freebsd-dev/contrib/llvm/lib/Target/AMDGPU/VOP1Instructions.td
2017-04-16 16:25:46 +00:00

673 lines
26 KiB
TableGen

//===-- VOP1Instructions.td - Vector Instruction Defintions ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// VOP1 Classes
//===----------------------------------------------------------------------===//
class VOP1e <bits<8> op, VOPProfile P> : Enc32 {
bits<8> vdst;
bits<9> src0;
let Inst{8-0} = !if(P.HasSrc0, src0{8-0}, 0);
let Inst{16-9} = op;
let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0);
let Inst{31-25} = 0x3f; //encoding
}
class VOP1_SDWAe <bits<8> op, VOPProfile P> : VOP_SDWAe <P> {
bits<8> vdst;
let Inst{8-0} = 0xf9; // sdwa
let Inst{16-9} = op;
let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0);
let Inst{31-25} = 0x3f; // encoding
}
class VOP1_Pseudo <string opName, VOPProfile P, list<dag> pattern=[], bit VOP1Only = 0> :
InstSI <P.Outs32, P.Ins32, "", pattern>,
VOP <opName>,
SIMCInstr <!if(VOP1Only, opName, opName#"_e32"), SIEncodingFamily.NONE>,
MnemonicAlias<!if(VOP1Only, opName, opName#"_e32"), opName> {
let isPseudo = 1;
let isCodeGenOnly = 1;
let UseNamedOperandTable = 1;
string Mnemonic = opName;
string AsmOperands = P.Asm32;
let Size = 4;
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let SubtargetPredicate = isGCN;
let VOP1 = 1;
let VALU = 1;
let Uses = [EXEC];
let AsmVariantName = AMDGPUAsmVariants.Default;
VOPProfile Pfl = P;
}
class VOP1_Real <VOP1_Pseudo ps, int EncodingFamily> :
InstSI <ps.OutOperandList, ps.InOperandList, ps.Mnemonic # ps.AsmOperands, []>,
SIMCInstr <ps.PseudoInstr, EncodingFamily> {
let isPseudo = 0;
let isCodeGenOnly = 0;
let Constraints = ps.Constraints;
let DisableEncoding = ps.DisableEncoding;
// copy relevant pseudo op flags
let SubtargetPredicate = ps.SubtargetPredicate;
let AsmMatchConverter = ps.AsmMatchConverter;
let AsmVariantName = ps.AsmVariantName;
let Constraints = ps.Constraints;
let DisableEncoding = ps.DisableEncoding;
let TSFlags = ps.TSFlags;
let UseNamedOperandTable = ps.UseNamedOperandTable;
let Uses = ps.Uses;
}
class VOP1_SDWA_Pseudo <string OpName, VOPProfile P, list<dag> pattern=[]> :
VOP_SDWA_Pseudo <OpName, P, pattern> {
let AsmMatchConverter = "cvtSdwaVOP1";
}
class getVOP1Pat64 <SDPatternOperator node, VOPProfile P> : LetDummies {
list<dag> ret =
!if(P.HasModifiers,
[(set P.DstVT:$vdst, (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0,
i32:$src0_modifiers,
i1:$clamp, i32:$omod))))],
!if(P.HasOMod,
[(set P.DstVT:$vdst, (node (P.Src0VT (VOP3OMods P.Src0VT:$src0,
i1:$clamp, i32:$omod))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0))]
)
);
}
multiclass VOP1Inst <string opName, VOPProfile P,
SDPatternOperator node = null_frag> {
def _e32 : VOP1_Pseudo <opName, P>;
def _e64 : VOP3_Pseudo <opName, P, getVOP1Pat64<node, P>.ret>;
def _sdwa : VOP1_SDWA_Pseudo <opName, P>;
}
// Special profile for instructions which have clamp
// and output modifiers (but have no input modifiers)
class VOPProfileI2F<ValueType dstVt, ValueType srcVt> :
VOPProfile<[dstVt, srcVt, untyped, untyped]> {
let Ins64 = (ins Src0RC64:$src0, clampmod:$clamp, omod:$omod);
let Asm64 = "$vdst, $src0$clamp$omod";
let HasModifiers = 0;
let HasClamp = 1;
let HasOMod = 1;
}
def VOP1_F64_I32 : VOPProfileI2F <f64, i32>;
def VOP1_F32_I32 : VOPProfileI2F <f32, i32>;
def VOP1_F16_I16 : VOPProfileI2F <f16, i16>;
//===----------------------------------------------------------------------===//
// VOP1 Instructions
//===----------------------------------------------------------------------===//
let VOPAsmPrefer32Bit = 1 in {
defm V_NOP : VOP1Inst <"v_nop", VOP_NONE>;
}
let isMoveImm = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in {
defm V_MOV_B32 : VOP1Inst <"v_mov_b32", VOP_I32_I32>;
} // End isMoveImm = 1
// FIXME: Specify SchedRW for READFIRSTLANE_B32
// TODO: Make profile for this, there is VOP3 encoding also
def V_READFIRSTLANE_B32 :
InstSI <(outs SReg_32:$vdst),
(ins VGPR_32:$src0),
"v_readfirstlane_b32 $vdst, $src0",
[(set i32:$vdst, (int_amdgcn_readfirstlane i32:$src0))]>,
Enc32 {
let isCodeGenOnly = 0;
let UseNamedOperandTable = 1;
let Size = 4;
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let SubtargetPredicate = isGCN;
let VOP1 = 1;
let VALU = 1;
let Uses = [EXEC];
let isConvergent = 1;
bits<8> vdst;
bits<9> src0;
let Inst{8-0} = src0;
let Inst{16-9} = 0x2;
let Inst{24-17} = vdst;
let Inst{31-25} = 0x3f; //encoding
}
let SchedRW = [WriteQuarterRate32] in {
defm V_CVT_I32_F64 : VOP1Inst <"v_cvt_i32_f64", VOP_I32_F64, fp_to_sint>;
defm V_CVT_F64_I32 : VOP1Inst <"v_cvt_f64_i32", VOP1_F64_I32, sint_to_fp>;
defm V_CVT_F32_I32 : VOP1Inst <"v_cvt_f32_i32", VOP1_F32_I32, sint_to_fp>;
defm V_CVT_F32_U32 : VOP1Inst <"v_cvt_f32_u32", VOP1_F32_I32, uint_to_fp>;
defm V_CVT_U32_F32 : VOP1Inst <"v_cvt_u32_f32", VOP_I32_F32, fp_to_uint>;
defm V_CVT_I32_F32 : VOP1Inst <"v_cvt_i32_f32", VOP_I32_F32, fp_to_sint>;
defm V_CVT_F16_F32 : VOP1Inst <"v_cvt_f16_f32", VOP_F16_F32, fpround>;
defm V_CVT_F32_F16 : VOP1Inst <"v_cvt_f32_f16", VOP_F32_F16, fpextend>;
defm V_CVT_RPI_I32_F32 : VOP1Inst <"v_cvt_rpi_i32_f32", VOP_I32_F32, cvt_rpi_i32_f32>;
defm V_CVT_FLR_I32_F32 : VOP1Inst <"v_cvt_flr_i32_f32", VOP_I32_F32, cvt_flr_i32_f32>;
defm V_CVT_OFF_F32_I4 : VOP1Inst <"v_cvt_off_f32_i4", VOP1_F32_I32>;
defm V_CVT_F32_F64 : VOP1Inst <"v_cvt_f32_f64", VOP_F32_F64, fpround>;
defm V_CVT_F64_F32 : VOP1Inst <"v_cvt_f64_f32", VOP_F64_F32, fpextend>;
defm V_CVT_F32_UBYTE0 : VOP1Inst <"v_cvt_f32_ubyte0", VOP1_F32_I32, AMDGPUcvt_f32_ubyte0>;
defm V_CVT_F32_UBYTE1 : VOP1Inst <"v_cvt_f32_ubyte1", VOP1_F32_I32, AMDGPUcvt_f32_ubyte1>;
defm V_CVT_F32_UBYTE2 : VOP1Inst <"v_cvt_f32_ubyte2", VOP1_F32_I32, AMDGPUcvt_f32_ubyte2>;
defm V_CVT_F32_UBYTE3 : VOP1Inst <"v_cvt_f32_ubyte3", VOP1_F32_I32, AMDGPUcvt_f32_ubyte3>;
defm V_CVT_U32_F64 : VOP1Inst <"v_cvt_u32_f64", VOP_I32_F64, fp_to_uint>;
defm V_CVT_F64_U32 : VOP1Inst <"v_cvt_f64_u32", VOP1_F64_I32, uint_to_fp>;
} // End SchedRW = [WriteQuarterRate32]
defm V_FRACT_F32 : VOP1Inst <"v_fract_f32", VOP_F32_F32, AMDGPUfract>;
defm V_TRUNC_F32 : VOP1Inst <"v_trunc_f32", VOP_F32_F32, ftrunc>;
defm V_CEIL_F32 : VOP1Inst <"v_ceil_f32", VOP_F32_F32, fceil>;
defm V_RNDNE_F32 : VOP1Inst <"v_rndne_f32", VOP_F32_F32, frint>;
defm V_FLOOR_F32 : VOP1Inst <"v_floor_f32", VOP_F32_F32, ffloor>;
defm V_EXP_F32 : VOP1Inst <"v_exp_f32", VOP_F32_F32, fexp2>;
let SchedRW = [WriteQuarterRate32] in {
defm V_LOG_F32 : VOP1Inst <"v_log_f32", VOP_F32_F32, flog2>;
defm V_RCP_F32 : VOP1Inst <"v_rcp_f32", VOP_F32_F32, AMDGPUrcp>;
defm V_RCP_IFLAG_F32 : VOP1Inst <"v_rcp_iflag_f32", VOP_F32_F32>;
defm V_RSQ_F32 : VOP1Inst <"v_rsq_f32", VOP_F32_F32, AMDGPUrsq>;
} // End SchedRW = [WriteQuarterRate32]
let SchedRW = [WriteDouble] in {
defm V_RCP_F64 : VOP1Inst <"v_rcp_f64", VOP_F64_F64, AMDGPUrcp>;
defm V_RSQ_F64 : VOP1Inst <"v_rsq_f64", VOP_F64_F64, AMDGPUrsq>;
} // End SchedRW = [WriteDouble];
defm V_SQRT_F32 : VOP1Inst <"v_sqrt_f32", VOP_F32_F32, fsqrt>;
let SchedRW = [WriteDouble] in {
defm V_SQRT_F64 : VOP1Inst <"v_sqrt_f64", VOP_F64_F64, fsqrt>;
} // End SchedRW = [WriteDouble]
let SchedRW = [WriteQuarterRate32] in {
defm V_SIN_F32 : VOP1Inst <"v_sin_f32", VOP_F32_F32, AMDGPUsin>;
defm V_COS_F32 : VOP1Inst <"v_cos_f32", VOP_F32_F32, AMDGPUcos>;
} // End SchedRW = [WriteQuarterRate32]
defm V_NOT_B32 : VOP1Inst <"v_not_b32", VOP_I32_I32>;
defm V_BFREV_B32 : VOP1Inst <"v_bfrev_b32", VOP_I32_I32>;
defm V_FFBH_U32 : VOP1Inst <"v_ffbh_u32", VOP_I32_I32>;
defm V_FFBL_B32 : VOP1Inst <"v_ffbl_b32", VOP_I32_I32>;
defm V_FFBH_I32 : VOP1Inst <"v_ffbh_i32", VOP_I32_I32>;
defm V_FREXP_EXP_I32_F64 : VOP1Inst <"v_frexp_exp_i32_f64", VOP_I32_F64, int_amdgcn_frexp_exp>;
let SchedRW = [WriteDoubleAdd] in {
defm V_FREXP_MANT_F64 : VOP1Inst <"v_frexp_mant_f64", VOP_F64_F64, int_amdgcn_frexp_mant>;
defm V_FRACT_F64 : VOP1Inst <"v_fract_f64", VOP_F64_F64, AMDGPUfract>;
} // End SchedRW = [WriteDoubleAdd]
defm V_FREXP_EXP_I32_F32 : VOP1Inst <"v_frexp_exp_i32_f32", VOP_I32_F32, int_amdgcn_frexp_exp>;
defm V_FREXP_MANT_F32 : VOP1Inst <"v_frexp_mant_f32", VOP_F32_F32, int_amdgcn_frexp_mant>;
let VOPAsmPrefer32Bit = 1 in {
defm V_CLREXCP : VOP1Inst <"v_clrexcp", VOP_NO_EXT<VOP_NONE>>;
}
// Restrict src0 to be VGPR
def VOP_I32_VI32_NO_EXT : VOPProfile<[i32, i32, untyped, untyped]> {
let Src0RC32 = VRegSrc_32;
let Src0RC64 = VRegSrc_32;
let HasExt = 0;
}
// Special case because there are no true output operands. Hack vdst
// to be a src operand. The custom inserter must add a tied implicit
// def and use of the super register since there seems to be no way to
// add an implicit def of a virtual register in tablegen.
def VOP_MOVRELD : VOPProfile<[untyped, i32, untyped, untyped]> {
let Src0RC32 = VOPDstOperand<VGPR_32>;
let Src0RC64 = VOPDstOperand<VGPR_32>;
let Outs = (outs);
let Ins32 = (ins Src0RC32:$vdst, VSrc_b32:$src0);
let Ins64 = (ins Src0RC64:$vdst, VSrc_b32:$src0);
let InsDPP = (ins Src0RC32:$vdst, Src0RC32:$src0, dpp_ctrl:$dpp_ctrl, row_mask:$row_mask,
bank_mask:$bank_mask, bound_ctrl:$bound_ctrl);
let InsSDWA = (ins Src0RC32:$vdst, Src0ModSDWA:$src0_modifiers, VCSrc_b32:$src0,
clampmod:$clamp, dst_sel:$dst_sel, dst_unused:$dst_unused,
src0_sel:$src0_sel);
let Asm32 = getAsm32<1, 1>.ret;
let Asm64 = getAsm64<1, 1, 0, 1>.ret;
let AsmDPP = getAsmDPP<1, 1, 0>.ret;
let AsmSDWA = getAsmSDWA<1, 1, 0>.ret;
let HasExt = 0;
let HasDst = 0;
let EmitDst = 1; // force vdst emission
}
let SubtargetPredicate = HasMovrel, Uses = [M0, EXEC] in {
// v_movreld_b32 is a special case because the destination output
// register is really a source. It isn't actually read (but may be
// written), and is only to provide the base register to start
// indexing from. Tablegen seems to not let you define an implicit
// virtual register output for the super register being written into,
// so this must have an implicit def of the register added to it.
defm V_MOVRELD_B32 : VOP1Inst <"v_movreld_b32", VOP_MOVRELD>;
defm V_MOVRELS_B32 : VOP1Inst <"v_movrels_b32", VOP_I32_VI32_NO_EXT>;
defm V_MOVRELSD_B32 : VOP1Inst <"v_movrelsd_b32", VOP_NO_EXT<VOP_I32_I32>>;
} // End Uses = [M0, EXEC]
let SchedRW = [WriteQuarterRate32] in {
defm V_MOV_FED_B32 : VOP1Inst <"v_mov_fed_b32", VOP_I32_I32>;
}
// These instruction only exist on SI and CI
let SubtargetPredicate = isSICI in {
let SchedRW = [WriteQuarterRate32] in {
defm V_LOG_CLAMP_F32 : VOP1Inst <"v_log_clamp_f32", VOP_F32_F32, int_amdgcn_log_clamp>;
defm V_RCP_CLAMP_F32 : VOP1Inst <"v_rcp_clamp_f32", VOP_F32_F32>;
defm V_RCP_LEGACY_F32 : VOP1Inst <"v_rcp_legacy_f32", VOP_F32_F32, AMDGPUrcp_legacy>;
defm V_RSQ_CLAMP_F32 : VOP1Inst <"v_rsq_clamp_f32", VOP_F32_F32, AMDGPUrsq_clamp>;
defm V_RSQ_LEGACY_F32 : VOP1Inst <"v_rsq_legacy_f32", VOP_F32_F32, AMDGPUrsq_legacy>;
} // End SchedRW = [WriteQuarterRate32]
let SchedRW = [WriteDouble] in {
defm V_RCP_CLAMP_F64 : VOP1Inst <"v_rcp_clamp_f64", VOP_F64_F64>;
defm V_RSQ_CLAMP_F64 : VOP1Inst <"v_rsq_clamp_f64", VOP_F64_F64, AMDGPUrsq_clamp>;
} // End SchedRW = [WriteDouble]
} // End SubtargetPredicate = isSICI
let SubtargetPredicate = isCIVI in {
let SchedRW = [WriteDoubleAdd] in {
defm V_TRUNC_F64 : VOP1Inst <"v_trunc_f64", VOP_F64_F64, ftrunc>;
defm V_CEIL_F64 : VOP1Inst <"v_ceil_f64", VOP_F64_F64, fceil>;
defm V_FLOOR_F64 : VOP1Inst <"v_floor_f64", VOP_F64_F64, ffloor>;
defm V_RNDNE_F64 : VOP1Inst <"v_rndne_f64", VOP_F64_F64, frint>;
} // End SchedRW = [WriteDoubleAdd]
let SchedRW = [WriteQuarterRate32] in {
defm V_LOG_LEGACY_F32 : VOP1Inst <"v_log_legacy_f32", VOP_F32_F32>;
defm V_EXP_LEGACY_F32 : VOP1Inst <"v_exp_legacy_f32", VOP_F32_F32>;
} // End SchedRW = [WriteQuarterRate32]
} // End SubtargetPredicate = isCIVI
let SubtargetPredicate = isVI in {
defm V_CVT_F16_U16 : VOP1Inst <"v_cvt_f16_u16", VOP1_F16_I16, uint_to_fp>;
defm V_CVT_F16_I16 : VOP1Inst <"v_cvt_f16_i16", VOP1_F16_I16, sint_to_fp>;
defm V_CVT_U16_F16 : VOP1Inst <"v_cvt_u16_f16", VOP_I16_F16, fp_to_uint>;
defm V_CVT_I16_F16 : VOP1Inst <"v_cvt_i16_f16", VOP_I16_F16, fp_to_sint>;
defm V_RCP_F16 : VOP1Inst <"v_rcp_f16", VOP_F16_F16, AMDGPUrcp>;
defm V_SQRT_F16 : VOP1Inst <"v_sqrt_f16", VOP_F16_F16, fsqrt>;
defm V_RSQ_F16 : VOP1Inst <"v_rsq_f16", VOP_F16_F16, AMDGPUrsq>;
defm V_LOG_F16 : VOP1Inst <"v_log_f16", VOP_F16_F16, flog2>;
defm V_EXP_F16 : VOP1Inst <"v_exp_f16", VOP_F16_F16, fexp2>;
defm V_FREXP_MANT_F16 : VOP1Inst <"v_frexp_mant_f16", VOP_F16_F16, int_amdgcn_frexp_mant>;
defm V_FREXP_EXP_I16_F16 : VOP1Inst <"v_frexp_exp_i16_f16", VOP_I16_F16, int_amdgcn_frexp_exp>;
defm V_FLOOR_F16 : VOP1Inst <"v_floor_f16", VOP_F16_F16, ffloor>;
defm V_CEIL_F16 : VOP1Inst <"v_ceil_f16", VOP_F16_F16, fceil>;
defm V_TRUNC_F16 : VOP1Inst <"v_trunc_f16", VOP_F16_F16, ftrunc>;
defm V_RNDNE_F16 : VOP1Inst <"v_rndne_f16", VOP_F16_F16, frint>;
defm V_FRACT_F16 : VOP1Inst <"v_fract_f16", VOP_F16_F16, AMDGPUfract>;
defm V_SIN_F16 : VOP1Inst <"v_sin_f16", VOP_F16_F16, AMDGPUsin>;
defm V_COS_F16 : VOP1Inst <"v_cos_f16", VOP_F16_F16, AMDGPUcos>;
}
let Predicates = [isVI] in {
def : Pat<
(f32 (f16_to_fp i16:$src)),
(V_CVT_F32_F16_e32 $src)
>;
def : Pat<
(i16 (AMDGPUfp_to_f16 f32:$src)),
(V_CVT_F16_F32_e32 $src)
>;
}
def VOP_SWAP_I32 : VOPProfile<[i32, i32, i32, untyped]> {
let Outs32 = (outs VGPR_32:$vdst, VGPR_32:$vdst1);
let Ins32 = (ins VGPR_32:$src0, VGPR_32:$src1);
let Outs64 = Outs32;
let Asm32 = " $vdst, $src0";
let Asm64 = "";
let Ins64 = (ins);
}
let SubtargetPredicate = isGFX9 in {
let Constraints = "$vdst = $src1, $vdst1 = $src0",
DisableEncoding="$vdst1,$src1",
SchedRW = [Write64Bit, Write64Bit] in {
// Never VOP3. Takes as long as 2 v_mov_b32s
def V_SWAP_B32 : VOP1_Pseudo <"v_swap_b32", VOP_SWAP_I32, [], 1>;
}
} // End SubtargetPredicate = isGFX9
//===----------------------------------------------------------------------===//
// Target
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// SI
//===----------------------------------------------------------------------===//
multiclass VOP1_Real_si <bits<9> op> {
let AssemblerPredicates = [isSICI], DecoderNamespace = "SICI" in {
def _e32_si :
VOP1_Real<!cast<VOP1_Pseudo>(NAME#"_e32"), SIEncodingFamily.SI>,
VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32").Pfl>;
def _e64_si :
VOP3_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.SI>,
VOP3e_si <{1, 1, op{6-0}}, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl>;
}
}
defm V_NOP : VOP1_Real_si <0x0>;
defm V_MOV_B32 : VOP1_Real_si <0x1>;
defm V_CVT_I32_F64 : VOP1_Real_si <0x3>;
defm V_CVT_F64_I32 : VOP1_Real_si <0x4>;
defm V_CVT_F32_I32 : VOP1_Real_si <0x5>;
defm V_CVT_F32_U32 : VOP1_Real_si <0x6>;
defm V_CVT_U32_F32 : VOP1_Real_si <0x7>;
defm V_CVT_I32_F32 : VOP1_Real_si <0x8>;
defm V_MOV_FED_B32 : VOP1_Real_si <0x9>;
defm V_CVT_F16_F32 : VOP1_Real_si <0xa>;
defm V_CVT_F32_F16 : VOP1_Real_si <0xb>;
defm V_CVT_RPI_I32_F32 : VOP1_Real_si <0xc>;
defm V_CVT_FLR_I32_F32 : VOP1_Real_si <0xd>;
defm V_CVT_OFF_F32_I4 : VOP1_Real_si <0xe>;
defm V_CVT_F32_F64 : VOP1_Real_si <0xf>;
defm V_CVT_F64_F32 : VOP1_Real_si <0x10>;
defm V_CVT_F32_UBYTE0 : VOP1_Real_si <0x11>;
defm V_CVT_F32_UBYTE1 : VOP1_Real_si <0x12>;
defm V_CVT_F32_UBYTE2 : VOP1_Real_si <0x13>;
defm V_CVT_F32_UBYTE3 : VOP1_Real_si <0x14>;
defm V_CVT_U32_F64 : VOP1_Real_si <0x15>;
defm V_CVT_F64_U32 : VOP1_Real_si <0x16>;
defm V_FRACT_F32 : VOP1_Real_si <0x20>;
defm V_TRUNC_F32 : VOP1_Real_si <0x21>;
defm V_CEIL_F32 : VOP1_Real_si <0x22>;
defm V_RNDNE_F32 : VOP1_Real_si <0x23>;
defm V_FLOOR_F32 : VOP1_Real_si <0x24>;
defm V_EXP_F32 : VOP1_Real_si <0x25>;
defm V_LOG_CLAMP_F32 : VOP1_Real_si <0x26>;
defm V_LOG_F32 : VOP1_Real_si <0x27>;
defm V_RCP_CLAMP_F32 : VOP1_Real_si <0x28>;
defm V_RCP_LEGACY_F32 : VOP1_Real_si <0x29>;
defm V_RCP_F32 : VOP1_Real_si <0x2a>;
defm V_RCP_IFLAG_F32 : VOP1_Real_si <0x2b>;
defm V_RSQ_CLAMP_F32 : VOP1_Real_si <0x2c>;
defm V_RSQ_LEGACY_F32 : VOP1_Real_si <0x2d>;
defm V_RSQ_F32 : VOP1_Real_si <0x2e>;
defm V_RCP_F64 : VOP1_Real_si <0x2f>;
defm V_RCP_CLAMP_F64 : VOP1_Real_si <0x30>;
defm V_RSQ_F64 : VOP1_Real_si <0x31>;
defm V_RSQ_CLAMP_F64 : VOP1_Real_si <0x32>;
defm V_SQRT_F32 : VOP1_Real_si <0x33>;
defm V_SQRT_F64 : VOP1_Real_si <0x34>;
defm V_SIN_F32 : VOP1_Real_si <0x35>;
defm V_COS_F32 : VOP1_Real_si <0x36>;
defm V_NOT_B32 : VOP1_Real_si <0x37>;
defm V_BFREV_B32 : VOP1_Real_si <0x38>;
defm V_FFBH_U32 : VOP1_Real_si <0x39>;
defm V_FFBL_B32 : VOP1_Real_si <0x3a>;
defm V_FFBH_I32 : VOP1_Real_si <0x3b>;
defm V_FREXP_EXP_I32_F64 : VOP1_Real_si <0x3c>;
defm V_FREXP_MANT_F64 : VOP1_Real_si <0x3d>;
defm V_FRACT_F64 : VOP1_Real_si <0x3e>;
defm V_FREXP_EXP_I32_F32 : VOP1_Real_si <0x3f>;
defm V_FREXP_MANT_F32 : VOP1_Real_si <0x40>;
defm V_CLREXCP : VOP1_Real_si <0x41>;
defm V_MOVRELD_B32 : VOP1_Real_si <0x42>;
defm V_MOVRELS_B32 : VOP1_Real_si <0x43>;
defm V_MOVRELSD_B32 : VOP1_Real_si <0x44>;
//===----------------------------------------------------------------------===//
// CI
//===----------------------------------------------------------------------===//
multiclass VOP1_Real_ci <bits<9> op> {
let AssemblerPredicates = [isCIOnly], DecoderNamespace = "CI" in {
def _e32_ci :
VOP1_Real<!cast<VOP1_Pseudo>(NAME#"_e32"), SIEncodingFamily.SI>,
VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32").Pfl>;
def _e64_ci :
VOP3_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.SI>,
VOP3e_si <{1, 1, op{6-0}}, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl>;
}
}
defm V_TRUNC_F64 : VOP1_Real_ci <0x17>;
defm V_CEIL_F64 : VOP1_Real_ci <0x18>;
defm V_FLOOR_F64 : VOP1_Real_ci <0x1A>;
defm V_RNDNE_F64 : VOP1_Real_ci <0x19>;
defm V_LOG_LEGACY_F32 : VOP1_Real_ci <0x45>;
defm V_EXP_LEGACY_F32 : VOP1_Real_ci <0x46>;
//===----------------------------------------------------------------------===//
// VI
//===----------------------------------------------------------------------===//
class VOP1_DPP <bits<8> op, VOP1_Pseudo ps, VOPProfile P = ps.Pfl> :
VOP_DPP <ps.OpName, P> {
let Defs = ps.Defs;
let Uses = ps.Uses;
let SchedRW = ps.SchedRW;
let hasSideEffects = ps.hasSideEffects;
let Constraints = ps.Constraints;
let DisableEncoding = ps.DisableEncoding;
bits<8> vdst;
let Inst{8-0} = 0xfa; // dpp
let Inst{16-9} = op;
let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0);
let Inst{31-25} = 0x3f; //encoding
}
multiclass VOP1Only_Real_vi <bits<10> op> {
let AssemblerPredicates = [isVI], DecoderNamespace = "VI" in {
def _vi :
VOP1_Real<!cast<VOP1_Pseudo>(NAME), SIEncodingFamily.VI>,
VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME).Pfl>;
}
}
multiclass VOP1_Real_vi <bits<10> op> {
let AssemblerPredicates = [isVI], DecoderNamespace = "VI" in {
def _e32_vi :
VOP1_Real<!cast<VOP1_Pseudo>(NAME#"_e32"), SIEncodingFamily.VI>,
VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32").Pfl>;
def _e64_vi :
VOP3_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.VI>,
VOP3e_vi <!add(0x140, op), !cast<VOP3_Pseudo>(NAME#"_e64").Pfl>;
}
def _sdwa_vi :
VOP_SDWA_Real <!cast<VOP1_SDWA_Pseudo>(NAME#"_sdwa")>,
VOP1_SDWAe <op{7-0}, !cast<VOP1_SDWA_Pseudo>(NAME#"_sdwa").Pfl>;
// For now left dpp only for asm/dasm
// TODO: add corresponding pseudo
def _dpp : VOP1_DPP<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32")>;
}
defm V_NOP : VOP1_Real_vi <0x0>;
defm V_MOV_B32 : VOP1_Real_vi <0x1>;
defm V_CVT_I32_F64 : VOP1_Real_vi <0x3>;
defm V_CVT_F64_I32 : VOP1_Real_vi <0x4>;
defm V_CVT_F32_I32 : VOP1_Real_vi <0x5>;
defm V_CVT_F32_U32 : VOP1_Real_vi <0x6>;
defm V_CVT_U32_F32 : VOP1_Real_vi <0x7>;
defm V_CVT_I32_F32 : VOP1_Real_vi <0x8>;
defm V_MOV_FED_B32 : VOP1_Real_vi <0x9>;
defm V_CVT_F16_F32 : VOP1_Real_vi <0xa>;
defm V_CVT_F32_F16 : VOP1_Real_vi <0xb>;
defm V_CVT_RPI_I32_F32 : VOP1_Real_vi <0xc>;
defm V_CVT_FLR_I32_F32 : VOP1_Real_vi <0xd>;
defm V_CVT_OFF_F32_I4 : VOP1_Real_vi <0xe>;
defm V_CVT_F32_F64 : VOP1_Real_vi <0xf>;
defm V_CVT_F64_F32 : VOP1_Real_vi <0x10>;
defm V_CVT_F32_UBYTE0 : VOP1_Real_vi <0x11>;
defm V_CVT_F32_UBYTE1 : VOP1_Real_vi <0x12>;
defm V_CVT_F32_UBYTE2 : VOP1_Real_vi <0x13>;
defm V_CVT_F32_UBYTE3 : VOP1_Real_vi <0x14>;
defm V_CVT_U32_F64 : VOP1_Real_vi <0x15>;
defm V_CVT_F64_U32 : VOP1_Real_vi <0x16>;
defm V_FRACT_F32 : VOP1_Real_vi <0x1b>;
defm V_TRUNC_F32 : VOP1_Real_vi <0x1c>;
defm V_CEIL_F32 : VOP1_Real_vi <0x1d>;
defm V_RNDNE_F32 : VOP1_Real_vi <0x1e>;
defm V_FLOOR_F32 : VOP1_Real_vi <0x1f>;
defm V_EXP_F32 : VOP1_Real_vi <0x20>;
defm V_LOG_F32 : VOP1_Real_vi <0x21>;
defm V_RCP_F32 : VOP1_Real_vi <0x22>;
defm V_RCP_IFLAG_F32 : VOP1_Real_vi <0x23>;
defm V_RSQ_F32 : VOP1_Real_vi <0x24>;
defm V_RCP_F64 : VOP1_Real_vi <0x25>;
defm V_RSQ_F64 : VOP1_Real_vi <0x26>;
defm V_SQRT_F32 : VOP1_Real_vi <0x27>;
defm V_SQRT_F64 : VOP1_Real_vi <0x28>;
defm V_SIN_F32 : VOP1_Real_vi <0x29>;
defm V_COS_F32 : VOP1_Real_vi <0x2a>;
defm V_NOT_B32 : VOP1_Real_vi <0x2b>;
defm V_BFREV_B32 : VOP1_Real_vi <0x2c>;
defm V_FFBH_U32 : VOP1_Real_vi <0x2d>;
defm V_FFBL_B32 : VOP1_Real_vi <0x2e>;
defm V_FFBH_I32 : VOP1_Real_vi <0x2f>;
defm V_FREXP_EXP_I32_F64 : VOP1_Real_vi <0x30>;
defm V_FREXP_MANT_F64 : VOP1_Real_vi <0x31>;
defm V_FRACT_F64 : VOP1_Real_vi <0x32>;
defm V_FREXP_EXP_I32_F32 : VOP1_Real_vi <0x33>;
defm V_FREXP_MANT_F32 : VOP1_Real_vi <0x34>;
defm V_CLREXCP : VOP1_Real_vi <0x35>;
defm V_MOVRELD_B32 : VOP1_Real_vi <0x36>;
defm V_MOVRELS_B32 : VOP1_Real_vi <0x37>;
defm V_MOVRELSD_B32 : VOP1_Real_vi <0x38>;
defm V_TRUNC_F64 : VOP1_Real_vi <0x17>;
defm V_CEIL_F64 : VOP1_Real_vi <0x18>;
defm V_FLOOR_F64 : VOP1_Real_vi <0x1A>;
defm V_RNDNE_F64 : VOP1_Real_vi <0x19>;
defm V_LOG_LEGACY_F32 : VOP1_Real_vi <0x4c>;
defm V_EXP_LEGACY_F32 : VOP1_Real_vi <0x4b>;
defm V_CVT_F16_U16 : VOP1_Real_vi <0x39>;
defm V_CVT_F16_I16 : VOP1_Real_vi <0x3a>;
defm V_CVT_U16_F16 : VOP1_Real_vi <0x3b>;
defm V_CVT_I16_F16 : VOP1_Real_vi <0x3c>;
defm V_RCP_F16 : VOP1_Real_vi <0x3d>;
defm V_SQRT_F16 : VOP1_Real_vi <0x3e>;
defm V_RSQ_F16 : VOP1_Real_vi <0x3f>;
defm V_LOG_F16 : VOP1_Real_vi <0x40>;
defm V_EXP_F16 : VOP1_Real_vi <0x41>;
defm V_FREXP_MANT_F16 : VOP1_Real_vi <0x42>;
defm V_FREXP_EXP_I16_F16 : VOP1_Real_vi <0x43>;
defm V_FLOOR_F16 : VOP1_Real_vi <0x44>;
defm V_CEIL_F16 : VOP1_Real_vi <0x45>;
defm V_TRUNC_F16 : VOP1_Real_vi <0x46>;
defm V_RNDNE_F16 : VOP1_Real_vi <0x47>;
defm V_FRACT_F16 : VOP1_Real_vi <0x48>;
defm V_SIN_F16 : VOP1_Real_vi <0x49>;
defm V_COS_F16 : VOP1_Real_vi <0x4a>;
defm V_SWAP_B32 : VOP1Only_Real_vi <0x51>;
// Copy of v_mov_b32 with $vdst as a use operand for use with VGPR
// indexing mode. vdst can't be treated as a def for codegen purposes,
// and an implicit use and def of the super register should be added.
def V_MOV_B32_indirect : VPseudoInstSI<(outs),
(ins getVALUDstForVT<i32>.ret:$vdst, getVOPSrc0ForVT<i32>.ret:$src0)>,
PseudoInstExpansion<(V_MOV_B32_e32_vi getVALUDstForVT<i32>.ret:$vdst,
getVOPSrc0ForVT<i32>.ret:$src0)> {
let VOP1 = 1;
let SubtargetPredicate = isVI;
}
// This is a pseudo variant of the v_movreld_b32 instruction in which the
// vector operand appears only twice, once as def and once as use. Using this
// pseudo avoids problems with the Two Address instructions pass.
class V_MOVRELD_B32_pseudo<RegisterClass rc> : VPseudoInstSI <
(outs rc:$vdst),
(ins rc:$vsrc, VSrc_b32:$val, i32imm:$offset)> {
let VOP1 = 1;
let Constraints = "$vsrc = $vdst";
let Uses = [M0, EXEC];
let SubtargetPredicate = HasMovrel;
}
def V_MOVRELD_B32_V1 : V_MOVRELD_B32_pseudo<VGPR_32>;
def V_MOVRELD_B32_V2 : V_MOVRELD_B32_pseudo<VReg_64>;
def V_MOVRELD_B32_V4 : V_MOVRELD_B32_pseudo<VReg_128>;
def V_MOVRELD_B32_V8 : V_MOVRELD_B32_pseudo<VReg_256>;
def V_MOVRELD_B32_V16 : V_MOVRELD_B32_pseudo<VReg_512>;
let Predicates = [isVI] in {
def : Pat <
(i32 (int_amdgcn_mov_dpp i32:$src, imm:$dpp_ctrl, imm:$row_mask, imm:$bank_mask,
imm:$bound_ctrl)),
(V_MOV_B32_dpp $src, (as_i32imm $dpp_ctrl), (as_i32imm $row_mask),
(as_i32imm $bank_mask), (as_i1imm $bound_ctrl))
>;
def : Pat<
(i32 (anyext i16:$src)),
(COPY $src)
>;
def : Pat<
(i64 (anyext i16:$src)),
(REG_SEQUENCE VReg_64,
(i32 (COPY $src)), sub0,
(V_MOV_B32_e32 (i32 0)), sub1)
>;
def : Pat<
(i16 (trunc i32:$src)),
(COPY $src)
>;
def : Pat <
(i16 (trunc i64:$src)),
(EXTRACT_SUBREG $src, sub0)
>;
} // End Predicates = [isVI]