951 lines
31 KiB
C++
951 lines
31 KiB
C++
//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
/// \file
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#define DEBUG_TYPE "si-fold-operands"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
struct FoldCandidate {
|
|
MachineInstr *UseMI;
|
|
union {
|
|
MachineOperand *OpToFold;
|
|
uint64_t ImmToFold;
|
|
int FrameIndexToFold;
|
|
};
|
|
unsigned char UseOpNo;
|
|
MachineOperand::MachineOperandType Kind;
|
|
|
|
FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp) :
|
|
UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()) {
|
|
if (FoldOp->isImm()) {
|
|
ImmToFold = FoldOp->getImm();
|
|
} else if (FoldOp->isFI()) {
|
|
FrameIndexToFold = FoldOp->getIndex();
|
|
} else {
|
|
assert(FoldOp->isReg());
|
|
OpToFold = FoldOp;
|
|
}
|
|
}
|
|
|
|
bool isFI() const {
|
|
return Kind == MachineOperand::MO_FrameIndex;
|
|
}
|
|
|
|
bool isImm() const {
|
|
return Kind == MachineOperand::MO_Immediate;
|
|
}
|
|
|
|
bool isReg() const {
|
|
return Kind == MachineOperand::MO_Register;
|
|
}
|
|
};
|
|
|
|
class SIFoldOperands : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
MachineRegisterInfo *MRI;
|
|
const SIInstrInfo *TII;
|
|
const SIRegisterInfo *TRI;
|
|
const SISubtarget *ST;
|
|
|
|
void foldOperand(MachineOperand &OpToFold,
|
|
MachineInstr *UseMI,
|
|
unsigned UseOpIdx,
|
|
SmallVectorImpl<FoldCandidate> &FoldList,
|
|
SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
|
|
|
|
void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
|
|
|
|
const MachineOperand *isClamp(const MachineInstr &MI) const;
|
|
bool tryFoldClamp(MachineInstr &MI);
|
|
|
|
std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
|
|
bool tryFoldOMod(MachineInstr &MI);
|
|
|
|
public:
|
|
SIFoldOperands() : MachineFunctionPass(ID) {
|
|
initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
StringRef getPassName() const override { return "SI Fold Operands"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
|
|
"SI Fold Operands", false, false)
|
|
|
|
char SIFoldOperands::ID = 0;
|
|
|
|
char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
|
|
|
|
// Wrapper around isInlineConstant that understands special cases when
|
|
// instruction types are replaced during operand folding.
|
|
static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
|
|
const MachineInstr &UseMI,
|
|
unsigned OpNo,
|
|
const MachineOperand &OpToFold) {
|
|
if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
|
|
return true;
|
|
|
|
unsigned Opc = UseMI.getOpcode();
|
|
switch (Opc) {
|
|
case AMDGPU::V_MAC_F32_e64:
|
|
case AMDGPU::V_MAC_F16_e64: {
|
|
// Special case for mac. Since this is replaced with mad when folded into
|
|
// src2, we need to check the legality for the final instruction.
|
|
int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
|
|
if (static_cast<int>(OpNo) == Src2Idx) {
|
|
bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
|
|
const MCInstrDesc &MadDesc
|
|
= TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
|
|
return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
|
|
}
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
FunctionPass *llvm::createSIFoldOperandsPass() {
|
|
return new SIFoldOperands();
|
|
}
|
|
|
|
static bool updateOperand(FoldCandidate &Fold,
|
|
const TargetRegisterInfo &TRI) {
|
|
MachineInstr *MI = Fold.UseMI;
|
|
MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
|
|
assert(Old.isReg());
|
|
|
|
if (Fold.isImm()) {
|
|
Old.ChangeToImmediate(Fold.ImmToFold);
|
|
return true;
|
|
}
|
|
|
|
if (Fold.isFI()) {
|
|
Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
|
|
return true;
|
|
}
|
|
|
|
MachineOperand *New = Fold.OpToFold;
|
|
if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
|
|
TargetRegisterInfo::isVirtualRegister(New->getReg())) {
|
|
Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Handle physical registers.
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
|
|
const MachineInstr *MI) {
|
|
for (auto Candidate : FoldList) {
|
|
if (Candidate.UseMI == MI)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
|
|
MachineInstr *MI, unsigned OpNo,
|
|
MachineOperand *OpToFold,
|
|
const SIInstrInfo *TII) {
|
|
if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
|
|
|
|
// Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
|
|
unsigned Opc = MI->getOpcode();
|
|
if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64) &&
|
|
(int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
|
|
bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
|
|
|
|
// Check if changing this to a v_mad_{f16, f32} instruction will allow us
|
|
// to fold the operand.
|
|
MI->setDesc(TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16));
|
|
bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
|
|
if (FoldAsMAD) {
|
|
MI->untieRegOperand(OpNo);
|
|
return true;
|
|
}
|
|
MI->setDesc(TII->get(Opc));
|
|
}
|
|
|
|
// Special case for s_setreg_b32
|
|
if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
|
|
MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
|
|
FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
|
|
return true;
|
|
}
|
|
|
|
// If we are already folding into another operand of MI, then
|
|
// we can't commute the instruction, otherwise we risk making the
|
|
// other fold illegal.
|
|
if (isUseMIInFoldList(FoldList, MI))
|
|
return false;
|
|
|
|
// Operand is not legal, so try to commute the instruction to
|
|
// see if this makes it possible to fold.
|
|
unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
|
|
unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
|
|
bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
|
|
|
|
if (CanCommute) {
|
|
if (CommuteIdx0 == OpNo)
|
|
OpNo = CommuteIdx1;
|
|
else if (CommuteIdx1 == OpNo)
|
|
OpNo = CommuteIdx0;
|
|
}
|
|
|
|
// One of operands might be an Imm operand, and OpNo may refer to it after
|
|
// the call of commuteInstruction() below. Such situations are avoided
|
|
// here explicitly as OpNo must be a register operand to be a candidate
|
|
// for memory folding.
|
|
if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
|
|
!MI->getOperand(CommuteIdx1).isReg()))
|
|
return false;
|
|
|
|
if (!CanCommute ||
|
|
!TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
|
|
return false;
|
|
|
|
if (!TII->isOperandLegal(*MI, OpNo, OpToFold))
|
|
return false;
|
|
}
|
|
|
|
FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
|
|
return true;
|
|
}
|
|
|
|
// If the use operand doesn't care about the value, this may be an operand only
|
|
// used for register indexing, in which case it is unsafe to fold.
|
|
static bool isUseSafeToFold(const MachineInstr &MI,
|
|
const MachineOperand &UseMO) {
|
|
return !UseMO.isUndef();
|
|
//return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
|
|
}
|
|
|
|
void SIFoldOperands::foldOperand(
|
|
MachineOperand &OpToFold,
|
|
MachineInstr *UseMI,
|
|
unsigned UseOpIdx,
|
|
SmallVectorImpl<FoldCandidate> &FoldList,
|
|
SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
|
|
const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
|
|
|
|
if (!isUseSafeToFold(*UseMI, UseOp))
|
|
return;
|
|
|
|
// FIXME: Fold operands with subregs.
|
|
if (UseOp.isReg() && OpToFold.isReg()) {
|
|
if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
|
|
return;
|
|
|
|
// Don't fold subregister extracts into tied operands, only if it is a full
|
|
// copy since a subregister use tied to a full register def doesn't really
|
|
// make sense. e.g. don't fold:
|
|
//
|
|
// %vreg1 = COPY %vreg0:sub1
|
|
// %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg1<tied0>
|
|
//
|
|
// into
|
|
// %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg0:sub1<tied0>
|
|
if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
|
|
return;
|
|
}
|
|
|
|
// Special case for REG_SEQUENCE: We can't fold literals into
|
|
// REG_SEQUENCE instructions, so we have to fold them into the
|
|
// uses of REG_SEQUENCE.
|
|
if (UseMI->isRegSequence()) {
|
|
unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
|
|
unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
|
|
|
|
for (MachineRegisterInfo::use_iterator
|
|
RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
|
|
RSUse != RSE; ++RSUse) {
|
|
|
|
MachineInstr *RSUseMI = RSUse->getParent();
|
|
if (RSUse->getSubReg() != RegSeqDstSubReg)
|
|
continue;
|
|
|
|
foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
|
|
CopiesToReplace);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
bool FoldingImm = OpToFold.isImm();
|
|
|
|
// In order to fold immediates into copies, we need to change the
|
|
// copy to a MOV.
|
|
if (FoldingImm && UseMI->isCopy()) {
|
|
unsigned DestReg = UseMI->getOperand(0).getReg();
|
|
const TargetRegisterClass *DestRC
|
|
= TargetRegisterInfo::isVirtualRegister(DestReg) ?
|
|
MRI->getRegClass(DestReg) :
|
|
TRI->getPhysRegClass(DestReg);
|
|
|
|
unsigned MovOp = TII->getMovOpcode(DestRC);
|
|
if (MovOp == AMDGPU::COPY)
|
|
return;
|
|
|
|
UseMI->setDesc(TII->get(MovOp));
|
|
CopiesToReplace.push_back(UseMI);
|
|
} else {
|
|
const MCInstrDesc &UseDesc = UseMI->getDesc();
|
|
|
|
// Don't fold into target independent nodes. Target independent opcodes
|
|
// don't have defined register classes.
|
|
if (UseDesc.isVariadic() ||
|
|
UseDesc.OpInfo[UseOpIdx].RegClass == -1)
|
|
return;
|
|
}
|
|
|
|
if (!FoldingImm) {
|
|
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
|
|
|
|
// FIXME: We could try to change the instruction from 64-bit to 32-bit
|
|
// to enable more folding opportunites. The shrink operands pass
|
|
// already does this.
|
|
return;
|
|
}
|
|
|
|
|
|
const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
|
|
const TargetRegisterClass *FoldRC =
|
|
TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
|
|
|
|
|
|
// Split 64-bit constants into 32-bits for folding.
|
|
if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
|
|
unsigned UseReg = UseOp.getReg();
|
|
const TargetRegisterClass *UseRC
|
|
= TargetRegisterInfo::isVirtualRegister(UseReg) ?
|
|
MRI->getRegClass(UseReg) :
|
|
TRI->getPhysRegClass(UseReg);
|
|
|
|
if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
|
|
return;
|
|
|
|
APInt Imm(64, OpToFold.getImm());
|
|
if (UseOp.getSubReg() == AMDGPU::sub0) {
|
|
Imm = Imm.getLoBits(32);
|
|
} else {
|
|
assert(UseOp.getSubReg() == AMDGPU::sub1);
|
|
Imm = Imm.getHiBits(32);
|
|
}
|
|
|
|
MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
|
|
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
|
|
}
|
|
|
|
static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
|
|
uint32_t LHS, uint32_t RHS) {
|
|
switch (Opcode) {
|
|
case AMDGPU::V_AND_B32_e64:
|
|
case AMDGPU::V_AND_B32_e32:
|
|
case AMDGPU::S_AND_B32:
|
|
Result = LHS & RHS;
|
|
return true;
|
|
case AMDGPU::V_OR_B32_e64:
|
|
case AMDGPU::V_OR_B32_e32:
|
|
case AMDGPU::S_OR_B32:
|
|
Result = LHS | RHS;
|
|
return true;
|
|
case AMDGPU::V_XOR_B32_e64:
|
|
case AMDGPU::V_XOR_B32_e32:
|
|
case AMDGPU::S_XOR_B32:
|
|
Result = LHS ^ RHS;
|
|
return true;
|
|
case AMDGPU::V_LSHL_B32_e64:
|
|
case AMDGPU::V_LSHL_B32_e32:
|
|
case AMDGPU::S_LSHL_B32:
|
|
// The instruction ignores the high bits for out of bounds shifts.
|
|
Result = LHS << (RHS & 31);
|
|
return true;
|
|
case AMDGPU::V_LSHLREV_B32_e64:
|
|
case AMDGPU::V_LSHLREV_B32_e32:
|
|
Result = RHS << (LHS & 31);
|
|
return true;
|
|
case AMDGPU::V_LSHR_B32_e64:
|
|
case AMDGPU::V_LSHR_B32_e32:
|
|
case AMDGPU::S_LSHR_B32:
|
|
Result = LHS >> (RHS & 31);
|
|
return true;
|
|
case AMDGPU::V_LSHRREV_B32_e64:
|
|
case AMDGPU::V_LSHRREV_B32_e32:
|
|
Result = RHS >> (LHS & 31);
|
|
return true;
|
|
case AMDGPU::V_ASHR_I32_e64:
|
|
case AMDGPU::V_ASHR_I32_e32:
|
|
case AMDGPU::S_ASHR_I32:
|
|
Result = static_cast<int32_t>(LHS) >> (RHS & 31);
|
|
return true;
|
|
case AMDGPU::V_ASHRREV_I32_e64:
|
|
case AMDGPU::V_ASHRREV_I32_e32:
|
|
Result = static_cast<int32_t>(RHS) >> (LHS & 31);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static unsigned getMovOpc(bool IsScalar) {
|
|
return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
|
|
}
|
|
|
|
/// Remove any leftover implicit operands from mutating the instruction. e.g.
|
|
/// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
|
|
/// anymore.
|
|
static void stripExtraCopyOperands(MachineInstr &MI) {
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
unsigned NumOps = Desc.getNumOperands() +
|
|
Desc.getNumImplicitUses() +
|
|
Desc.getNumImplicitDefs();
|
|
|
|
for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
|
|
MI.RemoveOperand(I);
|
|
}
|
|
|
|
static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
|
|
MI.setDesc(NewDesc);
|
|
stripExtraCopyOperands(MI);
|
|
}
|
|
|
|
static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
|
|
MachineOperand &Op) {
|
|
if (Op.isReg()) {
|
|
// If this has a subregister, it obviously is a register source.
|
|
if (Op.getSubReg() != AMDGPU::NoSubRegister)
|
|
return &Op;
|
|
|
|
MachineInstr *Def = MRI.getVRegDef(Op.getReg());
|
|
if (Def->isMoveImmediate()) {
|
|
MachineOperand &ImmSrc = Def->getOperand(1);
|
|
if (ImmSrc.isImm())
|
|
return &ImmSrc;
|
|
}
|
|
}
|
|
|
|
return &Op;
|
|
}
|
|
|
|
// Try to simplify operations with a constant that may appear after instruction
|
|
// selection.
|
|
// TODO: See if a frame index with a fixed offset can fold.
|
|
static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
|
|
const SIInstrInfo *TII,
|
|
MachineInstr *MI,
|
|
MachineOperand *ImmOp) {
|
|
unsigned Opc = MI->getOpcode();
|
|
if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
|
|
Opc == AMDGPU::S_NOT_B32) {
|
|
MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
|
|
mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
|
|
return true;
|
|
}
|
|
|
|
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
|
|
if (Src1Idx == -1)
|
|
return false;
|
|
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
|
|
MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
|
|
MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
|
|
|
|
if (!Src0->isImm() && !Src1->isImm())
|
|
return false;
|
|
|
|
// and k0, k1 -> v_mov_b32 (k0 & k1)
|
|
// or k0, k1 -> v_mov_b32 (k0 | k1)
|
|
// xor k0, k1 -> v_mov_b32 (k0 ^ k1)
|
|
if (Src0->isImm() && Src1->isImm()) {
|
|
int32_t NewImm;
|
|
if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
|
|
return false;
|
|
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
|
|
|
|
// Be careful to change the right operand, src0 may belong to a different
|
|
// instruction.
|
|
MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
|
|
MI->RemoveOperand(Src1Idx);
|
|
mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
|
|
return true;
|
|
}
|
|
|
|
if (!MI->isCommutable())
|
|
return false;
|
|
|
|
if (Src0->isImm() && !Src1->isImm()) {
|
|
std::swap(Src0, Src1);
|
|
std::swap(Src0Idx, Src1Idx);
|
|
}
|
|
|
|
int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
|
|
if (Opc == AMDGPU::V_OR_B32_e64 ||
|
|
Opc == AMDGPU::V_OR_B32_e32 ||
|
|
Opc == AMDGPU::S_OR_B32) {
|
|
if (Src1Val == 0) {
|
|
// y = or x, 0 => y = copy x
|
|
MI->RemoveOperand(Src1Idx);
|
|
mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
|
|
} else if (Src1Val == -1) {
|
|
// y = or x, -1 => y = v_mov_b32 -1
|
|
MI->RemoveOperand(Src1Idx);
|
|
mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
|
|
} else
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
|
|
MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
|
|
MI->getOpcode() == AMDGPU::S_AND_B32) {
|
|
if (Src1Val == 0) {
|
|
// y = and x, 0 => y = v_mov_b32 0
|
|
MI->RemoveOperand(Src0Idx);
|
|
mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
|
|
} else if (Src1Val == -1) {
|
|
// y = and x, -1 => y = copy x
|
|
MI->RemoveOperand(Src1Idx);
|
|
mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
|
|
stripExtraCopyOperands(*MI);
|
|
} else
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
|
|
MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
|
|
MI->getOpcode() == AMDGPU::S_XOR_B32) {
|
|
if (Src1Val == 0) {
|
|
// y = xor x, 0 => y = copy x
|
|
MI->RemoveOperand(Src1Idx);
|
|
mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Try to fold an instruction into a simpler one
|
|
static bool tryFoldInst(const SIInstrInfo *TII,
|
|
MachineInstr *MI) {
|
|
unsigned Opc = MI->getOpcode();
|
|
|
|
if (Opc == AMDGPU::V_CNDMASK_B32_e32 ||
|
|
Opc == AMDGPU::V_CNDMASK_B32_e64 ||
|
|
Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
|
|
const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
|
|
const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
|
|
if (Src1->isIdenticalTo(*Src0)) {
|
|
DEBUG(dbgs() << "Folded " << *MI << " into ");
|
|
int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
|
|
if (Src2Idx != -1)
|
|
MI->RemoveOperand(Src2Idx);
|
|
MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
|
|
mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY
|
|
: getMovOpc(false)));
|
|
DEBUG(dbgs() << *MI << '\n');
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void SIFoldOperands::foldInstOperand(MachineInstr &MI,
|
|
MachineOperand &OpToFold) const {
|
|
// We need mutate the operands of new mov instructions to add implicit
|
|
// uses of EXEC, but adding them invalidates the use_iterator, so defer
|
|
// this.
|
|
SmallVector<MachineInstr *, 4> CopiesToReplace;
|
|
SmallVector<FoldCandidate, 4> FoldList;
|
|
MachineOperand &Dst = MI.getOperand(0);
|
|
|
|
bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
|
|
if (FoldingImm) {
|
|
unsigned NumLiteralUses = 0;
|
|
MachineOperand *NonInlineUse = nullptr;
|
|
int NonInlineUseOpNo = -1;
|
|
|
|
MachineRegisterInfo::use_iterator NextUse, NextInstUse;
|
|
for (MachineRegisterInfo::use_iterator
|
|
Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
|
|
Use != E; Use = NextUse) {
|
|
NextUse = std::next(Use);
|
|
MachineInstr *UseMI = Use->getParent();
|
|
unsigned OpNo = Use.getOperandNo();
|
|
|
|
// Folding the immediate may reveal operations that can be constant
|
|
// folded or replaced with a copy. This can happen for example after
|
|
// frame indices are lowered to constants or from splitting 64-bit
|
|
// constants.
|
|
//
|
|
// We may also encounter cases where one or both operands are
|
|
// immediates materialized into a register, which would ordinarily not
|
|
// be folded due to multiple uses or operand constraints.
|
|
|
|
if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
|
|
DEBUG(dbgs() << "Constant folded " << *UseMI <<'\n');
|
|
|
|
// Some constant folding cases change the same immediate's use to a new
|
|
// instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
|
|
// again. The same constant folded instruction could also have a second
|
|
// use operand.
|
|
NextUse = MRI->use_begin(Dst.getReg());
|
|
continue;
|
|
}
|
|
|
|
// Try to fold any inline immediate uses, and then only fold other
|
|
// constants if they have one use.
|
|
//
|
|
// The legality of the inline immediate must be checked based on the use
|
|
// operand, not the defining instruction, because 32-bit instructions
|
|
// with 32-bit inline immediate sources may be used to materialize
|
|
// constants used in 16-bit operands.
|
|
//
|
|
// e.g. it is unsafe to fold:
|
|
// s_mov_b32 s0, 1.0 // materializes 0x3f800000
|
|
// v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
|
|
|
|
// Folding immediates with more than one use will increase program size.
|
|
// FIXME: This will also reduce register usage, which may be better
|
|
// in some cases. A better heuristic is needed.
|
|
if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
|
|
foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
|
|
} else {
|
|
if (++NumLiteralUses == 1) {
|
|
NonInlineUse = &*Use;
|
|
NonInlineUseOpNo = OpNo;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NumLiteralUses == 1) {
|
|
MachineInstr *UseMI = NonInlineUse->getParent();
|
|
foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
|
|
}
|
|
} else {
|
|
// Folding register.
|
|
for (MachineRegisterInfo::use_iterator
|
|
Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
|
|
Use != E; ++Use) {
|
|
MachineInstr *UseMI = Use->getParent();
|
|
|
|
foldOperand(OpToFold, UseMI, Use.getOperandNo(),
|
|
FoldList, CopiesToReplace);
|
|
}
|
|
}
|
|
|
|
MachineFunction *MF = MI.getParent()->getParent();
|
|
// Make sure we add EXEC uses to any new v_mov instructions created.
|
|
for (MachineInstr *Copy : CopiesToReplace)
|
|
Copy->addImplicitDefUseOperands(*MF);
|
|
|
|
for (FoldCandidate &Fold : FoldList) {
|
|
if (updateOperand(Fold, *TRI)) {
|
|
// Clear kill flags.
|
|
if (Fold.isReg()) {
|
|
assert(Fold.OpToFold && Fold.OpToFold->isReg());
|
|
// FIXME: Probably shouldn't bother trying to fold if not an
|
|
// SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
|
|
// copies.
|
|
MRI->clearKillFlags(Fold.OpToFold->getReg());
|
|
}
|
|
DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
|
|
static_cast<int>(Fold.UseOpNo) << " of " << *Fold.UseMI << '\n');
|
|
tryFoldInst(TII, Fold.UseMI);
|
|
}
|
|
}
|
|
}
|
|
|
|
const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
|
|
unsigned Op = MI.getOpcode();
|
|
switch (Op) {
|
|
case AMDGPU::V_MAX_F32_e64:
|
|
case AMDGPU::V_MAX_F16_e64:
|
|
case AMDGPU::V_MAX_F64: {
|
|
if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
|
|
return nullptr;
|
|
|
|
// Make sure sources are identical.
|
|
const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
|
|
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
if (!Src0->isReg() || Src0->getSubReg() != Src1->getSubReg() ||
|
|
Src0->getSubReg() != AMDGPU::NoSubRegister)
|
|
return nullptr;
|
|
|
|
// Can't fold up if we have modifiers.
|
|
if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
|
|
TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
|
|
TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
|
|
return nullptr;
|
|
return Src0;
|
|
}
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// We obviously have multiple uses in a clamp since the register is used twice
|
|
// in the same instruction.
|
|
static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
|
|
int Count = 0;
|
|
for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
|
|
I != E; ++I) {
|
|
if (++Count > 1)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
|
|
const MachineOperand *ClampSrc = isClamp(MI);
|
|
if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
|
|
return false;
|
|
|
|
MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
|
|
if (!TII->hasFPClamp(*Def))
|
|
return false;
|
|
MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
|
|
if (!DefClamp)
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def << '\n');
|
|
|
|
// Clamp is applied after omod, so it is OK if omod is set.
|
|
DefClamp->setImm(1);
|
|
MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
static int getOModValue(unsigned Opc, int64_t Val) {
|
|
switch (Opc) {
|
|
case AMDGPU::V_MUL_F32_e64: {
|
|
switch (static_cast<uint32_t>(Val)) {
|
|
case 0x3f000000: // 0.5
|
|
return SIOutMods::DIV2;
|
|
case 0x40000000: // 2.0
|
|
return SIOutMods::MUL2;
|
|
case 0x40800000: // 4.0
|
|
return SIOutMods::MUL4;
|
|
default:
|
|
return SIOutMods::NONE;
|
|
}
|
|
}
|
|
case AMDGPU::V_MUL_F16_e64: {
|
|
switch (static_cast<uint16_t>(Val)) {
|
|
case 0x3800: // 0.5
|
|
return SIOutMods::DIV2;
|
|
case 0x4000: // 2.0
|
|
return SIOutMods::MUL2;
|
|
case 0x4400: // 4.0
|
|
return SIOutMods::MUL4;
|
|
default:
|
|
return SIOutMods::NONE;
|
|
}
|
|
}
|
|
default:
|
|
llvm_unreachable("invalid mul opcode");
|
|
}
|
|
}
|
|
|
|
// FIXME: Does this really not support denormals with f16?
|
|
// FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
|
|
// handled, so will anything other than that break?
|
|
std::pair<const MachineOperand *, int>
|
|
SIFoldOperands::isOMod(const MachineInstr &MI) const {
|
|
unsigned Op = MI.getOpcode();
|
|
switch (Op) {
|
|
case AMDGPU::V_MUL_F32_e64:
|
|
case AMDGPU::V_MUL_F16_e64: {
|
|
// If output denormals are enabled, omod is ignored.
|
|
if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
|
|
(Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
|
|
return std::make_pair(nullptr, SIOutMods::NONE);
|
|
|
|
const MachineOperand *RegOp = nullptr;
|
|
const MachineOperand *ImmOp = nullptr;
|
|
const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
|
|
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
if (Src0->isImm()) {
|
|
ImmOp = Src0;
|
|
RegOp = Src1;
|
|
} else if (Src1->isImm()) {
|
|
ImmOp = Src1;
|
|
RegOp = Src0;
|
|
} else
|
|
return std::make_pair(nullptr, SIOutMods::NONE);
|
|
|
|
int OMod = getOModValue(Op, ImmOp->getImm());
|
|
if (OMod == SIOutMods::NONE ||
|
|
TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
|
|
TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
|
|
TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
|
|
TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
|
|
return std::make_pair(nullptr, SIOutMods::NONE);
|
|
|
|
return std::make_pair(RegOp, OMod);
|
|
}
|
|
case AMDGPU::V_ADD_F32_e64:
|
|
case AMDGPU::V_ADD_F16_e64: {
|
|
// If output denormals are enabled, omod is ignored.
|
|
if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
|
|
(Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
|
|
return std::make_pair(nullptr, SIOutMods::NONE);
|
|
|
|
// Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
|
|
const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
|
|
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
|
|
if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
|
|
Src0->getSubReg() == Src1->getSubReg() &&
|
|
!TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
|
|
!TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
|
|
!TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
|
|
!TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
|
|
return std::make_pair(Src0, SIOutMods::MUL2);
|
|
|
|
return std::make_pair(nullptr, SIOutMods::NONE);
|
|
}
|
|
default:
|
|
return std::make_pair(nullptr, SIOutMods::NONE);
|
|
}
|
|
}
|
|
|
|
// FIXME: Does this need to check IEEE bit on function?
|
|
bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
|
|
const MachineOperand *RegOp;
|
|
int OMod;
|
|
std::tie(RegOp, OMod) = isOMod(MI);
|
|
if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
|
|
RegOp->getSubReg() != AMDGPU::NoSubRegister ||
|
|
!hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
|
|
return false;
|
|
|
|
MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
|
|
MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
|
|
if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
|
|
return false;
|
|
|
|
// Clamp is applied after omod. If the source already has clamp set, don't
|
|
// fold it.
|
|
if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
|
|
|
|
DefOMod->setImm(OMod);
|
|
MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(*MF.getFunction()))
|
|
return false;
|
|
|
|
MRI = &MF.getRegInfo();
|
|
ST = &MF.getSubtarget<SISubtarget>();
|
|
TII = ST->getInstrInfo();
|
|
TRI = &TII->getRegisterInfo();
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
// omod is ignored by hardware if IEEE bit is enabled. omod also does not
|
|
// correctly handle signed zeros.
|
|
//
|
|
// TODO: Check nsz on instructions when fast math flags are preserved to MI
|
|
// level.
|
|
bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath();
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
|
|
BI != BE; ++BI) {
|
|
|
|
MachineBasicBlock &MBB = *BI;
|
|
MachineBasicBlock::iterator I, Next;
|
|
for (I = MBB.begin(); I != MBB.end(); I = Next) {
|
|
Next = std::next(I);
|
|
MachineInstr &MI = *I;
|
|
|
|
tryFoldInst(TII, &MI);
|
|
|
|
if (!TII->isFoldableCopy(MI)) {
|
|
if (IsIEEEMode || !tryFoldOMod(MI))
|
|
tryFoldClamp(MI);
|
|
continue;
|
|
}
|
|
|
|
MachineOperand &OpToFold = MI.getOperand(1);
|
|
bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
|
|
|
|
// FIXME: We could also be folding things like TargetIndexes.
|
|
if (!FoldingImm && !OpToFold.isReg())
|
|
continue;
|
|
|
|
if (OpToFold.isReg() &&
|
|
!TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
|
|
continue;
|
|
|
|
// Prevent folding operands backwards in the function. For example,
|
|
// the COPY opcode must not be replaced by 1 in this example:
|
|
//
|
|
// %vreg3<def> = COPY %VGPR0; VGPR_32:%vreg3
|
|
// ...
|
|
// %VGPR0<def> = V_MOV_B32_e32 1, %EXEC<imp-use>
|
|
MachineOperand &Dst = MI.getOperand(0);
|
|
if (Dst.isReg() &&
|
|
!TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
|
|
continue;
|
|
|
|
foldInstOperand(MI, OpToFold);
|
|
}
|
|
}
|
|
return false;
|
|
}
|