0f5676f432
build glue.
5304 lines
188 KiB
C++
5304 lines
188 KiB
C++
//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief Custom DAG lowering for SI
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifdef _MSC_VER
|
|
// Provide M_PI.
|
|
#define _USE_MATH_DEFINES
|
|
#endif
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUIntrinsicInfo.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "SIDefines.h"
|
|
#include "SIISelLowering.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/DAGCombine.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineValueType.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetCallingConv.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> EnableVGPRIndexMode(
|
|
"amdgpu-vgpr-index-mode",
|
|
cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
|
|
cl::init(false));
|
|
|
|
static unsigned findFirstFreeSGPR(CCState &CCInfo) {
|
|
unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
|
|
for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
|
|
if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
|
|
return AMDGPU::SGPR0 + Reg;
|
|
}
|
|
}
|
|
llvm_unreachable("Cannot allocate sgpr");
|
|
}
|
|
|
|
SITargetLowering::SITargetLowering(const TargetMachine &TM,
|
|
const SISubtarget &STI)
|
|
: AMDGPUTargetLowering(TM, STI) {
|
|
addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
|
|
addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
|
|
|
|
addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
|
|
addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
|
|
|
|
addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
|
|
addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
|
|
addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
|
|
|
|
addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
|
|
addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
|
|
|
|
addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
|
|
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
|
|
|
|
addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
|
|
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
|
|
|
|
addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
|
|
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
|
|
|
|
if (Subtarget->has16BitInsts()) {
|
|
addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
|
|
addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
|
|
}
|
|
|
|
if (Subtarget->hasVOP3PInsts()) {
|
|
addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
|
|
addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
|
|
}
|
|
|
|
computeRegisterProperties(STI.getRegisterInfo());
|
|
|
|
// We need to custom lower vector stores from local memory
|
|
setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::i1, Custom);
|
|
|
|
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::STORE, MVT::v16i32, Custom);
|
|
setOperationAction(ISD::STORE, MVT::i1, Custom);
|
|
|
|
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
|
|
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
|
|
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
|
|
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
|
|
setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
|
|
setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
|
|
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
|
|
setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
|
|
setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
|
|
setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
|
|
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
|
|
|
|
setOperationAction(ISD::SELECT, MVT::i1, Promote);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Promote);
|
|
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
|
|
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::i1, Promote);
|
|
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
|
|
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
|
|
|
|
setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
|
|
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
|
|
setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
|
|
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::UADDO, MVT::i32, Legal);
|
|
setOperationAction(ISD::USUBO, MVT::i32, Legal);
|
|
|
|
// We only support LOAD/STORE and vector manipulation ops for vectors
|
|
// with > 4 elements.
|
|
for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
|
|
MVT::v2i64, MVT::v2f64}) {
|
|
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
|
|
switch (Op) {
|
|
case ISD::LOAD:
|
|
case ISD::STORE:
|
|
case ISD::BUILD_VECTOR:
|
|
case ISD::BITCAST:
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
case ISD::INSERT_SUBVECTOR:
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
case ISD::SCALAR_TO_VECTOR:
|
|
break;
|
|
case ISD::CONCAT_VECTORS:
|
|
setOperationAction(Op, VT, Custom);
|
|
break;
|
|
default:
|
|
setOperationAction(Op, VT, Expand);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
|
|
// is expanded to avoid having two separate loops in case the index is a VGPR.
|
|
|
|
// Most operations are naturally 32-bit vector operations. We only support
|
|
// load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
|
|
for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
|
|
setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
|
|
AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
|
|
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
|
|
AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
|
|
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
|
|
AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
|
|
|
|
setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
|
|
AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
|
|
}
|
|
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
|
|
|
|
// Avoid stack access for these.
|
|
// TODO: Generalize to more vector types.
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
|
|
|
|
// BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
|
|
// and output demarshalling
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
|
|
|
|
// We can't return success/failure, only the old value,
|
|
// let LLVM add the comparison
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
|
|
|
|
if (getSubtarget()->hasFlatAddressSpace()) {
|
|
setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
|
|
setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Legal);
|
|
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
|
|
|
|
// On SI this is s_memtime and s_memrealtime on VI.
|
|
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
|
|
setOperationAction(ISD::TRAP, MVT::Other, Custom);
|
|
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
|
|
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
|
|
|
|
if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) {
|
|
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f64, Legal);
|
|
}
|
|
|
|
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::FSIN, MVT::f32, Custom);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Custom);
|
|
setOperationAction(ISD::FDIV, MVT::f32, Custom);
|
|
setOperationAction(ISD::FDIV, MVT::f64, Custom);
|
|
|
|
if (Subtarget->has16BitInsts()) {
|
|
setOperationAction(ISD::Constant, MVT::i16, Legal);
|
|
|
|
setOperationAction(ISD::SMIN, MVT::i16, Legal);
|
|
setOperationAction(ISD::SMAX, MVT::i16, Legal);
|
|
|
|
setOperationAction(ISD::UMIN, MVT::i16, Legal);
|
|
setOperationAction(ISD::UMAX, MVT::i16, Legal);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
|
|
AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
|
|
|
|
setOperationAction(ISD::ROTR, MVT::i16, Promote);
|
|
setOperationAction(ISD::ROTL, MVT::i16, Promote);
|
|
|
|
setOperationAction(ISD::SDIV, MVT::i16, Promote);
|
|
setOperationAction(ISD::UDIV, MVT::i16, Promote);
|
|
setOperationAction(ISD::SREM, MVT::i16, Promote);
|
|
setOperationAction(ISD::UREM, MVT::i16, Promote);
|
|
|
|
setOperationAction(ISD::BSWAP, MVT::i16, Promote);
|
|
setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
|
|
|
|
setOperationAction(ISD::CTTZ, MVT::i16, Promote);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
|
|
setOperationAction(ISD::CTLZ, MVT::i16, Promote);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
|
|
|
|
setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
|
|
|
|
setOperationAction(ISD::BR_CC, MVT::i16, Expand);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::i16, Custom);
|
|
|
|
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
|
|
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
|
|
AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
|
|
setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
|
|
AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
|
|
|
|
// F16 - Constant Actions.
|
|
setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
|
|
|
|
// F16 - Load/Store Actions.
|
|
setOperationAction(ISD::LOAD, MVT::f16, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
|
|
setOperationAction(ISD::STORE, MVT::f16, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
|
|
|
|
// F16 - VOP1 Actions.
|
|
setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
|
|
setOperationAction(ISD::FCOS, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSIN, MVT::f16, Promote);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
|
|
setOperationAction(ISD::FROUND, MVT::f16, Custom);
|
|
|
|
// F16 - VOP2 Actions.
|
|
setOperationAction(ISD::BR_CC, MVT::f16, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
|
|
setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
|
|
setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
|
|
setOperationAction(ISD::FDIV, MVT::f16, Custom);
|
|
|
|
// F16 - VOP3 Actions.
|
|
setOperationAction(ISD::FMA, MVT::f16, Legal);
|
|
if (!Subtarget->hasFP16Denormals())
|
|
setOperationAction(ISD::FMAD, MVT::f16, Legal);
|
|
}
|
|
|
|
if (Subtarget->hasVOP3PInsts()) {
|
|
for (MVT VT : {MVT::v2i16, MVT::v2f16}) {
|
|
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
|
|
switch (Op) {
|
|
case ISD::LOAD:
|
|
case ISD::STORE:
|
|
case ISD::BUILD_VECTOR:
|
|
case ISD::BITCAST:
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
case ISD::INSERT_SUBVECTOR:
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
case ISD::SCALAR_TO_VECTOR:
|
|
break;
|
|
case ISD::CONCAT_VECTORS:
|
|
setOperationAction(Op, VT, Custom);
|
|
break;
|
|
default:
|
|
setOperationAction(Op, VT, Expand);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// XXX - Do these do anything? Vector constants turn into build_vector.
|
|
setOperationAction(ISD::Constant, MVT::v2i16, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
|
|
|
|
setOperationAction(ISD::STORE, MVT::v2i16, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
|
|
setOperationAction(ISD::STORE, MVT::v2f16, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
|
|
setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
|
|
|
|
setOperationAction(ISD::AND, MVT::v2i16, Promote);
|
|
AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
|
|
setOperationAction(ISD::OR, MVT::v2i16, Promote);
|
|
AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
|
|
setOperationAction(ISD::XOR, MVT::v2i16, Promote);
|
|
AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
|
|
setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
|
|
AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
|
|
setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
|
|
AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
|
|
|
|
setOperationAction(ISD::ADD, MVT::v2i16, Legal);
|
|
setOperationAction(ISD::SUB, MVT::v2i16, Legal);
|
|
setOperationAction(ISD::MUL, MVT::v2i16, Legal);
|
|
setOperationAction(ISD::SHL, MVT::v2i16, Legal);
|
|
setOperationAction(ISD::SRL, MVT::v2i16, Legal);
|
|
setOperationAction(ISD::SRA, MVT::v2i16, Legal);
|
|
setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
|
|
setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
|
|
setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
|
|
setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
|
|
|
|
setOperationAction(ISD::FADD, MVT::v2f16, Legal);
|
|
setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
|
|
setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
|
|
setOperationAction(ISD::FMA, MVT::v2f16, Legal);
|
|
setOperationAction(ISD::FMINNUM, MVT::v2f16, Legal);
|
|
setOperationAction(ISD::FMAXNUM, MVT::v2f16, Legal);
|
|
|
|
// This isn't really legal, but this avoids the legalizer unrolling it (and
|
|
// allows matching fneg (fabs x) patterns)
|
|
setOperationAction(ISD::FABS, MVT::v2f16, Legal);
|
|
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
|
|
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
|
|
} else {
|
|
setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
|
|
}
|
|
|
|
for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
|
|
setOperationAction(ISD::SELECT, VT, Custom);
|
|
}
|
|
|
|
setTargetDAGCombine(ISD::FADD);
|
|
setTargetDAGCombine(ISD::FSUB);
|
|
setTargetDAGCombine(ISD::FMINNUM);
|
|
setTargetDAGCombine(ISD::FMAXNUM);
|
|
setTargetDAGCombine(ISD::SMIN);
|
|
setTargetDAGCombine(ISD::SMAX);
|
|
setTargetDAGCombine(ISD::UMIN);
|
|
setTargetDAGCombine(ISD::UMAX);
|
|
setTargetDAGCombine(ISD::SETCC);
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::OR);
|
|
setTargetDAGCombine(ISD::XOR);
|
|
setTargetDAGCombine(ISD::SINT_TO_FP);
|
|
setTargetDAGCombine(ISD::UINT_TO_FP);
|
|
setTargetDAGCombine(ISD::FCANONICALIZE);
|
|
setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
|
|
// All memory operations. Some folding on the pointer operand is done to help
|
|
// matching the constant offsets in the addressing modes.
|
|
setTargetDAGCombine(ISD::LOAD);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD);
|
|
setTargetDAGCombine(ISD::ATOMIC_STORE);
|
|
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
|
|
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
|
|
setTargetDAGCombine(ISD::ATOMIC_SWAP);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
|
|
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
|
|
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
}
|
|
|
|
const SISubtarget *SITargetLowering::getSubtarget() const {
|
|
return static_cast<const SISubtarget *>(Subtarget);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetLowering queries
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
|
|
EVT) const {
|
|
// SI has some legal vector types, but no legal vector operations. Say no
|
|
// shuffles are legal in order to prefer scalarizing some vector operations.
|
|
return false;
|
|
}
|
|
|
|
bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &CI,
|
|
unsigned IntrID) const {
|
|
switch (IntrID) {
|
|
case Intrinsic::amdgcn_atomic_inc:
|
|
case Intrinsic::amdgcn_atomic_dec: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::getVT(CI.getType());
|
|
Info.ptrVal = CI.getOperand(0);
|
|
Info.align = 0;
|
|
|
|
const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
|
|
Info.vol = !Vol || !Vol->isNullValue();
|
|
Info.readMem = true;
|
|
Info.writeMem = true;
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
|
|
SmallVectorImpl<Value*> &Ops,
|
|
Type *&AccessTy) const {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::amdgcn_atomic_inc:
|
|
case Intrinsic::amdgcn_atomic_dec: {
|
|
Value *Ptr = II->getArgOperand(0);
|
|
AccessTy = II->getType();
|
|
Ops.push_back(Ptr);
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
|
|
// Flat instructions do not have offsets, and only have the register
|
|
// address.
|
|
return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
|
|
}
|
|
|
|
bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
|
|
// MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
|
|
// additionally can do r + r + i with addr64. 32-bit has more addressing
|
|
// mode options. Depending on the resource constant, it can also do
|
|
// (i64 r0) + (i32 r1) * (i14 i).
|
|
//
|
|
// Private arrays end up using a scratch buffer most of the time, so also
|
|
// assume those use MUBUF instructions. Scratch loads / stores are currently
|
|
// implemented as mubuf instructions with offen bit set, so slightly
|
|
// different than the normal addr64.
|
|
if (!isUInt<12>(AM.BaseOffs))
|
|
return false;
|
|
|
|
// FIXME: Since we can split immediate into soffset and immediate offset,
|
|
// would it make sense to allow any immediate?
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // r + i or just i, depending on HasBaseReg.
|
|
return true;
|
|
case 1:
|
|
return true; // We have r + r or r + i.
|
|
case 2:
|
|
if (AM.HasBaseReg) {
|
|
// Reject 2 * r + r.
|
|
return false;
|
|
}
|
|
|
|
// Allow 2 * r as r + r
|
|
// Or 2 * r + i is allowed as r + r + i.
|
|
return true;
|
|
default: // Don't allow n * r
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS) const {
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
if (AS == AMDGPUASI.GLOBAL_ADDRESS) {
|
|
if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
|
|
// Assume the we will use FLAT for all global memory accesses
|
|
// on VI.
|
|
// FIXME: This assumption is currently wrong. On VI we still use
|
|
// MUBUF instructions for the r + i addressing mode. As currently
|
|
// implemented, the MUBUF instructions only work on buffer < 4GB.
|
|
// It may be possible to support > 4GB buffers with MUBUF instructions,
|
|
// by setting the stride value in the resource descriptor which would
|
|
// increase the size limit to (stride * 4GB). However, this is risky,
|
|
// because it has never been validated.
|
|
return isLegalFlatAddressingMode(AM);
|
|
}
|
|
|
|
return isLegalMUBUFAddressingMode(AM);
|
|
} else if (AS == AMDGPUASI.CONSTANT_ADDRESS) {
|
|
// If the offset isn't a multiple of 4, it probably isn't going to be
|
|
// correctly aligned.
|
|
// FIXME: Can we get the real alignment here?
|
|
if (AM.BaseOffs % 4 != 0)
|
|
return isLegalMUBUFAddressingMode(AM);
|
|
|
|
// There are no SMRD extloads, so if we have to do a small type access we
|
|
// will use a MUBUF load.
|
|
// FIXME?: We also need to do this if unaligned, but we don't know the
|
|
// alignment here.
|
|
if (DL.getTypeStoreSize(Ty) < 4)
|
|
return isLegalMUBUFAddressingMode(AM);
|
|
|
|
if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
|
|
// SMRD instructions have an 8-bit, dword offset on SI.
|
|
if (!isUInt<8>(AM.BaseOffs / 4))
|
|
return false;
|
|
} else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) {
|
|
// On CI+, this can also be a 32-bit literal constant offset. If it fits
|
|
// in 8-bits, it can use a smaller encoding.
|
|
if (!isUInt<32>(AM.BaseOffs / 4))
|
|
return false;
|
|
} else if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
|
|
// On VI, these use the SMEM format and the offset is 20-bit in bytes.
|
|
if (!isUInt<20>(AM.BaseOffs))
|
|
return false;
|
|
} else
|
|
llvm_unreachable("unhandled generation");
|
|
|
|
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
|
|
return true;
|
|
|
|
if (AM.Scale == 1 && AM.HasBaseReg)
|
|
return true;
|
|
|
|
return false;
|
|
|
|
} else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
|
|
return isLegalMUBUFAddressingMode(AM);
|
|
} else if (AS == AMDGPUASI.LOCAL_ADDRESS ||
|
|
AS == AMDGPUASI.REGION_ADDRESS) {
|
|
// Basic, single offset DS instructions allow a 16-bit unsigned immediate
|
|
// field.
|
|
// XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
|
|
// an 8-bit dword offset but we don't know the alignment here.
|
|
if (!isUInt<16>(AM.BaseOffs))
|
|
return false;
|
|
|
|
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
|
|
return true;
|
|
|
|
if (AM.Scale == 1 && AM.HasBaseReg)
|
|
return true;
|
|
|
|
return false;
|
|
} else if (AS == AMDGPUASI.FLAT_ADDRESS ||
|
|
AS == AMDGPUASI.UNKNOWN_ADDRESS_SPACE) {
|
|
// For an unknown address space, this usually means that this is for some
|
|
// reason being used for pure arithmetic, and not based on some addressing
|
|
// computation. We don't have instructions that compute pointers with any
|
|
// addressing modes, so treat them as having no offset like flat
|
|
// instructions.
|
|
return isLegalFlatAddressingMode(AM);
|
|
} else {
|
|
llvm_unreachable("unhandled address space");
|
|
}
|
|
}
|
|
|
|
bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned AddrSpace,
|
|
unsigned Align,
|
|
bool *IsFast) const {
|
|
if (IsFast)
|
|
*IsFast = false;
|
|
|
|
// TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
|
|
// which isn't a simple VT.
|
|
// Until MVT is extended to handle this, simply check for the size and
|
|
// rely on the condition below: allow accesses if the size is a multiple of 4.
|
|
if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
|
|
VT.getStoreSize() > 16)) {
|
|
return false;
|
|
}
|
|
|
|
if (AddrSpace == AMDGPUASI.LOCAL_ADDRESS ||
|
|
AddrSpace == AMDGPUASI.REGION_ADDRESS) {
|
|
// ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
|
|
// aligned, 8 byte access in a single operation using ds_read2/write2_b32
|
|
// with adjacent offsets.
|
|
bool AlignedBy4 = (Align % 4 == 0);
|
|
if (IsFast)
|
|
*IsFast = AlignedBy4;
|
|
|
|
return AlignedBy4;
|
|
}
|
|
|
|
// FIXME: We have to be conservative here and assume that flat operations
|
|
// will access scratch. If we had access to the IR function, then we
|
|
// could determine if any private memory was used in the function.
|
|
if (!Subtarget->hasUnalignedScratchAccess() &&
|
|
(AddrSpace == AMDGPUASI.PRIVATE_ADDRESS ||
|
|
AddrSpace == AMDGPUASI.FLAT_ADDRESS)) {
|
|
return false;
|
|
}
|
|
|
|
if (Subtarget->hasUnalignedBufferAccess()) {
|
|
// If we have an uniform constant load, it still requires using a slow
|
|
// buffer instruction if unaligned.
|
|
if (IsFast) {
|
|
*IsFast = (AddrSpace == AMDGPUASI.CONSTANT_ADDRESS) ?
|
|
(Align % 4 == 0) : true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Smaller than dword value must be aligned.
|
|
if (VT.bitsLT(MVT::i32))
|
|
return false;
|
|
|
|
// 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
|
|
// byte-address are ignored, thus forcing Dword alignment.
|
|
// This applies to private, global, and constant memory.
|
|
if (IsFast)
|
|
*IsFast = true;
|
|
|
|
return VT.bitsGT(MVT::i32) && Align % 4 == 0;
|
|
}
|
|
|
|
EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
|
|
unsigned SrcAlign, bool IsMemset,
|
|
bool ZeroMemset,
|
|
bool MemcpyStrSrc,
|
|
MachineFunction &MF) const {
|
|
// FIXME: Should account for address space here.
|
|
|
|
// The default fallback uses the private pointer size as a guess for a type to
|
|
// use. Make sure we switch these to 64-bit accesses.
|
|
|
|
if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
|
|
return MVT::v4i32;
|
|
|
|
if (Size >= 8 && DstAlign >= 4)
|
|
return MVT::v2i32;
|
|
|
|
// Use the default.
|
|
return MVT::Other;
|
|
}
|
|
|
|
static bool isFlatGlobalAddrSpace(unsigned AS, AMDGPUAS AMDGPUASI) {
|
|
return AS == AMDGPUASI.GLOBAL_ADDRESS ||
|
|
AS == AMDGPUASI.FLAT_ADDRESS ||
|
|
AS == AMDGPUASI.CONSTANT_ADDRESS;
|
|
}
|
|
|
|
bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
|
|
unsigned DestAS) const {
|
|
return isFlatGlobalAddrSpace(SrcAS, AMDGPUASI) &&
|
|
isFlatGlobalAddrSpace(DestAS, AMDGPUASI);
|
|
}
|
|
|
|
bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
|
|
const MemSDNode *MemNode = cast<MemSDNode>(N);
|
|
const Value *Ptr = MemNode->getMemOperand()->getValue();
|
|
const Instruction *I = dyn_cast<Instruction>(Ptr);
|
|
return I && I->getMetadata("amdgpu.noclobber");
|
|
}
|
|
|
|
bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS,
|
|
unsigned DestAS) const {
|
|
// Flat -> private/local is a simple truncate.
|
|
// Flat -> global is no-op
|
|
if (SrcAS == AMDGPUASI.FLAT_ADDRESS)
|
|
return true;
|
|
|
|
return isNoopAddrSpaceCast(SrcAS, DestAS);
|
|
}
|
|
|
|
bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
|
|
const MemSDNode *MemNode = cast<MemSDNode>(N);
|
|
|
|
return AMDGPU::isUniformMMO(MemNode->getMemOperand());
|
|
}
|
|
|
|
TargetLoweringBase::LegalizeTypeAction
|
|
SITargetLowering::getPreferredVectorAction(EVT VT) const {
|
|
if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
|
|
return TypeSplitVector;
|
|
|
|
return TargetLoweringBase::getPreferredVectorAction(VT);
|
|
}
|
|
|
|
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const {
|
|
// FIXME: Could be smarter if called for vector constants.
|
|
return true;
|
|
}
|
|
|
|
bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
|
|
if (Subtarget->has16BitInsts() && VT == MVT::i16) {
|
|
switch (Op) {
|
|
case ISD::LOAD:
|
|
case ISD::STORE:
|
|
|
|
// These operations are done with 32-bit instructions anyway.
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::SELECT:
|
|
// TODO: Extensions?
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// SimplifySetCC uses this function to determine whether or not it should
|
|
// create setcc with i1 operands. We don't have instructions for i1 setcc.
|
|
if (VT == MVT::i1 && Op == ISD::SETCC)
|
|
return false;
|
|
|
|
return TargetLowering::isTypeDesirableForOp(Op, VT);
|
|
}
|
|
|
|
SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
|
|
const SDLoc &SL,
|
|
SDValue Chain,
|
|
uint64_t Offset) const {
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
|
|
unsigned InputPtrReg = TRI->getPreloadedValue(MF,
|
|
SIRegisterInfo::KERNARG_SEGMENT_PTR);
|
|
|
|
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
|
|
MVT PtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS);
|
|
SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
|
|
MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
|
|
return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
|
|
DAG.getConstant(Offset, SL, PtrVT));
|
|
}
|
|
|
|
SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
|
|
const SDLoc &SL, SDValue Val,
|
|
bool Signed,
|
|
const ISD::InputArg *Arg) const {
|
|
if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
|
|
VT.bitsLT(MemVT)) {
|
|
unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
|
|
Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
|
|
}
|
|
|
|
if (MemVT.isFloatingPoint())
|
|
Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
|
|
else if (Signed)
|
|
Val = DAG.getSExtOrTrunc(Val, SL, VT);
|
|
else
|
|
Val = DAG.getZExtOrTrunc(Val, SL, VT);
|
|
|
|
return Val;
|
|
}
|
|
|
|
SDValue SITargetLowering::lowerKernargMemParameter(
|
|
SelectionDAG &DAG, EVT VT, EVT MemVT,
|
|
const SDLoc &SL, SDValue Chain,
|
|
uint64_t Offset, bool Signed,
|
|
const ISD::InputArg *Arg) const {
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
|
|
PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
|
|
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
|
|
|
|
unsigned Align = DL.getABITypeAlignment(Ty);
|
|
|
|
SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
|
|
SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
|
|
MachineMemOperand::MONonTemporal |
|
|
MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant);
|
|
|
|
SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
|
|
return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
|
|
}
|
|
|
|
static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
|
|
CallingConv::ID CallConv,
|
|
ArrayRef<ISD::InputArg> Ins,
|
|
BitVector &Skipped,
|
|
FunctionType *FType,
|
|
SIMachineFunctionInfo *Info) {
|
|
for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
|
|
const ISD::InputArg &Arg = Ins[I];
|
|
|
|
// First check if it's a PS input addr.
|
|
if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
|
|
!Arg.Flags.isByVal() && PSInputNum <= 15) {
|
|
|
|
if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
|
|
// We can safely skip PS inputs.
|
|
Skipped.set(I);
|
|
++PSInputNum;
|
|
continue;
|
|
}
|
|
|
|
Info->markPSInputAllocated(PSInputNum);
|
|
if (Arg.Used)
|
|
Info->markPSInputEnabled(PSInputNum);
|
|
|
|
++PSInputNum;
|
|
}
|
|
|
|
// Second split vertices into their elements.
|
|
if (Arg.VT.isVector()) {
|
|
ISD::InputArg NewArg = Arg;
|
|
NewArg.Flags.setSplit();
|
|
NewArg.VT = Arg.VT.getVectorElementType();
|
|
|
|
// We REALLY want the ORIGINAL number of vertex elements here, e.g. a
|
|
// three or five element vertex only needs three or five registers,
|
|
// NOT four or eight.
|
|
Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
|
|
unsigned NumElements = ParamType->getVectorNumElements();
|
|
|
|
for (unsigned J = 0; J != NumElements; ++J) {
|
|
Splits.push_back(NewArg);
|
|
NewArg.PartOffset += NewArg.VT.getStoreSize();
|
|
}
|
|
} else {
|
|
Splits.push_back(Arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allocate special inputs passed in VGPRs.
|
|
static void allocateSpecialInputVGPRs(CCState &CCInfo,
|
|
MachineFunction &MF,
|
|
const SIRegisterInfo &TRI,
|
|
SIMachineFunctionInfo &Info) {
|
|
if (Info.hasWorkItemIDX()) {
|
|
unsigned Reg = TRI.getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
|
|
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
|
|
CCInfo.AllocateReg(Reg);
|
|
}
|
|
|
|
if (Info.hasWorkItemIDY()) {
|
|
unsigned Reg = TRI.getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
|
|
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
|
|
CCInfo.AllocateReg(Reg);
|
|
}
|
|
|
|
if (Info.hasWorkItemIDZ()) {
|
|
unsigned Reg = TRI.getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
|
|
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
|
|
CCInfo.AllocateReg(Reg);
|
|
}
|
|
}
|
|
|
|
// Allocate special inputs passed in user SGPRs.
|
|
static void allocateHSAUserSGPRs(CCState &CCInfo,
|
|
MachineFunction &MF,
|
|
const SIRegisterInfo &TRI,
|
|
SIMachineFunctionInfo &Info) {
|
|
if (Info.hasPrivateMemoryInputPtr()) {
|
|
unsigned PrivateMemoryPtrReg = Info.addPrivateMemoryPtr(TRI);
|
|
MF.addLiveIn(PrivateMemoryPtrReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(PrivateMemoryPtrReg);
|
|
}
|
|
|
|
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
|
|
if (Info.hasPrivateSegmentBuffer()) {
|
|
unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
|
|
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
|
|
CCInfo.AllocateReg(PrivateSegmentBufferReg);
|
|
}
|
|
|
|
if (Info.hasDispatchPtr()) {
|
|
unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
|
|
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(DispatchPtrReg);
|
|
}
|
|
|
|
if (Info.hasQueuePtr()) {
|
|
unsigned QueuePtrReg = Info.addQueuePtr(TRI);
|
|
MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(QueuePtrReg);
|
|
}
|
|
|
|
if (Info.hasKernargSegmentPtr()) {
|
|
unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI);
|
|
MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(InputPtrReg);
|
|
}
|
|
|
|
if (Info.hasDispatchID()) {
|
|
unsigned DispatchIDReg = Info.addDispatchID(TRI);
|
|
MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(DispatchIDReg);
|
|
}
|
|
|
|
if (Info.hasFlatScratchInit()) {
|
|
unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
|
|
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
|
|
CCInfo.AllocateReg(FlatScratchInitReg);
|
|
}
|
|
|
|
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
|
|
// these from the dispatch pointer.
|
|
}
|
|
|
|
// Allocate special input registers that are initialized per-wave.
|
|
static void allocateSystemSGPRs(CCState &CCInfo,
|
|
MachineFunction &MF,
|
|
SIMachineFunctionInfo &Info,
|
|
CallingConv::ID CallConv,
|
|
bool IsShader) {
|
|
if (Info.hasWorkGroupIDX()) {
|
|
unsigned Reg = Info.addWorkGroupIDX();
|
|
MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
|
|
CCInfo.AllocateReg(Reg);
|
|
}
|
|
|
|
if (Info.hasWorkGroupIDY()) {
|
|
unsigned Reg = Info.addWorkGroupIDY();
|
|
MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
|
|
CCInfo.AllocateReg(Reg);
|
|
}
|
|
|
|
if (Info.hasWorkGroupIDZ()) {
|
|
unsigned Reg = Info.addWorkGroupIDZ();
|
|
MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
|
|
CCInfo.AllocateReg(Reg);
|
|
}
|
|
|
|
if (Info.hasWorkGroupInfo()) {
|
|
unsigned Reg = Info.addWorkGroupInfo();
|
|
MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
|
|
CCInfo.AllocateReg(Reg);
|
|
}
|
|
|
|
if (Info.hasPrivateSegmentWaveByteOffset()) {
|
|
// Scratch wave offset passed in system SGPR.
|
|
unsigned PrivateSegmentWaveByteOffsetReg;
|
|
|
|
if (IsShader) {
|
|
PrivateSegmentWaveByteOffsetReg =
|
|
Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
|
|
|
|
// This is true if the scratch wave byte offset doesn't have a fixed
|
|
// location.
|
|
if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
|
|
PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
|
|
Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
|
|
}
|
|
} else
|
|
PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
|
|
|
|
MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
|
|
CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
|
|
}
|
|
}
|
|
|
|
static void reservePrivateMemoryRegs(const TargetMachine &TM,
|
|
MachineFunction &MF,
|
|
const SIRegisterInfo &TRI,
|
|
SIMachineFunctionInfo &Info) {
|
|
// Now that we've figured out where the scratch register inputs are, see if
|
|
// should reserve the arguments and use them directly.
|
|
bool HasStackObjects = MF.getFrameInfo().hasStackObjects();
|
|
|
|
// Record that we know we have non-spill stack objects so we don't need to
|
|
// check all stack objects later.
|
|
if (HasStackObjects)
|
|
Info.setHasNonSpillStackObjects(true);
|
|
|
|
// Everything live out of a block is spilled with fast regalloc, so it's
|
|
// almost certain that spilling will be required.
|
|
if (TM.getOptLevel() == CodeGenOpt::None)
|
|
HasStackObjects = true;
|
|
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
if (ST.isAmdCodeObjectV2(MF)) {
|
|
if (HasStackObjects) {
|
|
// If we have stack objects, we unquestionably need the private buffer
|
|
// resource. For the Code Object V2 ABI, this will be the first 4 user
|
|
// SGPR inputs. We can reserve those and use them directly.
|
|
|
|
unsigned PrivateSegmentBufferReg = TRI.getPreloadedValue(
|
|
MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
|
|
Info.setScratchRSrcReg(PrivateSegmentBufferReg);
|
|
|
|
unsigned PrivateSegmentWaveByteOffsetReg = TRI.getPreloadedValue(
|
|
MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
|
|
Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
|
|
} else {
|
|
unsigned ReservedBufferReg
|
|
= TRI.reservedPrivateSegmentBufferReg(MF);
|
|
unsigned ReservedOffsetReg
|
|
= TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
|
|
|
|
// We tentatively reserve the last registers (skipping the last two
|
|
// which may contain VCC). After register allocation, we'll replace
|
|
// these with the ones immediately after those which were really
|
|
// allocated. In the prologue copies will be inserted from the argument
|
|
// to these reserved registers.
|
|
Info.setScratchRSrcReg(ReservedBufferReg);
|
|
Info.setScratchWaveOffsetReg(ReservedOffsetReg);
|
|
}
|
|
} else {
|
|
unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
|
|
|
|
// Without HSA, relocations are used for the scratch pointer and the
|
|
// buffer resource setup is always inserted in the prologue. Scratch wave
|
|
// offset is still in an input SGPR.
|
|
Info.setScratchRSrcReg(ReservedBufferReg);
|
|
|
|
if (HasStackObjects) {
|
|
unsigned ScratchWaveOffsetReg = TRI.getPreloadedValue(
|
|
MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
|
|
Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg);
|
|
} else {
|
|
unsigned ReservedOffsetReg
|
|
= TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
|
|
Info.setScratchWaveOffsetReg(ReservedOffsetReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
FunctionType *FType = MF.getFunction()->getFunctionType();
|
|
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
|
|
if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
|
|
const Function *Fn = MF.getFunction();
|
|
DiagnosticInfoUnsupported NoGraphicsHSA(
|
|
*Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
|
|
DAG.getContext()->diagnose(NoGraphicsHSA);
|
|
return DAG.getEntryNode();
|
|
}
|
|
|
|
// Create stack objects that are used for emitting debugger prologue if
|
|
// "amdgpu-debugger-emit-prologue" attribute was specified.
|
|
if (ST.debuggerEmitPrologue())
|
|
createDebuggerPrologueStackObjects(MF);
|
|
|
|
SmallVector<ISD::InputArg, 16> Splits;
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
BitVector Skipped(Ins.size());
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
bool IsShader = AMDGPU::isShader(CallConv);
|
|
bool IsKernel = AMDGPU::isKernel(CallConv);
|
|
bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
|
|
|
|
if (IsShader) {
|
|
processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
|
|
|
|
// At least one interpolation mode must be enabled or else the GPU will
|
|
// hang.
|
|
//
|
|
// Check PSInputAddr instead of PSInputEnable. The idea is that if the user
|
|
// set PSInputAddr, the user wants to enable some bits after the compilation
|
|
// based on run-time states. Since we can't know what the final PSInputEna
|
|
// will look like, so we shouldn't do anything here and the user should take
|
|
// responsibility for the correct programming.
|
|
//
|
|
// Otherwise, the following restrictions apply:
|
|
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
|
|
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
|
|
// enabled too.
|
|
if (CallConv == CallingConv::AMDGPU_PS &&
|
|
((Info->getPSInputAddr() & 0x7F) == 0 ||
|
|
((Info->getPSInputAddr() & 0xF) == 0 &&
|
|
Info->isPSInputAllocated(11)))) {
|
|
CCInfo.AllocateReg(AMDGPU::VGPR0);
|
|
CCInfo.AllocateReg(AMDGPU::VGPR1);
|
|
Info->markPSInputAllocated(0);
|
|
Info->markPSInputEnabled(0);
|
|
}
|
|
|
|
assert(!Info->hasDispatchPtr() &&
|
|
!Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
|
|
!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
|
|
!Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
|
|
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
|
|
!Info->hasWorkItemIDZ());
|
|
} else {
|
|
assert(!IsKernel || (Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()));
|
|
}
|
|
|
|
if (IsEntryFunc) {
|
|
allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
|
|
allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
|
|
}
|
|
|
|
if (IsKernel) {
|
|
analyzeFormalArgumentsCompute(CCInfo, Ins);
|
|
} else {
|
|
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
|
|
CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
|
|
}
|
|
|
|
SmallVector<SDValue, 16> Chains;
|
|
|
|
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
|
|
const ISD::InputArg &Arg = Ins[i];
|
|
if (Skipped[i]) {
|
|
InVals.push_back(DAG.getUNDEF(Arg.VT));
|
|
continue;
|
|
}
|
|
|
|
CCValAssign &VA = ArgLocs[ArgIdx++];
|
|
MVT VT = VA.getLocVT();
|
|
|
|
if (IsEntryFunc && VA.isMemLoc()) {
|
|
VT = Ins[i].VT;
|
|
EVT MemVT = VA.getLocVT();
|
|
|
|
const uint64_t Offset = Subtarget->getExplicitKernelArgOffset(MF) +
|
|
VA.getLocMemOffset();
|
|
Info->setABIArgOffset(Offset + MemVT.getStoreSize());
|
|
|
|
// The first 36 bytes of the input buffer contains information about
|
|
// thread group and global sizes.
|
|
SDValue Arg = lowerKernargMemParameter(
|
|
DAG, VT, MemVT, DL, Chain, Offset, Ins[i].Flags.isSExt(), &Ins[i]);
|
|
Chains.push_back(Arg.getValue(1));
|
|
|
|
auto *ParamTy =
|
|
dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
|
|
if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
|
|
ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
|
|
// On SI local pointers are just offsets into LDS, so they are always
|
|
// less than 16-bits. On CI and newer they could potentially be
|
|
// real pointers, so we can't guarantee their size.
|
|
Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
|
|
DAG.getValueType(MVT::i16));
|
|
}
|
|
|
|
InVals.push_back(Arg);
|
|
continue;
|
|
}
|
|
|
|
if (VA.isMemLoc())
|
|
report_fatal_error("memloc not supported with calling convention");
|
|
|
|
assert(VA.isRegLoc() && "Parameter must be in a register!");
|
|
|
|
unsigned Reg = VA.getLocReg();
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
|
|
|
|
Reg = MF.addLiveIn(Reg, RC);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
|
|
|
|
if (Arg.VT.isVector()) {
|
|
// Build a vector from the registers
|
|
Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
|
|
unsigned NumElements = ParamType->getVectorNumElements();
|
|
|
|
SmallVector<SDValue, 4> Regs;
|
|
Regs.push_back(Val);
|
|
for (unsigned j = 1; j != NumElements; ++j) {
|
|
Reg = ArgLocs[ArgIdx++].getLocReg();
|
|
Reg = MF.addLiveIn(Reg, RC);
|
|
|
|
SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
|
|
Regs.push_back(Copy);
|
|
}
|
|
|
|
// Fill up the missing vector elements
|
|
NumElements = Arg.VT.getVectorNumElements() - NumElements;
|
|
Regs.append(NumElements, DAG.getUNDEF(VT));
|
|
|
|
InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
|
|
continue;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
// Start adding system SGPRs.
|
|
if (IsEntryFunc)
|
|
allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
|
|
|
|
reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
|
|
|
|
return Chains.empty() ? Chain :
|
|
DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
|
|
}
|
|
|
|
SDValue
|
|
SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &DL, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
if (!AMDGPU::isShader(CallConv))
|
|
return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
|
|
OutVals, DL, DAG);
|
|
|
|
Info->setIfReturnsVoid(Outs.size() == 0);
|
|
|
|
SmallVector<ISD::OutputArg, 48> Splits;
|
|
SmallVector<SDValue, 48> SplitVals;
|
|
|
|
// Split vectors into their elements.
|
|
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
|
|
const ISD::OutputArg &Out = Outs[i];
|
|
|
|
if (Out.VT.isVector()) {
|
|
MVT VT = Out.VT.getVectorElementType();
|
|
ISD::OutputArg NewOut = Out;
|
|
NewOut.Flags.setSplit();
|
|
NewOut.VT = VT;
|
|
|
|
// We want the original number of vector elements here, e.g.
|
|
// three or five, not four or eight.
|
|
unsigned NumElements = Out.ArgVT.getVectorNumElements();
|
|
|
|
for (unsigned j = 0; j != NumElements; ++j) {
|
|
SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
|
|
DAG.getConstant(j, DL, MVT::i32));
|
|
SplitVals.push_back(Elem);
|
|
Splits.push_back(NewOut);
|
|
NewOut.PartOffset += NewOut.VT.getStoreSize();
|
|
}
|
|
} else {
|
|
SplitVals.push_back(OutVals[i]);
|
|
Splits.push_back(Out);
|
|
}
|
|
}
|
|
|
|
// CCValAssign - represent the assignment of the return value to a location.
|
|
SmallVector<CCValAssign, 48> RVLocs;
|
|
|
|
// CCState - Info about the registers and stack slots.
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
|
|
// Analyze outgoing return values.
|
|
AnalyzeReturn(CCInfo, Splits);
|
|
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 48> RetOps;
|
|
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0, realRVLocIdx = 0;
|
|
i != RVLocs.size();
|
|
++i, ++realRVLocIdx) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
SDValue Arg = SplitVals[realRVLocIdx];
|
|
|
|
// Copied from other backends.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
// Update chain and glue.
|
|
RetOps[0] = Chain;
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
unsigned Opc = Info->returnsVoid() ? AMDGPUISD::ENDPGM : AMDGPUISD::RETURN_TO_EPILOG;
|
|
return DAG.getNode(Opc, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
|
|
SelectionDAG &DAG) const {
|
|
unsigned Reg = StringSwitch<unsigned>(RegName)
|
|
.Case("m0", AMDGPU::M0)
|
|
.Case("exec", AMDGPU::EXEC)
|
|
.Case("exec_lo", AMDGPU::EXEC_LO)
|
|
.Case("exec_hi", AMDGPU::EXEC_HI)
|
|
.Case("flat_scratch", AMDGPU::FLAT_SCR)
|
|
.Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
|
|
.Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
|
|
.Default(AMDGPU::NoRegister);
|
|
|
|
if (Reg == AMDGPU::NoRegister) {
|
|
report_fatal_error(Twine("invalid register name \""
|
|
+ StringRef(RegName) + "\"."));
|
|
|
|
}
|
|
|
|
if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
|
|
Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
|
|
report_fatal_error(Twine("invalid register \""
|
|
+ StringRef(RegName) + "\" for subtarget."));
|
|
}
|
|
|
|
switch (Reg) {
|
|
case AMDGPU::M0:
|
|
case AMDGPU::EXEC_LO:
|
|
case AMDGPU::EXEC_HI:
|
|
case AMDGPU::FLAT_SCR_LO:
|
|
case AMDGPU::FLAT_SCR_HI:
|
|
if (VT.getSizeInBits() == 32)
|
|
return Reg;
|
|
break;
|
|
case AMDGPU::EXEC:
|
|
case AMDGPU::FLAT_SCR:
|
|
if (VT.getSizeInBits() == 64)
|
|
return Reg;
|
|
break;
|
|
default:
|
|
llvm_unreachable("missing register type checking");
|
|
}
|
|
|
|
report_fatal_error(Twine("invalid type for register \""
|
|
+ StringRef(RegName) + "\"."));
|
|
}
|
|
|
|
// If kill is not the last instruction, split the block so kill is always a
|
|
// proper terminator.
|
|
MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
|
|
|
|
MachineBasicBlock::iterator SplitPoint(&MI);
|
|
++SplitPoint;
|
|
|
|
if (SplitPoint == BB->end()) {
|
|
// Don't bother with a new block.
|
|
MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
|
|
return BB;
|
|
}
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineBasicBlock *SplitBB
|
|
= MF->CreateMachineBasicBlock(BB->getBasicBlock());
|
|
|
|
MF->insert(++MachineFunction::iterator(BB), SplitBB);
|
|
SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
|
|
|
|
SplitBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
BB->addSuccessor(SplitBB);
|
|
|
|
MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
|
|
return SplitBB;
|
|
}
|
|
|
|
// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
|
|
// wavefront. If the value is uniform and just happens to be in a VGPR, this
|
|
// will only do one iteration. In the worst case, this will loop 64 times.
|
|
//
|
|
// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
|
|
static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
|
|
const SIInstrInfo *TII,
|
|
MachineRegisterInfo &MRI,
|
|
MachineBasicBlock &OrigBB,
|
|
MachineBasicBlock &LoopBB,
|
|
const DebugLoc &DL,
|
|
const MachineOperand &IdxReg,
|
|
unsigned InitReg,
|
|
unsigned ResultReg,
|
|
unsigned PhiReg,
|
|
unsigned InitSaveExecReg,
|
|
int Offset,
|
|
bool UseGPRIdxMode) {
|
|
MachineBasicBlock::iterator I = LoopBB.begin();
|
|
|
|
unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
|
|
BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
|
|
.addReg(InitReg)
|
|
.addMBB(&OrigBB)
|
|
.addReg(ResultReg)
|
|
.addMBB(&LoopBB);
|
|
|
|
BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
|
|
.addReg(InitSaveExecReg)
|
|
.addMBB(&OrigBB)
|
|
.addReg(NewExec)
|
|
.addMBB(&LoopBB);
|
|
|
|
// Read the next variant <- also loop target.
|
|
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
|
|
.addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
|
|
|
|
// Compare the just read M0 value to all possible Idx values.
|
|
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
|
|
.addReg(CurrentIdxReg)
|
|
.addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
|
|
|
|
if (UseGPRIdxMode) {
|
|
unsigned IdxReg;
|
|
if (Offset == 0) {
|
|
IdxReg = CurrentIdxReg;
|
|
} else {
|
|
IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
|
|
.addReg(CurrentIdxReg, RegState::Kill)
|
|
.addImm(Offset);
|
|
}
|
|
|
|
MachineInstr *SetIdx =
|
|
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_IDX))
|
|
.addReg(IdxReg, RegState::Kill);
|
|
SetIdx->getOperand(2).setIsUndef();
|
|
} else {
|
|
// Move index from VCC into M0
|
|
if (Offset == 0) {
|
|
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
|
|
.addReg(CurrentIdxReg, RegState::Kill);
|
|
} else {
|
|
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
|
|
.addReg(CurrentIdxReg, RegState::Kill)
|
|
.addImm(Offset);
|
|
}
|
|
}
|
|
|
|
// Update EXEC, save the original EXEC value to VCC.
|
|
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
|
|
.addReg(CondReg, RegState::Kill);
|
|
|
|
MRI.setSimpleHint(NewExec, CondReg);
|
|
|
|
// Update EXEC, switch all done bits to 0 and all todo bits to 1.
|
|
MachineInstr *InsertPt =
|
|
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
|
|
.addReg(AMDGPU::EXEC)
|
|
.addReg(NewExec);
|
|
|
|
// XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
|
|
// s_cbranch_scc0?
|
|
|
|
// Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
|
|
BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
|
|
.addMBB(&LoopBB);
|
|
|
|
return InsertPt->getIterator();
|
|
}
|
|
|
|
// This has slightly sub-optimal regalloc when the source vector is killed by
|
|
// the read. The register allocator does not understand that the kill is
|
|
// per-workitem, so is kept alive for the whole loop so we end up not re-using a
|
|
// subregister from it, using 1 more VGPR than necessary. This was saved when
|
|
// this was expanded after register allocation.
|
|
static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
|
|
MachineBasicBlock &MBB,
|
|
MachineInstr &MI,
|
|
unsigned InitResultReg,
|
|
unsigned PhiReg,
|
|
int Offset,
|
|
bool UseGPRIdxMode) {
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
MachineBasicBlock::iterator I(&MI);
|
|
|
|
unsigned DstReg = MI.getOperand(0).getReg();
|
|
unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
|
|
BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
|
|
|
|
// Save the EXEC mask
|
|
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
|
|
.addReg(AMDGPU::EXEC);
|
|
|
|
// To insert the loop we need to split the block. Move everything after this
|
|
// point to a new block, and insert a new empty block between the two.
|
|
MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
|
|
MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
|
|
MachineFunction::iterator MBBI(MBB);
|
|
++MBBI;
|
|
|
|
MF->insert(MBBI, LoopBB);
|
|
MF->insert(MBBI, RemainderBB);
|
|
|
|
LoopBB->addSuccessor(LoopBB);
|
|
LoopBB->addSuccessor(RemainderBB);
|
|
|
|
// Move the rest of the block into a new block.
|
|
RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
|
|
RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
|
|
|
|
MBB.addSuccessor(LoopBB);
|
|
|
|
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
|
|
|
|
auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
|
|
InitResultReg, DstReg, PhiReg, TmpExec,
|
|
Offset, UseGPRIdxMode);
|
|
|
|
MachineBasicBlock::iterator First = RemainderBB->begin();
|
|
BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
|
|
.addReg(SaveExec);
|
|
|
|
return InsPt;
|
|
}
|
|
|
|
// Returns subreg index, offset
|
|
static std::pair<unsigned, int>
|
|
computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
|
|
const TargetRegisterClass *SuperRC,
|
|
unsigned VecReg,
|
|
int Offset) {
|
|
int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
|
|
|
|
// Skip out of bounds offsets, or else we would end up using an undefined
|
|
// register.
|
|
if (Offset >= NumElts || Offset < 0)
|
|
return std::make_pair(AMDGPU::sub0, Offset);
|
|
|
|
return std::make_pair(AMDGPU::sub0 + Offset, 0);
|
|
}
|
|
|
|
// Return true if the index is an SGPR and was set.
|
|
static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
|
|
MachineRegisterInfo &MRI,
|
|
MachineInstr &MI,
|
|
int Offset,
|
|
bool UseGPRIdxMode,
|
|
bool IsIndirectSrc) {
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
MachineBasicBlock::iterator I(&MI);
|
|
|
|
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
|
|
const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
|
|
|
|
assert(Idx->getReg() != AMDGPU::NoRegister);
|
|
|
|
if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
|
|
return false;
|
|
|
|
if (UseGPRIdxMode) {
|
|
unsigned IdxMode = IsIndirectSrc ?
|
|
VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
|
|
if (Offset == 0) {
|
|
MachineInstr *SetOn =
|
|
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
|
|
.add(*Idx)
|
|
.addImm(IdxMode);
|
|
|
|
SetOn->getOperand(3).setIsUndef();
|
|
} else {
|
|
unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
|
|
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
|
|
.add(*Idx)
|
|
.addImm(Offset);
|
|
MachineInstr *SetOn =
|
|
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
|
|
.addReg(Tmp, RegState::Kill)
|
|
.addImm(IdxMode);
|
|
|
|
SetOn->getOperand(3).setIsUndef();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (Offset == 0) {
|
|
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
|
|
.add(*Idx);
|
|
} else {
|
|
BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
|
|
.add(*Idx)
|
|
.addImm(Offset);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Control flow needs to be inserted if indexing with a VGPR.
|
|
static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
|
|
MachineBasicBlock &MBB,
|
|
const SISubtarget &ST) {
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
unsigned Dst = MI.getOperand(0).getReg();
|
|
unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
|
|
int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
|
|
|
|
const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
|
|
|
|
unsigned SubReg;
|
|
std::tie(SubReg, Offset)
|
|
= computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
|
|
|
|
bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
|
|
|
|
if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
|
|
MachineBasicBlock::iterator I(&MI);
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
|
|
if (UseGPRIdxMode) {
|
|
// TODO: Look at the uses to avoid the copy. This may require rescheduling
|
|
// to avoid interfering with other uses, so probably requires a new
|
|
// optimization pass.
|
|
BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
|
|
.addReg(SrcReg, RegState::Undef, SubReg)
|
|
.addReg(SrcReg, RegState::Implicit)
|
|
.addReg(AMDGPU::M0, RegState::Implicit);
|
|
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
|
|
} else {
|
|
BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
|
|
.addReg(SrcReg, RegState::Undef, SubReg)
|
|
.addReg(SrcReg, RegState::Implicit);
|
|
}
|
|
|
|
MI.eraseFromParent();
|
|
|
|
return &MBB;
|
|
}
|
|
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
MachineBasicBlock::iterator I(&MI);
|
|
|
|
unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
|
|
|
|
if (UseGPRIdxMode) {
|
|
MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
|
|
.addImm(0) // Reset inside loop.
|
|
.addImm(VGPRIndexMode::SRC0_ENABLE);
|
|
SetOn->getOperand(3).setIsUndef();
|
|
|
|
// Disable again after the loop.
|
|
BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
|
|
}
|
|
|
|
auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, UseGPRIdxMode);
|
|
MachineBasicBlock *LoopBB = InsPt->getParent();
|
|
|
|
if (UseGPRIdxMode) {
|
|
BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
|
|
.addReg(SrcReg, RegState::Undef, SubReg)
|
|
.addReg(SrcReg, RegState::Implicit)
|
|
.addReg(AMDGPU::M0, RegState::Implicit);
|
|
} else {
|
|
BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
|
|
.addReg(SrcReg, RegState::Undef, SubReg)
|
|
.addReg(SrcReg, RegState::Implicit);
|
|
}
|
|
|
|
MI.eraseFromParent();
|
|
|
|
return LoopBB;
|
|
}
|
|
|
|
static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
|
|
const TargetRegisterClass *VecRC) {
|
|
switch (TRI.getRegSizeInBits(*VecRC)) {
|
|
case 32: // 4 bytes
|
|
return AMDGPU::V_MOVRELD_B32_V1;
|
|
case 64: // 8 bytes
|
|
return AMDGPU::V_MOVRELD_B32_V2;
|
|
case 128: // 16 bytes
|
|
return AMDGPU::V_MOVRELD_B32_V4;
|
|
case 256: // 32 bytes
|
|
return AMDGPU::V_MOVRELD_B32_V8;
|
|
case 512: // 64 bytes
|
|
return AMDGPU::V_MOVRELD_B32_V16;
|
|
default:
|
|
llvm_unreachable("unsupported size for MOVRELD pseudos");
|
|
}
|
|
}
|
|
|
|
static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
|
|
MachineBasicBlock &MBB,
|
|
const SISubtarget &ST) {
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
unsigned Dst = MI.getOperand(0).getReg();
|
|
const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
|
|
const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
|
|
const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
|
|
int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
|
|
const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
|
|
|
|
// This can be an immediate, but will be folded later.
|
|
assert(Val->getReg());
|
|
|
|
unsigned SubReg;
|
|
std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
|
|
SrcVec->getReg(),
|
|
Offset);
|
|
bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
|
|
|
|
if (Idx->getReg() == AMDGPU::NoRegister) {
|
|
MachineBasicBlock::iterator I(&MI);
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
|
|
assert(Offset == 0);
|
|
|
|
BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
|
|
.add(*SrcVec)
|
|
.add(*Val)
|
|
.addImm(SubReg);
|
|
|
|
MI.eraseFromParent();
|
|
return &MBB;
|
|
}
|
|
|
|
if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
|
|
MachineBasicBlock::iterator I(&MI);
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
|
|
if (UseGPRIdxMode) {
|
|
BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
|
|
.addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
|
|
.add(*Val)
|
|
.addReg(Dst, RegState::ImplicitDefine)
|
|
.addReg(SrcVec->getReg(), RegState::Implicit)
|
|
.addReg(AMDGPU::M0, RegState::Implicit);
|
|
|
|
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
|
|
} else {
|
|
const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
|
|
|
|
BuildMI(MBB, I, DL, MovRelDesc)
|
|
.addReg(Dst, RegState::Define)
|
|
.addReg(SrcVec->getReg())
|
|
.add(*Val)
|
|
.addImm(SubReg - AMDGPU::sub0);
|
|
}
|
|
|
|
MI.eraseFromParent();
|
|
return &MBB;
|
|
}
|
|
|
|
if (Val->isReg())
|
|
MRI.clearKillFlags(Val->getReg());
|
|
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
|
|
if (UseGPRIdxMode) {
|
|
MachineBasicBlock::iterator I(&MI);
|
|
|
|
MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
|
|
.addImm(0) // Reset inside loop.
|
|
.addImm(VGPRIndexMode::DST_ENABLE);
|
|
SetOn->getOperand(3).setIsUndef();
|
|
|
|
// Disable again after the loop.
|
|
BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
|
|
}
|
|
|
|
unsigned PhiReg = MRI.createVirtualRegister(VecRC);
|
|
|
|
auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
|
|
Offset, UseGPRIdxMode);
|
|
MachineBasicBlock *LoopBB = InsPt->getParent();
|
|
|
|
if (UseGPRIdxMode) {
|
|
BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
|
|
.addReg(PhiReg, RegState::Undef, SubReg) // vdst
|
|
.add(*Val) // src0
|
|
.addReg(Dst, RegState::ImplicitDefine)
|
|
.addReg(PhiReg, RegState::Implicit)
|
|
.addReg(AMDGPU::M0, RegState::Implicit);
|
|
} else {
|
|
const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
|
|
|
|
BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
|
|
.addReg(Dst, RegState::Define)
|
|
.addReg(PhiReg)
|
|
.add(*Val)
|
|
.addImm(SubReg - AMDGPU::sub0);
|
|
}
|
|
|
|
MI.eraseFromParent();
|
|
|
|
return LoopBB;
|
|
}
|
|
|
|
MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
|
|
MachineInstr &MI, MachineBasicBlock *BB) const {
|
|
|
|
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
|
|
MachineFunction *MF = BB->getParent();
|
|
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
|
|
|
|
if (TII->isMIMG(MI)) {
|
|
if (!MI.memoperands_empty())
|
|
return BB;
|
|
// Add a memoperand for mimg instructions so that they aren't assumed to
|
|
// be ordered memory instuctions.
|
|
|
|
MachinePointerInfo PtrInfo(MFI->getImagePSV());
|
|
MachineMemOperand::Flags Flags = MachineMemOperand::MODereferenceable;
|
|
if (MI.mayStore())
|
|
Flags |= MachineMemOperand::MOStore;
|
|
|
|
if (MI.mayLoad())
|
|
Flags |= MachineMemOperand::MOLoad;
|
|
|
|
auto MMO = MF->getMachineMemOperand(PtrInfo, Flags, 0, 0);
|
|
MI.addMemOperand(*MF, MMO);
|
|
return BB;
|
|
}
|
|
|
|
switch (MI.getOpcode()) {
|
|
case AMDGPU::SI_INIT_M0:
|
|
BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
|
|
TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
|
|
.add(MI.getOperand(0));
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
|
|
case AMDGPU::SI_INIT_EXEC:
|
|
// This should be before all vector instructions.
|
|
BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
|
|
AMDGPU::EXEC)
|
|
.addImm(MI.getOperand(0).getImm());
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
|
|
case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
|
|
// Extract the thread count from an SGPR input and set EXEC accordingly.
|
|
// Since BFM can't shift by 64, handle that case with CMP + CMOV.
|
|
//
|
|
// S_BFE_U32 count, input, {shift, 7}
|
|
// S_BFM_B64 exec, count, 0
|
|
// S_CMP_EQ_U32 count, 64
|
|
// S_CMOV_B64 exec, -1
|
|
MachineInstr *FirstMI = &*BB->begin();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
unsigned InputReg = MI.getOperand(0).getReg();
|
|
unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
bool Found = false;
|
|
|
|
// Move the COPY of the input reg to the beginning, so that we can use it.
|
|
for (auto I = BB->begin(); I != &MI; I++) {
|
|
if (I->getOpcode() != TargetOpcode::COPY ||
|
|
I->getOperand(0).getReg() != InputReg)
|
|
continue;
|
|
|
|
if (I == FirstMI) {
|
|
FirstMI = &*++BB->begin();
|
|
} else {
|
|
I->removeFromParent();
|
|
BB->insert(FirstMI, &*I);
|
|
}
|
|
Found = true;
|
|
break;
|
|
}
|
|
assert(Found);
|
|
|
|
// This should be before all vector instructions.
|
|
BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
|
|
.addReg(InputReg)
|
|
.addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000);
|
|
BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64),
|
|
AMDGPU::EXEC)
|
|
.addReg(CountReg)
|
|
.addImm(0);
|
|
BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
|
|
.addReg(CountReg, RegState::Kill)
|
|
.addImm(64);
|
|
BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64),
|
|
AMDGPU::EXEC)
|
|
.addImm(-1);
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
case AMDGPU::GET_GROUPSTATICSIZE: {
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
|
|
.add(MI.getOperand(0))
|
|
.addImm(MFI->getLDSSize());
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
case AMDGPU::SI_INDIRECT_SRC_V1:
|
|
case AMDGPU::SI_INDIRECT_SRC_V2:
|
|
case AMDGPU::SI_INDIRECT_SRC_V4:
|
|
case AMDGPU::SI_INDIRECT_SRC_V8:
|
|
case AMDGPU::SI_INDIRECT_SRC_V16:
|
|
return emitIndirectSrc(MI, *BB, *getSubtarget());
|
|
case AMDGPU::SI_INDIRECT_DST_V1:
|
|
case AMDGPU::SI_INDIRECT_DST_V2:
|
|
case AMDGPU::SI_INDIRECT_DST_V4:
|
|
case AMDGPU::SI_INDIRECT_DST_V8:
|
|
case AMDGPU::SI_INDIRECT_DST_V16:
|
|
return emitIndirectDst(MI, *BB, *getSubtarget());
|
|
case AMDGPU::SI_KILL:
|
|
return splitKillBlock(MI, BB);
|
|
case AMDGPU::V_CNDMASK_B64_PSEUDO: {
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
|
|
unsigned Dst = MI.getOperand(0).getReg();
|
|
unsigned Src0 = MI.getOperand(1).getReg();
|
|
unsigned Src1 = MI.getOperand(2).getReg();
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
unsigned SrcCond = MI.getOperand(3).getReg();
|
|
|
|
unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
|
|
.addReg(Src0, 0, AMDGPU::sub0)
|
|
.addReg(Src1, 0, AMDGPU::sub0)
|
|
.addReg(SrcCond);
|
|
BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
|
|
.addReg(Src0, 0, AMDGPU::sub1)
|
|
.addReg(Src1, 0, AMDGPU::sub1)
|
|
.addReg(SrcCond);
|
|
|
|
BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
|
|
.addReg(DstLo)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(DstHi)
|
|
.addImm(AMDGPU::sub1);
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
case AMDGPU::SI_BR_UNDEF: {
|
|
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
|
|
.add(MI.getOperand(0));
|
|
Br->getOperand(1).setIsUndef(true); // read undef SCC
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
default:
|
|
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
|
|
}
|
|
}
|
|
|
|
bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
|
|
// This currently forces unfolding various combinations of fsub into fma with
|
|
// free fneg'd operands. As long as we have fast FMA (controlled by
|
|
// isFMAFasterThanFMulAndFAdd), we should perform these.
|
|
|
|
// When fma is quarter rate, for f64 where add / sub are at best half rate,
|
|
// most of these combines appear to be cycle neutral but save on instruction
|
|
// count / code size.
|
|
return true;
|
|
}
|
|
|
|
EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
|
|
EVT VT) const {
|
|
if (!VT.isVector()) {
|
|
return MVT::i1;
|
|
}
|
|
return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
|
|
}
|
|
|
|
MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
|
|
// TODO: Should i16 be used always if legal? For now it would force VALU
|
|
// shifts.
|
|
return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
|
|
}
|
|
|
|
// Answering this is somewhat tricky and depends on the specific device which
|
|
// have different rates for fma or all f64 operations.
|
|
//
|
|
// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
|
|
// regardless of which device (although the number of cycles differs between
|
|
// devices), so it is always profitable for f64.
|
|
//
|
|
// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
|
|
// only on full rate devices. Normally, we should prefer selecting v_mad_f32
|
|
// which we can always do even without fused FP ops since it returns the same
|
|
// result as the separate operations and since it is always full
|
|
// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
|
|
// however does not support denormals, so we do report fma as faster if we have
|
|
// a fast fma device and require denormals.
|
|
//
|
|
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
|
|
VT = VT.getScalarType();
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
case MVT::f32:
|
|
// This is as fast on some subtargets. However, we always have full rate f32
|
|
// mad available which returns the same result as the separate operations
|
|
// which we should prefer over fma. We can't use this if we want to support
|
|
// denormals, so only report this in these cases.
|
|
return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
|
|
case MVT::f64:
|
|
return true;
|
|
case MVT::f16:
|
|
return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom DAG Lowering Operations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
|
|
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
|
|
case ISD::LOAD: {
|
|
SDValue Result = LowerLOAD(Op, DAG);
|
|
assert((!Result.getNode() ||
|
|
Result.getNode()->getNumValues() == 2) &&
|
|
"Load should return a value and a chain");
|
|
return Result;
|
|
}
|
|
|
|
case ISD::FSIN:
|
|
case ISD::FCOS:
|
|
return LowerTrig(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::FDIV: return LowerFDIV(Op, DAG);
|
|
case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
|
|
case ISD::STORE: return LowerSTORE(Op, DAG);
|
|
case ISD::GlobalAddress: {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
return LowerGlobalAddress(MFI, Op, DAG);
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
|
|
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
|
|
case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
return lowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::FP_ROUND:
|
|
return lowerFP_ROUND(Op, DAG);
|
|
|
|
case ISD::TRAP:
|
|
case ISD::DEBUGTRAP:
|
|
return lowerTRAP(Op, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
void SITargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
switch (N->getOpcode()) {
|
|
case ISD::INSERT_VECTOR_ELT: {
|
|
if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
|
|
Results.push_back(Res);
|
|
return;
|
|
}
|
|
case ISD::EXTRACT_VECTOR_ELT: {
|
|
if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
|
|
Results.push_back(Res);
|
|
return;
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
switch (IID) {
|
|
case Intrinsic::amdgcn_cvt_pkrtz: {
|
|
SDValue Src0 = N->getOperand(1);
|
|
SDValue Src1 = N->getOperand(2);
|
|
SDLoc SL(N);
|
|
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
|
|
Src0, Src1);
|
|
|
|
Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
|
|
return;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
case ISD::SELECT: {
|
|
SDLoc SL(N);
|
|
EVT VT = N->getValueType(0);
|
|
EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
|
|
SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
|
|
SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
|
|
|
|
EVT SelectVT = NewVT;
|
|
if (NewVT.bitsLT(MVT::i32)) {
|
|
LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
|
|
RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
|
|
SelectVT = MVT::i32;
|
|
}
|
|
|
|
SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
|
|
N->getOperand(0), LHS, RHS);
|
|
|
|
if (NewVT != SelectVT)
|
|
NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
|
|
Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
|
|
return;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// \brief Helper function for LowerBRCOND
|
|
static SDNode *findUser(SDValue Value, unsigned Opcode) {
|
|
|
|
SDNode *Parent = Value.getNode();
|
|
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
|
|
I != E; ++I) {
|
|
|
|
if (I.getUse().get() != Value)
|
|
continue;
|
|
|
|
if (I->getOpcode() == Opcode)
|
|
return *I;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
|
|
if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
|
|
switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
|
|
case Intrinsic::amdgcn_if:
|
|
return AMDGPUISD::IF;
|
|
case Intrinsic::amdgcn_else:
|
|
return AMDGPUISD::ELSE;
|
|
case Intrinsic::amdgcn_loop:
|
|
return AMDGPUISD::LOOP;
|
|
case Intrinsic::amdgcn_end_cf:
|
|
llvm_unreachable("should not occur");
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// break, if_break, else_break are all only used as inputs to loop, not
|
|
// directly as branch conditions.
|
|
return 0;
|
|
}
|
|
|
|
void SITargetLowering::createDebuggerPrologueStackObjects(
|
|
MachineFunction &MF) const {
|
|
// Create stack objects that are used for emitting debugger prologue.
|
|
//
|
|
// Debugger prologue writes work group IDs and work item IDs to scratch memory
|
|
// at fixed location in the following format:
|
|
// offset 0: work group ID x
|
|
// offset 4: work group ID y
|
|
// offset 8: work group ID z
|
|
// offset 16: work item ID x
|
|
// offset 20: work item ID y
|
|
// offset 24: work item ID z
|
|
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
int ObjectIdx = 0;
|
|
|
|
// For each dimension:
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
// Create fixed stack object for work group ID.
|
|
ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true);
|
|
Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
|
|
// Create fixed stack object for work item ID.
|
|
ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true);
|
|
Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
|
|
}
|
|
}
|
|
|
|
bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
|
|
const Triple &TT = getTargetMachine().getTargetTriple();
|
|
return GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS &&
|
|
AMDGPU::shouldEmitConstantsToTextSection(TT);
|
|
}
|
|
|
|
bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
|
|
return (GV->getType()->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
|
|
GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS) &&
|
|
!shouldEmitFixup(GV) &&
|
|
!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
|
|
}
|
|
|
|
bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
|
|
return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
|
|
}
|
|
|
|
/// This transforms the control flow intrinsics to get the branch destination as
|
|
/// last parameter, also switches branch target with BR if the need arise
|
|
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(BRCOND);
|
|
|
|
SDNode *Intr = BRCOND.getOperand(1).getNode();
|
|
SDValue Target = BRCOND.getOperand(2);
|
|
SDNode *BR = nullptr;
|
|
SDNode *SetCC = nullptr;
|
|
|
|
if (Intr->getOpcode() == ISD::SETCC) {
|
|
// As long as we negate the condition everything is fine
|
|
SetCC = Intr;
|
|
Intr = SetCC->getOperand(0).getNode();
|
|
|
|
} else {
|
|
// Get the target from BR if we don't negate the condition
|
|
BR = findUser(BRCOND, ISD::BR);
|
|
Target = BR->getOperand(1);
|
|
}
|
|
|
|
// FIXME: This changes the types of the intrinsics instead of introducing new
|
|
// nodes with the correct types.
|
|
// e.g. llvm.amdgcn.loop
|
|
|
|
// eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
|
|
// => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
|
|
|
|
unsigned CFNode = isCFIntrinsic(Intr);
|
|
if (CFNode == 0) {
|
|
// This is a uniform branch so we don't need to legalize.
|
|
return BRCOND;
|
|
}
|
|
|
|
bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
|
|
Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
|
|
|
|
assert(!SetCC ||
|
|
(SetCC->getConstantOperandVal(1) == 1 &&
|
|
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
|
|
ISD::SETNE));
|
|
|
|
// operands of the new intrinsic call
|
|
SmallVector<SDValue, 4> Ops;
|
|
if (HaveChain)
|
|
Ops.push_back(BRCOND.getOperand(0));
|
|
|
|
Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
|
|
Ops.push_back(Target);
|
|
|
|
ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
|
|
|
|
// build the new intrinsic call
|
|
SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
|
|
|
|
if (!HaveChain) {
|
|
SDValue Ops[] = {
|
|
SDValue(Result, 0),
|
|
BRCOND.getOperand(0)
|
|
};
|
|
|
|
Result = DAG.getMergeValues(Ops, DL).getNode();
|
|
}
|
|
|
|
if (BR) {
|
|
// Give the branch instruction our target
|
|
SDValue Ops[] = {
|
|
BR->getOperand(0),
|
|
BRCOND.getOperand(2)
|
|
};
|
|
SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
|
|
DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
|
|
BR = NewBR.getNode();
|
|
}
|
|
|
|
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
|
|
|
|
// Copy the intrinsic results to registers
|
|
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
|
|
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
|
|
if (!CopyToReg)
|
|
continue;
|
|
|
|
Chain = DAG.getCopyToReg(
|
|
Chain, DL,
|
|
CopyToReg->getOperand(1),
|
|
SDValue(Result, i - 1),
|
|
SDValue());
|
|
|
|
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
|
|
}
|
|
|
|
// Remove the old intrinsic from the chain
|
|
DAG.ReplaceAllUsesOfValueWith(
|
|
SDValue(Intr, Intr->getNumValues() - 1),
|
|
Intr->getOperand(0));
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
|
|
SDValue Op,
|
|
const SDLoc &DL,
|
|
EVT VT) const {
|
|
return Op.getValueType().bitsLE(VT) ?
|
|
DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
|
|
DAG.getNode(ISD::FTRUNC, DL, VT, Op);
|
|
}
|
|
|
|
SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Op.getValueType() == MVT::f16 &&
|
|
"Do not know how to custom lower FP_ROUND for non-f16 type");
|
|
|
|
SDValue Src = Op.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
if (SrcVT != MVT::f64)
|
|
return Op;
|
|
|
|
SDLoc DL(Op);
|
|
|
|
SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);;
|
|
}
|
|
|
|
SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SDValue Chain = Op.getOperand(0);
|
|
|
|
unsigned TrapID = Op.getOpcode() == ISD::DEBUGTRAP ?
|
|
SISubtarget::TrapIDLLVMDebugTrap : SISubtarget::TrapIDLLVMTrap;
|
|
|
|
if (Subtarget->getTrapHandlerAbi() == SISubtarget::TrapHandlerAbiHsa &&
|
|
Subtarget->isTrapHandlerEnabled()) {
|
|
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
unsigned UserSGPR = Info->getQueuePtrUserSGPR();
|
|
assert(UserSGPR != AMDGPU::NoRegister);
|
|
|
|
SDValue QueuePtr = CreateLiveInRegister(
|
|
DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
|
|
|
|
SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
|
|
|
|
SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
|
|
QueuePtr, SDValue());
|
|
|
|
SDValue Ops[] = {
|
|
ToReg,
|
|
DAG.getTargetConstant(TrapID, SL, MVT::i16),
|
|
SGPR01,
|
|
ToReg.getValue(1)
|
|
};
|
|
|
|
return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
|
|
}
|
|
|
|
switch (TrapID) {
|
|
case SISubtarget::TrapIDLLVMTrap:
|
|
return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
|
|
case SISubtarget::TrapIDLLVMDebugTrap: {
|
|
DiagnosticInfoUnsupported NoTrap(*MF.getFunction(),
|
|
"debugtrap handler not supported",
|
|
Op.getDebugLoc(),
|
|
DS_Warning);
|
|
LLVMContext &Ctx = MF.getFunction()->getContext();
|
|
Ctx.diagnose(NoTrap);
|
|
return Chain;
|
|
}
|
|
default:
|
|
llvm_unreachable("unsupported trap handler type!");
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
|
|
SelectionDAG &DAG) const {
|
|
// FIXME: Use inline constants (src_{shared, private}_base) instead.
|
|
if (Subtarget->hasApertureRegs()) {
|
|
unsigned Offset = AS == AMDGPUASI.LOCAL_ADDRESS ?
|
|
AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
|
|
AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
|
|
unsigned WidthM1 = AS == AMDGPUASI.LOCAL_ADDRESS ?
|
|
AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
|
|
AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
|
|
unsigned Encoding =
|
|
AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
|
|
Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
|
|
WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
|
|
|
|
SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
|
|
SDValue ApertureReg = SDValue(
|
|
DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
|
|
SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
|
|
return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
|
|
}
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
unsigned UserSGPR = Info->getQueuePtrUserSGPR();
|
|
assert(UserSGPR != AMDGPU::NoRegister);
|
|
|
|
SDValue QueuePtr = CreateLiveInRegister(
|
|
DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
|
|
|
|
// Offset into amd_queue_t for group_segment_aperture_base_hi /
|
|
// private_segment_aperture_base_hi.
|
|
uint32_t StructOffset = (AS == AMDGPUASI.LOCAL_ADDRESS) ? 0x40 : 0x44;
|
|
|
|
SDValue Ptr = DAG.getNode(ISD::ADD, DL, MVT::i64, QueuePtr,
|
|
DAG.getConstant(StructOffset, DL, MVT::i64));
|
|
|
|
// TODO: Use custom target PseudoSourceValue.
|
|
// TODO: We should use the value from the IR intrinsic call, but it might not
|
|
// be available and how do we get it?
|
|
Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
|
|
AMDGPUASI.CONSTANT_ADDRESS));
|
|
|
|
MachinePointerInfo PtrInfo(V, StructOffset);
|
|
return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
|
|
MinAlign(64, StructOffset),
|
|
MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant);
|
|
}
|
|
|
|
SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
|
|
|
|
SDValue Src = ASC->getOperand(0);
|
|
SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
|
|
|
|
const AMDGPUTargetMachine &TM =
|
|
static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
|
|
|
|
// flat -> local/private
|
|
if (ASC->getSrcAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
|
|
unsigned DestAS = ASC->getDestAddressSpace();
|
|
|
|
if (DestAS == AMDGPUASI.LOCAL_ADDRESS ||
|
|
DestAS == AMDGPUASI.PRIVATE_ADDRESS) {
|
|
unsigned NullVal = TM.getNullPointerValue(DestAS);
|
|
SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
|
|
SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
|
|
SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
|
|
|
|
return DAG.getNode(ISD::SELECT, SL, MVT::i32,
|
|
NonNull, Ptr, SegmentNullPtr);
|
|
}
|
|
}
|
|
|
|
// local/private -> flat
|
|
if (ASC->getDestAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
|
|
unsigned SrcAS = ASC->getSrcAddressSpace();
|
|
|
|
if (SrcAS == AMDGPUASI.LOCAL_ADDRESS ||
|
|
SrcAS == AMDGPUASI.PRIVATE_ADDRESS) {
|
|
unsigned NullVal = TM.getNullPointerValue(SrcAS);
|
|
SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
|
|
|
|
SDValue NonNull
|
|
= DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
|
|
|
|
SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
|
|
SDValue CvtPtr
|
|
= DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
|
|
|
|
return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
|
|
DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
|
|
FlatNullPtr);
|
|
}
|
|
}
|
|
|
|
// global <-> flat are no-ops and never emitted.
|
|
|
|
const MachineFunction &MF = DAG.getMachineFunction();
|
|
DiagnosticInfoUnsupported InvalidAddrSpaceCast(
|
|
*MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
|
|
DAG.getContext()->diagnose(InvalidAddrSpaceCast);
|
|
|
|
return DAG.getUNDEF(ASC->getValueType(0));
|
|
}
|
|
|
|
SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Idx = Op.getOperand(2);
|
|
if (isa<ConstantSDNode>(Idx))
|
|
return SDValue();
|
|
|
|
// Avoid stack access for dynamic indexing.
|
|
SDLoc SL(Op);
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Op.getOperand(1));
|
|
|
|
// v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
|
|
SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Val);
|
|
|
|
// Convert vector index to bit-index.
|
|
SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx,
|
|
DAG.getConstant(16, SL, MVT::i32));
|
|
|
|
SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
|
|
|
|
SDValue BFM = DAG.getNode(ISD::SHL, SL, MVT::i32,
|
|
DAG.getConstant(0xffff, SL, MVT::i32),
|
|
ScaledIdx);
|
|
|
|
SDValue LHS = DAG.getNode(ISD::AND, SL, MVT::i32, BFM, ExtVal);
|
|
SDValue RHS = DAG.getNode(ISD::AND, SL, MVT::i32,
|
|
DAG.getNOT(SL, BFM, MVT::i32), BCVec);
|
|
|
|
SDValue BFI = DAG.getNode(ISD::OR, SL, MVT::i32, LHS, RHS);
|
|
return DAG.getNode(ISD::BITCAST, SL, Op.getValueType(), BFI);
|
|
}
|
|
|
|
SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
|
|
EVT ResultVT = Op.getValueType();
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Idx = Op.getOperand(1);
|
|
|
|
if (const ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
|
|
SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
|
|
|
|
if (CIdx->getZExtValue() == 1) {
|
|
Result = DAG.getNode(ISD::SRL, SL, MVT::i32, Result,
|
|
DAG.getConstant(16, SL, MVT::i32));
|
|
} else {
|
|
assert(CIdx->getZExtValue() == 0);
|
|
}
|
|
|
|
if (ResultVT.bitsLT(MVT::i32))
|
|
Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);
|
|
return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
|
|
}
|
|
|
|
SDValue Sixteen = DAG.getConstant(16, SL, MVT::i32);
|
|
|
|
// Convert vector index to bit-index.
|
|
SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, Sixteen);
|
|
|
|
SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
|
|
SDValue Elt = DAG.getNode(ISD::SRL, SL, MVT::i32, BC, ScaledIdx);
|
|
|
|
SDValue Result = Elt;
|
|
if (ResultVT.bitsLT(MVT::i32))
|
|
Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);
|
|
|
|
return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
|
|
}
|
|
|
|
bool
|
|
SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// We can fold offsets for anything that doesn't require a GOT relocation.
|
|
return (GA->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
|
|
GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS) &&
|
|
!shouldEmitGOTReloc(GA->getGlobal());
|
|
}
|
|
|
|
static SDValue
|
|
buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
|
|
const SDLoc &DL, unsigned Offset, EVT PtrVT,
|
|
unsigned GAFlags = SIInstrInfo::MO_NONE) {
|
|
// In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
|
|
// lowered to the following code sequence:
|
|
//
|
|
// For constant address space:
|
|
// s_getpc_b64 s[0:1]
|
|
// s_add_u32 s0, s0, $symbol
|
|
// s_addc_u32 s1, s1, 0
|
|
//
|
|
// s_getpc_b64 returns the address of the s_add_u32 instruction and then
|
|
// a fixup or relocation is emitted to replace $symbol with a literal
|
|
// constant, which is a pc-relative offset from the encoding of the $symbol
|
|
// operand to the global variable.
|
|
//
|
|
// For global address space:
|
|
// s_getpc_b64 s[0:1]
|
|
// s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
|
|
// s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
|
|
//
|
|
// s_getpc_b64 returns the address of the s_add_u32 instruction and then
|
|
// fixups or relocations are emitted to replace $symbol@*@lo and
|
|
// $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
|
|
// which is a 64-bit pc-relative offset from the encoding of the $symbol
|
|
// operand to the global variable.
|
|
//
|
|
// What we want here is an offset from the value returned by s_getpc
|
|
// (which is the address of the s_add_u32 instruction) to the global
|
|
// variable, but since the encoding of $symbol starts 4 bytes after the start
|
|
// of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
|
|
// small. This requires us to add 4 to the global variable offset in order to
|
|
// compute the correct address.
|
|
SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
|
|
GAFlags);
|
|
SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
|
|
GAFlags == SIInstrInfo::MO_NONE ?
|
|
GAFlags : GAFlags + 1);
|
|
return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
|
|
SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
|
|
|
|
if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS &&
|
|
GSD->getAddressSpace() != AMDGPUASI.GLOBAL_ADDRESS)
|
|
return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
|
|
|
|
SDLoc DL(GSD);
|
|
const GlobalValue *GV = GSD->getGlobal();
|
|
EVT PtrVT = Op.getValueType();
|
|
|
|
if (shouldEmitFixup(GV))
|
|
return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
|
|
else if (shouldEmitPCReloc(GV))
|
|
return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
|
|
SIInstrInfo::MO_REL32);
|
|
|
|
SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
|
|
SIInstrInfo::MO_GOTPCREL32);
|
|
|
|
Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
|
|
PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
|
|
const DataLayout &DataLayout = DAG.getDataLayout();
|
|
unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
|
|
// FIXME: Use a PseudoSourceValue once those can be assigned an address space.
|
|
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
|
|
|
|
return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
|
|
MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant);
|
|
}
|
|
|
|
SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
|
|
const SDLoc &DL, SDValue V) const {
|
|
// We can't use S_MOV_B32 directly, because there is no way to specify m0 as
|
|
// the destination register.
|
|
//
|
|
// We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
|
|
// so we will end up with redundant moves to m0.
|
|
//
|
|
// We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
|
|
|
|
// A Null SDValue creates a glue result.
|
|
SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
|
|
V, Chain);
|
|
return SDValue(M0, 0);
|
|
}
|
|
|
|
SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
|
|
SDValue Op,
|
|
MVT VT,
|
|
unsigned Offset) const {
|
|
SDLoc SL(Op);
|
|
SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
|
|
DAG.getEntryNode(), Offset, false);
|
|
// The local size values will have the hi 16-bits as zero.
|
|
return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
|
|
DAG.getValueType(VT));
|
|
}
|
|
|
|
static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
|
|
EVT VT) {
|
|
DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
|
|
"non-hsa intrinsic with hsa target",
|
|
DL.getDebugLoc());
|
|
DAG.getContext()->diagnose(BadIntrin);
|
|
return DAG.getUNDEF(VT);
|
|
}
|
|
|
|
static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
|
|
EVT VT) {
|
|
DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
|
|
"intrinsic not supported on subtarget",
|
|
DL.getDebugLoc());
|
|
DAG.getContext()->diagnose(BadIntrin);
|
|
return DAG.getUNDEF(VT);
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
auto MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
|
|
// TODO: Should this propagate fast-math-flags?
|
|
|
|
switch (IntrinsicID) {
|
|
case Intrinsic::amdgcn_implicit_buffer_ptr: {
|
|
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
|
|
return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
|
|
}
|
|
case Intrinsic::amdgcn_dispatch_ptr:
|
|
case Intrinsic::amdgcn_queue_ptr: {
|
|
if (!Subtarget->isAmdCodeObjectV2(MF)) {
|
|
DiagnosticInfoUnsupported BadIntrin(
|
|
*MF.getFunction(), "unsupported hsa intrinsic without hsa target",
|
|
DL.getDebugLoc());
|
|
DAG.getContext()->diagnose(BadIntrin);
|
|
return DAG.getUNDEF(VT);
|
|
}
|
|
|
|
auto Reg = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
|
|
SIRegisterInfo::DISPATCH_PTR : SIRegisterInfo::QUEUE_PTR;
|
|
return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
|
|
TRI->getPreloadedValue(MF, Reg), VT);
|
|
}
|
|
case Intrinsic::amdgcn_implicitarg_ptr: {
|
|
unsigned offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
|
|
return lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), offset);
|
|
}
|
|
case Intrinsic::amdgcn_kernarg_segment_ptr: {
|
|
unsigned Reg
|
|
= TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
|
|
return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
|
|
}
|
|
case Intrinsic::amdgcn_dispatch_id: {
|
|
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_ID);
|
|
return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
|
|
}
|
|
case Intrinsic::amdgcn_rcp:
|
|
return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
|
|
case Intrinsic::amdgcn_rsq:
|
|
return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
|
|
case Intrinsic::amdgcn_rsq_legacy:
|
|
if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
|
|
return emitRemovedIntrinsicError(DAG, DL, VT);
|
|
|
|
return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
|
|
case Intrinsic::amdgcn_rcp_legacy:
|
|
if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
|
|
return emitRemovedIntrinsicError(DAG, DL, VT);
|
|
return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
|
|
case Intrinsic::amdgcn_rsq_clamp: {
|
|
if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
|
|
return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
|
|
|
|
Type *Type = VT.getTypeForEVT(*DAG.getContext());
|
|
APFloat Max = APFloat::getLargest(Type->getFltSemantics());
|
|
APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
|
|
|
|
SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
|
|
SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
|
|
DAG.getConstantFP(Max, DL, VT));
|
|
return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
|
|
DAG.getConstantFP(Min, DL, VT));
|
|
}
|
|
case Intrinsic::r600_read_ngroups_x:
|
|
if (Subtarget->isAmdHsaOS())
|
|
return emitNonHSAIntrinsicError(DAG, DL, VT);
|
|
|
|
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
|
|
SI::KernelInputOffsets::NGROUPS_X, false);
|
|
case Intrinsic::r600_read_ngroups_y:
|
|
if (Subtarget->isAmdHsaOS())
|
|
return emitNonHSAIntrinsicError(DAG, DL, VT);
|
|
|
|
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
|
|
SI::KernelInputOffsets::NGROUPS_Y, false);
|
|
case Intrinsic::r600_read_ngroups_z:
|
|
if (Subtarget->isAmdHsaOS())
|
|
return emitNonHSAIntrinsicError(DAG, DL, VT);
|
|
|
|
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
|
|
SI::KernelInputOffsets::NGROUPS_Z, false);
|
|
case Intrinsic::r600_read_global_size_x:
|
|
if (Subtarget->isAmdHsaOS())
|
|
return emitNonHSAIntrinsicError(DAG, DL, VT);
|
|
|
|
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
|
|
SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
|
|
case Intrinsic::r600_read_global_size_y:
|
|
if (Subtarget->isAmdHsaOS())
|
|
return emitNonHSAIntrinsicError(DAG, DL, VT);
|
|
|
|
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
|
|
SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
|
|
case Intrinsic::r600_read_global_size_z:
|
|
if (Subtarget->isAmdHsaOS())
|
|
return emitNonHSAIntrinsicError(DAG, DL, VT);
|
|
|
|
return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
|
|
SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
|
|
case Intrinsic::r600_read_local_size_x:
|
|
if (Subtarget->isAmdHsaOS())
|
|
return emitNonHSAIntrinsicError(DAG, DL, VT);
|
|
|
|
return lowerImplicitZextParam(DAG, Op, MVT::i16,
|
|
SI::KernelInputOffsets::LOCAL_SIZE_X);
|
|
case Intrinsic::r600_read_local_size_y:
|
|
if (Subtarget->isAmdHsaOS())
|
|
return emitNonHSAIntrinsicError(DAG, DL, VT);
|
|
|
|
return lowerImplicitZextParam(DAG, Op, MVT::i16,
|
|
SI::KernelInputOffsets::LOCAL_SIZE_Y);
|
|
case Intrinsic::r600_read_local_size_z:
|
|
if (Subtarget->isAmdHsaOS())
|
|
return emitNonHSAIntrinsicError(DAG, DL, VT);
|
|
|
|
return lowerImplicitZextParam(DAG, Op, MVT::i16,
|
|
SI::KernelInputOffsets::LOCAL_SIZE_Z);
|
|
case Intrinsic::amdgcn_workgroup_id_x:
|
|
case Intrinsic::r600_read_tgid_x:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32_XM0RegClass,
|
|
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
|
|
case Intrinsic::amdgcn_workgroup_id_y:
|
|
case Intrinsic::r600_read_tgid_y:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32_XM0RegClass,
|
|
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
|
|
case Intrinsic::amdgcn_workgroup_id_z:
|
|
case Intrinsic::r600_read_tgid_z:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32_XM0RegClass,
|
|
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
|
|
case Intrinsic::amdgcn_workitem_id_x:
|
|
case Intrinsic::r600_read_tidig_x:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
|
|
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
|
|
case Intrinsic::amdgcn_workitem_id_y:
|
|
case Intrinsic::r600_read_tidig_y:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
|
|
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
|
|
case Intrinsic::amdgcn_workitem_id_z:
|
|
case Intrinsic::r600_read_tidig_z:
|
|
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
|
|
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
|
|
case AMDGPUIntrinsic::SI_load_const: {
|
|
SDValue Ops[] = {
|
|
Op.getOperand(1),
|
|
Op.getOperand(2)
|
|
};
|
|
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo(),
|
|
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant,
|
|
VT.getStoreSize(), 4);
|
|
return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
|
|
Op->getVTList(), Ops, VT, MMO);
|
|
}
|
|
case Intrinsic::amdgcn_fdiv_fast:
|
|
return lowerFDIV_FAST(Op, DAG);
|
|
case Intrinsic::amdgcn_interp_mov: {
|
|
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
|
|
SDValue Glue = M0.getValue(1);
|
|
return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
|
|
Op.getOperand(2), Op.getOperand(3), Glue);
|
|
}
|
|
case Intrinsic::amdgcn_interp_p1: {
|
|
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
|
|
SDValue Glue = M0.getValue(1);
|
|
return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
|
|
Op.getOperand(2), Op.getOperand(3), Glue);
|
|
}
|
|
case Intrinsic::amdgcn_interp_p2: {
|
|
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
|
|
SDValue Glue = SDValue(M0.getNode(), 1);
|
|
return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
|
|
Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
|
|
Glue);
|
|
}
|
|
case Intrinsic::amdgcn_sin:
|
|
return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
|
|
|
|
case Intrinsic::amdgcn_cos:
|
|
return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
|
|
|
|
case Intrinsic::amdgcn_log_clamp: {
|
|
if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
|
|
return SDValue();
|
|
|
|
DiagnosticInfoUnsupported BadIntrin(
|
|
*MF.getFunction(), "intrinsic not supported on subtarget",
|
|
DL.getDebugLoc());
|
|
DAG.getContext()->diagnose(BadIntrin);
|
|
return DAG.getUNDEF(VT);
|
|
}
|
|
case Intrinsic::amdgcn_ldexp:
|
|
return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::amdgcn_fract:
|
|
return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
|
|
|
|
case Intrinsic::amdgcn_class:
|
|
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
case Intrinsic::amdgcn_div_fmas:
|
|
return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
|
|
Op.getOperand(4));
|
|
|
|
case Intrinsic::amdgcn_div_fixup:
|
|
return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
|
|
case Intrinsic::amdgcn_trig_preop:
|
|
return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
case Intrinsic::amdgcn_div_scale: {
|
|
// 3rd parameter required to be a constant.
|
|
const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
|
|
if (!Param)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// Translate to the operands expected by the machine instruction. The
|
|
// first parameter must be the same as the first instruction.
|
|
SDValue Numerator = Op.getOperand(1);
|
|
SDValue Denominator = Op.getOperand(2);
|
|
|
|
// Note this order is opposite of the machine instruction's operations,
|
|
// which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
|
|
// intrinsic has the numerator as the first operand to match a normal
|
|
// division operation.
|
|
|
|
SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
|
|
|
|
return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
|
|
Denominator, Numerator);
|
|
}
|
|
case Intrinsic::amdgcn_icmp: {
|
|
const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
|
|
if (!CD)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
int CondCode = CD->getSExtValue();
|
|
if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
|
|
CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
|
|
ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
|
|
return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
|
|
Op.getOperand(2), DAG.getCondCode(CCOpcode));
|
|
}
|
|
case Intrinsic::amdgcn_fcmp: {
|
|
const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
|
|
if (!CD)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
int CondCode = CD->getSExtValue();
|
|
if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
|
|
CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
|
|
ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
|
|
return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
|
|
Op.getOperand(2), DAG.getCondCode(CCOpcode));
|
|
}
|
|
case Intrinsic::amdgcn_fmed3:
|
|
return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
case Intrinsic::amdgcn_fmul_legacy:
|
|
return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
case Intrinsic::amdgcn_sffbh:
|
|
return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
|
|
case Intrinsic::amdgcn_sbfe:
|
|
return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
case Intrinsic::amdgcn_ubfe:
|
|
return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
case Intrinsic::amdgcn_cvt_pkrtz: {
|
|
// FIXME: Stop adding cast if v2f16 legal.
|
|
EVT VT = Op.getValueType();
|
|
SDValue Node = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, DL, MVT::i32,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Node);
|
|
}
|
|
default:
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
SDLoc DL(Op);
|
|
switch (IntrID) {
|
|
case Intrinsic::amdgcn_atomic_inc:
|
|
case Intrinsic::amdgcn_atomic_dec: {
|
|
MemSDNode *M = cast<MemSDNode>(Op);
|
|
unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ?
|
|
AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC;
|
|
SDValue Ops[] = {
|
|
M->getOperand(0), // Chain
|
|
M->getOperand(2), // Ptr
|
|
M->getOperand(3) // Value
|
|
};
|
|
|
|
return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
|
|
M->getMemoryVT(), M->getMemOperand());
|
|
}
|
|
case Intrinsic::amdgcn_buffer_load:
|
|
case Intrinsic::amdgcn_buffer_load_format: {
|
|
SDValue Ops[] = {
|
|
Op.getOperand(0), // Chain
|
|
Op.getOperand(2), // rsrc
|
|
Op.getOperand(3), // vindex
|
|
Op.getOperand(4), // offset
|
|
Op.getOperand(5), // glc
|
|
Op.getOperand(6) // slc
|
|
};
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
|
|
AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
|
|
EVT VT = Op.getValueType();
|
|
EVT IntVT = VT.changeTypeToInteger();
|
|
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo(MFI->getBufferPSV()),
|
|
MachineMemOperand::MOLoad,
|
|
VT.getStoreSize(), VT.getStoreSize());
|
|
|
|
return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, MMO);
|
|
}
|
|
// Basic sample.
|
|
case Intrinsic::amdgcn_image_sample:
|
|
case Intrinsic::amdgcn_image_sample_cl:
|
|
case Intrinsic::amdgcn_image_sample_d:
|
|
case Intrinsic::amdgcn_image_sample_d_cl:
|
|
case Intrinsic::amdgcn_image_sample_l:
|
|
case Intrinsic::amdgcn_image_sample_b:
|
|
case Intrinsic::amdgcn_image_sample_b_cl:
|
|
case Intrinsic::amdgcn_image_sample_lz:
|
|
case Intrinsic::amdgcn_image_sample_cd:
|
|
case Intrinsic::amdgcn_image_sample_cd_cl:
|
|
|
|
// Sample with comparison.
|
|
case Intrinsic::amdgcn_image_sample_c:
|
|
case Intrinsic::amdgcn_image_sample_c_cl:
|
|
case Intrinsic::amdgcn_image_sample_c_d:
|
|
case Intrinsic::amdgcn_image_sample_c_d_cl:
|
|
case Intrinsic::amdgcn_image_sample_c_l:
|
|
case Intrinsic::amdgcn_image_sample_c_b:
|
|
case Intrinsic::amdgcn_image_sample_c_b_cl:
|
|
case Intrinsic::amdgcn_image_sample_c_lz:
|
|
case Intrinsic::amdgcn_image_sample_c_cd:
|
|
case Intrinsic::amdgcn_image_sample_c_cd_cl:
|
|
|
|
// Sample with offsets.
|
|
case Intrinsic::amdgcn_image_sample_o:
|
|
case Intrinsic::amdgcn_image_sample_cl_o:
|
|
case Intrinsic::amdgcn_image_sample_d_o:
|
|
case Intrinsic::amdgcn_image_sample_d_cl_o:
|
|
case Intrinsic::amdgcn_image_sample_l_o:
|
|
case Intrinsic::amdgcn_image_sample_b_o:
|
|
case Intrinsic::amdgcn_image_sample_b_cl_o:
|
|
case Intrinsic::amdgcn_image_sample_lz_o:
|
|
case Intrinsic::amdgcn_image_sample_cd_o:
|
|
case Intrinsic::amdgcn_image_sample_cd_cl_o:
|
|
|
|
// Sample with comparison and offsets.
|
|
case Intrinsic::amdgcn_image_sample_c_o:
|
|
case Intrinsic::amdgcn_image_sample_c_cl_o:
|
|
case Intrinsic::amdgcn_image_sample_c_d_o:
|
|
case Intrinsic::amdgcn_image_sample_c_d_cl_o:
|
|
case Intrinsic::amdgcn_image_sample_c_l_o:
|
|
case Intrinsic::amdgcn_image_sample_c_b_o:
|
|
case Intrinsic::amdgcn_image_sample_c_b_cl_o:
|
|
case Intrinsic::amdgcn_image_sample_c_lz_o:
|
|
case Intrinsic::amdgcn_image_sample_c_cd_o:
|
|
case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
|
|
|
|
case Intrinsic::amdgcn_image_getlod: {
|
|
// Replace dmask with everything disabled with undef.
|
|
const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(5));
|
|
if (!DMask || DMask->isNullValue()) {
|
|
SDValue Undef = DAG.getUNDEF(Op.getValueType());
|
|
return DAG.getMergeValues({ Undef, Op.getOperand(0) }, SDLoc(Op));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
default:
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op.getOperand(0);
|
|
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
|
|
switch (IntrinsicID) {
|
|
case Intrinsic::amdgcn_exp: {
|
|
const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
|
|
const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
|
|
const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
|
|
const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
|
|
|
|
const SDValue Ops[] = {
|
|
Chain,
|
|
DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
|
|
DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
|
|
Op.getOperand(4), // src0
|
|
Op.getOperand(5), // src1
|
|
Op.getOperand(6), // src2
|
|
Op.getOperand(7), // src3
|
|
DAG.getTargetConstant(0, DL, MVT::i1), // compr
|
|
DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
|
|
};
|
|
|
|
unsigned Opc = Done->isNullValue() ?
|
|
AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
|
|
return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
|
|
}
|
|
case Intrinsic::amdgcn_exp_compr: {
|
|
const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
|
|
const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
|
|
SDValue Src0 = Op.getOperand(4);
|
|
SDValue Src1 = Op.getOperand(5);
|
|
const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
|
|
const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
|
|
|
|
SDValue Undef = DAG.getUNDEF(MVT::f32);
|
|
const SDValue Ops[] = {
|
|
Chain,
|
|
DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
|
|
DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
|
|
Undef, // src2
|
|
Undef, // src3
|
|
DAG.getTargetConstant(1, DL, MVT::i1), // compr
|
|
DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
|
|
};
|
|
|
|
unsigned Opc = Done->isNullValue() ?
|
|
AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
|
|
return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
|
|
}
|
|
case Intrinsic::amdgcn_s_sendmsg:
|
|
case Intrinsic::amdgcn_s_sendmsghalt: {
|
|
unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ?
|
|
AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT;
|
|
Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
|
|
SDValue Glue = Chain.getValue(1);
|
|
return DAG.getNode(NodeOp, DL, MVT::Other, Chain,
|
|
Op.getOperand(2), Glue);
|
|
}
|
|
case Intrinsic::amdgcn_init_exec: {
|
|
return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain,
|
|
Op.getOperand(2));
|
|
}
|
|
case Intrinsic::amdgcn_init_exec_from_input: {
|
|
return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain,
|
|
Op.getOperand(2), Op.getOperand(3));
|
|
}
|
|
case AMDGPUIntrinsic::SI_tbuffer_store: {
|
|
SDValue Ops[] = {
|
|
Chain,
|
|
Op.getOperand(2),
|
|
Op.getOperand(3),
|
|
Op.getOperand(4),
|
|
Op.getOperand(5),
|
|
Op.getOperand(6),
|
|
Op.getOperand(7),
|
|
Op.getOperand(8),
|
|
Op.getOperand(9),
|
|
Op.getOperand(10),
|
|
Op.getOperand(11),
|
|
Op.getOperand(12),
|
|
Op.getOperand(13),
|
|
Op.getOperand(14)
|
|
};
|
|
|
|
EVT VT = Op.getOperand(3).getValueType();
|
|
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo(),
|
|
MachineMemOperand::MOStore,
|
|
VT.getStoreSize(), 4);
|
|
return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
|
|
Op->getVTList(), Ops, VT, MMO);
|
|
}
|
|
case AMDGPUIntrinsic::AMDGPU_kill: {
|
|
SDValue Src = Op.getOperand(2);
|
|
if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Src)) {
|
|
if (!K->isNegative())
|
|
return Chain;
|
|
|
|
SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32);
|
|
return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne);
|
|
}
|
|
|
|
SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src);
|
|
return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast);
|
|
}
|
|
case Intrinsic::amdgcn_s_barrier: {
|
|
if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
|
|
const MachineFunction &MF = DAG.getMachineFunction();
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
unsigned WGSize = ST.getFlatWorkGroupSizes(*MF.getFunction()).second;
|
|
if (WGSize <= ST.getWavefrontSize())
|
|
return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
|
|
Op.getOperand(0)), 0);
|
|
}
|
|
return SDValue();
|
|
};
|
|
default:
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
LoadSDNode *Load = cast<LoadSDNode>(Op);
|
|
ISD::LoadExtType ExtType = Load->getExtensionType();
|
|
EVT MemVT = Load->getMemoryVT();
|
|
|
|
if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
|
|
// FIXME: Copied from PPC
|
|
// First, load into 32 bits, then truncate to 1 bit.
|
|
|
|
SDValue Chain = Load->getChain();
|
|
SDValue BasePtr = Load->getBasePtr();
|
|
MachineMemOperand *MMO = Load->getMemOperand();
|
|
|
|
EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
|
|
|
|
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
|
|
BasePtr, RealMemVT, MMO);
|
|
|
|
SDValue Ops[] = {
|
|
DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
|
|
NewLD.getValue(1)
|
|
};
|
|
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
if (!MemVT.isVector())
|
|
return SDValue();
|
|
|
|
assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
|
|
"Custom lowering for non-i32 vectors hasn't been implemented.");
|
|
|
|
unsigned AS = Load->getAddressSpace();
|
|
if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
|
|
AS, Load->getAlignment())) {
|
|
SDValue Ops[2];
|
|
std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
// If there is a possibilty that flat instruction access scratch memory
|
|
// then we need to use the same legalization rules we use for private.
|
|
if (AS == AMDGPUASI.FLAT_ADDRESS)
|
|
AS = MFI->hasFlatScratchInit() ?
|
|
AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;
|
|
|
|
unsigned NumElements = MemVT.getVectorNumElements();
|
|
if (AS == AMDGPUASI.CONSTANT_ADDRESS) {
|
|
if (isMemOpUniform(Load))
|
|
return SDValue();
|
|
// Non-uniform loads will be selected to MUBUF instructions, so they
|
|
// have the same legalization requirements as global and private
|
|
// loads.
|
|
//
|
|
}
|
|
if (AS == AMDGPUASI.CONSTANT_ADDRESS || AS == AMDGPUASI.GLOBAL_ADDRESS) {
|
|
if (Subtarget->getScalarizeGlobalBehavior() && isMemOpUniform(Load) &&
|
|
isMemOpHasNoClobberedMemOperand(Load))
|
|
return SDValue();
|
|
// Non-uniform loads will be selected to MUBUF instructions, so they
|
|
// have the same legalization requirements as global and private
|
|
// loads.
|
|
//
|
|
}
|
|
if (AS == AMDGPUASI.CONSTANT_ADDRESS || AS == AMDGPUASI.GLOBAL_ADDRESS ||
|
|
AS == AMDGPUASI.FLAT_ADDRESS) {
|
|
if (NumElements > 4)
|
|
return SplitVectorLoad(Op, DAG);
|
|
// v4 loads are supported for private and global memory.
|
|
return SDValue();
|
|
}
|
|
if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
|
|
// Depending on the setting of the private_element_size field in the
|
|
// resource descriptor, we can only make private accesses up to a certain
|
|
// size.
|
|
switch (Subtarget->getMaxPrivateElementSize()) {
|
|
case 4:
|
|
return scalarizeVectorLoad(Load, DAG);
|
|
case 8:
|
|
if (NumElements > 2)
|
|
return SplitVectorLoad(Op, DAG);
|
|
return SDValue();
|
|
case 16:
|
|
// Same as global/flat
|
|
if (NumElements > 4)
|
|
return SplitVectorLoad(Op, DAG);
|
|
return SDValue();
|
|
default:
|
|
llvm_unreachable("unsupported private_element_size");
|
|
}
|
|
} else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
|
|
if (NumElements > 2)
|
|
return SplitVectorLoad(Op, DAG);
|
|
|
|
if (NumElements == 2)
|
|
return SDValue();
|
|
|
|
// If properly aligned, if we split we might be able to use ds_read_b64.
|
|
return SplitVectorLoad(Op, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
if (Op.getValueType() != MVT::i64)
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Cond = Op.getOperand(0);
|
|
|
|
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
|
|
SDValue One = DAG.getConstant(1, DL, MVT::i32);
|
|
|
|
SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
|
|
SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
|
|
|
|
SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
|
|
SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
|
|
|
|
SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
|
|
|
|
SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
|
|
SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
|
|
|
|
SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
|
|
|
|
SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
|
|
}
|
|
|
|
// Catch division cases where we can use shortcuts with rcp and rsq
|
|
// instructions.
|
|
SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
EVT VT = Op.getValueType();
|
|
bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
|
|
|
|
if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
|
|
return SDValue();
|
|
|
|
if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
|
|
if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
|
|
if (CLHS->isExactlyValue(1.0)) {
|
|
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
|
|
// the CI documentation has a worst case error of 1 ulp.
|
|
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
|
|
// use it as long as we aren't trying to use denormals.
|
|
//
|
|
// v_rcp_f16 and v_rsq_f16 DO support denormals.
|
|
|
|
// 1.0 / sqrt(x) -> rsq(x)
|
|
|
|
// XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
|
|
// error seems really high at 2^29 ULP.
|
|
if (RHS.getOpcode() == ISD::FSQRT)
|
|
return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
|
|
|
|
// 1.0 / x -> rcp(x)
|
|
return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
|
|
}
|
|
|
|
// Same as for 1.0, but expand the sign out of the constant.
|
|
if (CLHS->isExactlyValue(-1.0)) {
|
|
// -1.0 / x -> rcp (fneg x)
|
|
SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
|
|
return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
|
|
}
|
|
}
|
|
}
|
|
|
|
const SDNodeFlags Flags = Op->getFlags();
|
|
|
|
if (Unsafe || Flags.hasAllowReciprocal()) {
|
|
// Turn into multiply by the reciprocal.
|
|
// x / y -> x * (1.0 / y)
|
|
SDNodeFlags NewFlags;
|
|
NewFlags.setUnsafeAlgebra(true);
|
|
SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
|
|
return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, NewFlags);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
|
|
EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
|
|
if (GlueChain->getNumValues() <= 1) {
|
|
return DAG.getNode(Opcode, SL, VT, A, B);
|
|
}
|
|
|
|
assert(GlueChain->getNumValues() == 3);
|
|
|
|
SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("no chain equivalent for opcode");
|
|
case ISD::FMUL:
|
|
Opcode = AMDGPUISD::FMUL_W_CHAIN;
|
|
break;
|
|
}
|
|
|
|
return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
|
|
GlueChain.getValue(2));
|
|
}
|
|
|
|
static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
|
|
EVT VT, SDValue A, SDValue B, SDValue C,
|
|
SDValue GlueChain) {
|
|
if (GlueChain->getNumValues() <= 1) {
|
|
return DAG.getNode(Opcode, SL, VT, A, B, C);
|
|
}
|
|
|
|
assert(GlueChain->getNumValues() == 3);
|
|
|
|
SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("no chain equivalent for opcode");
|
|
case ISD::FMA:
|
|
Opcode = AMDGPUISD::FMA_W_CHAIN;
|
|
break;
|
|
}
|
|
|
|
return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
|
|
GlueChain.getValue(2));
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
|
|
if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
|
|
return FastLowered;
|
|
|
|
SDLoc SL(Op);
|
|
SDValue Src0 = Op.getOperand(0);
|
|
SDValue Src1 = Op.getOperand(1);
|
|
|
|
SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
|
|
SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
|
|
|
|
SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
|
|
SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
|
|
|
|
SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
|
|
SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
|
|
|
|
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
|
|
}
|
|
|
|
// Faster 2.5 ULP division that does not support denormals.
|
|
SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
SDValue LHS = Op.getOperand(1);
|
|
SDValue RHS = Op.getOperand(2);
|
|
|
|
SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
|
|
|
|
const APFloat K0Val(BitsToFloat(0x6f800000));
|
|
const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
|
|
|
|
const APFloat K1Val(BitsToFloat(0x2f800000));
|
|
const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
|
|
|
|
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
|
|
|
|
EVT SetCCVT =
|
|
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
|
|
|
|
SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
|
|
|
|
SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
|
|
|
|
// TODO: Should this propagate fast-math-flags?
|
|
r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
|
|
|
|
// rcp does not support denormals.
|
|
SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
|
|
|
|
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
|
|
|
|
return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
|
|
if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
|
|
return FastLowered;
|
|
|
|
SDLoc SL(Op);
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
|
|
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
|
|
|
|
SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
|
|
|
|
SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
|
|
RHS, RHS, LHS);
|
|
SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
|
|
LHS, RHS, LHS);
|
|
|
|
// Denominator is scaled to not be denormal, so using rcp is ok.
|
|
SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
|
|
DenominatorScaled);
|
|
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
|
|
DenominatorScaled);
|
|
|
|
const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
|
|
(4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
|
|
(1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
|
|
|
|
const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
|
|
|
|
if (!Subtarget->hasFP32Denormals()) {
|
|
SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
|
|
SL, MVT::i32);
|
|
SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
|
|
DAG.getEntryNode(),
|
|
EnableDenormValue, BitField);
|
|
SDValue Ops[3] = {
|
|
NegDivScale0,
|
|
EnableDenorm.getValue(0),
|
|
EnableDenorm.getValue(1)
|
|
};
|
|
|
|
NegDivScale0 = DAG.getMergeValues(Ops, SL);
|
|
}
|
|
|
|
SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
|
|
ApproxRcp, One, NegDivScale0);
|
|
|
|
SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
|
|
ApproxRcp, Fma0);
|
|
|
|
SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
|
|
Fma1, Fma1);
|
|
|
|
SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
|
|
NumeratorScaled, Mul);
|
|
|
|
SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
|
|
|
|
SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
|
|
NumeratorScaled, Fma3);
|
|
|
|
if (!Subtarget->hasFP32Denormals()) {
|
|
const SDValue DisableDenormValue =
|
|
DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
|
|
SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
|
|
Fma4.getValue(1),
|
|
DisableDenormValue,
|
|
BitField,
|
|
Fma4.getValue(2));
|
|
|
|
SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
|
|
DisableDenorm, DAG.getRoot());
|
|
DAG.setRoot(OutputChain);
|
|
}
|
|
|
|
SDValue Scale = NumeratorScaled.getValue(1);
|
|
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
|
|
Fma4, Fma1, Fma3, Scale);
|
|
|
|
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
|
|
if (DAG.getTarget().Options.UnsafeFPMath)
|
|
return lowerFastUnsafeFDIV(Op, DAG);
|
|
|
|
SDLoc SL(Op);
|
|
SDValue X = Op.getOperand(0);
|
|
SDValue Y = Op.getOperand(1);
|
|
|
|
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
|
|
|
|
SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
|
|
|
|
SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
|
|
|
|
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
|
|
|
|
SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
|
|
|
|
SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
|
|
|
|
SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
|
|
|
|
SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
|
|
|
|
SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
|
|
|
|
SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
|
|
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
|
|
|
|
SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
|
|
NegDivScale0, Mul, DivScale1);
|
|
|
|
SDValue Scale;
|
|
|
|
if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
|
|
// Workaround a hardware bug on SI where the condition output from div_scale
|
|
// is not usable.
|
|
|
|
const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
|
|
|
|
// Figure out if the scale to use for div_fmas.
|
|
SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
|
|
SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
|
|
SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
|
|
SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
|
|
|
|
SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
|
|
SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
|
|
|
|
SDValue Scale0Hi
|
|
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
|
|
SDValue Scale1Hi
|
|
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
|
|
|
|
SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
|
|
SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
|
|
Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
|
|
} else {
|
|
Scale = DivScale1.getValue(1);
|
|
}
|
|
|
|
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
|
|
Fma4, Fma3, Mul, Scale);
|
|
|
|
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
|
|
if (VT == MVT::f32)
|
|
return LowerFDIV32(Op, DAG);
|
|
|
|
if (VT == MVT::f64)
|
|
return LowerFDIV64(Op, DAG);
|
|
|
|
if (VT == MVT::f16)
|
|
return LowerFDIV16(Op, DAG);
|
|
|
|
llvm_unreachable("Unexpected type for fdiv");
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
StoreSDNode *Store = cast<StoreSDNode>(Op);
|
|
EVT VT = Store->getMemoryVT();
|
|
|
|
if (VT == MVT::i1) {
|
|
return DAG.getTruncStore(Store->getChain(), DL,
|
|
DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
|
|
Store->getBasePtr(), MVT::i1, Store->getMemOperand());
|
|
}
|
|
|
|
assert(VT.isVector() &&
|
|
Store->getValue().getValueType().getScalarType() == MVT::i32);
|
|
|
|
unsigned AS = Store->getAddressSpace();
|
|
if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
|
|
AS, Store->getAlignment())) {
|
|
return expandUnalignedStore(Store, DAG);
|
|
}
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
// If there is a possibilty that flat instruction access scratch memory
|
|
// then we need to use the same legalization rules we use for private.
|
|
if (AS == AMDGPUASI.FLAT_ADDRESS)
|
|
AS = MFI->hasFlatScratchInit() ?
|
|
AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;
|
|
|
|
unsigned NumElements = VT.getVectorNumElements();
|
|
if (AS == AMDGPUASI.GLOBAL_ADDRESS ||
|
|
AS == AMDGPUASI.FLAT_ADDRESS) {
|
|
if (NumElements > 4)
|
|
return SplitVectorStore(Op, DAG);
|
|
return SDValue();
|
|
} else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
|
|
switch (Subtarget->getMaxPrivateElementSize()) {
|
|
case 4:
|
|
return scalarizeVectorStore(Store, DAG);
|
|
case 8:
|
|
if (NumElements > 2)
|
|
return SplitVectorStore(Op, DAG);
|
|
return SDValue();
|
|
case 16:
|
|
if (NumElements > 4)
|
|
return SplitVectorStore(Op, DAG);
|
|
return SDValue();
|
|
default:
|
|
llvm_unreachable("unsupported private_element_size");
|
|
}
|
|
} else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
|
|
if (NumElements > 2)
|
|
return SplitVectorStore(Op, DAG);
|
|
|
|
if (NumElements == 2)
|
|
return Op;
|
|
|
|
// If properly aligned, if we split we might be able to use ds_write_b64.
|
|
return SplitVectorStore(Op, DAG);
|
|
} else {
|
|
llvm_unreachable("unhandled address space");
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue Arg = Op.getOperand(0);
|
|
// TODO: Should this propagate fast-math-flags?
|
|
SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
|
|
DAG.getNode(ISD::FMUL, DL, VT, Arg,
|
|
DAG.getConstantFP(0.5/M_PI, DL,
|
|
VT)));
|
|
|
|
switch (Op.getOpcode()) {
|
|
case ISD::FCOS:
|
|
return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
|
|
case ISD::FSIN:
|
|
return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
|
|
default:
|
|
llvm_unreachable("Wrong trig opcode");
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
|
|
AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
|
|
assert(AtomicNode->isCompareAndSwap());
|
|
unsigned AS = AtomicNode->getAddressSpace();
|
|
|
|
// No custom lowering required for local address space
|
|
if (!isFlatGlobalAddrSpace(AS, AMDGPUASI))
|
|
return Op;
|
|
|
|
// Non-local address space requires custom lowering for atomic compare
|
|
// and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
|
|
SDLoc DL(Op);
|
|
SDValue ChainIn = Op.getOperand(0);
|
|
SDValue Addr = Op.getOperand(1);
|
|
SDValue Old = Op.getOperand(2);
|
|
SDValue New = Op.getOperand(3);
|
|
EVT VT = Op.getValueType();
|
|
MVT SimpleVT = VT.getSimpleVT();
|
|
MVT VecType = MVT::getVectorVT(SimpleVT, 2);
|
|
|
|
SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
|
|
SDValue Ops[] = { ChainIn, Addr, NewOld };
|
|
|
|
return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
|
|
Ops, VT, AtomicNode->getMemOperand());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom DAG optimizations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
EVT VT = N->getValueType(0);
|
|
EVT ScalarVT = VT.getScalarType();
|
|
if (ScalarVT != MVT::f32)
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
|
|
// TODO: We could try to match extracting the higher bytes, which would be
|
|
// easier if i8 vectors weren't promoted to i32 vectors, particularly after
|
|
// types are legalized. v4i8 -> v4f32 is probably the only case to worry
|
|
// about in practice.
|
|
if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
|
|
if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
|
|
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
|
|
DCI.AddToWorklist(Cvt.getNode());
|
|
return Cvt;
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// \brief Return true if the given offset Size in bytes can be folded into
|
|
/// the immediate offsets of a memory instruction for the given address space.
|
|
static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
|
|
const SISubtarget &STI) {
|
|
auto AMDGPUASI = STI.getAMDGPUAS();
|
|
if (AS == AMDGPUASI.GLOBAL_ADDRESS) {
|
|
// MUBUF instructions a 12-bit offset in bytes.
|
|
return isUInt<12>(OffsetSize);
|
|
}
|
|
if (AS == AMDGPUASI.CONSTANT_ADDRESS) {
|
|
// SMRD instructions have an 8-bit offset in dwords on SI and
|
|
// a 20-bit offset in bytes on VI.
|
|
if (STI.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
|
|
return isUInt<20>(OffsetSize);
|
|
else
|
|
return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
|
|
}
|
|
if (AS == AMDGPUASI.LOCAL_ADDRESS ||
|
|
AS == AMDGPUASI.REGION_ADDRESS) {
|
|
// The single offset versions have a 16-bit offset in bytes.
|
|
return isUInt<16>(OffsetSize);
|
|
}
|
|
// Indirect register addressing does not use any offsets.
|
|
return false;
|
|
}
|
|
|
|
// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
|
|
|
|
// This is a variant of
|
|
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
|
|
//
|
|
// The normal DAG combiner will do this, but only if the add has one use since
|
|
// that would increase the number of instructions.
|
|
//
|
|
// This prevents us from seeing a constant offset that can be folded into a
|
|
// memory instruction's addressing mode. If we know the resulting add offset of
|
|
// a pointer can be folded into an addressing offset, we can replace the pointer
|
|
// operand with the add of new constant offset. This eliminates one of the uses,
|
|
// and may allow the remaining use to also be simplified.
|
|
//
|
|
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
|
|
unsigned AddrSpace,
|
|
DAGCombinerInfo &DCI) const {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
if (N0.getOpcode() != ISD::ADD)
|
|
return SDValue();
|
|
|
|
const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
|
|
if (!CN1)
|
|
return SDValue();
|
|
|
|
const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!CAdd)
|
|
return SDValue();
|
|
|
|
// If the resulting offset is too large, we can't fold it into the addressing
|
|
// mode offset.
|
|
APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
|
|
if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *getSubtarget()))
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc SL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
|
|
SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
|
|
|
|
return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
|
|
}
|
|
|
|
SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SDValue Ptr = N->getBasePtr();
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc SL(N);
|
|
|
|
// TODO: We could also do this for multiplies.
|
|
unsigned AS = N->getAddressSpace();
|
|
if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUASI.PRIVATE_ADDRESS) {
|
|
SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
|
|
if (NewPtr) {
|
|
SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
|
|
|
|
NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
|
|
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
|
|
return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
|
|
(Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
|
|
(Opc == ISD::XOR && Val == 0);
|
|
}
|
|
|
|
// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
|
|
// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
|
|
// integer combine opportunities since most 64-bit operations are decomposed
|
|
// this way. TODO: We won't want this for SALU especially if it is an inline
|
|
// immediate.
|
|
SDValue SITargetLowering::splitBinaryBitConstantOp(
|
|
DAGCombinerInfo &DCI,
|
|
const SDLoc &SL,
|
|
unsigned Opc, SDValue LHS,
|
|
const ConstantSDNode *CRHS) const {
|
|
uint64_t Val = CRHS->getZExtValue();
|
|
uint32_t ValLo = Lo_32(Val);
|
|
uint32_t ValHi = Hi_32(Val);
|
|
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
|
|
|
|
if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
|
|
bitOpWithConstantIsReducible(Opc, ValHi)) ||
|
|
(CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
|
|
// If we need to materialize a 64-bit immediate, it will be split up later
|
|
// anyway. Avoid creating the harder to understand 64-bit immediate
|
|
// materialization.
|
|
return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::performAndCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
if (DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
|
|
if (VT == MVT::i64) {
|
|
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
|
|
if (CRHS) {
|
|
if (SDValue Split
|
|
= splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
|
|
return Split;
|
|
}
|
|
}
|
|
|
|
// (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
|
|
// fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
|
|
if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
|
|
ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
|
|
ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
|
|
|
|
SDValue X = LHS.getOperand(0);
|
|
SDValue Y = RHS.getOperand(0);
|
|
if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
|
|
return SDValue();
|
|
|
|
if (LCC == ISD::SETO) {
|
|
if (X != LHS.getOperand(1))
|
|
return SDValue();
|
|
|
|
if (RCC == ISD::SETUNE) {
|
|
const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
|
|
if (!C1 || !C1->isInfinity() || C1->isNegative())
|
|
return SDValue();
|
|
|
|
const uint32_t Mask = SIInstrFlags::N_NORMAL |
|
|
SIInstrFlags::N_SUBNORMAL |
|
|
SIInstrFlags::N_ZERO |
|
|
SIInstrFlags::P_ZERO |
|
|
SIInstrFlags::P_SUBNORMAL |
|
|
SIInstrFlags::P_NORMAL;
|
|
|
|
static_assert(((~(SIInstrFlags::S_NAN |
|
|
SIInstrFlags::Q_NAN |
|
|
SIInstrFlags::N_INFINITY |
|
|
SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
|
|
"mask not equal");
|
|
|
|
SDLoc DL(N);
|
|
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
|
|
X, DAG.getConstant(Mask, DL, MVT::i32));
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::performOrCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT == MVT::i1) {
|
|
// or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
|
|
if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
|
|
RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
|
|
SDValue Src = LHS.getOperand(0);
|
|
if (Src != RHS.getOperand(0))
|
|
return SDValue();
|
|
|
|
const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
|
|
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
|
|
if (!CLHS || !CRHS)
|
|
return SDValue();
|
|
|
|
// Only 10 bits are used.
|
|
static const uint32_t MaxMask = 0x3ff;
|
|
|
|
uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
|
|
SDLoc DL(N);
|
|
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
|
|
Src, DAG.getConstant(NewMask, DL, MVT::i32));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
if (VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
// TODO: This could be a generic combine with a predicate for extracting the
|
|
// high half of an integer being free.
|
|
|
|
// (or i64:x, (zero_extend i32:y)) ->
|
|
// i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
|
|
if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
|
|
RHS.getOpcode() != ISD::ZERO_EXTEND)
|
|
std::swap(LHS, RHS);
|
|
|
|
if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
|
|
SDValue ExtSrc = RHS.getOperand(0);
|
|
EVT SrcVT = ExtSrc.getValueType();
|
|
if (SrcVT == MVT::i32) {
|
|
SDLoc SL(N);
|
|
SDValue LowLHS, HiBits;
|
|
std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
|
|
SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
|
|
|
|
DCI.AddToWorklist(LowOr.getNode());
|
|
DCI.AddToWorklist(HiBits.getNode());
|
|
|
|
SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
|
|
LowOr, HiBits);
|
|
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
|
|
}
|
|
}
|
|
|
|
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (CRHS) {
|
|
if (SDValue Split
|
|
= splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
|
|
return Split;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::performXorCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
|
|
if (CRHS) {
|
|
if (SDValue Split
|
|
= splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
|
|
return Split;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Instructions that will be lowered with a final instruction that zeros the
|
|
// high result bits.
|
|
// XXX - probably only need to list legal operations.
|
|
static bool fp16SrcZerosHighBits(unsigned Opc) {
|
|
switch (Opc) {
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
case ISD::FMA:
|
|
case ISD::FMAD:
|
|
case ISD::FCANONICALIZE:
|
|
case ISD::FP_ROUND:
|
|
case ISD::UINT_TO_FP:
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::FABS:
|
|
// Fabs is lowered to a bit operation, but it's an and which will clear the
|
|
// high bits anyway.
|
|
case ISD::FSQRT:
|
|
case ISD::FSIN:
|
|
case ISD::FCOS:
|
|
case ISD::FPOWI:
|
|
case ISD::FPOW:
|
|
case ISD::FLOG:
|
|
case ISD::FLOG2:
|
|
case ISD::FLOG10:
|
|
case ISD::FEXP:
|
|
case ISD::FEXP2:
|
|
case ISD::FCEIL:
|
|
case ISD::FTRUNC:
|
|
case ISD::FRINT:
|
|
case ISD::FNEARBYINT:
|
|
case ISD::FROUND:
|
|
case ISD::FFLOOR:
|
|
case ISD::FMINNUM:
|
|
case ISD::FMAXNUM:
|
|
case AMDGPUISD::FRACT:
|
|
case AMDGPUISD::CLAMP:
|
|
case AMDGPUISD::COS_HW:
|
|
case AMDGPUISD::SIN_HW:
|
|
case AMDGPUISD::FMIN3:
|
|
case AMDGPUISD::FMAX3:
|
|
case AMDGPUISD::FMED3:
|
|
case AMDGPUISD::FMAD_FTZ:
|
|
case AMDGPUISD::RCP:
|
|
case AMDGPUISD::RSQ:
|
|
case AMDGPUISD::LDEXP:
|
|
return true;
|
|
default:
|
|
// fcopysign, select and others may be lowered to 32-bit bit operations
|
|
// which don't zero the high bits.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
if (!Subtarget->has16BitInsts() ||
|
|
DCI.getDAGCombineLevel() < AfterLegalizeDAG)
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32)
|
|
return SDValue();
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
if (Src.getValueType() != MVT::i16)
|
|
return SDValue();
|
|
|
|
// (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
|
|
// FIXME: It is not universally true that the high bits are zeroed on gfx9.
|
|
if (Src.getOpcode() == ISD::BITCAST) {
|
|
SDValue BCSrc = Src.getOperand(0);
|
|
if (BCSrc.getValueType() == MVT::f16 &&
|
|
fp16SrcZerosHighBits(BCSrc.getOpcode()))
|
|
return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::performClassCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue Mask = N->getOperand(1);
|
|
|
|
// fp_class x, 0 -> false
|
|
if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
|
|
if (CMask->isNullValue())
|
|
return DAG.getConstant(0, SDLoc(N), MVT::i1);
|
|
}
|
|
|
|
if (N->getOperand(0).isUndef())
|
|
return DAG.getUNDEF(MVT::i1);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Constant fold canonicalize.
|
|
SDValue SITargetLowering::performFCanonicalizeCombine(
|
|
SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
ConstantFPSDNode *CFP = isConstOrConstSplatFP(N->getOperand(0));
|
|
if (!CFP)
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const APFloat &C = CFP->getValueAPF();
|
|
|
|
// Flush denormals to 0 if not enabled.
|
|
if (C.isDenormal()) {
|
|
EVT VT = N->getValueType(0);
|
|
EVT SVT = VT.getScalarType();
|
|
if (SVT == MVT::f32 && !Subtarget->hasFP32Denormals())
|
|
return DAG.getConstantFP(0.0, SDLoc(N), VT);
|
|
|
|
if (SVT == MVT::f64 && !Subtarget->hasFP64Denormals())
|
|
return DAG.getConstantFP(0.0, SDLoc(N), VT);
|
|
|
|
if (SVT == MVT::f16 && !Subtarget->hasFP16Denormals())
|
|
return DAG.getConstantFP(0.0, SDLoc(N), VT);
|
|
}
|
|
|
|
if (C.isNaN()) {
|
|
EVT VT = N->getValueType(0);
|
|
APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
|
|
if (C.isSignaling()) {
|
|
// Quiet a signaling NaN.
|
|
return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
|
|
}
|
|
|
|
// Make sure it is the canonical NaN bitpattern.
|
|
//
|
|
// TODO: Can we use -1 as the canonical NaN value since it's an inline
|
|
// immediate?
|
|
if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
|
|
return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
|
|
}
|
|
|
|
return N->getOperand(0);
|
|
}
|
|
|
|
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
|
|
switch (Opc) {
|
|
case ISD::FMAXNUM:
|
|
return AMDGPUISD::FMAX3;
|
|
case ISD::SMAX:
|
|
return AMDGPUISD::SMAX3;
|
|
case ISD::UMAX:
|
|
return AMDGPUISD::UMAX3;
|
|
case ISD::FMINNUM:
|
|
return AMDGPUISD::FMIN3;
|
|
case ISD::SMIN:
|
|
return AMDGPUISD::SMIN3;
|
|
case ISD::UMIN:
|
|
return AMDGPUISD::UMIN3;
|
|
default:
|
|
llvm_unreachable("Not a min/max opcode");
|
|
}
|
|
}
|
|
|
|
SDValue SITargetLowering::performIntMed3ImmCombine(
|
|
SelectionDAG &DAG, const SDLoc &SL,
|
|
SDValue Op0, SDValue Op1, bool Signed) const {
|
|
ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
|
|
if (!K1)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
|
|
if (!K0)
|
|
return SDValue();
|
|
|
|
if (Signed) {
|
|
if (K0->getAPIntValue().sge(K1->getAPIntValue()))
|
|
return SDValue();
|
|
} else {
|
|
if (K0->getAPIntValue().uge(K1->getAPIntValue()))
|
|
return SDValue();
|
|
}
|
|
|
|
EVT VT = K0->getValueType(0);
|
|
unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
|
|
if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
|
|
return DAG.getNode(Med3Opc, SL, VT,
|
|
Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
|
|
}
|
|
|
|
// If there isn't a 16-bit med3 operation, convert to 32-bit.
|
|
MVT NVT = MVT::i32;
|
|
unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
|
|
SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
|
|
SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
|
|
SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
|
|
|
|
SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
|
|
return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
|
|
}
|
|
|
|
static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
|
|
if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
|
|
return true;
|
|
|
|
return DAG.isKnownNeverNaN(Op);
|
|
}
|
|
|
|
SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
|
|
const SDLoc &SL,
|
|
SDValue Op0,
|
|
SDValue Op1) const {
|
|
ConstantFPSDNode *K1 = dyn_cast<ConstantFPSDNode>(Op1);
|
|
if (!K1)
|
|
return SDValue();
|
|
|
|
ConstantFPSDNode *K0 = dyn_cast<ConstantFPSDNode>(Op0.getOperand(1));
|
|
if (!K0)
|
|
return SDValue();
|
|
|
|
// Ordered >= (although NaN inputs should have folded away by now).
|
|
APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
|
|
if (Cmp == APFloat::cmpGreaterThan)
|
|
return SDValue();
|
|
|
|
// TODO: Check IEEE bit enabled?
|
|
EVT VT = K0->getValueType(0);
|
|
if (Subtarget->enableDX10Clamp()) {
|
|
// If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
|
|
// hardware fmed3 behavior converting to a min.
|
|
// FIXME: Should this be allowing -0.0?
|
|
if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
|
|
return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
|
|
}
|
|
|
|
// med3 for f16 is only available on gfx9+.
|
|
if (VT == MVT::f64 || (VT == MVT::f16 && !Subtarget->hasMed3_16()))
|
|
return SDValue();
|
|
|
|
// This isn't safe with signaling NaNs because in IEEE mode, min/max on a
|
|
// signaling NaN gives a quiet NaN. The quiet NaN input to the min would then
|
|
// give the other result, which is different from med3 with a NaN input.
|
|
SDValue Var = Op0.getOperand(0);
|
|
if (!isKnownNeverSNan(DAG, Var))
|
|
return SDValue();
|
|
|
|
return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
|
|
Var, SDValue(K0, 0), SDValue(K1, 0));
|
|
}
|
|
|
|
SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
unsigned Opc = N->getOpcode();
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
|
|
// Only do this if the inner op has one use since this will just increases
|
|
// register pressure for no benefit.
|
|
|
|
|
|
if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
|
|
VT != MVT::f64) {
|
|
// max(max(a, b), c) -> max3(a, b, c)
|
|
// min(min(a, b), c) -> min3(a, b, c)
|
|
if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
|
|
SDLoc DL(N);
|
|
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
|
|
DL,
|
|
N->getValueType(0),
|
|
Op0.getOperand(0),
|
|
Op0.getOperand(1),
|
|
Op1);
|
|
}
|
|
|
|
// Try commuted.
|
|
// max(a, max(b, c)) -> max3(a, b, c)
|
|
// min(a, min(b, c)) -> min3(a, b, c)
|
|
if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
|
|
SDLoc DL(N);
|
|
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
|
|
DL,
|
|
N->getValueType(0),
|
|
Op0,
|
|
Op1.getOperand(0),
|
|
Op1.getOperand(1));
|
|
}
|
|
}
|
|
|
|
// min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
|
|
if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
|
|
if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
|
|
return Med3;
|
|
}
|
|
|
|
if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
|
|
if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
|
|
return Med3;
|
|
}
|
|
|
|
// fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
|
|
if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
|
|
(Opc == AMDGPUISD::FMIN_LEGACY &&
|
|
Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
|
|
(VT == MVT::f32 || VT == MVT::f64 ||
|
|
(VT == MVT::f16 && Subtarget->has16BitInsts())) &&
|
|
Op0.hasOneUse()) {
|
|
if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
|
|
return Res;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static bool isClampZeroToOne(SDValue A, SDValue B) {
|
|
if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
|
|
if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
|
|
// FIXME: Should this be allowing -0.0?
|
|
return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
|
|
(CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// FIXME: Should only worry about snans for version with chain.
|
|
SDValue SITargetLowering::performFMed3Combine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
EVT VT = N->getValueType(0);
|
|
// v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
|
|
// NaNs. With a NaN input, the order of the operands may change the result.
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc SL(N);
|
|
|
|
SDValue Src0 = N->getOperand(0);
|
|
SDValue Src1 = N->getOperand(1);
|
|
SDValue Src2 = N->getOperand(2);
|
|
|
|
if (isClampZeroToOne(Src0, Src1)) {
|
|
// const_a, const_b, x -> clamp is safe in all cases including signaling
|
|
// nans.
|
|
// FIXME: Should this be allowing -0.0?
|
|
return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
|
|
}
|
|
|
|
// FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
|
|
// handling no dx10-clamp?
|
|
if (Subtarget->enableDX10Clamp()) {
|
|
// If NaNs is clamped to 0, we are free to reorder the inputs.
|
|
|
|
if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
|
|
std::swap(Src0, Src1);
|
|
|
|
if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
|
|
std::swap(Src1, Src2);
|
|
|
|
if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
|
|
std::swap(Src0, Src1);
|
|
|
|
if (isClampZeroToOne(Src1, Src2))
|
|
return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SDValue Src0 = N->getOperand(0);
|
|
SDValue Src1 = N->getOperand(1);
|
|
if (Src0.isUndef() && Src1.isUndef())
|
|
return DCI.DAG.getUNDEF(N->getValueType(0));
|
|
return SDValue();
|
|
}
|
|
|
|
unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
|
|
const SDNode *N0,
|
|
const SDNode *N1) const {
|
|
EVT VT = N0->getValueType(0);
|
|
|
|
// Only do this if we are not trying to support denormals. v_mad_f32 does not
|
|
// support denormals ever.
|
|
if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
|
|
(VT == MVT::f16 && !Subtarget->hasFP16Denormals()))
|
|
return ISD::FMAD;
|
|
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
|
|
(N0->getFlags().hasUnsafeAlgebra() &&
|
|
N1->getFlags().hasUnsafeAlgebra())) &&
|
|
isFMAFasterThanFMulAndFAdd(VT)) {
|
|
return ISD::FMA;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SDValue SITargetLowering::performFAddCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
|
|
SDLoc SL(N);
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
// These should really be instruction patterns, but writing patterns with
|
|
// source modiifiers is a pain.
|
|
|
|
// fadd (fadd (a, a), b) -> mad 2.0, a, b
|
|
if (LHS.getOpcode() == ISD::FADD) {
|
|
SDValue A = LHS.getOperand(0);
|
|
if (A == LHS.getOperand(1)) {
|
|
unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
|
|
if (FusedOp != 0) {
|
|
const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
|
|
return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fadd (b, fadd (a, a)) -> mad 2.0, a, b
|
|
if (RHS.getOpcode() == ISD::FADD) {
|
|
SDValue A = RHS.getOperand(0);
|
|
if (A == RHS.getOperand(1)) {
|
|
unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
|
|
if (FusedOp != 0) {
|
|
const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
|
|
return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::performFSubCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc SL(N);
|
|
EVT VT = N->getValueType(0);
|
|
assert(!VT.isVector());
|
|
|
|
// Try to get the fneg to fold into the source modifier. This undoes generic
|
|
// DAG combines and folds them into the mad.
|
|
//
|
|
// Only do this if we are not trying to support denormals. v_mad_f32 does
|
|
// not support denormals ever.
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
if (LHS.getOpcode() == ISD::FADD) {
|
|
// (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
|
|
SDValue A = LHS.getOperand(0);
|
|
if (A == LHS.getOperand(1)) {
|
|
unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
|
|
if (FusedOp != 0){
|
|
const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
|
|
SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
|
|
|
|
return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (RHS.getOpcode() == ISD::FADD) {
|
|
// (fsub c, (fadd a, a)) -> mad -2.0, a, c
|
|
|
|
SDValue A = RHS.getOperand(0);
|
|
if (A == RHS.getOperand(1)) {
|
|
unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
|
|
if (FusedOp != 0){
|
|
const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
|
|
return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::performSetCCCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc SL(N);
|
|
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
EVT VT = LHS.getValueType();
|
|
|
|
if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
|
|
VT != MVT::f16))
|
|
return SDValue();
|
|
|
|
// Match isinf pattern
|
|
// (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
|
|
if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
|
|
const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
|
|
if (!CRHS)
|
|
return SDValue();
|
|
|
|
const APFloat &APF = CRHS->getValueAPF();
|
|
if (APF.isInfinity() && !APF.isNegative()) {
|
|
unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
|
|
return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
|
|
DAG.getConstant(Mask, SL, MVT::i32));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc SL(N);
|
|
unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
|
|
|
|
SDValue Src = N->getOperand(0);
|
|
SDValue Srl = N->getOperand(0);
|
|
if (Srl.getOpcode() == ISD::ZERO_EXTEND)
|
|
Srl = Srl.getOperand(0);
|
|
|
|
// TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
|
|
if (Srl.getOpcode() == ISD::SRL) {
|
|
// cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
|
|
// cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
|
|
// cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
|
|
|
|
if (const ConstantSDNode *C =
|
|
dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
|
|
Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
|
|
EVT(MVT::i32));
|
|
|
|
unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
|
|
if (SrcOffset < 32 && SrcOffset % 8 == 0) {
|
|
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
|
|
MVT::f32, Srl);
|
|
}
|
|
}
|
|
}
|
|
|
|
APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
|
|
|
|
KnownBits Known;
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
|
|
!DCI.isBeforeLegalizeOps());
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (TLI.ShrinkDemandedConstant(Src, Demanded, TLO) ||
|
|
TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
|
|
DCI.CommitTargetLoweringOpt(TLO);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
|
|
case ISD::FADD:
|
|
return performFAddCombine(N, DCI);
|
|
case ISD::FSUB:
|
|
return performFSubCombine(N, DCI);
|
|
case ISD::SETCC:
|
|
return performSetCCCombine(N, DCI);
|
|
case ISD::FMAXNUM:
|
|
case ISD::FMINNUM:
|
|
case ISD::SMAX:
|
|
case ISD::SMIN:
|
|
case ISD::UMAX:
|
|
case ISD::UMIN:
|
|
case AMDGPUISD::FMIN_LEGACY:
|
|
case AMDGPUISD::FMAX_LEGACY: {
|
|
if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
|
|
getTargetMachine().getOptLevel() > CodeGenOpt::None)
|
|
return performMinMaxCombine(N, DCI);
|
|
break;
|
|
}
|
|
case ISD::LOAD:
|
|
case ISD::STORE:
|
|
case ISD::ATOMIC_LOAD:
|
|
case ISD::ATOMIC_STORE:
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
|
|
case ISD::ATOMIC_SWAP:
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
case ISD::ATOMIC_LOAD_UMAX:
|
|
case AMDGPUISD::ATOMIC_INC:
|
|
case AMDGPUISD::ATOMIC_DEC: // TODO: Target mem intrinsics.
|
|
if (DCI.isBeforeLegalize())
|
|
break;
|
|
return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
|
|
case ISD::AND:
|
|
return performAndCombine(N, DCI);
|
|
case ISD::OR:
|
|
return performOrCombine(N, DCI);
|
|
case ISD::XOR:
|
|
return performXorCombine(N, DCI);
|
|
case ISD::ZERO_EXTEND:
|
|
return performZeroExtendCombine(N, DCI);
|
|
case AMDGPUISD::FP_CLASS:
|
|
return performClassCombine(N, DCI);
|
|
case ISD::FCANONICALIZE:
|
|
return performFCanonicalizeCombine(N, DCI);
|
|
case AMDGPUISD::FRACT:
|
|
case AMDGPUISD::RCP:
|
|
case AMDGPUISD::RSQ:
|
|
case AMDGPUISD::RCP_LEGACY:
|
|
case AMDGPUISD::RSQ_LEGACY:
|
|
case AMDGPUISD::RSQ_CLAMP:
|
|
case AMDGPUISD::LDEXP: {
|
|
SDValue Src = N->getOperand(0);
|
|
if (Src.isUndef())
|
|
return Src;
|
|
break;
|
|
}
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
return performUCharToFloatCombine(N, DCI);
|
|
case AMDGPUISD::CVT_F32_UBYTE0:
|
|
case AMDGPUISD::CVT_F32_UBYTE1:
|
|
case AMDGPUISD::CVT_F32_UBYTE2:
|
|
case AMDGPUISD::CVT_F32_UBYTE3:
|
|
return performCvtF32UByteNCombine(N, DCI);
|
|
case AMDGPUISD::FMED3:
|
|
return performFMed3Combine(N, DCI);
|
|
case AMDGPUISD::CVT_PKRTZ_F16_F32:
|
|
return performCvtPkRTZCombine(N, DCI);
|
|
case ISD::SCALAR_TO_VECTOR: {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
|
|
if (VT == MVT::v2i16 || VT == MVT::v2f16) {
|
|
SDLoc SL(N);
|
|
SDValue Src = N->getOperand(0);
|
|
EVT EltVT = Src.getValueType();
|
|
if (EltVT == MVT::f16)
|
|
Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
|
|
|
|
SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
|
|
return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
|
|
}
|
|
|
|
/// \brief Helper function for adjustWritemask
|
|
static unsigned SubIdx2Lane(unsigned Idx) {
|
|
switch (Idx) {
|
|
default: return 0;
|
|
case AMDGPU::sub0: return 0;
|
|
case AMDGPU::sub1: return 1;
|
|
case AMDGPU::sub2: return 2;
|
|
case AMDGPU::sub3: return 3;
|
|
}
|
|
}
|
|
|
|
/// \brief Adjust the writemask of MIMG instructions
|
|
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
|
|
SelectionDAG &DAG) const {
|
|
SDNode *Users[4] = { };
|
|
unsigned Lane = 0;
|
|
unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
|
|
unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
|
|
unsigned NewDmask = 0;
|
|
|
|
// Try to figure out the used register components
|
|
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
|
|
I != E; ++I) {
|
|
|
|
// Don't look at users of the chain.
|
|
if (I.getUse().getResNo() != 0)
|
|
continue;
|
|
|
|
// Abort if we can't understand the usage
|
|
if (!I->isMachineOpcode() ||
|
|
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
|
|
return;
|
|
|
|
// Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
|
|
// Note that subregs are packed, i.e. Lane==0 is the first bit set
|
|
// in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
|
|
// set, etc.
|
|
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
|
|
|
|
// Set which texture component corresponds to the lane.
|
|
unsigned Comp;
|
|
for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
|
|
assert(Dmask);
|
|
Comp = countTrailingZeros(Dmask);
|
|
Dmask &= ~(1 << Comp);
|
|
}
|
|
|
|
// Abort if we have more than one user per component
|
|
if (Users[Lane])
|
|
return;
|
|
|
|
Users[Lane] = *I;
|
|
NewDmask |= 1 << Comp;
|
|
}
|
|
|
|
// Abort if there's no change
|
|
if (NewDmask == OldDmask)
|
|
return;
|
|
|
|
// Adjust the writemask in the node
|
|
std::vector<SDValue> Ops;
|
|
Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
|
|
Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
|
|
Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
|
|
Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
|
|
|
|
// If we only got one lane, replace it with a copy
|
|
// (if NewDmask has only one bit set...)
|
|
if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
|
|
SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
|
|
MVT::i32);
|
|
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
|
|
SDLoc(), Users[Lane]->getValueType(0),
|
|
SDValue(Node, 0), RC);
|
|
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
|
|
return;
|
|
}
|
|
|
|
// Update the users of the node with the new indices
|
|
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
|
|
SDNode *User = Users[i];
|
|
if (!User)
|
|
continue;
|
|
|
|
SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
|
|
DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
|
|
|
|
switch (Idx) {
|
|
default: break;
|
|
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
|
|
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
|
|
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isFrameIndexOp(SDValue Op) {
|
|
if (Op.getOpcode() == ISD::AssertZext)
|
|
Op = Op.getOperand(0);
|
|
|
|
return isa<FrameIndexSDNode>(Op);
|
|
}
|
|
|
|
/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
|
|
/// with frame index operands.
|
|
/// LLVM assumes that inputs are to these instructions are registers.
|
|
SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
|
|
SelectionDAG &DAG) const {
|
|
if (Node->getOpcode() == ISD::CopyToReg) {
|
|
RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
|
|
SDValue SrcVal = Node->getOperand(2);
|
|
|
|
// Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
|
|
// to try understanding copies to physical registers.
|
|
if (SrcVal.getValueType() == MVT::i1 &&
|
|
TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) {
|
|
SDLoc SL(Node);
|
|
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
|
|
SDValue VReg = DAG.getRegister(
|
|
MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
|
|
|
|
SDNode *Glued = Node->getGluedNode();
|
|
SDValue ToVReg
|
|
= DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
|
|
SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
|
|
SDValue ToResultReg
|
|
= DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
|
|
VReg, ToVReg.getValue(1));
|
|
DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
|
|
DAG.RemoveDeadNode(Node);
|
|
return ToResultReg.getNode();
|
|
}
|
|
}
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
|
|
if (!isFrameIndexOp(Node->getOperand(i))) {
|
|
Ops.push_back(Node->getOperand(i));
|
|
continue;
|
|
}
|
|
|
|
SDLoc DL(Node);
|
|
Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
|
|
Node->getOperand(i).getValueType(),
|
|
Node->getOperand(i)), 0));
|
|
}
|
|
|
|
DAG.UpdateNodeOperands(Node, Ops);
|
|
return Node;
|
|
}
|
|
|
|
/// \brief Fold the instructions after selecting them.
|
|
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
|
|
SelectionDAG &DAG) const {
|
|
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
|
|
unsigned Opcode = Node->getMachineOpcode();
|
|
|
|
if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
|
|
!TII->isGather4(Opcode))
|
|
adjustWritemask(Node, DAG);
|
|
|
|
if (Opcode == AMDGPU::INSERT_SUBREG ||
|
|
Opcode == AMDGPU::REG_SEQUENCE) {
|
|
legalizeTargetIndependentNode(Node, DAG);
|
|
return Node;
|
|
}
|
|
return Node;
|
|
}
|
|
|
|
/// \brief Assign the register class depending on the number of
|
|
/// bits set in the writemask
|
|
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
|
|
SDNode *Node) const {
|
|
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
|
|
|
|
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
|
|
if (TII->isVOP3(MI.getOpcode())) {
|
|
// Make sure constant bus requirements are respected.
|
|
TII->legalizeOperandsVOP3(MRI, MI);
|
|
return;
|
|
}
|
|
|
|
if (TII->isMIMG(MI)) {
|
|
unsigned VReg = MI.getOperand(0).getReg();
|
|
const TargetRegisterClass *RC = MRI.getRegClass(VReg);
|
|
// TODO: Need mapping tables to handle other cases (register classes).
|
|
if (RC != &AMDGPU::VReg_128RegClass)
|
|
return;
|
|
|
|
unsigned DmaskIdx = MI.getNumOperands() == 12 ? 3 : 4;
|
|
unsigned Writemask = MI.getOperand(DmaskIdx).getImm();
|
|
unsigned BitsSet = 0;
|
|
for (unsigned i = 0; i < 4; ++i)
|
|
BitsSet += Writemask & (1 << i) ? 1 : 0;
|
|
switch (BitsSet) {
|
|
default: return;
|
|
case 1: RC = &AMDGPU::VGPR_32RegClass; break;
|
|
case 2: RC = &AMDGPU::VReg_64RegClass; break;
|
|
case 3: RC = &AMDGPU::VReg_96RegClass; break;
|
|
}
|
|
|
|
unsigned NewOpcode = TII->getMaskedMIMGOp(MI.getOpcode(), BitsSet);
|
|
MI.setDesc(TII->get(NewOpcode));
|
|
MRI.setRegClass(VReg, RC);
|
|
return;
|
|
}
|
|
|
|
// Replace unused atomics with the no return version.
|
|
int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
|
|
if (NoRetAtomicOp != -1) {
|
|
if (!Node->hasAnyUseOfValue(0)) {
|
|
MI.setDesc(TII->get(NoRetAtomicOp));
|
|
MI.RemoveOperand(0);
|
|
return;
|
|
}
|
|
|
|
// For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
|
|
// instruction, because the return type of these instructions is a vec2 of
|
|
// the memory type, so it can be tied to the input operand.
|
|
// This means these instructions always have a use, so we need to add a
|
|
// special case to check if the atomic has only one extract_subreg use,
|
|
// which itself has no uses.
|
|
if ((Node->hasNUsesOfValue(1, 0) &&
|
|
Node->use_begin()->isMachineOpcode() &&
|
|
Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
|
|
!Node->use_begin()->hasAnyUseOfValue(0))) {
|
|
unsigned Def = MI.getOperand(0).getReg();
|
|
|
|
// Change this into a noret atomic.
|
|
MI.setDesc(TII->get(NoRetAtomicOp));
|
|
MI.RemoveOperand(0);
|
|
|
|
// If we only remove the def operand from the atomic instruction, the
|
|
// extract_subreg will be left with a use of a vreg without a def.
|
|
// So we need to insert an implicit_def to avoid machine verifier
|
|
// errors.
|
|
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
|
|
TII->get(AMDGPU::IMPLICIT_DEF), Def);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
|
|
uint64_t Val) {
|
|
SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
|
|
return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
|
|
}
|
|
|
|
MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
|
|
const SDLoc &DL,
|
|
SDValue Ptr) const {
|
|
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
|
|
|
|
// Build the half of the subregister with the constants before building the
|
|
// full 128-bit register. If we are building multiple resource descriptors,
|
|
// this will allow CSEing of the 2-component register.
|
|
const SDValue Ops0[] = {
|
|
DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
|
|
buildSMovImm32(DAG, DL, 0),
|
|
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
|
|
buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
|
|
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
|
|
};
|
|
|
|
SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
|
|
MVT::v2i32, Ops0), 0);
|
|
|
|
// Combine the constants and the pointer.
|
|
const SDValue Ops1[] = {
|
|
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
|
|
Ptr,
|
|
DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
|
|
SubRegHi,
|
|
DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
|
|
};
|
|
|
|
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
|
|
}
|
|
|
|
/// \brief Return a resource descriptor with the 'Add TID' bit enabled
|
|
/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
|
|
/// of the resource descriptor) to create an offset, which is added to
|
|
/// the resource pointer.
|
|
MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
|
|
SDValue Ptr, uint32_t RsrcDword1,
|
|
uint64_t RsrcDword2And3) const {
|
|
SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
|
|
SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
|
|
if (RsrcDword1) {
|
|
PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
|
|
DAG.getConstant(RsrcDword1, DL, MVT::i32)),
|
|
0);
|
|
}
|
|
|
|
SDValue DataLo = buildSMovImm32(DAG, DL,
|
|
RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
|
|
SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
|
|
|
|
const SDValue Ops[] = {
|
|
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
|
|
PtrLo,
|
|
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
|
|
PtrHi,
|
|
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
|
|
DataLo,
|
|
DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
|
|
DataHi,
|
|
DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
|
|
};
|
|
|
|
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
|
|
}
|
|
|
|
SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Reg, EVT VT) const {
|
|
SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
|
|
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
|
|
cast<RegisterSDNode>(VReg)->getReg(), VT);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SI Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint,
|
|
MVT VT) const {
|
|
if (!isTypeLegal(VT))
|
|
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 's':
|
|
case 'r':
|
|
switch (VT.getSizeInBits()) {
|
|
default:
|
|
return std::make_pair(0U, nullptr);
|
|
case 32:
|
|
case 16:
|
|
return std::make_pair(0U, &AMDGPU::SReg_32_XM0RegClass);
|
|
case 64:
|
|
return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
|
|
case 128:
|
|
return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
|
|
case 256:
|
|
return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
|
|
case 512:
|
|
return std::make_pair(0U, &AMDGPU::SReg_512RegClass);
|
|
}
|
|
|
|
case 'v':
|
|
switch (VT.getSizeInBits()) {
|
|
default:
|
|
return std::make_pair(0U, nullptr);
|
|
case 32:
|
|
case 16:
|
|
return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
|
|
case 64:
|
|
return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
|
|
case 96:
|
|
return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
|
|
case 128:
|
|
return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
|
|
case 256:
|
|
return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
|
|
case 512:
|
|
return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Constraint.size() > 1) {
|
|
const TargetRegisterClass *RC = nullptr;
|
|
if (Constraint[1] == 'v') {
|
|
RC = &AMDGPU::VGPR_32RegClass;
|
|
} else if (Constraint[1] == 's') {
|
|
RC = &AMDGPU::SGPR_32RegClass;
|
|
}
|
|
|
|
if (RC) {
|
|
uint32_t Idx;
|
|
bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
|
|
if (!Failed && Idx < RC->getNumRegs())
|
|
return std::make_pair(RC->getRegister(Idx), RC);
|
|
}
|
|
}
|
|
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
}
|
|
|
|
SITargetLowering::ConstraintType
|
|
SITargetLowering::getConstraintType(StringRef Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 's':
|
|
case 'v':
|
|
return C_RegisterClass;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|