstat_open_sysctl(void)
{
struct procstat *procstat;
procstat = calloc(1, sizeof(*procstat));
if (procstat == NULL) {
warn("malloc()");
return (NULL);
}
procstat->type = PROCSTAT_SYSCTL;
return (procstat);
}
struct procstat *
procstat_open_kvm(const char *nlistf, const char *memf)
{
struct procstat *procstat;
kvm_t *kd;
char buf[_POSIX2_LINE_MAX];
procstat = calloc(1, sizeof(*procstat));
if (procstat == NULL) {
warn("malloc()");
return (NULL);
}
kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf);
if (kd == NULL) {
warnx("kvm_openfiles(): %s", buf);
free(procstat);
return (NULL);
}
procstat->type = PROCSTAT_KVM;
procstat->kd = kd;
return (procstat);
}
struct procstat *
procstat_open_core(const char *filename)
{
struct procstat *procstat;
struct procstat_core *core;
procstat = calloc(1, sizeof(*procstat));
if (procstat == NULL) {
warn("malloc()");
return (NULL);
}
core = procstat_core_open(filename);
if (core == NULL) {
free(procstat);
return (NULL);
}
procstat->type = PROCSTAT_CORE;
procstat->core = core;
return (procstat);
}
struct kinfo_proc *
procstat_getprocs(struct procstat *procstat, int what, int arg,
unsigned int *count)
{
struct kinfo_proc *p0, *p;
size_t len, olen;
int name[4];
int cnt;
int error;
assert(procstat);
assert(count);
p = NULL;
if (procstat->type == PROCSTAT_KVM) {
*count = 0;
p0 = kvm_getprocs(procstat->kd, what, arg, &cnt);
if (p0 == NULL || cnt <= 0)
return (NULL);
*count = cnt;
len = *count * sizeof(*p);
p = malloc(len);
if (p == NULL) {
warnx("malloc(%zu)", len);
goto fail;
}
bcopy(p0, p, len);
return (p);
} else if (procstat->type == PROCSTAT_SYSCTL) {
len = 0;
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = what;
name[3] = arg;
error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
if (error < 0 && errno != EPERM) {
warn("sysctl(kern.proc)");
goto fail;
}
if (len == 0) {
warnx("no processes?");
goto fail;
}
do {
len += len / 10;
p = reallocf(p, len);
if (p == NULL) {
warnx("reallocf(%zu)", len);
goto fail;
}
olen = len;
error = sysctl(name, nitems(name), p, &len, NULL, 0);
} while (error < 0 && errno == ENOMEM && olen == len);
if (error < 0 && errno != EPERM) {
warn("sysctl(kern.proc)");
goto fail;
}
/* Perform simple consistency checks. */
if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
warnx("kinfo_proc structure size mismatch (len = %zu)", len);
goto fail;
}
*count = len / sizeof(*p);
return (p);
} else if (procstat->type == PROCSTAT_CORE) {
p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL,
&len);
if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
warnx("kinfo_proc structure size mismatch");
goto fail;
}
*count = len / sizeof(*p);
return (p);
} else {
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
fail:
if (p)
free(p);
return (NULL);
}
void
procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p)
{
if (p != NULL)
free(p);
p = NULL;
}
struct filestat_list *
procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
{
switch(procstat->type) {
case PROCSTAT_KVM:
return (procstat_getfiles_kvm(procstat, kp, mmapped));
case PROCSTAT_SYSCTL:
case PROCSTAT_CORE:
return (procstat_getfiles_sysctl(procstat, kp, mmapped));
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freefiles(struct procstat *procstat, struct filestat_list *head)
{
struct filestat *fst, *tmp;
STAILQ_FOREACH_SAFE(fst, head, next, tmp) {
if (fst->fs_path != NULL)
free(fst->fs_path);
free(fst);
}
free(head);
if (procstat->vmentries != NULL) {
free(procstat->vmentries);
procstat->vmentries = NULL;
}
if (procstat->files != NULL) {
free(procstat->files);
procstat->files = NULL;
}
}
static struct filestat *
filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags,
int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp)
{
struct filestat *entry;
entry = calloc(1, sizeof(*entry));
if (entry == NULL) {
warn("malloc()");
return (NULL);
}
entry->fs_typedep = typedep;
entry->fs_fflags = fflags;
entry->fs_uflags = uflags;
entry->fs_fd = fd;
entry->fs_type = type;
entry->fs_ref_count = refcount;
entry->fs_offset = offset;
entry->fs_path = path;
if (cap_rightsp != NULL)
entry->fs_cap_rights = *cap_rightsp;
else
cap_rights_init(&entry->fs_cap_rights);
return (entry);
}
static struct vnode *
getctty(kvm_t *kd, struct kinfo_proc *kp)
{
struct pgrp pgrp;
struct proc proc;
struct session sess;
int error;
assert(kp);
error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
sizeof(proc));
if (error == 0) {
warnx("can't read proc struct at %p for pid %d",
kp->ki_paddr, kp->ki_pid);
return (NULL);
}
if (proc.p_pgrp == NULL)
return (NULL);
error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp,
sizeof(pgrp));
if (error == 0) {
warnx("can't read pgrp struct at %p for pid %d",
proc.p_pgrp, kp->ki_pid);
return (NULL);
}
error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess,
sizeof(sess));
if (error == 0) {
warnx("can't read session struct at %p for pid %d",
pgrp.pg_session, kp->ki_pid);
return (NULL);
}
return (sess.s_ttyvp);
}
static int
procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest)
{
kvm_t *kd;
kd = (kvm_t *)token;
return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest)));
}
static struct filestat_list *
procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
{
struct file file;
struct filedesc filed;
struct pwddesc pathsd;
struct fdescenttbl *fdt;
struct pwd pwd;
unsigned long pwd_addr;
struct vm_map_entry vmentry;
struct vm_object object;
struct vmspace vmspace;
vm_map_entry_t entryp;
vm_object_t objp;
struct vnode *vp;
struct filestat *entry;
struct filestat_list *head;
kvm_t *kd;
void *data;
int fflags;
unsigned int i;
int prot, type;
size_t fdt_size;
unsigned int nfiles;
bool haspwd;
assert(procstat);
kd = procstat->kd;
if (kd == NULL)
return (NULL);
if (kp->ki_fd == NULL || kp->ki_pd == NULL)
return (NULL);
if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed,
sizeof(filed))) {
warnx("can't read filedesc at %p", (void *)kp->ki_fd);
return (NULL);
}
if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pathsd,
sizeof(pathsd))) {
warnx("can't read pwddesc at %p", (void *)kp->ki_pd);
return (NULL);
}
haspwd = false;
pwd_addr = (unsigned long)(PWDDESC_KVM_LOAD_PWD(&pathsd));
if (pwd_addr != 0) {
if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) {
warnx("can't read fd_pwd at %p", (void *)pwd_addr);
return (NULL);
}
haspwd = true;
}
/*
* Allocate list head.
*/
head = malloc(sizeof(*head));
if (head == NULL)
return (NULL);
STAILQ_INIT(head);
/* root directory vnode, if one. */
if (haspwd) {
if (pwd.pwd_rdir) {
entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
/* current working directory vnode. */
if (pwd.pwd_cdir) {
entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
/* jail root, if any. */
if (pwd.pwd_jdir) {
entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
}
/* ktrace vnode, if one */
if (kp->ki_tracep) {
entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
/* text vnode, if one */
if (kp->ki_textvp) {
entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
/* Controlling terminal. */
if ((vp = getctty(kd, kp)) != NULL) {
entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles,
sizeof(nfiles))) {
warnx("can't read fd_files at %p", (void *)filed.fd_files);
return (NULL);
}
fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent);
fdt = malloc(fdt_size);
if (fdt == NULL) {
warn("malloc(%zu)", fdt_size);
goto do_mmapped;
}
if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) {
warnx("cannot read file structures at %p", (void *)filed.fd_files);
free(fdt);
goto do_mmapped;
}
for (i = 0; i < nfiles; i++) {
if (fdt->fdt_ofiles[i].fde_file == NULL) {
continue;
}
if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file,
sizeof(struct file))) {
warnx("can't read file %d at %p", i,
(void *)fdt->fdt_ofiles[i].fde_file);
continue;
}
switch (file.f_type) {
case DTYPE_VNODE:
type = PS_FST_TYPE_VNODE;
data = file.f_vnode;
break;
case DTYPE_SOCKET:
type = PS_FST_TYPE_SOCKET;
data = file.f_data;
break;
case DTYPE_PIPE:
type = PS_FST_TYPE_PIPE;
data = file.f_data;
break;
case DTYPE_FIFO:
type = PS_FST_TYPE_FIFO;
data = file.f_vnode;
break;
#ifdef DTYPE_PTS
case DTYPE_PTS:
type = PS_FST_TYPE_PTS;
data = file.f_data;
break;
#endif
case DTYPE_SEM:
type = PS_FST_TYPE_SEM;
data = file.f_data;
break;
case DTYPE_SHM:
type = PS_FST_TYPE_SHM;
data = file.f_data;
break;
case DTYPE_PROCDESC:
type = PS_FST_TYPE_PROCDESC;
data = file.f_data;
break;
case DTYPE_DEV:
type = PS_FST_TYPE_DEV;
data = file.f_data;
break;
case DTYPE_EVENTFD:
type = PS_FST_TYPE_EVENTFD;
data = file.f_data;
break;
default:
continue;
}
/* XXXRW: No capability rights support for kvm yet. */
entry = filestat_new_entry(data, type, i,
to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
free(fdt);
do_mmapped:
/*
* Process mmapped files if requested.
*/
if (mmapped) {
if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace,
sizeof(vmspace))) {
warnx("can't read vmspace at %p",
(void *)kp->ki_vmspace);
goto exit;
}
vmentry = vmspace.vm_map.header;
for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader);
entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header;
entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) {
if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP)
continue;
if ((objp = vmentry.object.vm_object) == NULL)
continue;
for (; objp; objp = object.backing_object) {
if (!kvm_read_all(kd, (unsigned long)objp,
&object, sizeof(object))) {
warnx("can't read vm_object at %p",
(void *)objp);
break;
}
}
/* We want only vnode objects. */
if (object.type != OBJT_VNODE)
continue;
prot = vmentry.protection;
fflags = 0;
if (prot & VM_PROT_READ)
fflags = PS_FST_FFLAG_READ;
if ((vmentry.eflags & MAP_ENTRY_COW) == 0 &&
prot & VM_PROT_WRITE)
fflags |= PS_FST_FFLAG_WRITE;
/*
* Create filestat entry.
*/
entry = filestat_new_entry(object.handle,
PS_FST_TYPE_VNODE, -1, fflags,
PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
if (entryp == NULL)
warnx("can't read vm_map_entry");
}
exit:
return (head);
}
/*
* kinfo types to filestat translation.
*/
static int
kinfo_type2fst(int kftype)
{
static struct {
int kf_type;
int fst_type;
} kftypes2fst[] = {
{ KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC },
{ KF_TYPE_DEV, PS_FST_TYPE_DEV },
{ KF_TYPE_FIFO, PS_FST_TYPE_FIFO },
{ KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE },
{ KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE },
{ KF_TYPE_NONE, PS_FST_TYPE_NONE },
{ KF_TYPE_PIPE, PS_FST_TYPE_PIPE },
{ KF_TYPE_PTS, PS_FST_TYPE_PTS },
{ KF_TYPE_SEM, PS_FST_TYPE_SEM },
{ KF_TYPE_SHM, PS_FST_TYPE_SHM },
{ KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET },
{ KF_TYPE_VNODE, PS_FST_TYPE_VNODE },
{ KF_TYPE_EVENTFD, PS_FST_TYPE_EVENTFD },
{ KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN }
};
#define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst))
unsigned int i;
for (i = 0; i < NKFTYPES; i++)
if (kftypes2fst[i].kf_type == kftype)
break;
if (i == NKFTYPES)
return (PS_FST_TYPE_UNKNOWN);
return (kftypes2fst[i].fst_type);
}
/*
* kinfo flags to filestat translation.
*/
static int
kinfo_fflags2fst(int kfflags)
{
static struct {
int kf_flag;
int fst_flag;
} kfflags2fst[] = {
{ KF_FLAG_APPEND, PS_FST_FFLAG_APPEND },
{ KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC },
{ KF_FLAG_CREAT, PS_FST_FFLAG_CREAT },
{ KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT },
{ KF_FLAG_EXCL, PS_FST_FFLAG_EXCL },
{ KF_FLAG_EXEC, PS_FST_FFLAG_EXEC },
{ KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK },
{ KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC },
{ KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK },
{ KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
{ KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
{ KF_FLAG_READ, PS_FST_FFLAG_READ },
{ KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK },
{ KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC },
{ KF_FLAG_WRITE, PS_FST_FFLAG_WRITE }
};
#define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst))
unsigned int i;
int flags;
flags = 0;
for (i = 0; i < NKFFLAGS; i++)
if ((kfflags & kfflags2fst[i].kf_flag) != 0)
flags |= kfflags2fst[i].fst_flag;
return (flags);
}
static int
kinfo_uflags2fst(int fd)
{
switch (fd) {
case KF_FD_TYPE_CTTY:
return (PS_FST_UFLAG_CTTY);
case KF_FD_TYPE_CWD:
return (PS_FST_UFLAG_CDIR);
case KF_FD_TYPE_JAIL:
return (PS_FST_UFLAG_JAIL);
case KF_FD_TYPE_TEXT:
return (PS_FST_UFLAG_TEXT);
case KF_FD_TYPE_TRACE:
return (PS_FST_UFLAG_TRACE);
case KF_FD_TYPE_ROOT:
return (PS_FST_UFLAG_RDIR);
}
return (0);
}
static struct kinfo_file *
kinfo_getfile_core(struct procstat_core *core, int *cntp)
{
int cnt;
size_t len;
char *buf, *bp, *eb;
struct kinfo_file *kif, *kp, *kf;
buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len);
if (buf == NULL)
return (NULL);
/*
* XXXMG: The code below is just copy&past from libutil.
* The code duplication can be avoided if libutil
* is extended to provide something like:
* struct kinfo_file *kinfo_getfile_from_buf(const char *buf,
* size_t len, int *cntp);
*/
/* Pass 1: count items */
cnt = 0;
bp = buf;
eb = buf + len;
while (bp < eb) {
kf = (struct kinfo_file *)(uintptr_t)bp;
if (kf->kf_structsize == 0)
break;
bp += kf->kf_structsize;
cnt++;
}
kif = calloc(cnt, sizeof(*kif));
if (kif == NULL) {
free(buf);
return (NULL);
}
bp = buf;
eb = buf + len;
kp = kif;
/* Pass 2: unpack */
while (bp < eb) {
kf = (struct kinfo_file *)(uintptr_t)bp;
if (kf->kf_structsize == 0)
break;
/* Copy/expand into pre-zeroed buffer */
memcpy(kp, kf, kf->kf_structsize);
/* Advance to next packed record */
bp += kf->kf_structsize;
/* Set field size to fixed length, advance */
kp->kf_structsize = sizeof(*kp);
kp++;
}
free(buf);
*cntp = cnt;
return (kif); /* Caller must free() return value */
}
static struct filestat_list *
procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp,
int mmapped)
{
struct kinfo_file *kif, *files;
struct kinfo_vmentry *kve, *vmentries;
struct filestat_list *head;
struct filestat *entry;
char *path;
off_t offset;
int cnt, fd, fflags;
int i, type, uflags;
int refcount;
cap_rights_t cap_rights;
assert(kp);
switch (procstat->type) {
case PROCSTAT_SYSCTL:
files = kinfo_getfile(kp->ki_pid, &cnt);
break;
case PROCSTAT_CORE:
files = kinfo_getfile_core(procstat->core, &cnt);
break;
default:
assert(!"invalid type");
}
if (files == NULL && errno != EPERM) {
warn("kinfo_getfile()");
return (NULL);
}
procstat->files = files;
/*
* Allocate list head.
*/
head = malloc(sizeof(*head));
if (head == NULL)
return (NULL);
STAILQ_INIT(head);
for (i = 0; i < cnt; i++) {
kif = &files[i];
type = kinfo_type2fst(kif->kf_type);
fd = kif->kf_fd >= 0 ? kif->kf_fd : -1;
fflags = kinfo_fflags2fst(kif->kf_flags);
uflags = kinfo_uflags2fst(kif->kf_fd);
refcount = kif->kf_ref_count;
offset = kif->kf_offset;
if (*kif->kf_path != '\0')
path = strdup(kif->kf_path);
else
path = NULL;
cap_rights = kif->kf_cap_rights;
/*
* Create filestat entry.
*/
entry = filestat_new_entry(kif, type, fd, fflags, uflags,
refcount, offset, path, &cap_rights);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
if (mmapped != 0) {
vmentries = procstat_getvmmap(procstat, kp, &cnt);
procstat->vmentries = vmentries;
if (vmentries == NULL || cnt == 0)
goto fail;
for (i = 0; i < cnt; i++) {
kve = &vmentries[i];
if (kve->kve_type != KVME_TYPE_VNODE)
continue;
fflags = 0;
if (kve->kve_protection & KVME_PROT_READ)
fflags = PS_FST_FFLAG_READ;
if ((kve->kve_flags & KVME_FLAG_COW) == 0 &&
kve->kve_protection & KVME_PROT_WRITE)
fflags |= PS_FST_FFLAG_WRITE;
offset = kve->kve_offset;
refcount = kve->kve_ref_count;
if (*kve->kve_path != '\0')
path = strdup(kve->kve_path);
else
path = NULL;
entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1,
fflags, PS_FST_UFLAG_MMAP, refcount, offset, path,
NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
}
fail:
return (head);
}
int
procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst,
struct pipestat *ps, char *errbuf)
{
assert(ps);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_pipe_info_sysctl(fst, ps, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
struct pipestat *ps, char *errbuf)
{
struct pipe pi;
void *pipep;
assert(kd);
assert(ps);
assert(fst);
bzero(ps, sizeof(*ps));
pipep = fst->fs_typedep;
if (pipep == NULL)
goto fail;
if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) {
warnx("can't read pipe at %p", (void *)pipep);
goto fail;
}
ps->addr = (uintptr_t)pipep;
ps->peer = (uintptr_t)pi.pipe_peer;
ps->buffer_cnt = pi.pipe_buffer.cnt;
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
static int
procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps,
char *errbuf __unused)
{
struct kinfo_file *kif;
assert(ps);
assert(fst);
bzero(ps, sizeof(*ps));
kif = fst->fs_typedep;
if (kif == NULL)
return (1);
ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr;
ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer;
ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt;
return (0);
}
int
procstat_get_pts_info(struct procstat *procstat, struct filestat *fst,
struct ptsstat *pts, char *errbuf)
{
assert(pts);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_pts_info_kvm(procstat->kd, fst, pts,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_pts_info_sysctl(fst, pts, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
struct ptsstat *pts, char *errbuf)
{
struct tty tty;
void *ttyp;
assert(kd);
assert(pts);
assert(fst);
bzero(pts, sizeof(*pts));
ttyp = fst->fs_typedep;
if (ttyp == NULL)
goto fail;
if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) {
warnx("can't read tty at %p", (void *)ttyp);
goto fail;
}
pts->dev = dev2udev(kd, tty.t_dev);
(void)kdevtoname(kd, tty.t_dev, pts->devname);
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
static int
procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts,
char *errbuf __unused)
{
struct kinfo_file *kif;
assert(pts);
assert(fst);
bzero(pts, sizeof(*pts));
kif = fst->fs_typedep;
if (kif == NULL)
return (0);
pts->dev = kif->kf_un.kf_pts.kf_pts_dev;
strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname));
return (0);
}
int
procstat_get_sem_info(struct procstat *procstat, struct filestat *fst,
struct semstat *sem, char *errbuf)
{
assert(sem);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_sem_info_kvm(procstat->kd, fst, sem,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_sem_info_sysctl(fst, sem, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
struct semstat *sem, char *errbuf)
{
struct ksem ksem;
void *ksemp;
char *path;
int i;
assert(kd);
assert(sem);
assert(fst);
bzero(sem, sizeof(*sem));
ksemp = fst->fs_typedep;
if (ksemp == NULL)
goto fail;
if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem,
sizeof(struct ksem))) {
warnx("can't read ksem at %p", (void *)ksemp);
goto fail;
}
sem->mode = S_IFREG | ksem.ks_mode;
sem->value = ksem.ks_value;
if (fst->fs_path == NULL && ksem.ks_path != NULL) {
path = malloc(MAXPATHLEN);
for (i = 0; i < MAXPATHLEN - 1; i++) {
if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i,
path + i, 1))
break;
if (path[i] == '\0')
break;
}
path[i] = '\0';
if (i == 0)
free(path);
else
fst->fs_path = path;
}
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
static int
procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem,
char *errbuf __unused)
{
struct kinfo_file *kif;
assert(sem);
assert(fst);
bzero(sem, sizeof(*sem));
kif = fst->fs_typedep;
if (kif == NULL)
return (0);
sem->value = kif->kf_un.kf_sem.kf_sem_value;
sem->mode = kif->kf_un.kf_sem.kf_sem_mode;
return (0);
}
int
procstat_get_shm_info(struct procstat *procstat, struct filestat *fst,
struct shmstat *shm, char *errbuf)
{
assert(shm);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_shm_info_kvm(procstat->kd, fst, shm,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_shm_info_sysctl(fst, shm, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
struct shmstat *shm, char *errbuf)
{
struct shmfd shmfd;
void *shmfdp;
char *path;
int i;
assert(kd);
assert(shm);
assert(fst);
bzero(shm, sizeof(*shm));
shmfdp = fst->fs_typedep;
if (shmfdp == NULL)
goto fail;
if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd,
sizeof(struct shmfd))) {
warnx("can't read shmfd at %p", (void *)shmfdp);
goto fail;
}
shm->mode = S_IFREG | shmfd.shm_mode;
shm->size = shmfd.shm_size;
if (fst->fs_path == NULL && shmfd.shm_path != NULL) {
path = malloc(MAXPATHLEN);
for (i = 0; i < MAXPATHLEN - 1; i++) {
if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i,
path + i, 1))
break;
if (path[i] == '\0')
break;
}
path[i] = '\0';
if (i == 0)
free(path);
else
fst->fs_path = path;
}
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
static int
procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm,
char *errbuf __unused)
{
struct kinfo_file *kif;
assert(shm);
assert(fst);
bzero(shm, sizeof(*shm));
kif = fst->fs_typedep;
if (kif == NULL)
return (0);
shm->size = kif->kf_un.kf_file.kf_file_size;
shm->mode = kif->kf_un.kf_file.kf_file_mode;
return (0);
}
int
procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst,
struct vnstat *vn, char *errbuf)
{
assert(vn);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_vnode_info_sysctl(fst, vn, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
struct vnstat *vn, char *errbuf)
{
/* Filesystem specific handlers. */
#define FSTYPE(fst) {#fst, fst##_filestat}
struct {
const char *tag;
int (*handler)(kvm_t *kd, struct vnode *vp,
struct vnstat *vn);
} fstypes[] = {
FSTYPE(devfs),
FSTYPE(isofs),
FSTYPE(msdosfs),
FSTYPE(nfs),
FSTYPE(smbfs),
FSTYPE(udf),
FSTYPE(ufs),
#ifdef LIBPROCSTAT_ZFS
FSTYPE(zfs),
#endif
};
#define NTYPES (sizeof(fstypes) / sizeof(*fstypes))
struct vnode vnode;
char tagstr[12];
void *vp;
int error;
unsigned int i;
assert(kd);
assert(vn);
assert(fst);
vp = fst->fs_typedep;
if (vp == NULL)
goto fail;
error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode));
if (error == 0) {
warnx("can't read vnode at %p", (void *)vp);
goto fail;
}
bzero(vn, sizeof(*vn));
vn->vn_type = vntype2psfsttype(vnode.v_type);
if (vnode.v_type == VNON || vnode.v_type == VBAD)
return (0);
error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name,
tagstr, sizeof(tagstr));
if (error == 0) {
warnx("can't read lo_name at %p", (void *)vp);
goto fail;
}
tagstr[sizeof(tagstr) - 1] = '\0';
/*
* Find appropriate handler.
*/
for (i = 0; i < NTYPES; i++)
if (!strcmp(fstypes[i].tag, tagstr)) {
if (fstypes[i].handler(kd, &vnode, vn) != 0) {
goto fail;
}
break;
}
if (i == NTYPES) {
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr);
return (1);
}
vn->vn_mntdir = getmnton(kd, vnode.v_mount);
if ((vnode.v_type == VBLK || vnode.v_type == VCHR) &&
vnode.v_rdev != NULL){
vn->vn_dev = dev2udev(kd, vnode.v_rdev);
(void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname);
} else {
vn->vn_dev = -1;
}
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
/*
* kinfo vnode type to filestat translation.
*/
static int
kinfo_vtype2fst(int kfvtype)
{
static struct {
int kf_vtype;
int fst_vtype;
} kfvtypes2fst[] = {
{ KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD },
{ KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK },
{ KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR },
{ KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR },
{ KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO },
{ KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK },
{ KF_VTYPE_VNON, PS_FST_VTYPE_VNON },
{ KF_VTYPE_VREG, PS_FST_VTYPE_VREG },
{ KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK }
};
#define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst))
unsigned int i;
for (i = 0; i < NKFVTYPES; i++)
if (kfvtypes2fst[i].kf_vtype == kfvtype)
break;
if (i == NKFVTYPES)
return (PS_FST_VTYPE_UNKNOWN);
return (kfvtypes2fst[i].fst_vtype);
}
static int
procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn,
char *errbuf)
{
struct statfs stbuf;
struct kinfo_file *kif;
struct kinfo_vmentry *kve;
char *name, *path;
uint64_t fileid;
uint64_t size;
uint64_t fsid;
uint64_t rdev;
uint16_t mode;
int vntype;
int status;
assert(fst);
assert(vn);
bzero(vn, sizeof(*vn));
if (fst->fs_typedep == NULL)
return (1);
if (fst->fs_uflags & PS_FST_UFLAG_MMAP) {
kve = fst->fs_typedep;
fileid = kve->kve_vn_fileid;
fsid = kve->kve_vn_fsid;
mode = kve->kve_vn_mode;
path = kve->kve_path;
rdev = kve->kve_vn_rdev;
size = kve->kve_vn_size;
vntype = kinfo_vtype2fst(kve->kve_vn_type);
status = kve->kve_status;
} else {
kif = fst->fs_typedep;
fileid = kif->kf_un.kf_file.kf_file_fileid;
fsid = kif->kf_un.kf_file.kf_file_fsid;
mode = kif->kf_un.kf_file.kf_file_mode;
path = kif->kf_path;
rdev = kif->kf_un.kf_file.kf_file_rdev;
size = kif->kf_un.kf_file.kf_file_size;
vntype = kinfo_vtype2fst(kif->kf_vnode_type);
status = kif->kf_status;
}
vn->vn_type = vntype;
if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD)
return (0);
if ((status & KF_ATTR_VALID) == 0) {
if (errbuf != NULL) {
snprintf(errbuf, _POSIX2_LINE_MAX,
"? (no info available)");
}
return (1);
}
if (path && *path) {
statfs(path, &stbuf);
vn->vn_mntdir = strdup(stbuf.f_mntonname);
} else
vn->vn_mntdir = strdup("-");
vn->vn_dev = rdev;
if (vntype == PS_FST_VTYPE_VBLK) {
name = devname(rdev, S_IFBLK);
if (name != NULL)
strlcpy(vn->vn_devname, name,
sizeof(vn->vn_devname));
} else if (vntype == PS_FST_VTYPE_VCHR) {
name = devname(vn->vn_dev, S_IFCHR);
if (name != NULL)
strlcpy(vn->vn_devname, name,
sizeof(vn->vn_devname));
}
vn->vn_fsid = fsid;
vn->vn_fileid = fileid;
vn->vn_size = size;
vn->vn_mode = mode;
return (0);
}
int
procstat_get_socket_info(struct procstat *procstat, struct filestat *fst,
struct sockstat *sock, char *errbuf)
{
assert(sock);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_socket_info_kvm(procstat->kd, fst, sock,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_socket_info_sysctl(fst, sock, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
struct sockstat *sock, char *errbuf)
{
struct domain dom;
struct inpcb inpcb;
struct protosw proto;
struct socket s;
struct unpcb unpcb;
ssize_t len;
void *so;
assert(kd);
assert(sock);
assert(fst);
bzero(sock, sizeof(*sock));
so = fst->fs_typedep;
if (so == NULL)
goto fail;
sock->so_addr = (uintptr_t)so;
/* fill in socket */
if (!kvm_read_all(kd, (unsigned long)so, &s,
sizeof(struct socket))) {
warnx("can't read sock at %p", (void *)so);
goto fail;
}
/* fill in protosw entry */
if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto,
sizeof(struct protosw))) {
warnx("can't read protosw at %p", (void *)s.so_proto);
goto fail;
}
/* fill in domain */
if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom,
sizeof(struct domain))) {
warnx("can't read domain at %p",
(void *)proto.pr_domain);
goto fail;
}
if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname,
sizeof(sock->dname) - 1)) < 0) {
warnx("can't read domain name at %p", (void *)dom.dom_name);
sock->dname[0] = '\0';
}
else
sock->dname[len] = '\0';
/*
* Fill in known data.
*/
sock->type = s.so_type;
sock->proto = proto.pr_protocol;
sock->dom_family = dom.dom_family;
sock->so_pcb = (uintptr_t)s.so_pcb;
/*
* Protocol specific data.
*/
switch(dom.dom_family) {
case AF_INET:
case AF_INET6:
if (proto.pr_protocol == IPPROTO_TCP) {
if (s.so_pcb) {
if (kvm_read(kd, (u_long)s.so_pcb,
(char *)&inpcb, sizeof(struct inpcb))
!= sizeof(struct inpcb)) {
warnx("can't read inpcb at %p",
(void *)s.so_pcb);
} else
sock->inp_ppcb =
(uintptr_t)inpcb.inp_ppcb;
sock->sendq = s.so_snd.sb_ccc;
sock->recvq = s.so_rcv.sb_ccc;
}
}
break;
case AF_UNIX:
if (s.so_pcb) {
if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb,
sizeof(struct unpcb)) != sizeof(struct unpcb)){
warnx("can't read unpcb at %p",
(void *)s.so_pcb);
} else if (unpcb.unp_conn) {
sock->so_rcv_sb_state = s.so_rcv.sb_state;
sock->so_snd_sb_state = s.so_snd.sb_state;
sock->unp_conn = (uintptr_t)unpcb.unp_conn;
sock->sendq = s.so_snd.sb_ccc;
sock->recvq = s.so_rcv.sb_ccc;
}
}
break;
default:
break;
}
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
static int
procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock,
char *errbuf __unused)
{
struct kinfo_file *kif;
assert(sock);
assert(fst);
bzero(sock, sizeof(*sock));
kif = fst->fs_typedep;
if (kif == NULL)
return (0);
/*
* Fill in known data.
*/
sock->type = kif->kf_sock_type;
sock->proto = kif->kf_sock_protocol;
sock->dom_family = kif->kf_sock_domain;
sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb;
strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname));
bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local,
kif->kf_un.kf_sock.kf_sa_local.ss_len);
bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer,
kif->kf_un.kf_sock.kf_sa_peer.ss_len);
/*
* Protocol specific data.
*/
switch(sock->dom_family) {
case AF_INET:
case AF_INET6:
if (sock->proto == IPPROTO_TCP) {
sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb;
sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
}
break;
case AF_UNIX:
if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) {
sock->so_rcv_sb_state =
kif->kf_un.kf_sock.kf_sock_rcv_sb_state;
sock->so_snd_sb_state =
kif->kf_un.kf_sock.kf_sock_snd_sb_state;
sock->unp_conn =
kif->kf_un.kf_sock.kf_sock_unpconn;
sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
}
break;
default:
break;
}
return (0);
}
/*
* Descriptor flags to filestat translation.
*/
static int
to_filestat_flags(int flags)
{
static struct {
int flag;
int fst_flag;
} fstflags[] = {
{ FREAD, PS_FST_FFLAG_READ },
{ FWRITE, PS_FST_FFLAG_WRITE },
{ O_APPEND, PS_FST_FFLAG_APPEND },
{ O_ASYNC, PS_FST_FFLAG_ASYNC },
{ O_CREAT, PS_FST_FFLAG_CREAT },
{ O_DIRECT, PS_FST_FFLAG_DIRECT },
{ O_EXCL, PS_FST_FFLAG_EXCL },
{ O_EXEC, PS_FST_FFLAG_EXEC },
{ O_EXLOCK, PS_FST_FFLAG_EXLOCK },
{ O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
{ O_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
{ O_SHLOCK, PS_FST_FFLAG_SHLOCK },
{ O_SYNC, PS_FST_FFLAG_SYNC },
{ O_TRUNC, PS_FST_FFLAG_TRUNC }
};
#define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags))
int fst_flags;
unsigned int i;
fst_flags = 0;
for (i = 0; i < NFSTFLAGS; i++)
if (flags & fstflags[i].flag)
fst_flags |= fstflags[i].fst_flag;
return (fst_flags);
}
/*
* Vnode type to filestate translation.
*/
static int
vntype2psfsttype(int type)
{
static struct {
int vtype;
int fst_vtype;
} vt2fst[] = {
{ VBAD, PS_FST_VTYPE_VBAD },
{ VBLK, PS_FST_VTYPE_VBLK },
{ VCHR, PS_FST_VTYPE_VCHR },
{ VDIR, PS_FST_VTYPE_VDIR },
{ VFIFO, PS_FST_VTYPE_VFIFO },
{ VLNK, PS_FST_VTYPE_VLNK },
{ VNON, PS_FST_VTYPE_VNON },
{ VREG, PS_FST_VTYPE_VREG },
{ VSOCK, PS_FST_VTYPE_VSOCK }
};
#define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst))
unsigned int i, fst_type;
fst_type = PS_FST_VTYPE_UNKNOWN;
for (i = 0; i < NVFTYPES; i++) {
if (type == vt2fst[i].vtype) {
fst_type = vt2fst[i].fst_vtype;
break;
}
}
return (fst_type);
}
static char *
getmnton(kvm_t *kd, struct mount *m)
{
struct mount mnt;
static struct mtab {
struct mtab *next;
struct mount *m;
char mntonname[MNAMELEN + 1];
} *mhead = NULL;
struct mtab *mt;
for (mt = mhead; mt != NULL; mt = mt->next)
if (m == mt->m)
return (mt->mntonname);
if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) {
warnx("can't read mount table at %p", (void *)m);
return (NULL);
}
if ((mt = malloc(sizeof (struct mtab))) == NULL)
err(1, NULL);
mt->m = m;
bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN);
mt->mntonname[MNAMELEN] = '\0';
mt->next = mhead;
mhead = mt;
return (mt->mntonname);
}
/*
* Auxiliary structures and functions to get process environment or
* command line arguments.
*/
struct argvec {
char *buf;
size_t bufsize;
char **argv;
size_t argc;
};
static struct argvec *
argvec_alloc(size_t bufsize)
{
struct argvec *av;
av = malloc(sizeof(*av));
if (av == NULL)
return (NULL);
av->bufsize = bufsize;
av->buf = malloc(av->bufsize);
if (av->buf == NULL) {
free(av);
return (NULL);
}
av->argc = 32;
av->argv = malloc(sizeof(char *) * av->argc);
if (av->argv == NULL) {
free(av->buf);
free(av);
return (NULL);
}
return av;
}
static void
argvec_free(struct argvec * av)
{
free(av->argv);
free(av->buf);
free(av);
}
static char **
getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env)
{
int error, name[4], argc, i;
struct argvec *av, **avp;
enum psc_type type;
size_t len;
char *p, **argv;
assert(procstat);
assert(kp);
if (procstat->type == PROCSTAT_KVM) {
warnx("can't use kvm access method");
return (NULL);
}
if (procstat->type != PROCSTAT_SYSCTL &&
procstat->type != PROCSTAT_CORE) {
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
if (nchr == 0 || nchr > ARG_MAX)
nchr = ARG_MAX;
avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv);
av = *avp;
if (av == NULL)
{
av = argvec_alloc(nchr);
if (av == NULL)
{
warn("malloc(%zu)", nchr);
return (NULL);
}
*avp = av;
} else if (av->bufsize < nchr) {
av->buf = reallocf(av->buf, nchr);
if (av->buf == NULL) {
warn("malloc(%zu)", nchr);
return (NULL);
}
}
if (procstat->type == PROCSTAT_SYSCTL) {
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
name[3] = kp->ki_pid;
len = nchr;
error = sysctl(name, nitems(name), av->buf, &len, NULL, 0);
if (error != 0 && errno != ESRCH && errno != EPERM)
warn("sysctl(kern.proc.%s)", env ? "env" : "args");
if (error != 0 || len == 0)
return (NULL);
} else /* procstat->type == PROCSTAT_CORE */ {
type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV;
len = nchr;
if (procstat_core_get(procstat->core, type, av->buf, &len)
== NULL) {
return (NULL);
}
}
argv = av->argv;
argc = av->argc;
i = 0;
for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) {
argv[i++] = p;
if (i < argc)
continue;
/* Grow argv. */
argc += argc;
argv = realloc(argv, sizeof(char *) * argc);
if (argv == NULL) {
warn("malloc(%zu)", sizeof(char *) * argc);
return (NULL);
}
av->argv = argv;
av->argc = argc;
}
argv[i] = NULL;
return (argv);
}
/*
* Return process command line arguments.
*/
char **
procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
{
return (getargv(procstat, p, nchr, 0));
}
/*
* Free the buffer allocated by procstat_getargv().
*/
void
procstat_freeargv(struct procstat *procstat)
{
if (procstat->argv != NULL) {
argvec_free(procstat->argv);
procstat->argv = NULL;
}
}
/*
* Return process environment.
*/
char **
procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
{
return (getargv(procstat, p, nchr, 1));
}
/*
* Free the buffer allocated by procstat_getenvv().
*/
void
procstat_freeenvv(struct procstat *procstat)
{
if (procstat->envv != NULL) {
argvec_free(procstat->envv);
procstat->envv = NULL;
}
}
static struct kinfo_vmentry *
kinfo_getvmmap_core(struct procstat_core *core, int *cntp)
{
int cnt;
size_t len;
char *buf, *bp, *eb;
struct kinfo_vmentry *kiv, *kp, *kv;
buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len);
if (buf == NULL)
return (NULL);
/*
* XXXMG: The code below is just copy&past from libutil.
* The code duplication can be avoided if libutil
* is extended to provide something like:
* struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf,
* size_t len, int *cntp);
*/
/* Pass 1: count items */
cnt = 0;
bp = buf;
eb = buf + len;
while (bp < eb) {
kv = (struct kinfo_vmentry *)(uintptr_t)bp;
if (kv->kve_structsize == 0)
break;
bp += kv->kve_structsize;
cnt++;
}
kiv = calloc(cnt, sizeof(*kiv));
if (kiv == NULL) {
free(buf);
return (NULL);
}
bp = buf;
eb = buf + len;
kp = kiv;
/* Pass 2: unpack */
while (bp < eb) {
kv = (struct kinfo_vmentry *)(uintptr_t)bp;
if (kv->kve_structsize == 0)
break;
/* Copy/expand into pre-zeroed buffer */
memcpy(kp, kv, kv->kve_structsize);
/* Advance to next packed record */
bp += kv->kve_structsize;
/* Set field size to fixed length, advance */
kp->kve_structsize = sizeof(*kp);
kp++;
}
free(buf);
*cntp = cnt;
return (kiv); /* Caller must free() return value */
}
struct kinfo_vmentry *
procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp,
unsigned int *cntp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
warnx("kvm method is not supported");
return (NULL);
case PROCSTAT_SYSCTL:
return (kinfo_getvmmap(kp->ki_pid, cntp));
case PROCSTAT_CORE:
return (kinfo_getvmmap_core(procstat->core, cntp));
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freevmmap(struct procstat *procstat __unused,
struct kinfo_vmentry *vmmap)
{
free(vmmap);
}
static gid_t *
procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp)
{
struct proc proc;
struct ucred ucred;
gid_t *groups;
size_t len;
assert(kd != NULL);
assert(kp != NULL);
if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
sizeof(proc))) {
warnx("can't read proc struct at %p for pid %d",
kp->ki_paddr, kp->ki_pid);
return (NULL);
}
if (proc.p_ucred == NOCRED)
return (NULL);
if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred,
sizeof(ucred))) {
warnx("can't read ucred struct at %p for pid %d",
proc.p_ucred, kp->ki_pid);
return (NULL);
}
len = ucred.cr_ngroups * sizeof(gid_t);
groups = malloc(len);
if (groups == NULL) {
warn("malloc(%zu)", len);
return (NULL);
}
if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) {
warnx("can't read groups at %p for pid %d",
ucred.cr_groups, kp->ki_pid);
free(groups);
return (NULL);
}
*cntp = ucred.cr_ngroups;
return (groups);
}
static gid_t *
procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp)
{
int mib[4];
size_t len;
gid_t *groups;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_GROUPS;
mib[3] = pid;
len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t);
groups = malloc(len);
if (groups == NULL) {
warn("malloc(%zu)", len);
return (NULL);
}
if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) {
warn("sysctl: kern.proc.groups: %d", pid);
free(groups);
return (NULL);
}
*cntp = len / sizeof(gid_t);
return (groups);
}
static gid_t *
procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp)
{
size_t len;
gid_t *groups;
groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len);
if (groups == NULL)
return (NULL);
*cntp = len / sizeof(gid_t);
return (groups);
}
gid_t *
procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp,
unsigned int *cntp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
return (procstat_getgroups_kvm(procstat->kd, kp, cntp));
case PROCSTAT_SYSCTL:
return (procstat_getgroups_sysctl(kp->ki_pid, cntp));
case PROCSTAT_CORE:
return (procstat_getgroups_core(procstat->core, cntp));
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freegroups(struct procstat *procstat __unused, gid_t *groups)
{
free(groups);
}
static int
procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp)
{
struct pwddesc pd;
assert(kd != NULL);
assert(kp != NULL);
if (kp->ki_pd == NULL)
return (-1);
if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pd, sizeof(pd))) {
warnx("can't read pwddesc at %p for pid %d", kp->ki_pd,
kp->ki_pid);
return (-1);
}
*maskp = pd.pd_cmask;
return (0);
}
static int
procstat_getumask_sysctl(pid_t pid, unsigned short *maskp)
{
int error;
int mib[4];
size_t len;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_UMASK;
mib[3] = pid;
len = sizeof(*maskp);
error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0);
if (error != 0 && errno != ESRCH && errno != EPERM)
warn("sysctl: kern.proc.umask: %d", pid);
return (error);
}
static int
procstat_getumask_core(struct procstat_core *core, unsigned short *maskp)
{
size_t len;
unsigned short *buf;
buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len);
if (buf == NULL)
return (-1);
if (len < sizeof(*maskp)) {
free(buf);
return (-1);
}
*maskp = *buf;
free(buf);
return (0);
}
int
procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp,
unsigned short *maskp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
return (procstat_getumask_kvm(procstat->kd, kp, maskp));
case PROCSTAT_SYSCTL:
return (procstat_getumask_sysctl(kp->ki_pid, maskp));
case PROCSTAT_CORE:
return (procstat_getumask_core(procstat->core, maskp));
default:
warnx("unknown access method: %d", procstat->type);
return (-1);
}
}
static int
procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which,
struct rlimit* rlimit)
{
struct proc proc;
unsigned long offset;
assert(kd != NULL);
assert(kp != NULL);
assert(which >= 0 && which < RLIM_NLIMITS);
if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
sizeof(proc))) {
warnx("can't read proc struct at %p for pid %d",
kp->ki_paddr, kp->ki_pid);
return (-1);
}
if (proc.p_limit == NULL)
return (-1);
offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which;
if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) {
warnx("can't read rlimit struct at %p for pid %d",
(void *)offset, kp->ki_pid);
return (-1);
}
return (0);
}
static int
procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit)
{
int error, name[5];
size_t len;
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_RLIMIT;
name[3] = pid;
name[4] = which;
len = sizeof(struct rlimit);
error = sysctl(name, nitems(name), rlimit, &len, NULL, 0);
if (error < 0 && errno != ESRCH) {
warn("sysctl: kern.proc.rlimit: %d", pid);
return (-1);
}
if (error < 0 || len != sizeof(struct rlimit))
return (-1);
return (0);
}
static int
procstat_getrlimit_core(struct procstat_core *core, int which,
struct rlimit* rlimit)
{
size_t len;
struct rlimit* rlimits;
if (which < 0 || which >= RLIM_NLIMITS) {
errno = EINVAL;
warn("getrlimit: which");
return (-1);
}
rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len);
if (rlimits == NULL)
return (-1);
if (len < sizeof(struct rlimit) * RLIM_NLIMITS) {
free(rlimits);
return (-1);
}
*rlimit = rlimits[which];
free(rlimits);
return (0);
}
int
procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which,
struct rlimit* rlimit)
{
switch(procstat->type) {
case PROCSTAT_KVM:
return (procstat_getrlimit_kvm(procstat->kd, kp, which,
rlimit));
case PROCSTAT_SYSCTL:
return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit));
case PROCSTAT_CORE:
return (procstat_getrlimit_core(procstat->core, which, rlimit));
default:
warnx("unknown access method: %d", procstat->type);
return (-1);
}
}
static int
procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen)
{
int error, name[4];
size_t len;
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_PATHNAME;
name[3] = pid;
len = maxlen;
error = sysctl(name, nitems(name), pathname, &len, NULL, 0);
if (error != 0 && errno != ESRCH)
warn("sysctl: kern.proc.pathname: %d", pid);
if (len == 0)
pathname[0] = '\0';
return (error);
}
static int
procstat_getpathname_core(struct procstat_core *core, char *pathname,
size_t maxlen)
{
struct kinfo_file *files;
int cnt, i, result;
files = kinfo_getfile_core(core, &cnt);
if (files == NULL)
return (-1);
result = -1;
for (i = 0; i < cnt; i++) {
if (files[i].kf_fd != KF_FD_TYPE_TEXT)
continue;
strncpy(pathname, files[i].kf_path, maxlen);
result = 0;
break;
}
free(files);
return (result);
}
int
procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp,
char *pathname, size_t maxlen)
{
switch(procstat->type) {
case PROCSTAT_KVM:
/* XXX: Return empty string. */
if (maxlen > 0)
pathname[0] = '\0';
return (0);
case PROCSTAT_SYSCTL:
return (procstat_getpathname_sysctl(kp->ki_pid, pathname,
maxlen));
case PROCSTAT_CORE:
return (procstat_getpathname_core(procstat->core, pathname,
maxlen));
default:
warnx("unknown access method: %d", procstat->type);
return (-1);
}
}
static int
procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp)
{
struct proc proc;
assert(kd != NULL);
assert(kp != NULL);
if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
sizeof(proc))) {
warnx("can't read proc struct at %p for pid %d",
kp->ki_paddr, kp->ki_pid);
return (-1);
}
*osrelp = proc.p_osrel;
return (0);
}
static int
procstat_getosrel_sysctl(pid_t pid, int *osrelp)
{
int error, name[4];
size_t len;
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_OSREL;
name[3] = pid;
len = sizeof(*osrelp);
error = sysctl(name, nitems(name), osrelp, &len, NULL, 0);
if (error != 0 && errno != ESRCH)
warn("sysctl: kern.proc.osrel: %d", pid);
return (error);
}
static int
procstat_getosrel_core(struct procstat_core *core, int *osrelp)
{
size_t len;
int *buf;
buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len);
if (buf == NULL)
return (-1);
if (len < sizeof(*osrelp)) {
free(buf);
return (-1);
}
*osrelp = *buf;
free(buf);
return (0);
}
int
procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
return (procstat_getosrel_kvm(procstat->kd, kp, osrelp));
case PROCSTAT_SYSCTL:
return (procstat_getosrel_sysctl(kp->ki_pid, osrelp));
case PROCSTAT_CORE:
return (procstat_getosrel_core(procstat->core, osrelp));
default:
warnx("unknown access method: %d", procstat->type);
return (-1);
}
}
#define PROC_AUXV_MAX 256
#if __ELF_WORD_SIZE == 64
static const char *elf32_sv_names[] = {
"Linux ELF32",
"FreeBSD ELF32",
};
static int
is_elf32_sysctl(pid_t pid)
{
int error, name[4];
size_t len, i;
static char sv_name[256];
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_SV_NAME;
name[3] = pid;
len = sizeof(sv_name);
error = sysctl(name, nitems(name), sv_name, &len, NULL, 0);
if (error != 0 || len == 0)
return (0);
for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) {
if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0)
return (1);
}
return (0);
}
static Elf_Auxinfo *
procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp)
{
Elf_Auxinfo *auxv;
Elf32_Auxinfo *auxv32;
void *ptr;
size_t len;
unsigned int i, count;
int name[4];
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_AUXV;
name[3] = pid;
len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo);
auxv = NULL;
auxv32 = malloc(len);
if (auxv32 == NULL) {
warn("malloc(%zu)", len);
goto out;
}
if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) {
if (errno != ESRCH && errno != EPERM)
warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
goto out;
}
count = len / sizeof(Elf_Auxinfo);
auxv = malloc(count * sizeof(Elf_Auxinfo));
if (auxv == NULL) {
warn("malloc(%zu)", count * sizeof(Elf_Auxinfo));
goto out;
}
for (i = 0; i < count; i++) {
/*
* XXX: We expect that values for a_type on a 32-bit platform
* are directly mapped to values on 64-bit one, which is not
* necessarily true.
*/
auxv[i].a_type = auxv32[i].a_type;
ptr = &auxv32[i].a_un;
auxv[i].a_un.a_val = *((uint32_t *)ptr);
}
*cntp = count;
out:
free(auxv32);
return (auxv);
}
#endif /* __ELF_WORD_SIZE == 64 */
static Elf_Auxinfo *
procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp)
{
Elf_Auxinfo *auxv;
int name[4];
size_t len;
#if __ELF_WORD_SIZE == 64
if (is_elf32_sysctl(pid))
return (procstat_getauxv32_sysctl(pid, cntp));
#endif
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_AUXV;
name[3] = pid;
len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo);
auxv = malloc(len);
if (auxv == NULL) {
warn("malloc(%zu)", len);
return (NULL);
}
if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) {
if (errno != ESRCH && errno != EPERM)
warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
free(auxv);
return (NULL);
}
*cntp = len / sizeof(Elf_Auxinfo);
return (auxv);
}
static Elf_Auxinfo *
procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp)
{
Elf_Auxinfo *auxv;
size_t len;
auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len);
if (auxv == NULL)
return (NULL);
*cntp = len / sizeof(Elf_Auxinfo);
return (auxv);
}
Elf_Auxinfo *
procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp,
unsigned int *cntp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
warnx("kvm method is not supported");
return (NULL);
case PROCSTAT_SYSCTL:
return (procstat_getauxv_sysctl(kp->ki_pid, cntp));
case PROCSTAT_CORE:
return (procstat_getauxv_core(procstat->core, cntp));
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv)
{
free(auxv);
}
static struct ptrace_lwpinfo *
procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp)
{
void *buf;
struct ptrace_lwpinfo *pl;
unsigned int cnt;
size_t len;
cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO);
if (cnt == 0)
return (NULL);
len = cnt * sizeof(*pl);
buf = calloc(1, len);
pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len);
if (pl == NULL) {
free(buf);
return (NULL);
}
*cntp = len / sizeof(*pl);
return (pl);
}
struct ptrace_lwpinfo *
procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp)
{
switch (procstat->type) {
case PROCSTAT_KVM:
warnx("kvm method is not supported");
return (NULL);
case PROCSTAT_SYSCTL:
warnx("sysctl method is not supported");
return (NULL);
case PROCSTAT_CORE:
return (procstat_getptlwpinfo_core(procstat->core, cntp));
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freeptlwpinfo(struct procstat *procstat __unused,
struct ptrace_lwpinfo *pl)
{
free(pl);
}
static struct kinfo_kstack *
procstat_getkstack_sysctl(pid_t pid, int *cntp)
{
struct kinfo_kstack *kkstp;
int error, name[4];
size_t len;
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_KSTACK;
name[3] = pid;
len = 0;
error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) {
warn("sysctl: kern.proc.kstack: %d", pid);
return (NULL);
}
if (error == -1 && errno == ENOENT) {
warnx("sysctl: kern.proc.kstack unavailable"
" (options DDB or options STACK required in kernel)");
return (NULL);
}
if (error == -1)
return (NULL);
kkstp = malloc(len);
if (kkstp == NULL) {
warn("malloc(%zu)", len);
return (NULL);
}
if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1 &&
errno != ENOMEM) {
warn("sysctl: kern.proc.pid: %d", pid);
free(kkstp);
return (NULL);
}
*cntp = len / sizeof(*kkstp);
return (kkstp);
}
struct kinfo_kstack *
procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp,
unsigned int *cntp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
warnx("kvm method is not supported");
return (NULL);
case PROCSTAT_SYSCTL:
return (procstat_getkstack_sysctl(kp->ki_pid, cntp));
case PROCSTAT_CORE:
warnx("core method is not supported");
return (NULL);
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freekstack(struct procstat *procstat __unused,
struct kinfo_kstack *kkstp)
{
free(kkstp);
}
static struct advlock_list *
procstat_getadvlock_sysctl(struct procstat *procstat __unused)
{
struct advlock_list *res;
struct advlock *a;
void *buf;
char *c;
struct kinfo_lockf *kl;
size_t buf_len;
int error;
static const int kl_name[] = { CTL_KERN, KERN_LOCKF };
res = malloc(sizeof(*res));
if (res == NULL)
return (NULL);
STAILQ_INIT(res);
buf = NULL;
buf_len = 0;
error = sysctl(kl_name, nitems(kl_name), NULL, &buf_len, NULL, 0);
if (error != 0) {
warn("sysctl KERN_LOCKF size");
goto fail;
}
buf_len *= 2;
buf = malloc(buf_len);
if (buf == NULL) {
warn("malloc");
goto fail;
}
error = sysctl(kl_name, nitems(kl_name), buf, &buf_len, NULL, 0);
if (error != 0) {
warn("sysctl KERN_LOCKF data");
goto fail;
}
for (c = buf; (char *)c < (char *)buf + buf_len;
c += kl->kl_structsize) {
kl = (struct kinfo_lockf *)(void *)c;
if (sizeof(*kl) < (size_t)kl->kl_structsize) {
warn("ABI broken");
goto fail;
}
a = malloc(sizeof(*a));
if (a == NULL) {
warn("malloc advlock");
goto fail;
}
switch (kl->kl_rw) {
case KLOCKF_RW_READ:
a->rw = PS_ADVLOCK_RO;
break;
case KLOCKF_RW_WRITE:
a->rw = PS_ADVLOCK_RW;
break;
default:
warn("ABI broken");
free(a);
goto fail;
}
switch (kl->kl_type) {
case KLOCKF_TYPE_FLOCK:
a->type = PS_ADVLOCK_TYPE_FLOCK;
break;
case KLOCKF_TYPE_PID:
a->type = PS_ADVLOCK_TYPE_PID;
break;
case KLOCKF_TYPE_REMOTE:
a->type = PS_ADVLOCK_TYPE_REMOTE;
break;
default:
warn("ABI broken");
free(a);
goto fail;
}
a->pid = kl->kl_pid;
a->sysid = kl->kl_sysid;
a->file_fsid = kl->kl_file_fsid;
a->file_rdev = kl->kl_file_rdev;
a->file_fileid = kl->kl_file_fileid;
a->start = kl->kl_start;
a->len = kl->kl_len;
if (kl->kl_path[0] != '\0') {
a->path = strdup(kl->kl_path);
if (a->path == NULL) {
warn("malloc");
free(a);
goto fail;
}
} else
a->path = NULL;
STAILQ_INSERT_TAIL(res, a, next);
}
free(buf);
return (res);
fail:
free(buf);
procstat_freeadvlock(procstat, res);
return (NULL);
}
struct advlock_list *
procstat_getadvlock(struct procstat *procstat)
{
switch(procstat->type) {
case PROCSTAT_KVM:
warnx("kvm method is not supported");
return (NULL);
case PROCSTAT_SYSCTL:
return (procstat_getadvlock_sysctl(procstat));
case PROCSTAT_CORE:
warnx("core method is not supported");
return (NULL);
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freeadvlock(struct procstat *procstat __unused,
struct advlock_list *lst)
{
struct advlock *a, *a1;
STAILQ_FOREACH_SAFE(a, lst, next, a1) {
free(__DECONST(char *, a->path));
free(a);
}
free(lst);
}