freebsd-dev/sys/dev/en/midway.c
2012-12-04 09:32:43 +00:00

3365 lines
84 KiB
C

/* $NetBSD: midway.c,v 1.30 1997/09/29 17:40:38 chuck Exp $ */
/* (sync'd to midway.c 1.68) */
/*-
* Copyright (c) 1996 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
*
* m i d w a y . c e n i 1 5 5 d r i v e r
*
* author: Chuck Cranor <chuck@ccrc.wustl.edu>
* started: spring, 1996 (written from scratch).
*
* notes from the author:
* Extra special thanks go to Werner Almesberger, EPFL LRC. Werner's
* ENI driver was especially useful in figuring out how this card works.
* I would also like to thank Werner for promptly answering email and being
* generally helpful.
*/
#define EN_DIAG
#define EN_DDBHOOK 1 /* compile in ddb functions */
/*
* Note on EN_ENIDMAFIX: the byte aligner on the ENI version of the card
* appears to be broken. it works just fine if there is no load... however
* when the card is loaded the data get corrupted. to see this, one only
* has to use "telnet" over ATM. do the following command in "telnet":
* cat /usr/share/misc/termcap
* "telnet" seems to generate lots of 1023 byte mbufs (which make great
* use of the byte aligner). watch "netstat -s" for checksum errors.
*
* I further tested this by adding a function that compared the transmit
* data on the card's SRAM with the data in the mbuf chain _after_ the
* "transmit DMA complete" interrupt. using the "telnet" test I got data
* mismatches where the byte-aligned data should have been. using ddb
* and en_dumpmem() I verified that the DTQs fed into the card were
* absolutely correct. thus, we are forced to concluded that the ENI
* hardware is buggy. note that the Adaptec version of the card works
* just fine with byte DMA.
*
* bottom line: we set EN_ENIDMAFIX to 1 to avoid byte DMAs on the ENI
* card.
*/
#if defined(DIAGNOSTIC) && !defined(EN_DIAG)
#define EN_DIAG /* link in with master DIAG option */
#endif
#define EN_COUNT(X) (X)++
#ifdef EN_DEBUG
#undef EN_DDBHOOK
#define EN_DDBHOOK 1
/*
* This macro removes almost all the EN_DEBUG conditionals in the code that make
* to code a good deal less readable.
*/
#define DBG(SC, FL, PRINT) do { \
if ((SC)->debug & DBG_##FL) { \
device_printf((SC)->dev, "%s: "#FL": ", __func__); \
printf PRINT; \
printf("\n"); \
} \
} while (0)
enum {
DBG_INIT = 0x0001, /* debug attach/detach */
DBG_TX = 0x0002, /* debug transmitting */
DBG_SERV = 0x0004, /* debug service interrupts */
DBG_IOCTL = 0x0008, /* debug ioctls */
DBG_VC = 0x0010, /* debug VC handling */
DBG_INTR = 0x0020, /* debug interrupts */
DBG_DMA = 0x0040, /* debug DMA probing */
DBG_IPACKETS = 0x0080, /* print input packets */
DBG_REG = 0x0100, /* print all register access */
DBG_LOCK = 0x0200, /* debug locking */
};
#else /* EN_DEBUG */
#define DBG(SC, FL, PRINT) do { } while (0)
#endif /* EN_DEBUG */
#include "opt_inet.h"
#include "opt_natm.h"
#include "opt_ddb.h"
#ifdef DDB
#undef EN_DDBHOOK
#define EN_DDBHOOK 1
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/sockio.h>
#include <sys/socket.h>
#include <sys/mbuf.h>
#include <sys/endian.h>
#include <sys/stdint.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_atm.h>
#if defined(NATM) || defined(INET) || defined(INET6)
#include <netinet/in.h>
#if defined(INET) || defined(INET6)
#include <netinet/if_atm.h>
#endif
#endif
#ifdef NATM
#include <netnatm/natm.h>
#endif
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <machine/resource.h>
#include <dev/utopia/utopia.h>
#include <dev/en/midwayreg.h>
#include <dev/en/midwayvar.h>
#include <net/bpf.h>
/*
* params
*/
#ifndef EN_TXHIWAT
#define EN_TXHIWAT (64 * 1024) /* max 64 KB waiting to be DMAd out */
#endif
SYSCTL_DECL(_hw_atm);
/*
* dma tables
*
* The plan is indexed by the number of words to transfer.
* The maximum index is 15 for 60 words.
*/
struct en_dmatab {
uint8_t bcode; /* code */
uint8_t divshift; /* byte divisor */
};
static const struct en_dmatab en_dmaplan[] = {
{ 0, 0 }, /* 0 */ { MIDDMA_WORD, 2}, /* 1 */
{ MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_WORD, 2}, /* 3 */
{ MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_WORD, 2}, /* 5 */
{ MIDDMA_2WORD, 3}, /* 6 */ { MIDDMA_WORD, 2}, /* 7 */
{ MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_WORD, 2}, /* 9 */
{ MIDDMA_2WORD, 3}, /* 10 */ { MIDDMA_WORD, 2}, /* 11 */
{ MIDDMA_4WORD, 4}, /* 12 */ { MIDDMA_WORD, 2}, /* 13 */
{ MIDDMA_2WORD, 3}, /* 14 */ { MIDDMA_WORD, 2}, /* 15 */
{ MIDDMA_16WORD,6}, /* 16 */
};
/*
* prototypes
*/
#ifdef EN_DDBHOOK
int en_dump(int unit, int level);
int en_dumpmem(int,int,int);
#endif
static void en_close_finish(struct en_softc *sc, struct en_vcc *vc);
#define EN_LOCK(SC) do { \
DBG(SC, LOCK, ("ENLOCK %d\n", __LINE__)); \
mtx_lock(&sc->en_mtx); \
} while (0)
#define EN_UNLOCK(SC) do { \
DBG(SC, LOCK, ("ENUNLOCK %d\n", __LINE__)); \
mtx_unlock(&sc->en_mtx); \
} while (0)
#define EN_CHECKLOCK(sc) mtx_assert(&sc->en_mtx, MA_OWNED)
/*
* While a transmit mbuf is waiting to get transmit DMA resources we
* need to keep some information with it. We don't want to allocate
* additional memory for this so we stuff it into free fields in the
* mbuf packet header. Neither the checksum fields nor the rcvif field are used
* so use these.
*/
#define TX_AAL5 0x1 /* transmit AAL5 PDU */
#define TX_HAS_TBD 0x2 /* TBD did fit into mbuf */
#define TX_HAS_PAD 0x4 /* padding did fit into mbuf */
#define TX_HAS_PDU 0x8 /* PDU trailer did fit into mbuf */
#define MBUF_SET_TX(M, VCI, FLAGS, DATALEN, PAD, MAP) do { \
(M)->m_pkthdr.csum_data = (VCI) | ((FLAGS) << MID_VCI_BITS); \
(M)->m_pkthdr.csum_flags = ((DATALEN) & 0xffff) | \
((PAD & 0x3f) << 16); \
(M)->m_pkthdr.rcvif = (void *)(MAP); \
} while (0)
#define MBUF_GET_TX(M, VCI, FLAGS, DATALEN, PAD, MAP) do { \
(VCI) = (M)->m_pkthdr.csum_data & ((1 << MID_VCI_BITS) - 1); \
(FLAGS) = ((M)->m_pkthdr.csum_data >> MID_VCI_BITS) & 0xf; \
(DATALEN) = (M)->m_pkthdr.csum_flags & 0xffff; \
(PAD) = ((M)->m_pkthdr.csum_flags >> 16) & 0x3f; \
(MAP) = (void *)((M)->m_pkthdr.rcvif); \
} while (0)
#define EN_WRAPADD(START, STOP, CUR, VAL) do { \
(CUR) = (CUR) + (VAL); \
if ((CUR) >= (STOP)) \
(CUR) = (START) + ((CUR) - (STOP)); \
} while (0)
#define WORD_IDX(START, X) (((X) - (START)) / sizeof(uint32_t))
#define SETQ_END(SC, VAL) ((SC)->is_adaptec ? \
((VAL) | (MID_DMA_END >> 4)) : \
((VAL) | (MID_DMA_END)))
/*
* The dtq and drq members are set for each END entry in the corresponding
* card queue entry. It is used to find out, when a buffer has been
* finished DMAing and can be freed.
*
* We store sc->dtq and sc->drq data in the following format...
* the 0x80000 ensures we != 0
*/
#define EN_DQ_MK(SLOT, LEN) (((SLOT) << 20) | (LEN) | (0x80000))
#define EN_DQ_SLOT(X) ((X) >> 20)
#define EN_DQ_LEN(X) ((X) & 0x3ffff)
/*
* Variables
*/
static uma_zone_t en_vcc_zone;
/***********************************************************************/
/*
* en_read{x}: read a word from the card. These are the only functions
* that read from the card.
*/
static __inline uint32_t
en_readx(struct en_softc *sc, uint32_t r)
{
uint32_t v;
#ifdef EN_DIAG
if (r > MID_MAXOFF || (r % 4))
panic("en_read out of range, r=0x%x", r);
#endif
v = bus_space_read_4(sc->en_memt, sc->en_base, r);
return (v);
}
static __inline uint32_t
en_read(struct en_softc *sc, uint32_t r)
{
uint32_t v;
#ifdef EN_DIAG
if (r > MID_MAXOFF || (r % 4))
panic("en_read out of range, r=0x%x", r);
#endif
v = bus_space_read_4(sc->en_memt, sc->en_base, r);
DBG(sc, REG, ("en_read(%#x) -> %08x", r, v));
return (v);
}
/*
* en_write: write a word to the card. This is the only function that
* writes to the card.
*/
static __inline void
en_write(struct en_softc *sc, uint32_t r, uint32_t v)
{
#ifdef EN_DIAG
if (r > MID_MAXOFF || (r % 4))
panic("en_write out of range, r=0x%x", r);
#endif
DBG(sc, REG, ("en_write(%#x) <- %08x", r, v));
bus_space_write_4(sc->en_memt, sc->en_base, r, v);
}
/*
* en_k2sz: convert KBytes to a size parameter (a log2)
*/
static __inline int
en_k2sz(int k)
{
switch(k) {
case 1: return (0);
case 2: return (1);
case 4: return (2);
case 8: return (3);
case 16: return (4);
case 32: return (5);
case 64: return (6);
case 128: return (7);
default:
panic("en_k2sz");
}
return (0);
}
#define en_log2(X) en_k2sz(X)
/*
* en_b2sz: convert a DMA burst code to its byte size
*/
static __inline int
en_b2sz(int b)
{
switch (b) {
case MIDDMA_WORD: return (1*4);
case MIDDMA_2WMAYBE:
case MIDDMA_2WORD: return (2*4);
case MIDDMA_4WMAYBE:
case MIDDMA_4WORD: return (4*4);
case MIDDMA_8WMAYBE:
case MIDDMA_8WORD: return (8*4);
case MIDDMA_16WMAYBE:
case MIDDMA_16WORD: return (16*4);
default:
panic("en_b2sz");
}
return (0);
}
/*
* en_sz2b: convert a burst size (bytes) to DMA burst code
*/
static __inline int
en_sz2b(int sz)
{
switch (sz) {
case 1*4: return (MIDDMA_WORD);
case 2*4: return (MIDDMA_2WORD);
case 4*4: return (MIDDMA_4WORD);
case 8*4: return (MIDDMA_8WORD);
case 16*4: return (MIDDMA_16WORD);
default:
panic("en_sz2b");
}
return(0);
}
#ifdef EN_DEBUG
/*
* Dump a packet
*/
static void
en_dump_packet(struct en_softc *sc, struct mbuf *m)
{
int plen = m->m_pkthdr.len;
u_int pos = 0;
u_int totlen = 0;
int len;
u_char *ptr;
device_printf(sc->dev, "packet len=%d", plen);
while (m != NULL) {
totlen += m->m_len;
ptr = mtod(m, u_char *);
for (len = 0; len < m->m_len; len++, pos++, ptr++) {
if (pos % 16 == 8)
printf(" ");
if (pos % 16 == 0)
printf("\n");
printf(" %02x", *ptr);
}
m = m->m_next;
}
printf("\n");
if (totlen != plen)
printf("sum of m_len=%u\n", totlen);
}
#endif
/*********************************************************************/
/*
* DMA maps
*/
/*
* Map constructor for a MAP.
*
* This is called each time when a map is allocated
* from the pool and about to be returned to the user. Here we actually
* allocate the map if there isn't one. The problem is that we may fail
* to allocate the DMA map yet have no means to signal this error. Therefor
* when allocating a map, the call must check that there is a map. An
* additional problem is, that i386 maps will be NULL, yet are ok and must
* be freed so let's use a flag to signal allocation.
*
* Caveat: we have no way to know that we are called from an interrupt context
* here. We rely on the fact, that bus_dmamap_create uses M_NOWAIT in all
* its allocations.
*
* LOCK: any, not needed
*/
static int
en_map_ctor(void *mem, int size, void *arg, int flags)
{
struct en_softc *sc = arg;
struct en_map *map = mem;
int err;
err = bus_dmamap_create(sc->txtag, 0, &map->map);
if (err != 0) {
device_printf(sc->dev, "cannot create DMA map %d\n", err);
return (err);
}
map->flags = ENMAP_ALLOC;
map->sc = sc;
return (0);
}
/*
* Map destructor.
*
* Called when a map is disposed into the zone. If the map is loaded, unload
* it.
*
* LOCK: any, not needed
*/
static void
en_map_dtor(void *mem, int size, void *arg)
{
struct en_map *map = mem;
if (map->flags & ENMAP_LOADED) {
bus_dmamap_unload(map->sc->txtag, map->map);
map->flags &= ~ENMAP_LOADED;
}
}
/*
* Map finializer.
*
* This is called each time a map is returned from the zone to the system.
* Get rid of the dmamap here.
*
* LOCK: any, not needed
*/
static void
en_map_fini(void *mem, int size)
{
struct en_map *map = mem;
bus_dmamap_destroy(map->sc->txtag, map->map);
}
/*********************************************************************/
/*
* Transmission
*/
/*
* Argument structure to load a transmit DMA map
*/
struct txarg {
struct en_softc *sc;
struct mbuf *m;
u_int vci;
u_int chan; /* transmit channel */
u_int datalen; /* length of user data */
u_int flags;
u_int wait; /* return: out of resources */
};
/*
* TX DMA map loader helper. This function is the callback when the map
* is loaded. It should fill the DMA segment descriptors into the hardware.
*
* LOCK: locked, needed
*/
static void
en_txdma_load(void *uarg, bus_dma_segment_t *segs, int nseg, bus_size_t mapsize,
int error)
{
struct txarg *tx = uarg;
struct en_softc *sc = tx->sc;
struct en_txslot *slot = &sc->txslot[tx->chan];
uint32_t cur; /* on-card buffer position (bytes offset) */
uint32_t dtq; /* on-card queue position (byte offset) */
uint32_t last_dtq; /* last DTQ we have written */
uint32_t tmp;
u_int free; /* free queue entries on card */
u_int needalign, cnt;
bus_size_t rest; /* remaining bytes in current segment */
bus_addr_t addr;
bus_dma_segment_t *s;
uint32_t count, bcode;
int i;
if (error != 0)
return;
cur = slot->cur;
dtq = sc->dtq_us;
free = sc->dtq_free;
last_dtq = 0; /* make gcc happy */
/*
* Local macro to add an entry to the transmit DMA area. If there
* are no entries left, return. Save the byte offset of the entry
* in last_dtq for later use.
*/
#define PUT_DTQ_ENTRY(ENI, BCODE, COUNT, ADDR) \
if (free == 0) { \
EN_COUNT(sc->stats.txdtqout); \
tx->wait = 1; \
return; \
} \
last_dtq = dtq; \
en_write(sc, dtq + 0, (ENI || !sc->is_adaptec) ? \
MID_MK_TXQ_ENI(COUNT, tx->chan, 0, BCODE) : \
MID_MK_TXQ_ADP(COUNT, tx->chan, 0, BCODE)); \
en_write(sc, dtq + 4, ADDR); \
\
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, dtq, 8); \
free--;
/*
* Local macro to generate a DMA entry to DMA cnt bytes. Updates
* the current buffer byte offset accordingly.
*/
#define DO_DTQ(TYPE) do { \
rest -= cnt; \
EN_WRAPADD(slot->start, slot->stop, cur, cnt); \
DBG(sc, TX, ("tx%d: "TYPE" %u bytes, %ju left, cur %#x", \
tx->chan, cnt, (uintmax_t)rest, cur)); \
\
PUT_DTQ_ENTRY(1, bcode, count, addr); \
\
addr += cnt; \
} while (0)
if (!(tx->flags & TX_HAS_TBD)) {
/*
* Prepend the TBD - it did not fit into the first mbuf
*/
tmp = MID_TBD_MK1((tx->flags & TX_AAL5) ?
MID_TBD_AAL5 : MID_TBD_NOAAL5,
sc->vccs[tx->vci]->txspeed,
tx->m->m_pkthdr.len / MID_ATMDATASZ);
en_write(sc, cur, tmp);
EN_WRAPADD(slot->start, slot->stop, cur, 4);
tmp = MID_TBD_MK2(tx->vci, 0, 0);
en_write(sc, cur, tmp);
EN_WRAPADD(slot->start, slot->stop, cur, 4);
/* update DMA address */
PUT_DTQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
}
for (i = 0, s = segs; i < nseg; i++, s++) {
rest = s->ds_len;
addr = s->ds_addr;
if (sc->is_adaptec) {
/* adaptec card - simple */
/* advance the on-card buffer pointer */
EN_WRAPADD(slot->start, slot->stop, cur, rest);
DBG(sc, TX, ("tx%d: adp %ju bytes %#jx (cur now 0x%x)",
tx->chan, (uintmax_t)rest, (uintmax_t)addr, cur));
PUT_DTQ_ENTRY(0, 0, rest, addr);
continue;
}
/*
* do we need to do a DMA op to align to the maximum
* burst? Note, that we are alway 32-bit aligned.
*/
if (sc->alburst &&
(needalign = (addr & sc->bestburstmask)) != 0) {
/* compute number of bytes, words and code */
cnt = sc->bestburstlen - needalign;
if (cnt > rest)
cnt = rest;
count = cnt / sizeof(uint32_t);
if (sc->noalbursts) {
bcode = MIDDMA_WORD;
} else {
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
DO_DTQ("al_dma");
}
/* do we need to do a max-sized burst? */
if (rest >= sc->bestburstlen) {
count = rest >> sc->bestburstshift;
cnt = count << sc->bestburstshift;
bcode = sc->bestburstcode;
DO_DTQ("best_dma");
}
/* do we need to do a cleanup burst? */
if (rest != 0) {
cnt = rest;
count = rest / sizeof(uint32_t);
if (sc->noalbursts) {
bcode = MIDDMA_WORD;
} else {
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
DO_DTQ("clean_dma");
}
}
KASSERT (tx->flags & TX_HAS_PAD, ("PDU not padded"));
if ((tx->flags & TX_AAL5) && !(tx->flags & TX_HAS_PDU)) {
/*
* Append the AAL5 PDU trailer
*/
tmp = MID_PDU_MK1(0, 0, tx->datalen);
en_write(sc, cur, tmp);
EN_WRAPADD(slot->start, slot->stop, cur, 4);
en_write(sc, cur, 0);
EN_WRAPADD(slot->start, slot->stop, cur, 4);
/* update DMA address */
PUT_DTQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
}
/* record the end for the interrupt routine */
sc->dtq[MID_DTQ_A2REG(last_dtq)] =
EN_DQ_MK(tx->chan, tx->m->m_pkthdr.len);
/* set the end flag in the last descriptor */
en_write(sc, last_dtq + 0, SETQ_END(sc, en_read(sc, last_dtq + 0)));
#undef PUT_DTQ_ENTRY
#undef DO_DTQ
/* commit */
slot->cur = cur;
sc->dtq_free = free;
sc->dtq_us = dtq;
/* tell card */
en_write(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_us));
}
/*
* en_txdma: start transmit DMA on the given channel, if possible
*
* This is called from two places: when we got new packets from the upper
* layer or when we found that buffer space has freed up during interrupt
* processing.
*
* LOCK: locked, needed
*/
static void
en_txdma(struct en_softc *sc, struct en_txslot *slot)
{
struct en_map *map;
struct mbuf *lastm;
struct txarg tx;
u_int pad;
int error;
DBG(sc, TX, ("tx%td: starting ...", slot - sc->txslot));
again:
bzero(&tx, sizeof(tx));
tx.chan = slot - sc->txslot;
tx.sc = sc;
/*
* get an mbuf waiting for DMA
*/
_IF_DEQUEUE(&slot->q, tx.m);
if (tx.m == NULL) {
DBG(sc, TX, ("tx%td: ...done!", slot - sc->txslot));
return;
}
MBUF_GET_TX(tx.m, tx.vci, tx.flags, tx.datalen, pad, map);
/*
* note: don't use the entire buffer space. if WRTX becomes equal
* to RDTX, the transmitter stops assuming the buffer is empty! --kjc
*/
if (tx.m->m_pkthdr.len >= slot->bfree) {
EN_COUNT(sc->stats.txoutspace);
DBG(sc, TX, ("tx%td: out of transmit space", slot - sc->txslot));
goto waitres;
}
lastm = NULL;
if (!(tx.flags & TX_HAS_PAD)) {
if (pad != 0) {
/* Append the padding buffer */
(void)m_length(tx.m, &lastm);
lastm->m_next = sc->padbuf;
sc->padbuf->m_len = pad;
}
tx.flags |= TX_HAS_PAD;
}
/*
* Try to load that map
*/
error = bus_dmamap_load_mbuf(sc->txtag, map->map, tx.m,
en_txdma_load, &tx, BUS_DMA_NOWAIT);
if (lastm != NULL)
lastm->m_next = NULL;
if (error != 0) {
device_printf(sc->dev, "loading TX map failed %d\n",
error);
goto dequeue_drop;
}
map->flags |= ENMAP_LOADED;
if (tx.wait) {
/* probably not enough space */
bus_dmamap_unload(map->sc->txtag, map->map);
map->flags &= ~ENMAP_LOADED;
sc->need_dtqs = 1;
DBG(sc, TX, ("tx%td: out of transmit DTQs", slot - sc->txslot));
goto waitres;
}
EN_COUNT(sc->stats.launch);
sc->ifp->if_opackets++;
sc->vccs[tx.vci]->opackets++;
sc->vccs[tx.vci]->obytes += tx.datalen;
#ifdef ENABLE_BPF
if (bpf_peers_present(sc->ifp->if_bpf)) {
/*
* adjust the top of the mbuf to skip the TBD if present
* before passing the packet to bpf.
* Also remove padding and the PDU trailer. Assume both of
* them to be in the same mbuf. pktlen, m_len and m_data
* are not needed anymore so we can change them.
*/
if (tx.flags & TX_HAS_TBD) {
tx.m->m_data += MID_TBD_SIZE;
tx.m->m_len -= MID_TBD_SIZE;
}
tx.m->m_pkthdr.len = m_length(tx.m, &lastm);
if (tx.m->m_pkthdr.len > tx.datalen) {
lastm->m_len -= tx.m->m_pkthdr.len - tx.datalen;
tx.m->m_pkthdr.len = tx.datalen;
}
bpf_mtap(sc->ifp->if_bpf, tx.m);
}
#endif
/*
* do some housekeeping and get the next packet
*/
slot->bfree -= tx.m->m_pkthdr.len;
_IF_ENQUEUE(&slot->indma, tx.m);
goto again;
/*
* error handling. This is jumped to when we just want to drop
* the packet. Must be unlocked here.
*/
dequeue_drop:
if (map != NULL)
uma_zfree(sc->map_zone, map);
slot->mbsize -= tx.m->m_pkthdr.len;
m_freem(tx.m);
goto again;
waitres:
_IF_PREPEND(&slot->q, tx.m);
}
/*
* Create a copy of a single mbuf. It can have either internal or
* external data, it may have a packet header. External data is really
* copied, so the new buffer is writeable.
*
* LOCK: any, not needed
*/
static struct mbuf *
copy_mbuf(struct mbuf *m)
{
struct mbuf *new;
MGET(new, M_WAITOK, MT_DATA);
if (m->m_flags & M_PKTHDR) {
M_MOVE_PKTHDR(new, m);
if (m->m_len > MHLEN)
MCLGET(new, M_WAITOK);
} else {
if (m->m_len > MLEN)
MCLGET(new, M_WAITOK);
}
bcopy(m->m_data, new->m_data, m->m_len);
new->m_len = m->m_len;
new->m_flags &= ~M_RDONLY;
return (new);
}
/*
* This function is called when we have an ENI adapter. It fixes the
* mbuf chain, so that all addresses and lengths are 4 byte aligned.
* The overall length is already padded to multiple of cells plus the
* TBD so this must always succeed. The routine can fail, when it
* needs to copy an mbuf (this may happen if an mbuf is readonly).
*
* We assume here, that aligning the virtual addresses to 4 bytes also
* aligns the physical addresses.
*
* LOCK: locked, needed
*/
static struct mbuf *
en_fix_mchain(struct en_softc *sc, struct mbuf *m0, u_int *pad)
{
struct mbuf **prev = &m0;
struct mbuf *m = m0;
struct mbuf *new;
u_char *d;
int off;
while (m != NULL) {
d = mtod(m, u_char *);
if ((off = (uintptr_t)d % sizeof(uint32_t)) != 0) {
EN_COUNT(sc->stats.mfixaddr);
if (M_WRITABLE(m)) {
bcopy(d, d - off, m->m_len);
m->m_data -= off;
} else {
if ((new = copy_mbuf(m)) == NULL) {
EN_COUNT(sc->stats.mfixfail);
m_freem(m0);
return (NULL);
}
new->m_next = m_free(m);
*prev = m = new;
}
}
if ((off = m->m_len % sizeof(uint32_t)) != 0) {
EN_COUNT(sc->stats.mfixlen);
if (!M_WRITABLE(m)) {
if ((new = copy_mbuf(m)) == NULL) {
EN_COUNT(sc->stats.mfixfail);
m_freem(m0);
return (NULL);
}
new->m_next = m_free(m);
*prev = m = new;
}
d = mtod(m, u_char *) + m->m_len;
off = 4 - off;
while (off) {
while (m->m_next && m->m_next->m_len == 0)
m->m_next = m_free(m->m_next);
if (m->m_next == NULL) {
*d++ = 0;
KASSERT(*pad > 0, ("no padding space"));
(*pad)--;
} else {
*d++ = *mtod(m->m_next, u_char *);
m->m_next->m_len--;
m->m_next->m_data++;
}
m->m_len++;
off--;
}
}
prev = &m->m_next;
m = m->m_next;
}
return (m0);
}
/*
* en_start: start transmitting the next packet that needs to go out
* if there is one. We take off all packets from the interface's queue and
* put them into the channels queue.
*
* Here we also prepend the transmit packet descriptor and append the padding
* and (for aal5) the PDU trailer. This is different from the original driver:
* we assume, that allocating one or two additional mbufs is actually cheaper
* than all this algorithmic fiddling we would need otherwise.
*
* While the packet is on the channels wait queue we use the csum_* fields
* in the packet header to hold the original datalen, the AAL5 flag and the
* VCI. The packet length field in the header holds the needed buffer space.
* This may actually be more than the length of the current mbuf chain (when
* one or more of TBD, padding and PDU do not fit).
*
* LOCK: unlocked, needed
*/
static void
en_start(struct ifnet *ifp)
{
struct en_softc *sc = (struct en_softc *)ifp->if_softc;
struct mbuf *m, *lastm;
struct atm_pseudohdr *ap;
u_int pad; /* 0-bytes to pad at PDU end */
u_int datalen; /* length of user data */
u_int vci; /* the VCI we are transmitting on */
u_int flags;
uint32_t tbd[2];
uint32_t pdu[2];
struct en_vcc *vc;
struct en_map *map;
struct en_txslot *tx;
while (1) {
IF_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
return;
flags = 0;
ap = mtod(m, struct atm_pseudohdr *);
vci = ATM_PH_VCI(ap);
if (ATM_PH_VPI(ap) != 0 || vci >= MID_N_VC ||
(vc = sc->vccs[vci]) == NULL ||
(vc->vflags & VCC_CLOSE_RX)) {
DBG(sc, TX, ("output vpi=%u, vci=%u -- drop",
ATM_PH_VPI(ap), vci));
m_freem(m);
continue;
}
if (vc->vcc.aal == ATMIO_AAL_5)
flags |= TX_AAL5;
m_adj(m, sizeof(struct atm_pseudohdr));
/*
* (re-)calculate size of packet (in bytes)
*/
m->m_pkthdr.len = datalen = m_length(m, &lastm);
/*
* computing how much padding we need on the end of the mbuf,
* then see if we can put the TBD at the front of the mbuf
* where the link header goes (well behaved protocols will
* reserve room for us). Last, check if room for PDU tail.
*/
if (flags & TX_AAL5)
m->m_pkthdr.len += MID_PDU_SIZE;
m->m_pkthdr.len = roundup(m->m_pkthdr.len, MID_ATMDATASZ);
pad = m->m_pkthdr.len - datalen;
if (flags & TX_AAL5)
pad -= MID_PDU_SIZE;
m->m_pkthdr.len += MID_TBD_SIZE;
DBG(sc, TX, ("txvci%d: buflen=%u datalen=%u lead=%d trail=%d",
vci, m->m_pkthdr.len, datalen, (int)M_LEADINGSPACE(m),
(int)M_TRAILINGSPACE(lastm)));
/*
* From here on we need access to sc
*/
EN_LOCK(sc);
/*
* Allocate a map. We do this here rather then in en_txdma,
* because en_txdma is also called from the interrupt handler
* and we are going to have a locking problem then. We must
* use NOWAIT here, because the ip_output path holds various
* locks.
*/
map = uma_zalloc_arg(sc->map_zone, sc, M_NOWAIT);
if (map == NULL) {
/* drop that packet */
EN_COUNT(sc->stats.txnomap);
EN_UNLOCK(sc);
m_freem(m);
continue;
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
EN_UNLOCK(sc);
uma_zfree(sc->map_zone, map);
m_freem(m);
continue;
}
/*
* Look, whether we can prepend the TBD (8 byte)
*/
if (M_WRITABLE(m) && M_LEADINGSPACE(m) >= MID_TBD_SIZE) {
tbd[0] = htobe32(MID_TBD_MK1((flags & TX_AAL5) ?
MID_TBD_AAL5 : MID_TBD_NOAAL5,
vc->txspeed, m->m_pkthdr.len / MID_ATMDATASZ));
tbd[1] = htobe32(MID_TBD_MK2(vci, 0, 0));
m->m_data -= MID_TBD_SIZE;
bcopy(tbd, m->m_data, MID_TBD_SIZE);
m->m_len += MID_TBD_SIZE;
flags |= TX_HAS_TBD;
}
/*
* Check whether the padding fits (must be writeable -
* we pad with zero).
*/
if (M_WRITABLE(lastm) && M_TRAILINGSPACE(lastm) >= pad) {
bzero(lastm->m_data + lastm->m_len, pad);
lastm->m_len += pad;
flags |= TX_HAS_PAD;
if ((flags & TX_AAL5) &&
M_TRAILINGSPACE(lastm) > MID_PDU_SIZE) {
pdu[0] = htobe32(MID_PDU_MK1(0, 0, datalen));
pdu[1] = 0;
bcopy(pdu, lastm->m_data + lastm->m_len,
MID_PDU_SIZE);
lastm->m_len += MID_PDU_SIZE;
flags |= TX_HAS_PDU;
}
}
if (!sc->is_adaptec &&
(m = en_fix_mchain(sc, m, &pad)) == NULL) {
EN_UNLOCK(sc);
uma_zfree(sc->map_zone, map);
continue;
}
/*
* get assigned channel (will be zero unless txspeed is set)
*/
tx = vc->txslot;
if (m->m_pkthdr.len > EN_TXSZ * 1024) {
DBG(sc, TX, ("tx%td: packet larger than xmit buffer "
"(%d > %d)\n", tx - sc->txslot, m->m_pkthdr.len,
EN_TXSZ * 1024));
EN_UNLOCK(sc);
m_freem(m);
uma_zfree(sc->map_zone, map);
continue;
}
if (tx->mbsize > EN_TXHIWAT) {
EN_COUNT(sc->stats.txmbovr);
DBG(sc, TX, ("tx%td: buffer space shortage",
tx - sc->txslot));
EN_UNLOCK(sc);
m_freem(m);
uma_zfree(sc->map_zone, map);
continue;
}
/* commit */
tx->mbsize += m->m_pkthdr.len;
DBG(sc, TX, ("tx%td: VCI=%d, speed=0x%x, buflen=%d, mbsize=%d",
tx - sc->txslot, vci, sc->vccs[vci]->txspeed,
m->m_pkthdr.len, tx->mbsize));
MBUF_SET_TX(m, vci, flags, datalen, pad, map);
_IF_ENQUEUE(&tx->q, m);
en_txdma(sc, tx);
EN_UNLOCK(sc);
}
}
/*********************************************************************/
/*
* VCs
*/
/*
* en_loadvc: load a vc tab entry from a slot
*
* LOCK: locked, needed
*/
static void
en_loadvc(struct en_softc *sc, struct en_vcc *vc)
{
uint32_t reg = en_read(sc, MID_VC(vc->vcc.vci));
reg = MIDV_SETMODE(reg, MIDV_TRASH);
en_write(sc, MID_VC(vc->vcc.vci), reg);
DELAY(27);
/* no need to set CRC */
/* read pointer = 0, desc. start = 0 */
en_write(sc, MID_DST_RP(vc->vcc.vci), 0);
/* write pointer = 0 */
en_write(sc, MID_WP_ST_CNT(vc->vcc.vci), 0);
/* set mode, size, loc */
en_write(sc, MID_VC(vc->vcc.vci), vc->rxslot->mode);
vc->rxslot->cur = vc->rxslot->start;
DBG(sc, VC, ("rx%td: assigned to VCI %d", vc->rxslot - sc->rxslot,
vc->vcc.vci));
}
/*
* Open the given vcc.
*
* LOCK: unlocked, needed
*/
static int
en_open_vcc(struct en_softc *sc, struct atmio_openvcc *op)
{
uint32_t oldmode, newmode;
struct en_rxslot *slot;
struct en_vcc *vc;
int error = 0;
DBG(sc, IOCTL, ("enable vpi=%d, vci=%d, flags=%#x",
op->param.vpi, op->param.vci, op->param.flags));
if (op->param.vpi != 0 || op->param.vci >= MID_N_VC)
return (EINVAL);
vc = uma_zalloc(en_vcc_zone, M_NOWAIT | M_ZERO);
if (vc == NULL)
return (ENOMEM);
EN_LOCK(sc);
if (sc->vccs[op->param.vci] != NULL) {
error = EBUSY;
goto done;
}
/* find a free receive slot */
for (slot = sc->rxslot; slot < &sc->rxslot[sc->en_nrx]; slot++)
if (slot->vcc == NULL)
break;
if (slot == &sc->rxslot[sc->en_nrx]) {
error = ENOSPC;
goto done;
}
vc->rxslot = slot;
vc->rxhand = op->rxhand;
vc->vcc = op->param;
oldmode = slot->mode;
newmode = (op->param.aal == ATMIO_AAL_5) ? MIDV_AAL5 : MIDV_NOAAL;
slot->mode = MIDV_SETMODE(oldmode, newmode);
slot->vcc = vc;
KASSERT (_IF_QLEN(&slot->indma) == 0 && _IF_QLEN(&slot->q) == 0,
("en_rxctl: left over mbufs on enable slot=%td",
vc->rxslot - sc->rxslot));
vc->txspeed = 0;
vc->txslot = sc->txslot;
vc->txslot->nref++; /* bump reference count */
en_loadvc(sc, vc); /* does debug printf for us */
/* don't free below */
sc->vccs[vc->vcc.vci] = vc;
vc = NULL;
sc->vccs_open++;
done:
if (vc != NULL)
uma_zfree(en_vcc_zone, vc);
EN_UNLOCK(sc);
return (error);
}
/*
* Close finished
*/
static void
en_close_finish(struct en_softc *sc, struct en_vcc *vc)
{
if (vc->rxslot != NULL)
vc->rxslot->vcc = NULL;
DBG(sc, VC, ("vci: %u free (%p)", vc->vcc.vci, vc));
sc->vccs[vc->vcc.vci] = NULL;
uma_zfree(en_vcc_zone, vc);
sc->vccs_open--;
}
/*
* LOCK: unlocked, needed
*/
static int
en_close_vcc(struct en_softc *sc, struct atmio_closevcc *cl)
{
uint32_t oldmode, newmode;
struct en_vcc *vc;
int error = 0;
DBG(sc, IOCTL, ("disable vpi=%d, vci=%d", cl->vpi, cl->vci));
if (cl->vpi != 0 || cl->vci >= MID_N_VC)
return (EINVAL);
EN_LOCK(sc);
if ((vc = sc->vccs[cl->vci]) == NULL) {
error = ENOTCONN;
goto done;
}
/*
* turn off VCI
*/
if (vc->rxslot == NULL) {
error = ENOTCONN;
goto done;
}
if (vc->vflags & VCC_DRAIN) {
error = EINVAL;
goto done;
}
oldmode = en_read(sc, MID_VC(cl->vci));
newmode = MIDV_SETMODE(oldmode, MIDV_TRASH) & ~MIDV_INSERVICE;
en_write(sc, MID_VC(cl->vci), (newmode | (oldmode & MIDV_INSERVICE)));
/* halt in tracks, be careful to preserve inservice bit */
DELAY(27);
vc->rxslot->mode = newmode;
vc->txslot->nref--;
/* if stuff is still going on we are going to have to drain it out */
if (_IF_QLEN(&vc->rxslot->indma) == 0 &&
_IF_QLEN(&vc->rxslot->q) == 0 &&
(vc->vflags & VCC_SWSL) == 0) {
en_close_finish(sc, vc);
goto done;
}
vc->vflags |= VCC_DRAIN;
DBG(sc, IOCTL, ("VCI %u now draining", cl->vci));
if (vc->vcc.flags & ATMIO_FLAG_ASYNC)
goto done;
vc->vflags |= VCC_CLOSE_RX;
while ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) &&
(vc->vflags & VCC_DRAIN))
cv_wait(&sc->cv_close, &sc->en_mtx);
en_close_finish(sc, vc);
if (!(sc->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
error = EIO;
goto done;
}
done:
EN_UNLOCK(sc);
return (error);
}
/*********************************************************************/
/*
* starting/stopping the card
*/
/*
* en_reset_ul: reset the board, throw away work in progress.
* must en_init to recover.
*
* LOCK: locked, needed
*/
static void
en_reset_ul(struct en_softc *sc)
{
struct en_map *map;
struct mbuf *m;
struct en_rxslot *rx;
int lcv;
device_printf(sc->dev, "reset\n");
sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0); /* reset hardware */
/*
* recv: dump any mbufs we are dma'ing into, if DRAINing, then a reset
* will free us! Don't release the rxslot from the channel.
*/
for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
if (sc->vccs[lcv] == NULL)
continue;
rx = sc->vccs[lcv]->rxslot;
for (;;) {
_IF_DEQUEUE(&rx->indma, m);
if (m == NULL)
break;
map = (void *)m->m_pkthdr.rcvif;
uma_zfree(sc->map_zone, map);
m_freem(m);
}
for (;;) {
_IF_DEQUEUE(&rx->q, m);
if (m == NULL)
break;
m_freem(m);
}
sc->vccs[lcv]->vflags = 0;
}
/*
* xmit: dump everything
*/
for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
for (;;) {
_IF_DEQUEUE(&sc->txslot[lcv].indma, m);
if (m == NULL)
break;
map = (void *)m->m_pkthdr.rcvif;
uma_zfree(sc->map_zone, map);
m_freem(m);
}
for (;;) {
_IF_DEQUEUE(&sc->txslot[lcv].q, m);
if (m == NULL)
break;
map = (void *)m->m_pkthdr.rcvif;
uma_zfree(sc->map_zone, map);
m_freem(m);
}
sc->txslot[lcv].mbsize = 0;
}
/*
* Unstop all waiters
*/
cv_broadcast(&sc->cv_close);
}
/*
* en_reset: reset the board, throw away work in progress.
* must en_init to recover.
*
* LOCK: unlocked, needed
*
* Use en_reset_ul if you alreay have the lock
*/
void
en_reset(struct en_softc *sc)
{
EN_LOCK(sc);
en_reset_ul(sc);
EN_UNLOCK(sc);
}
/*
* en_init: init board and sync the card with the data in the softc.
*
* LOCK: locked, needed
*/
static void
en_init(struct en_softc *sc)
{
int vc, slot;
uint32_t loc;
if ((sc->ifp->if_flags & IFF_UP) == 0) {
DBG(sc, INIT, ("going down"));
en_reset(sc); /* to be safe */
return;
}
DBG(sc, INIT, ("going up"));
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING; /* enable */
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0); /* reset */
/* zero memory */
bus_space_set_region_4(sc->en_memt, sc->en_base,
MID_RAMOFF, 0, sc->en_obmemsz / 4);
/*
* init obmem data structures: vc tab, dma q's, slist.
*
* note that we set drq_free/dtq_free to one less than the total number
* of DTQ/DRQs present. we do this because the card uses the condition
* (drq_chip == drq_us) to mean "list is empty"... but if you allow the
* circular list to be completely full then (drq_chip == drq_us) [i.e.
* the drq_us pointer will wrap all the way around]. by restricting
* the number of active requests to (N - 1) we prevent the list from
* becoming completely full. note that the card will sometimes give
* us an interrupt for a DTQ/DRQ we have already processes... this helps
* keep that interrupt from messing us up.
*/
bzero(&sc->drq, sizeof(sc->drq));
sc->drq_free = MID_DRQ_N - 1;
sc->drq_chip = MID_DRQ_REG2A(en_read(sc, MID_DMA_RDRX));
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
sc->drq_us = sc->drq_chip;
bzero(&sc->dtq, sizeof(sc->dtq));
sc->dtq_free = MID_DTQ_N - 1;
sc->dtq_chip = MID_DTQ_REG2A(en_read(sc, MID_DMA_RDTX));
en_write(sc, MID_DMA_WRTX, MID_DRQ_A2REG(sc->dtq_chip));
sc->dtq_us = sc->dtq_chip;
sc->hwslistp = MID_SL_REG2A(en_read(sc, MID_SERV_WRITE));
sc->swsl_size = sc->swsl_head = sc->swsl_tail = 0;
DBG(sc, INIT, ("drq free/chip: %d/0x%x, dtq free/chip: %d/0x%x, "
"hwslist: 0x%x", sc->drq_free, sc->drq_chip, sc->dtq_free,
sc->dtq_chip, sc->hwslistp));
for (slot = 0 ; slot < EN_NTX ; slot++) {
sc->txslot[slot].bfree = EN_TXSZ * 1024;
en_write(sc, MIDX_READPTR(slot), 0);
en_write(sc, MIDX_DESCSTART(slot), 0);
loc = sc->txslot[slot].cur = sc->txslot[slot].start;
loc = loc - MID_RAMOFF;
/* mask, cvt to words */
loc = (loc & ~((EN_TXSZ * 1024) - 1)) >> 2;
/* top 11 bits */
loc = loc >> MIDV_LOCTOPSHFT;
en_write(sc, MIDX_PLACE(slot), MIDX_MKPLACE(en_k2sz(EN_TXSZ),
loc));
DBG(sc, INIT, ("tx%d: place 0x%x", slot,
(u_int)en_read(sc, MIDX_PLACE(slot))));
}
for (vc = 0; vc < MID_N_VC; vc++)
if (sc->vccs[vc] != NULL)
en_loadvc(sc, sc->vccs[vc]);
/*
* enable!
*/
en_write(sc, MID_INTENA, MID_INT_TX | MID_INT_DMA_OVR | MID_INT_IDENT |
MID_INT_LERR | MID_INT_DMA_ERR | MID_INT_DMA_RX | MID_INT_DMA_TX |
MID_INT_SERVICE | MID_INT_SUNI | MID_INT_STATS);
en_write(sc, MID_MAST_CSR, MID_SETIPL(sc->ipl) | MID_MCSR_ENDMA |
MID_MCSR_ENTX | MID_MCSR_ENRX);
}
/*********************************************************************/
/*
* Ioctls
*/
/*
* en_ioctl: handle ioctl requests
*
* NOTE: if you add an ioctl to set txspeed, you should choose a new
* TX channel/slot. Choose the one with the lowest sc->txslot[slot].nref
* value, subtract one from sc->txslot[0].nref, add one to the
* sc->txslot[slot].nref, set sc->txvc2slot[vci] = slot, and then set
* txspeed[vci].
*
* LOCK: unlocked, needed
*/
static int
en_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct en_softc *sc = (struct en_softc *)ifp->if_softc;
#if defined(INET) || defined(INET6)
struct ifaddr *ifa = (struct ifaddr *)data;
#endif
struct ifreq *ifr = (struct ifreq *)data;
struct atmio_vcctable *vtab;
int error = 0;
switch (cmd) {
case SIOCSIFADDR:
EN_LOCK(sc);
ifp->if_flags |= IFF_UP;
#if defined(INET) || defined(INET6)
if (ifa->ifa_addr->sa_family == AF_INET
|| ifa->ifa_addr->sa_family == AF_INET6) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
en_reset_ul(sc);
en_init(sc);
}
ifa->ifa_rtrequest = atm_rtrequest; /* ??? */
EN_UNLOCK(sc);
break;
}
#endif /* INET */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
en_reset_ul(sc);
en_init(sc);
}
EN_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
EN_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
en_init(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
en_reset_ul(sc);
}
EN_UNLOCK(sc);
break;
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
if (ifr->ifr_mtu > ATMMTU) {
error = EINVAL;
break;
}
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
break;
case SIOCATMOPENVCC: /* kernel internal use */
error = en_open_vcc(sc, (struct atmio_openvcc *)data);
break;
case SIOCATMCLOSEVCC: /* kernel internal use */
error = en_close_vcc(sc, (struct atmio_closevcc *)data);
break;
case SIOCATMGETVCCS: /* internal netgraph use */
vtab = atm_getvccs((struct atmio_vcc **)sc->vccs,
MID_N_VC, sc->vccs_open, &sc->en_mtx, 0);
if (vtab == NULL) {
error = ENOMEM;
break;
}
*(void **)data = vtab;
break;
case SIOCATMGVCCS: /* return vcc table */
vtab = atm_getvccs((struct atmio_vcc **)sc->vccs,
MID_N_VC, sc->vccs_open, &sc->en_mtx, 1);
error = copyout(vtab, ifr->ifr_data, sizeof(*vtab) +
vtab->count * sizeof(vtab->vccs[0]));
free(vtab, M_DEVBUF);
break;
default:
error = EINVAL;
break;
}
return (error);
}
/*********************************************************************/
/*
* Sysctl's
*/
/*
* Sysctl handler for internal statistics
*
* LOCK: unlocked, needed
*/
static int
en_sysctl_istats(SYSCTL_HANDLER_ARGS)
{
struct en_softc *sc = arg1;
uint32_t *ret;
int error;
ret = malloc(sizeof(sc->stats), M_TEMP, M_WAITOK);
EN_LOCK(sc);
bcopy(&sc->stats, ret, sizeof(sc->stats));
EN_UNLOCK(sc);
error = SYSCTL_OUT(req, ret, sizeof(sc->stats));
free(ret, M_TEMP);
return (error);
}
/*********************************************************************/
/*
* Interrupts
*/
/*
* Transmit interrupt handler
*
* check for tx complete, if detected then this means that some space
* has come free on the card. we must account for it and arrange to
* kick the channel to life (in case it is stalled waiting on the card).
*
* LOCK: locked, needed
*/
static uint32_t
en_intr_tx(struct en_softc *sc, uint32_t reg)
{
uint32_t kick;
uint32_t mask;
uint32_t val;
int chan;
kick = 0; /* bitmask of channels to kick */
for (mask = 1, chan = 0; chan < EN_NTX; chan++, mask *= 2) {
if (!(reg & MID_TXCHAN(chan)))
continue;
kick = kick | mask;
/* current read pointer */
val = en_read(sc, MIDX_READPTR(chan));
/* as offset */
val = (val * sizeof(uint32_t)) + sc->txslot[chan].start;
if (val > sc->txslot[chan].cur)
sc->txslot[chan].bfree = val - sc->txslot[chan].cur;
else
sc->txslot[chan].bfree = (val + (EN_TXSZ * 1024)) -
sc->txslot[chan].cur;
DBG(sc, INTR, ("tx%d: transmit done. %d bytes now free in "
"buffer", chan, sc->txslot[chan].bfree));
}
return (kick);
}
/*
* TX DMA interrupt
*
* check for TX DMA complete, if detected then this means
* that some DTQs are now free. it also means some indma
* mbufs can be freed. if we needed DTQs, kick all channels.
*
* LOCK: locked, needed
*/
static uint32_t
en_intr_tx_dma(struct en_softc *sc)
{
uint32_t kick = 0;
uint32_t val;
uint32_t idx;
uint32_t slot;
uint32_t dtq;
struct en_map *map;
struct mbuf *m;
val = en_read(sc, MID_DMA_RDTX); /* chip's current location */
idx = MID_DTQ_A2REG(sc->dtq_chip); /* where we last saw chip */
if (sc->need_dtqs) {
kick = MID_NTX_CH - 1; /* assume power of 2, kick all! */
sc->need_dtqs = 0; /* recalculated in "kick" loop below */
DBG(sc, INTR, ("cleared need DTQ condition"));
}
while (idx != val) {
sc->dtq_free++;
if ((dtq = sc->dtq[idx]) != 0) {
/* don't forget to zero it out when done */
sc->dtq[idx] = 0;
slot = EN_DQ_SLOT(dtq);
_IF_DEQUEUE(&sc->txslot[slot].indma, m);
if (m == NULL)
panic("enintr: dtqsync");
map = (void *)m->m_pkthdr.rcvif;
uma_zfree(sc->map_zone, map);
m_freem(m);
sc->txslot[slot].mbsize -= EN_DQ_LEN(dtq);
DBG(sc, INTR, ("tx%d: free %d dma bytes, mbsize now "
"%d", slot, EN_DQ_LEN(dtq),
sc->txslot[slot].mbsize));
}
EN_WRAPADD(0, MID_DTQ_N, idx, 1);
}
sc->dtq_chip = MID_DTQ_REG2A(val); /* sync softc */
return (kick);
}
/*
* Service interrupt
*
* LOCK: locked, needed
*/
static int
en_intr_service(struct en_softc *sc)
{
uint32_t chip;
uint32_t vci;
int need_softserv = 0;
struct en_vcc *vc;
chip = MID_SL_REG2A(en_read(sc, MID_SERV_WRITE));
while (sc->hwslistp != chip) {
/* fetch and remove it from hardware service list */
vci = en_read(sc, sc->hwslistp);
EN_WRAPADD(MID_SLOFF, MID_SLEND, sc->hwslistp, 4);
if ((vc = sc->vccs[vci]) == NULL ||
(vc->vcc.flags & ATMIO_FLAG_NORX)) {
DBG(sc, INTR, ("unexpected rx interrupt VCI %d", vci));
en_write(sc, MID_VC(vci), MIDV_TRASH); /* rx off */
continue;
}
/* remove from hwsl */
en_write(sc, MID_VC(vci), vc->rxslot->mode);
EN_COUNT(sc->stats.hwpull);
DBG(sc, INTR, ("pulled VCI %d off hwslist", vci));
/* add it to the software service list (if needed) */
if ((vc->vflags & VCC_SWSL) == 0) {
EN_COUNT(sc->stats.swadd);
need_softserv = 1;
vc->vflags |= VCC_SWSL;
sc->swslist[sc->swsl_tail] = vci;
EN_WRAPADD(0, MID_SL_N, sc->swsl_tail, 1);
sc->swsl_size++;
DBG(sc, INTR, ("added VCI %d to swslist", vci));
}
}
return (need_softserv);
}
/*
* Handle a receive DMA completion
*/
static void
en_rx_drain(struct en_softc *sc, u_int drq)
{
struct en_rxslot *slot;
struct en_vcc *vc;
struct mbuf *m;
struct atm_pseudohdr ah;
slot = &sc->rxslot[EN_DQ_SLOT(drq)];
m = NULL; /* assume "JK" trash DMA */
if (EN_DQ_LEN(drq) != 0) {
_IF_DEQUEUE(&slot->indma, m);
KASSERT(m != NULL, ("drqsync: %s: lost mbuf in slot %td!",
sc->ifp->if_xname, slot - sc->rxslot));
uma_zfree(sc->map_zone, (struct en_map *)m->m_pkthdr.rcvif);
}
if ((vc = slot->vcc) == NULL) {
/* ups */
if (m != NULL)
m_freem(m);
return;
}
/* do something with this mbuf */
if (vc->vflags & VCC_DRAIN) {
/* drain? */
if (m != NULL)
m_freem(m);
if (_IF_QLEN(&slot->indma) == 0 && _IF_QLEN(&slot->q) == 0 &&
(en_read(sc, MID_VC(vc->vcc.vci)) & MIDV_INSERVICE) == 0 &&
(vc->vflags & VCC_SWSL) == 0) {
vc->vflags &= ~VCC_CLOSE_RX;
if (vc->vcc.flags & ATMIO_FLAG_ASYNC)
en_close_finish(sc, vc);
else
cv_signal(&sc->cv_close);
}
return;
}
if (m != NULL) {
ATM_PH_FLAGS(&ah) = vc->vcc.flags;
ATM_PH_VPI(&ah) = 0;
ATM_PH_SETVCI(&ah, vc->vcc.vci);
DBG(sc, INTR, ("rx%td: rxvci%d: atm_input, mbuf %p, len %d, "
"hand %p", slot - sc->rxslot, vc->vcc.vci, m,
EN_DQ_LEN(drq), vc->rxhand));
m->m_pkthdr.rcvif = sc->ifp;
sc->ifp->if_ipackets++;
vc->ipackets++;
vc->ibytes += m->m_pkthdr.len;
#ifdef EN_DEBUG
if (sc->debug & DBG_IPACKETS)
en_dump_packet(sc, m);
#endif
#ifdef ENABLE_BPF
BPF_MTAP(sc->ifp, m);
#endif
EN_UNLOCK(sc);
atm_input(sc->ifp, &ah, m, vc->rxhand);
EN_LOCK(sc);
}
}
/*
* check for RX DMA complete, and pass the data "upstairs"
*
* LOCK: locked, needed
*/
static int
en_intr_rx_dma(struct en_softc *sc)
{
uint32_t val;
uint32_t idx;
uint32_t drq;
val = en_read(sc, MID_DMA_RDRX); /* chip's current location */
idx = MID_DRQ_A2REG(sc->drq_chip); /* where we last saw chip */
while (idx != val) {
sc->drq_free++;
if ((drq = sc->drq[idx]) != 0) {
/* don't forget to zero it out when done */
sc->drq[idx] = 0;
en_rx_drain(sc, drq);
}
EN_WRAPADD(0, MID_DRQ_N, idx, 1);
}
sc->drq_chip = MID_DRQ_REG2A(val); /* sync softc */
if (sc->need_drqs) {
/* true if we had a DRQ shortage */
sc->need_drqs = 0;
DBG(sc, INTR, ("cleared need DRQ condition"));
return (1);
} else
return (0);
}
/*
* en_mget: get an mbuf chain that can hold totlen bytes and return it
* (for recv). For the actual allocation totlen is rounded up to a multiple
* of 4. We also ensure, that each mbuf has a multiple of 4 bytes.
*
* After this call the sum of all the m_len's in the chain will be totlen.
* This is called at interrupt time, so we can't wait here.
*
* LOCK: any, not needed
*/
static struct mbuf *
en_mget(struct en_softc *sc, u_int pktlen)
{
struct mbuf *m, *tmp;
u_int totlen, pad;
totlen = roundup(pktlen, sizeof(uint32_t));
pad = totlen - pktlen;
/*
* First get an mbuf with header. Keep space for a couple of
* words at the begin.
*/
/* called from interrupt context */
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL)
return (NULL);
m->m_pkthdr.rcvif = NULL;
m->m_pkthdr.len = pktlen;
m->m_len = EN_RX1BUF;
MH_ALIGN(m, EN_RX1BUF);
if (m->m_len >= totlen) {
m->m_len = totlen;
} else {
totlen -= m->m_len;
/* called from interrupt context */
tmp = m_getm(m, totlen, M_NOWAIT, MT_DATA);
if (tmp == NULL) {
m_free(m);
return (NULL);
}
tmp = m->m_next;
/* m_getm could do this for us */
while (tmp != NULL) {
tmp->m_len = min(MCLBYTES, totlen);
totlen -= tmp->m_len;
tmp = tmp->m_next;
}
}
return (m);
}
/*
* Argument for RX DMAMAP loader.
*/
struct rxarg {
struct en_softc *sc;
struct mbuf *m;
u_int pre_skip; /* number of bytes to skip at begin */
u_int post_skip; /* number of bytes to skip at end */
struct en_vcc *vc; /* vc we are receiving on */
int wait; /* wait for DRQ entries */
};
/*
* Copy the segment table to the buffer for later use. And compute the
* number of dma queue entries we need.
*
* LOCK: locked, needed
*/
static void
en_rxdma_load(void *uarg, bus_dma_segment_t *segs, int nseg,
bus_size_t mapsize, int error)
{
struct rxarg *rx = uarg;
struct en_softc *sc = rx->sc;
struct en_rxslot *slot = rx->vc->rxslot;
u_int free; /* number of free DRQ entries */
uint32_t cur; /* current buffer offset */
uint32_t drq; /* DRQ entry pointer */
uint32_t last_drq; /* where we have written last */
u_int needalign, cnt, count, bcode;
bus_addr_t addr;
bus_size_t rest;
int i;
if (error != 0)
return;
if (nseg > EN_MAX_DMASEG)
panic("too many DMA segments");
rx->wait = 0;
free = sc->drq_free;
drq = sc->drq_us;
cur = slot->cur;
last_drq = 0;
/*
* Local macro to add an entry to the receive DMA area. If there
* are no entries left, return. Save the byte offset of the entry
* in last_drq for later use.
*/
#define PUT_DRQ_ENTRY(ENI, BCODE, COUNT, ADDR) \
if (free == 0) { \
EN_COUNT(sc->stats.rxdrqout); \
rx->wait = 1; \
return; \
} \
last_drq = drq; \
en_write(sc, drq + 0, (ENI || !sc->is_adaptec) ? \
MID_MK_RXQ_ENI(COUNT, rx->vc->vcc.vci, 0, BCODE) : \
MID_MK_RXQ_ADP(COUNT, rx->vc->vcc.vci, 0, BCODE)); \
en_write(sc, drq + 4, ADDR); \
\
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, drq, 8); \
free--;
/*
* Local macro to generate a DMA entry to DMA cnt bytes. Updates
* the current buffer byte offset accordingly.
*/
#define DO_DRQ(TYPE) do { \
rest -= cnt; \
EN_WRAPADD(slot->start, slot->stop, cur, cnt); \
DBG(sc, SERV, ("rx%td: "TYPE" %u bytes, %ju left, cur %#x", \
slot - sc->rxslot, cnt, (uintmax_t)rest, cur)); \
\
PUT_DRQ_ENTRY(1, bcode, count, addr); \
\
addr += cnt; \
} while (0)
/*
* Skip the RBD at the beginning
*/
if (rx->pre_skip > 0) {
/* update DMA address */
EN_WRAPADD(slot->start, slot->stop, cur, rx->pre_skip);
PUT_DRQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
}
for (i = 0; i < nseg; i++, segs++) {
addr = segs->ds_addr;
rest = segs->ds_len;
if (sc->is_adaptec) {
/* adaptec card - simple */
/* advance the on-card buffer pointer */
EN_WRAPADD(slot->start, slot->stop, cur, rest);
DBG(sc, SERV, ("rx%td: adp %ju bytes %#jx "
"(cur now 0x%x)", slot - sc->rxslot,
(uintmax_t)rest, (uintmax_t)addr, cur));
PUT_DRQ_ENTRY(0, 0, rest, addr);
continue;
}
/*
* do we need to do a DMA op to align to the maximum
* burst? Note, that we are alway 32-bit aligned.
*/
if (sc->alburst &&
(needalign = (addr & sc->bestburstmask)) != 0) {
/* compute number of bytes, words and code */
cnt = sc->bestburstlen - needalign;
if (cnt > rest)
cnt = rest;
count = cnt / sizeof(uint32_t);
if (sc->noalbursts) {
bcode = MIDDMA_WORD;
} else {
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
DO_DRQ("al_dma");
}
/* do we need to do a max-sized burst? */
if (rest >= sc->bestburstlen) {
count = rest >> sc->bestburstshift;
cnt = count << sc->bestburstshift;
bcode = sc->bestburstcode;
DO_DRQ("best_dma");
}
/* do we need to do a cleanup burst? */
if (rest != 0) {
cnt = rest;
count = rest / sizeof(uint32_t);
if (sc->noalbursts) {
bcode = MIDDMA_WORD;
} else {
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
DO_DRQ("clean_dma");
}
}
/*
* Skip stuff at the end
*/
if (rx->post_skip > 0) {
/* update DMA address */
EN_WRAPADD(slot->start, slot->stop, cur, rx->post_skip);
PUT_DRQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
}
/* record the end for the interrupt routine */
sc->drq[MID_DRQ_A2REG(last_drq)] =
EN_DQ_MK(slot - sc->rxslot, rx->m->m_pkthdr.len);
/* set the end flag in the last descriptor */
en_write(sc, last_drq + 0, SETQ_END(sc, en_read(sc, last_drq + 0)));
#undef PUT_DRQ_ENTRY
#undef DO_DRQ
/* commit */
slot->cur = cur;
sc->drq_free = free;
sc->drq_us = drq;
/* signal to card */
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_us));
}
/*
* en_service: handle a service interrupt
*
* Q: why do we need a software service list?
*
* A: if we remove a VCI from the hardware list and we find that we are
* out of DRQs we must defer processing until some DRQs become free.
* so we must remember to look at this RX VCI/slot later, but we can't
* put it back on the hardware service list (since that isn't allowed).
* so we instead save it on the software service list. it would be nice
* if we could peek at the VCI on top of the hwservice list without removing
* it, however this leads to a race condition: if we peek at it and
* decide we are done with it new data could come in before we have a
* chance to remove it from the hwslist. by the time we get it out of
* the list the interrupt for the new data will be lost. oops!
*
* LOCK: locked, needed
*/
static void
en_service(struct en_softc *sc)
{
struct mbuf *m, *lastm;
struct en_map *map;
struct rxarg rx;
uint32_t cur;
uint32_t dstart; /* data start (as reported by card) */
uint32_t rbd; /* receive buffer descriptor */
uint32_t pdu; /* AAL5 trailer */
int mlen;
int error;
struct en_rxslot *slot;
struct en_vcc *vc;
rx.sc = sc;
next_vci:
if (sc->swsl_size == 0) {
DBG(sc, SERV, ("en_service done"));
return;
}
/*
* get vcc to service
*/
rx.vc = vc = sc->vccs[sc->swslist[sc->swsl_head]];
slot = vc->rxslot;
KASSERT (slot->vcc->rxslot == slot, ("en_service: rx slot/vci sync"));
/*
* determine our mode and if we've got any work to do
*/
DBG(sc, SERV, ("rx%td: service vci=%d start/stop/cur=0x%x 0x%x "
"0x%x", slot - sc->rxslot, vc->vcc.vci, slot->start,
slot->stop, slot->cur));
same_vci:
cur = slot->cur;
dstart = MIDV_DSTART(en_read(sc, MID_DST_RP(vc->vcc.vci)));
dstart = (dstart * sizeof(uint32_t)) + slot->start;
/* check to see if there is any data at all */
if (dstart == cur) {
EN_WRAPADD(0, MID_SL_N, sc->swsl_head, 1);
/* remove from swslist */
vc->vflags &= ~VCC_SWSL;
sc->swsl_size--;
DBG(sc, SERV, ("rx%td: remove vci %d from swslist",
slot - sc->rxslot, vc->vcc.vci));
goto next_vci;
}
/*
* figure out how many bytes we need
* [mlen = # bytes to go in mbufs]
*/
rbd = en_read(sc, cur);
if (MID_RBD_ID(rbd) != MID_RBD_STDID)
panic("en_service: id mismatch");
if (rbd & MID_RBD_T) {
mlen = 0; /* we've got trash */
rx.pre_skip = MID_RBD_SIZE;
rx.post_skip = 0;
EN_COUNT(sc->stats.ttrash);
DBG(sc, SERV, ("RX overflow lost %d cells!", MID_RBD_CNT(rbd)));
} else if (vc->vcc.aal != ATMIO_AAL_5) {
/* 1 cell (ick!) */
mlen = MID_CHDR_SIZE + MID_ATMDATASZ;
rx.pre_skip = MID_RBD_SIZE;
rx.post_skip = 0;
} else {
rx.pre_skip = MID_RBD_SIZE;
/* get PDU trailer in correct byte order */
pdu = cur + MID_RBD_CNT(rbd) * MID_ATMDATASZ +
MID_RBD_SIZE - MID_PDU_SIZE;
if (pdu >= slot->stop)
pdu -= EN_RXSZ * 1024;
pdu = en_read(sc, pdu);
if (MID_RBD_CNT(rbd) * MID_ATMDATASZ <
MID_PDU_LEN(pdu)) {
device_printf(sc->dev, "invalid AAL5 length\n");
rx.post_skip = MID_RBD_CNT(rbd) * MID_ATMDATASZ;
mlen = 0;
sc->ifp->if_ierrors++;
} else if (rbd & MID_RBD_CRCERR) {
device_printf(sc->dev, "CRC error\n");
rx.post_skip = MID_RBD_CNT(rbd) * MID_ATMDATASZ;
mlen = 0;
sc->ifp->if_ierrors++;
} else {
mlen = MID_PDU_LEN(pdu);
rx.post_skip = MID_RBD_CNT(rbd) * MID_ATMDATASZ - mlen;
}
}
/*
* now allocate mbufs for mlen bytes of data, if out of mbufs, trash all
*
* notes:
* 1. it is possible that we've already allocated an mbuf for this pkt
* but ran out of DRQs, in which case we saved the allocated mbuf
* on "q".
* 2. if we save an buf in "q" we store the "cur" (pointer) in the
* buf as an identity (that we can check later).
* 3. after this block of code, if m is still NULL then we ran out of
* mbufs
*/
_IF_DEQUEUE(&slot->q, m);
if (m != NULL) {
if (m->m_pkthdr.csum_data != cur) {
/* wasn't ours */
DBG(sc, SERV, ("rx%td: q'ed buf %p not ours",
slot - sc->rxslot, m));
_IF_PREPEND(&slot->q, m);
m = NULL;
EN_COUNT(sc->stats.rxqnotus);
} else {
EN_COUNT(sc->stats.rxqus);
DBG(sc, SERV, ("rx%td: recovered q'ed buf %p",
slot - sc->rxslot, m));
}
}
if (mlen == 0 && m != NULL) {
/* should not happen */
m_freem(m);
m = NULL;
}
if (mlen != 0 && m == NULL) {
m = en_mget(sc, mlen);
if (m == NULL) {
rx.post_skip += mlen;
mlen = 0;
EN_COUNT(sc->stats.rxmbufout);
DBG(sc, SERV, ("rx%td: out of mbufs",
slot - sc->rxslot));
} else
rx.post_skip -= roundup(mlen, sizeof(uint32_t)) - mlen;
DBG(sc, SERV, ("rx%td: allocate buf %p, mlen=%d",
slot - sc->rxslot, m, mlen));
}
DBG(sc, SERV, ("rx%td: VCI %d, rbuf %p, mlen %d, skip %u/%u",
slot - sc->rxslot, vc->vcc.vci, m, mlen, rx.pre_skip,
rx.post_skip));
if (m != NULL) {
/* M_NOWAIT - called from interrupt context */
map = uma_zalloc_arg(sc->map_zone, sc, M_NOWAIT);
if (map == NULL) {
rx.post_skip += mlen;
m_freem(m);
DBG(sc, SERV, ("rx%td: out of maps",
slot - sc->rxslot));
goto skip;
}
rx.m = m;
error = bus_dmamap_load_mbuf(sc->txtag, map->map, m,
en_rxdma_load, &rx, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->dev, "loading RX map failed "
"%d\n", error);
uma_zfree(sc->map_zone, map);
m_freem(m);
rx.post_skip += mlen;
goto skip;
}
map->flags |= ENMAP_LOADED;
if (rx.wait) {
/* out of DRQs - wait */
uma_zfree(sc->map_zone, map);
m->m_pkthdr.csum_data = cur;
_IF_ENQUEUE(&slot->q, m);
EN_COUNT(sc->stats.rxdrqout);
sc->need_drqs = 1; /* flag condition */
return;
}
(void)m_length(m, &lastm);
lastm->m_len -= roundup(mlen, sizeof(uint32_t)) - mlen;
m->m_pkthdr.rcvif = (void *)map;
_IF_ENQUEUE(&slot->indma, m);
/* get next packet in this slot */
goto same_vci;
}
skip:
/*
* Here we end if we should drop the packet from the receive buffer.
* The number of bytes to drop is in fill. We can do this with on
* JK entry. If we don't even have that one - wait.
*/
if (sc->drq_free == 0) {
sc->need_drqs = 1; /* flag condition */
return;
}
rx.post_skip += rx.pre_skip;
DBG(sc, SERV, ("rx%td: skipping %u", slot - sc->rxslot, rx.post_skip));
/* advance buffer address */
EN_WRAPADD(slot->start, slot->stop, cur, rx.post_skip);
/* write DRQ entry */
if (sc->is_adaptec)
en_write(sc, sc->drq_us,
MID_MK_RXQ_ADP(WORD_IDX(slot->start, cur),
vc->vcc.vci, MID_DMA_END, MIDDMA_JK));
else
en_write(sc, sc->drq_us,
MID_MK_RXQ_ENI(WORD_IDX(slot->start, cur),
vc->vcc.vci, MID_DMA_END, MIDDMA_JK));
en_write(sc, sc->drq_us + 4, 0);
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_us, 8);
sc->drq_free--;
/* signal to RX interrupt */
sc->drq[MID_DRQ_A2REG(sc->drq_us)] = EN_DQ_MK(slot - sc->rxslot, 0);
slot->cur = cur;
/* signal to card */
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_us));
goto same_vci;
}
/*
* interrupt handler
*
* LOCK: unlocked, needed
*/
void
en_intr(void *arg)
{
struct en_softc *sc = arg;
uint32_t reg, kick, mask;
int lcv, need_softserv;
EN_LOCK(sc);
reg = en_read(sc, MID_INTACK);
DBG(sc, INTR, ("interrupt=0x%b", reg, MID_INTBITS));
if ((reg & MID_INT_ANY) == 0) {
EN_UNLOCK(sc);
return;
}
/*
* unexpected errors that need a reset
*/
if ((reg & (MID_INT_IDENT | MID_INT_LERR | MID_INT_DMA_ERR)) != 0) {
device_printf(sc->dev, "unexpected interrupt=0x%b, "
"resetting\n", reg, MID_INTBITS);
#ifdef EN_DEBUG
panic("en: unexpected error");
#else
en_reset_ul(sc);
en_init(sc);
#endif
EN_UNLOCK(sc);
return;
}
if (reg & MID_INT_SUNI)
utopia_intr(&sc->utopia);
kick = 0;
if (reg & MID_INT_TX)
kick |= en_intr_tx(sc, reg);
if (reg & MID_INT_DMA_TX)
kick |= en_intr_tx_dma(sc);
/*
* kick xmit channels as needed.
*/
if (kick) {
DBG(sc, INTR, ("tx kick mask = 0x%x", kick));
for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2)
if ((kick & mask) && _IF_QLEN(&sc->txslot[lcv].q) != 0)
en_txdma(sc, &sc->txslot[lcv]);
}
need_softserv = 0;
if (reg & MID_INT_DMA_RX)
need_softserv |= en_intr_rx_dma(sc);
if (reg & MID_INT_SERVICE)
need_softserv |= en_intr_service(sc);
if (need_softserv)
en_service(sc);
/*
* keep our stats
*/
if (reg & MID_INT_DMA_OVR) {
EN_COUNT(sc->stats.dmaovr);
DBG(sc, INTR, ("MID_INT_DMA_OVR"));
}
reg = en_read(sc, MID_STAT);
sc->stats.otrash += MID_OTRASH(reg);
sc->stats.vtrash += MID_VTRASH(reg);
EN_UNLOCK(sc);
}
/*
* Read at most n SUNI regs starting at reg into val
*/
static int
en_utopia_readregs(struct ifatm *ifatm, u_int reg, uint8_t *val, u_int *n)
{
struct en_softc *sc = ifatm->ifp->if_softc;
u_int i;
EN_CHECKLOCK(sc);
if (reg >= MID_NSUNI)
return (EINVAL);
if (reg + *n > MID_NSUNI)
*n = MID_NSUNI - reg;
for (i = 0; i < *n; i++)
val[i] = en_read(sc, MID_SUNIOFF + 4 * (reg + i));
return (0);
}
/*
* change the bits given by mask to them in val in register reg
*/
static int
en_utopia_writereg(struct ifatm *ifatm, u_int reg, u_int mask, u_int val)
{
struct en_softc *sc = ifatm->ifp->if_softc;
uint32_t regval;
EN_CHECKLOCK(sc);
if (reg >= MID_NSUNI)
return (EINVAL);
regval = en_read(sc, MID_SUNIOFF + 4 * reg);
regval = (regval & ~mask) | (val & mask);
en_write(sc, MID_SUNIOFF + 4 * reg, regval);
return (0);
}
static const struct utopia_methods en_utopia_methods = {
en_utopia_readregs,
en_utopia_writereg
};
/*********************************************************************/
/*
* Probing the DMA brokeness of the card
*/
/*
* Physical address load helper function for DMA probe
*
* LOCK: unlocked, not needed
*/
static void
en_dmaprobe_load(void *uarg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error == 0)
*(bus_addr_t *)uarg = segs[0].ds_addr;
}
/*
* en_dmaprobe: helper function for en_attach.
*
* see how the card handles DMA by running a few DMA tests. we need
* to figure out the largest number of bytes we can DMA in one burst
* ("bestburstlen"), and if the starting address for a burst needs to
* be aligned on any sort of boundary or not ("alburst").
*
* Things turn out more complex than that, because on my (harti) brand
* new motherboard (2.4GHz) we can do 64byte aligned DMAs, but everything
* we more than 4 bytes fails (with an RX DMA timeout) for physical
* addresses that end with 0xc. Therefor we search not only the largest
* burst that is supported (hopefully 64) but also check what is the largerst
* unaligned supported size. If that appears to be lesser than 4 words,
* set the noalbursts flag. That will be set only if also alburst is set.
*/
/*
* en_dmaprobe_doit: do actual testing for the DMA test.
* Cycle through all bursts sizes from 8 up to 64 and try whether it works.
* Return the largest one that works.
*
* LOCK: unlocked, not needed
*/
static int
en_dmaprobe_doit(struct en_softc *sc, uint8_t *sp, bus_addr_t psp)
{
uint8_t *dp = sp + MIDDMA_MAXBURST;
bus_addr_t pdp = psp + MIDDMA_MAXBURST;
int lcv, retval = 4, cnt;
uint32_t reg, bcode, midvloc;
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0); /* reset card before touching RAM */
/*
* set up a 1k buffer at MID_BUFOFF
*/
midvloc = ((MID_BUFOFF - MID_RAMOFF) / sizeof(uint32_t))
>> MIDV_LOCTOPSHFT;
en_write(sc, MIDX_PLACE(0), MIDX_MKPLACE(en_k2sz(1), midvloc));
en_write(sc, MID_VC(0), (midvloc << MIDV_LOCSHIFT)
| (en_k2sz(1) << MIDV_SZSHIFT) | MIDV_TRASH);
en_write(sc, MID_DST_RP(0), 0);
en_write(sc, MID_WP_ST_CNT(0), 0);
/* set up sample data */
for (lcv = 0 ; lcv < MIDDMA_MAXBURST; lcv++)
sp[lcv] = lcv + 1;
/* enable DMA (only) */
en_write(sc, MID_MAST_CSR, MID_MCSR_ENDMA);
sc->drq_chip = MID_DRQ_REG2A(en_read(sc, MID_DMA_RDRX));
sc->dtq_chip = MID_DTQ_REG2A(en_read(sc, MID_DMA_RDTX));
/*
* try it now . . . DMA it out, then DMA it back in and compare
*
* note: in order to get the dma stuff to reverse directions it wants
* the "end" flag set! since we are not dma'ing valid data we may
* get an ident mismatch interrupt (which we will ignore).
*/
DBG(sc, DMA, ("test sp=%p/%#lx, dp=%p/%#lx",
sp, (u_long)psp, dp, (u_long)pdp));
for (lcv = 8 ; lcv <= MIDDMA_MAXBURST ; lcv = lcv * 2) {
DBG(sc, DMA, ("test lcv=%d", lcv));
/* zero SRAM and dest buffer */
bus_space_set_region_4(sc->en_memt, sc->en_base,
MID_BUFOFF, 0, 1024 / 4);
bzero(dp, MIDDMA_MAXBURST);
bcode = en_sz2b(lcv);
/* build lcv-byte-DMA x NBURSTS */
if (sc->is_adaptec)
en_write(sc, sc->dtq_chip,
MID_MK_TXQ_ADP(lcv, 0, MID_DMA_END, 0));
else
en_write(sc, sc->dtq_chip,
MID_MK_TXQ_ENI(1, 0, MID_DMA_END, bcode));
en_write(sc, sc->dtq_chip + 4, psp);
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, sc->dtq_chip, 8);
en_write(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_chip));
cnt = 1000;
while ((reg = en_readx(sc, MID_DMA_RDTX)) !=
MID_DTQ_A2REG(sc->dtq_chip)) {
DELAY(1);
if (--cnt == 0) {
DBG(sc, DMA, ("unexpected timeout in tx "
"DMA test\n alignment=0x%lx, burst size=%d"
", dma addr reg=%#x, rdtx=%#x, stat=%#x\n",
(u_long)sp & 63, lcv,
en_read(sc, MID_DMA_ADDR), reg,
en_read(sc, MID_INTSTAT)));
return (retval);
}
}
reg = en_read(sc, MID_INTACK);
if ((reg & MID_INT_DMA_TX) != MID_INT_DMA_TX) {
DBG(sc, DMA, ("unexpected status in tx DMA test: %#x\n",
reg));
return (retval);
}
/* re-enable DMA (only) */
en_write(sc, MID_MAST_CSR, MID_MCSR_ENDMA);
/* "return to sender..." address is known ... */
/* build lcv-byte-DMA x NBURSTS */
if (sc->is_adaptec)
en_write(sc, sc->drq_chip,
MID_MK_RXQ_ADP(lcv, 0, MID_DMA_END, 0));
else
en_write(sc, sc->drq_chip,
MID_MK_RXQ_ENI(1, 0, MID_DMA_END, bcode));
en_write(sc, sc->drq_chip + 4, pdp);
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_chip, 8);
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
cnt = 1000;
while ((reg = en_readx(sc, MID_DMA_RDRX)) !=
MID_DRQ_A2REG(sc->drq_chip)) {
DELAY(1);
cnt--;
if (--cnt == 0) {
DBG(sc, DMA, ("unexpected timeout in rx "
"DMA test, rdrx=%#x\n", reg));
return (retval);
}
}
reg = en_read(sc, MID_INTACK);
if ((reg & MID_INT_DMA_RX) != MID_INT_DMA_RX) {
DBG(sc, DMA, ("unexpected status in rx DMA "
"test: 0x%x\n", reg));
return (retval);
}
if (bcmp(sp, dp, lcv)) {
DBG(sc, DMA, ("DMA test failed! lcv=%d, sp=%p, "
"dp=%p", lcv, sp, dp));
return (retval);
}
retval = lcv;
}
return (retval); /* studly 64 byte DMA present! oh baby!! */
}
/*
* Find the best DMA parameters
*
* LOCK: unlocked, not needed
*/
static void
en_dmaprobe(struct en_softc *sc)
{
bus_dma_tag_t tag;
bus_dmamap_t map;
int err;
void *buffer;
int bestalgn, lcv, try, bestnoalgn;
bus_addr_t phys;
uint8_t *addr;
sc->alburst = 0;
sc->noalbursts = 0;
/*
* Allocate some DMA-able memory.
* We need 3 times the max burst size aligned to the max burst size.
*/
err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), MIDDMA_MAXBURST, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3 * MIDDMA_MAXBURST, 1, 3 * MIDDMA_MAXBURST, 0,
NULL, NULL, &tag);
if (err)
panic("%s: cannot create test DMA tag %d", __func__, err);
err = bus_dmamem_alloc(tag, &buffer, 0, &map);
if (err)
panic("%s: cannot allocate test DMA memory %d", __func__, err);
err = bus_dmamap_load(tag, map, buffer, 3 * MIDDMA_MAXBURST,
en_dmaprobe_load, &phys, BUS_DMA_NOWAIT);
if (err)
panic("%s: cannot load test DMA map %d", __func__, err);
addr = buffer;
DBG(sc, DMA, ("phys=%#lx addr=%p", (u_long)phys, addr));
/*
* Now get the best burst size of the aligned case.
*/
bestalgn = bestnoalgn = en_dmaprobe_doit(sc, addr, phys);
/*
* Now try unaligned.
*/
for (lcv = 4; lcv < MIDDMA_MAXBURST; lcv += 4) {
try = en_dmaprobe_doit(sc, addr + lcv, phys + lcv);
if (try < bestnoalgn)
bestnoalgn = try;
}
if (bestnoalgn < bestalgn) {
sc->alburst = 1;
if (bestnoalgn < 32)
sc->noalbursts = 1;
}
sc->bestburstlen = bestalgn;
sc->bestburstshift = en_log2(bestalgn);
sc->bestburstmask = sc->bestburstlen - 1; /* must be power of 2 */
sc->bestburstcode = en_sz2b(bestalgn);
/*
* Reset the chip before freeing the buffer. It may still be trying
* to DMA.
*/
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0); /* reset card before touching RAM */
DELAY(10000); /* may still do DMA */
/*
* Free the DMA stuff
*/
bus_dmamap_unload(tag, map);
bus_dmamem_free(tag, buffer, map);
bus_dma_tag_destroy(tag);
}
/*********************************************************************/
/*
* Attach/detach.
*/
/*
* Attach to the card.
*
* LOCK: unlocked, not needed (but initialized)
*/
int
en_attach(struct en_softc *sc)
{
struct ifnet *ifp = sc->ifp;
int sz;
uint32_t reg, lcv, check, ptr, sav, midvloc;
#ifdef EN_DEBUG
sc->debug = EN_DEBUG;
#endif
/*
* Probe card to determine memory size.
*
* The stupid ENI card always reports to PCI that it needs 4MB of
* space (2MB regs and 2MB RAM). If it has less than 2MB RAM the
* addresses wrap in the RAM address space (i.e. on a 512KB card
* addresses 0x3ffffc, 0x37fffc, and 0x2ffffc are aliases for
* 0x27fffc [note that RAM starts at offset 0x200000]).
*/
/* reset card before touching RAM */
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0);
for (lcv = MID_PROBEOFF; lcv <= MID_MAXOFF ; lcv += MID_PROBSIZE) {
en_write(sc, lcv, lcv); /* data[address] = address */
for (check = MID_PROBEOFF; check < lcv ;check += MID_PROBSIZE) {
reg = en_read(sc, check);
if (reg != check)
/* found an alias! - quit */
goto done_probe;
}
}
done_probe:
lcv -= MID_PROBSIZE; /* take one step back */
sc->en_obmemsz = (lcv + 4) - MID_RAMOFF;
/*
* determine the largest DMA burst supported
*/
en_dmaprobe(sc);
/*
* "hello world"
*/
/* reset */
if (sc->en_busreset)
sc->en_busreset(sc);
en_write(sc, MID_RESID, 0x0); /* reset */
/* zero memory */
bus_space_set_region_4(sc->en_memt, sc->en_base,
MID_RAMOFF, 0, sc->en_obmemsz / 4);
reg = en_read(sc, MID_RESID);
device_printf(sc->dev, "ATM midway v%d, board IDs %d.%d, %s%s%s, "
"%ldKB on-board RAM\n", MID_VER(reg), MID_MID(reg), MID_DID(reg),
(MID_IS_SABRE(reg)) ? "sabre controller, " : "",
(MID_IS_SUNI(reg)) ? "SUNI" : "Utopia",
(!MID_IS_SUNI(reg) && MID_IS_UPIPE(reg)) ? " (pipelined)" : "",
(long)sc->en_obmemsz / 1024);
/*
* fill in common ATM interface stuff
*/
IFP2IFATM(sc->ifp)->mib.hw_version = (MID_VER(reg) << 16) |
(MID_MID(reg) << 8) | MID_DID(reg);
if (MID_DID(reg) & 0x4)
IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_UTP_155;
else
IFP2IFATM(sc->ifp)->mib.media = IFM_ATM_MM_155;
IFP2IFATM(sc->ifp)->mib.pcr = ATM_RATE_155M;
IFP2IFATM(sc->ifp)->mib.vpi_bits = 0;
IFP2IFATM(sc->ifp)->mib.vci_bits = MID_VCI_BITS;
IFP2IFATM(sc->ifp)->mib.max_vccs = MID_N_VC;
IFP2IFATM(sc->ifp)->mib.max_vpcs = 0;
if (sc->is_adaptec) {
IFP2IFATM(sc->ifp)->mib.device = ATM_DEVICE_ADP155P;
if (sc->bestburstlen == 64 && sc->alburst == 0)
device_printf(sc->dev,
"passed 64 byte DMA test\n");
else
device_printf(sc->dev, "FAILED DMA TEST: "
"burst=%d, alburst=%d\n", sc->bestburstlen,
sc->alburst);
} else {
IFP2IFATM(sc->ifp)->mib.device = ATM_DEVICE_ENI155P;
device_printf(sc->dev, "maximum DMA burst length = %d "
"bytes%s\n", sc->bestburstlen, sc->alburst ?
sc->noalbursts ? " (no large bursts)" : " (must align)" :
"");
}
/*
* link into network subsystem and prepare card
*/
sc->ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX;
ifp->if_ioctl = en_ioctl;
ifp->if_start = en_start;
mtx_init(&sc->en_mtx, device_get_nameunit(sc->dev),
MTX_NETWORK_LOCK, MTX_DEF);
cv_init(&sc->cv_close, "VC close");
/*
* Make the sysctl tree
*/
sysctl_ctx_init(&sc->sysctl_ctx);
if ((sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw_atm), OID_AUTO,
device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "")) == NULL)
goto fail;
if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "istats", CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0,
en_sysctl_istats, "S", "internal statistics") == NULL)
goto fail;
#ifdef EN_DEBUG
if (SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "debug", CTLFLAG_RW , &sc->debug, 0, "") == NULL)
goto fail;
#endif
IFP2IFATM(sc->ifp)->phy = &sc->utopia;
utopia_attach(&sc->utopia, IFP2IFATM(sc->ifp), &sc->media, &sc->en_mtx,
&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
&en_utopia_methods);
utopia_init_media(&sc->utopia);
MGET(sc->padbuf, M_WAITOK, MT_DATA);
bzero(sc->padbuf->m_data, MLEN);
if (bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
EN_TXSZ * 1024, EN_MAX_DMASEG, EN_TXSZ * 1024, 0,
NULL, NULL, &sc->txtag))
goto fail;
sc->map_zone = uma_zcreate("en dma maps", sizeof(struct en_map),
en_map_ctor, en_map_dtor, NULL, en_map_fini, UMA_ALIGN_PTR,
UMA_ZONE_ZINIT);
if (sc->map_zone == NULL)
goto fail;
uma_zone_set_max(sc->map_zone, EN_MAX_MAPS);
/*
* init softc
*/
sc->vccs = malloc(MID_N_VC * sizeof(sc->vccs[0]),
M_DEVBUF, M_ZERO | M_WAITOK);
sz = sc->en_obmemsz - (MID_BUFOFF - MID_RAMOFF);
ptr = sav = MID_BUFOFF;
ptr = roundup(ptr, EN_TXSZ * 1024); /* align */
sz = sz - (ptr - sav);
if (EN_TXSZ*1024 * EN_NTX > sz) {
device_printf(sc->dev, "EN_NTX/EN_TXSZ too big\n");
goto fail;
}
for (lcv = 0 ;lcv < EN_NTX ;lcv++) {
sc->txslot[lcv].mbsize = 0;
sc->txslot[lcv].start = ptr;
ptr += (EN_TXSZ * 1024);
sz -= (EN_TXSZ * 1024);
sc->txslot[lcv].stop = ptr;
sc->txslot[lcv].nref = 0;
DBG(sc, INIT, ("tx%d: start 0x%x, stop 0x%x", lcv,
sc->txslot[lcv].start, sc->txslot[lcv].stop));
}
sav = ptr;
ptr = roundup(ptr, EN_RXSZ * 1024); /* align */
sz = sz - (ptr - sav);
sc->en_nrx = sz / (EN_RXSZ * 1024);
if (sc->en_nrx <= 0) {
device_printf(sc->dev, "EN_NTX/EN_TXSZ/EN_RXSZ too big\n");
goto fail;
}
/*
* ensure that there is always one VC slot on the service list free
* so that we can tell the difference between a full and empty list.
*/
if (sc->en_nrx >= MID_N_VC)
sc->en_nrx = MID_N_VC - 1;
for (lcv = 0 ; lcv < sc->en_nrx ; lcv++) {
sc->rxslot[lcv].vcc = NULL;
midvloc = sc->rxslot[lcv].start = ptr;
ptr += (EN_RXSZ * 1024);
sz -= (EN_RXSZ * 1024);
sc->rxslot[lcv].stop = ptr;
midvloc = midvloc - MID_RAMOFF;
/* mask, cvt to words */
midvloc = (midvloc & ~((EN_RXSZ*1024) - 1)) >> 2;
/* we only want the top 11 bits */
midvloc = midvloc >> MIDV_LOCTOPSHFT;
midvloc = (midvloc & MIDV_LOCMASK) << MIDV_LOCSHIFT;
sc->rxslot[lcv].mode = midvloc |
(en_k2sz(EN_RXSZ) << MIDV_SZSHIFT) | MIDV_TRASH;
DBG(sc, INIT, ("rx%d: start 0x%x, stop 0x%x, mode 0x%x", lcv,
sc->rxslot[lcv].start, sc->rxslot[lcv].stop,
sc->rxslot[lcv].mode));
}
device_printf(sc->dev, "%d %dKB receive buffers, %d %dKB transmit "
"buffers\n", sc->en_nrx, EN_RXSZ, EN_NTX, EN_TXSZ);
device_printf(sc->dev, "end station identifier (mac address) "
"%6D\n", IFP2IFATM(sc->ifp)->mib.esi, ":");
/*
* Start SUNI stuff. This will call our readregs/writeregs
* functions and these assume the lock to be held so we must get it
* here.
*/
EN_LOCK(sc);
utopia_start(&sc->utopia);
utopia_reset(&sc->utopia);
EN_UNLOCK(sc);
/*
* final commit
*/
atm_ifattach(ifp);
#ifdef ENABLE_BPF
bpfattach(ifp, DLT_ATM_RFC1483, sizeof(struct atmllc));
#endif
return (0);
fail:
en_destroy(sc);
return (-1);
}
/*
* Free all internal resources. No access to bus resources here.
* No locking required here (interrupt is already disabled).
*
* LOCK: unlocked, needed (but destroyed)
*/
void
en_destroy(struct en_softc *sc)
{
u_int i;
if (sc->utopia.state & UTP_ST_ATTACHED) {
/* these assume the lock to be held */
EN_LOCK(sc);
utopia_stop(&sc->utopia);
utopia_detach(&sc->utopia);
EN_UNLOCK(sc);
}
if (sc->vccs != NULL) {
/* get rid of sticky VCCs */
for (i = 0; i < MID_N_VC; i++)
if (sc->vccs[i] != NULL)
uma_zfree(en_vcc_zone, sc->vccs[i]);
free(sc->vccs, M_DEVBUF);
}
if (sc->padbuf != NULL)
m_free(sc->padbuf);
/*
* Destroy the map zone before the tag (the fini function will
* destroy the DMA maps using the tag)
*/
if (sc->map_zone != NULL)
uma_zdestroy(sc->map_zone);
if (sc->txtag != NULL)
bus_dma_tag_destroy(sc->txtag);
(void)sysctl_ctx_free(&sc->sysctl_ctx);
cv_destroy(&sc->cv_close);
mtx_destroy(&sc->en_mtx);
}
/*
* Module loaded/unloaded
*/
int
en_modevent(module_t mod __unused, int event, void *arg __unused)
{
switch (event) {
case MOD_LOAD:
en_vcc_zone = uma_zcreate("EN vccs", sizeof(struct en_vcc),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
if (en_vcc_zone == NULL)
return (ENOMEM);
break;
case MOD_UNLOAD:
uma_zdestroy(en_vcc_zone);
break;
}
return (0);
}
/*********************************************************************/
/*
* Debugging support
*/
#ifdef EN_DDBHOOK
/*
* functions we can call from ddb
*/
/*
* en_dump: dump the state
*/
#define END_SWSL 0x00000040 /* swsl state */
#define END_DRQ 0x00000020 /* drq state */
#define END_DTQ 0x00000010 /* dtq state */
#define END_RX 0x00000008 /* rx state */
#define END_TX 0x00000004 /* tx state */
#define END_MREGS 0x00000002 /* registers */
#define END_STATS 0x00000001 /* dump stats */
#define END_BITS "\20\7SWSL\6DRQ\5DTQ\4RX\3TX\2MREGS\1STATS"
static void
en_dump_stats(const struct en_stats *s)
{
printf("en_stats:\n");
printf("\t%d/%d mfix (%d failed)\n", s->mfixaddr, s->mfixlen,
s->mfixfail);
printf("\t%d rx dma overflow interrupts\n", s->dmaovr);
printf("\t%d times out of TX space and stalled\n", s->txoutspace);
printf("\t%d times out of DTQs\n", s->txdtqout);
printf("\t%d times launched a packet\n", s->launch);
printf("\t%d times pulled the hw service list\n", s->hwpull);
printf("\t%d times pushed a vci on the sw service list\n", s->swadd);
printf("\t%d times RX pulled an mbuf from Q that wasn't ours\n",
s->rxqnotus);
printf("\t%d times RX pulled a good mbuf from Q\n", s->rxqus);
printf("\t%d times ran out of DRQs\n", s->rxdrqout);
printf("\t%d transmit packets dropped due to mbsize\n", s->txmbovr);
printf("\t%d cells trashed due to turned off rxvc\n", s->vtrash);
printf("\t%d cells trashed due to totally full buffer\n", s->otrash);
printf("\t%d cells trashed due almost full buffer\n", s->ttrash);
printf("\t%d rx mbuf allocation failures\n", s->rxmbufout);
printf("\t%d times out of tx maps\n", s->txnomap);
#ifdef NATM
#ifdef NATM_STAT
printf("\tnatmintr so_rcv: ok/drop cnt: %d/%d, ok/drop bytes: %d/%d\n",
natm_sookcnt, natm_sodropcnt, natm_sookbytes, natm_sodropbytes);
#endif
#endif
}
static void
en_dump_mregs(struct en_softc *sc)
{
u_int cnt;
printf("mregs:\n");
printf("resid = 0x%x\n", en_read(sc, MID_RESID));
printf("interrupt status = 0x%b\n",
(int)en_read(sc, MID_INTSTAT), MID_INTBITS);
printf("interrupt enable = 0x%b\n",
(int)en_read(sc, MID_INTENA), MID_INTBITS);
printf("mcsr = 0x%b\n", (int)en_read(sc, MID_MAST_CSR), MID_MCSRBITS);
printf("serv_write = [chip=%u] [us=%u]\n", en_read(sc, MID_SERV_WRITE),
MID_SL_A2REG(sc->hwslistp));
printf("dma addr = 0x%x\n", en_read(sc, MID_DMA_ADDR));
printf("DRQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
MID_DRQ_REG2A(en_read(sc, MID_DMA_RDRX)),
MID_DRQ_REG2A(en_read(sc, MID_DMA_WRRX)), sc->drq_chip, sc->drq_us);
printf("DTQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
MID_DTQ_REG2A(en_read(sc, MID_DMA_RDTX)),
MID_DTQ_REG2A(en_read(sc, MID_DMA_WRTX)), sc->dtq_chip, sc->dtq_us);
printf(" unusal txspeeds:");
for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
if (sc->vccs[cnt]->txspeed)
printf(" vci%d=0x%x", cnt, sc->vccs[cnt]->txspeed);
printf("\n");
printf(" rxvc slot mappings:");
for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
if (sc->vccs[cnt]->rxslot != NULL)
printf(" %d->%td", cnt,
sc->vccs[cnt]->rxslot - sc->rxslot);
printf("\n");
}
static void
en_dump_tx(struct en_softc *sc)
{
u_int slot;
printf("tx:\n");
for (slot = 0 ; slot < EN_NTX; slot++) {
printf("tx%d: start/stop/cur=0x%x/0x%x/0x%x [%d] ", slot,
sc->txslot[slot].start, sc->txslot[slot].stop,
sc->txslot[slot].cur,
(sc->txslot[slot].cur - sc->txslot[slot].start) / 4);
printf("mbsize=%d, bfree=%d\n", sc->txslot[slot].mbsize,
sc->txslot[slot].bfree);
printf("txhw: base_address=0x%x, size=%u, read=%u, "
"descstart=%u\n",
(u_int)MIDX_BASE(en_read(sc, MIDX_PLACE(slot))),
MIDX_SZ(en_read(sc, MIDX_PLACE(slot))),
en_read(sc, MIDX_READPTR(slot)),
en_read(sc, MIDX_DESCSTART(slot)));
}
}
static void
en_dump_rx(struct en_softc *sc)
{
struct en_rxslot *slot;
printf(" recv slots:\n");
for (slot = sc->rxslot ; slot < &sc->rxslot[sc->en_nrx]; slot++) {
printf("rx%td: start/stop/cur=0x%x/0x%x/0x%x mode=0x%x ",
slot - sc->rxslot, slot->start, slot->stop, slot->cur,
slot->mode);
if (slot->vcc != NULL) {
printf("vci=%u\n", slot->vcc->vcc.vci);
printf("RXHW: mode=0x%x, DST_RP=0x%x, WP_ST_CNT=0x%x\n",
en_read(sc, MID_VC(slot->vcc->vcc.vci)),
en_read(sc, MID_DST_RP(slot->vcc->vcc.vci)),
en_read(sc, MID_WP_ST_CNT(slot->vcc->vcc.vci)));
}
}
}
/*
* This is only correct for non-adaptec adapters
*/
static void
en_dump_dtqs(struct en_softc *sc)
{
uint32_t ptr, reg;
printf(" dtq [need_dtqs=%d,dtq_free=%d]:\n", sc->need_dtqs,
sc->dtq_free);
ptr = sc->dtq_chip;
while (ptr != sc->dtq_us) {
reg = en_read(sc, ptr);
printf("\t0x%x=[%#x cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
sc->dtq[MID_DTQ_A2REG(ptr)], reg, MID_DMA_CNT(reg),
MID_DMA_TXCHAN(reg), (reg & MID_DMA_END) != 0,
MID_DMA_TYPE(reg), en_read(sc, ptr + 4));
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, ptr, 8);
}
}
static void
en_dump_drqs(struct en_softc *sc)
{
uint32_t ptr, reg;
printf(" drq [need_drqs=%d,drq_free=%d]:\n", sc->need_drqs,
sc->drq_free);
ptr = sc->drq_chip;
while (ptr != sc->drq_us) {
reg = en_read(sc, ptr);
printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
sc->drq[MID_DRQ_A2REG(ptr)], MID_DMA_CNT(reg),
MID_DMA_RXVCI(reg), (reg & MID_DMA_END) != 0,
MID_DMA_TYPE(reg), en_read(sc, ptr + 4));
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, ptr, 8);
}
}
/* Do not staticize - meant for calling from DDB! */
int
en_dump(int unit, int level)
{
struct en_softc *sc;
int lcv, cnt;
devclass_t dc;
int maxunit;
dc = devclass_find("en");
if (dc == NULL) {
printf("%s: can't find devclass!\n", __func__);
return (0);
}
maxunit = devclass_get_maxunit(dc);
for (lcv = 0 ; lcv < maxunit ; lcv++) {
sc = devclass_get_softc(dc, lcv);
if (sc == NULL)
continue;
if (unit != -1 && unit != lcv)
continue;
device_printf(sc->dev, "dumping device at level 0x%b\n",
level, END_BITS);
if (sc->dtq_us == 0) {
printf("<hasn't been en_init'd yet>\n");
continue;
}
if (level & END_STATS)
en_dump_stats(&sc->stats);
if (level & END_MREGS)
en_dump_mregs(sc);
if (level & END_TX)
en_dump_tx(sc);
if (level & END_RX)
en_dump_rx(sc);
if (level & END_DTQ)
en_dump_dtqs(sc);
if (level & END_DRQ)
en_dump_drqs(sc);
if (level & END_SWSL) {
printf(" swslist [size=%d]: ", sc->swsl_size);
for (cnt = sc->swsl_head ; cnt != sc->swsl_tail ;
cnt = (cnt + 1) % MID_SL_N)
printf("0x%x ", sc->swslist[cnt]);
printf("\n");
}
}
return (0);
}
/*
* en_dumpmem: dump the memory
*
* Do not staticize - meant for calling from DDB!
*/
int
en_dumpmem(int unit, int addr, int len)
{
struct en_softc *sc;
uint32_t reg;
devclass_t dc;
dc = devclass_find("en");
if (dc == NULL) {
printf("%s: can't find devclass\n", __func__);
return (0);
}
sc = devclass_get_softc(dc, unit);
if (sc == NULL) {
printf("%s: invalid unit number: %d\n", __func__, unit);
return (0);
}
addr = addr & ~3;
if (addr < MID_RAMOFF || addr + len * 4 > MID_MAXOFF || len <= 0) {
printf("invalid addr/len number: %d, %d\n", addr, len);
return (0);
}
printf("dumping %d words starting at offset 0x%x\n", len, addr);
while (len--) {
reg = en_read(sc, addr);
printf("mem[0x%x] = 0x%x\n", addr, reg);
addr += 4;
}
return (0);
}
#endif