freebsd-dev/contrib/llvm/lib/Target/Mips/MipsSEInstrInfo.cpp
2017-04-26 22:33:09 +00:00

770 lines
29 KiB
C++

//===-- MipsSEInstrInfo.cpp - Mips32/64 Instruction Information -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips32/64 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "MipsSEInstrInfo.h"
#include "InstPrinter/MipsInstPrinter.h"
#include "MipsAnalyzeImmediate.h"
#include "MipsMachineFunction.h"
#include "MipsTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
MipsSEInstrInfo::MipsSEInstrInfo(const MipsSubtarget &STI)
: MipsInstrInfo(STI, STI.isPositionIndependent() ? Mips::B : Mips::J),
RI() {}
const MipsRegisterInfo &MipsSEInstrInfo::getRegisterInfo() const {
return RI;
}
/// isLoadFromStackSlot - If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned MipsSEInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
unsigned Opc = MI.getOpcode();
if ((Opc == Mips::LW) || (Opc == Mips::LD) ||
(Opc == Mips::LWC1) || (Opc == Mips::LDC1) || (Opc == Mips::LDC164)) {
if ((MI.getOperand(1).isFI()) && // is a stack slot
(MI.getOperand(2).isImm()) && // the imm is zero
(isZeroImm(MI.getOperand(2)))) {
FrameIndex = MI.getOperand(1).getIndex();
return MI.getOperand(0).getReg();
}
}
return 0;
}
/// isStoreToStackSlot - If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned MipsSEInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
unsigned Opc = MI.getOpcode();
if ((Opc == Mips::SW) || (Opc == Mips::SD) ||
(Opc == Mips::SWC1) || (Opc == Mips::SDC1) || (Opc == Mips::SDC164)) {
if ((MI.getOperand(1).isFI()) && // is a stack slot
(MI.getOperand(2).isImm()) && // the imm is zero
(isZeroImm(MI.getOperand(2)))) {
FrameIndex = MI.getOperand(1).getIndex();
return MI.getOperand(0).getReg();
}
}
return 0;
}
void MipsSEInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL, unsigned DestReg,
unsigned SrcReg, bool KillSrc) const {
unsigned Opc = 0, ZeroReg = 0;
bool isMicroMips = Subtarget.inMicroMipsMode();
if (Mips::GPR32RegClass.contains(DestReg)) { // Copy to CPU Reg.
if (Mips::GPR32RegClass.contains(SrcReg)) {
if (isMicroMips)
Opc = Mips::MOVE16_MM;
else
Opc = Mips::OR, ZeroReg = Mips::ZERO;
} else if (Mips::CCRRegClass.contains(SrcReg))
Opc = Mips::CFC1;
else if (Mips::FGR32RegClass.contains(SrcReg))
Opc = Mips::MFC1;
else if (Mips::HI32RegClass.contains(SrcReg)) {
Opc = isMicroMips ? Mips::MFHI16_MM : Mips::MFHI;
SrcReg = 0;
} else if (Mips::LO32RegClass.contains(SrcReg)) {
Opc = isMicroMips ? Mips::MFLO16_MM : Mips::MFLO;
SrcReg = 0;
} else if (Mips::HI32DSPRegClass.contains(SrcReg))
Opc = Mips::MFHI_DSP;
else if (Mips::LO32DSPRegClass.contains(SrcReg))
Opc = Mips::MFLO_DSP;
else if (Mips::DSPCCRegClass.contains(SrcReg)) {
BuildMI(MBB, I, DL, get(Mips::RDDSP), DestReg).addImm(1 << 4)
.addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
return;
}
else if (Mips::MSACtrlRegClass.contains(SrcReg))
Opc = Mips::CFCMSA;
}
else if (Mips::GPR32RegClass.contains(SrcReg)) { // Copy from CPU Reg.
if (Mips::CCRRegClass.contains(DestReg))
Opc = Mips::CTC1;
else if (Mips::FGR32RegClass.contains(DestReg))
Opc = Mips::MTC1;
else if (Mips::HI32RegClass.contains(DestReg))
Opc = Mips::MTHI, DestReg = 0;
else if (Mips::LO32RegClass.contains(DestReg))
Opc = Mips::MTLO, DestReg = 0;
else if (Mips::HI32DSPRegClass.contains(DestReg))
Opc = Mips::MTHI_DSP;
else if (Mips::LO32DSPRegClass.contains(DestReg))
Opc = Mips::MTLO_DSP;
else if (Mips::DSPCCRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(Mips::WRDSP))
.addReg(SrcReg, getKillRegState(KillSrc)).addImm(1 << 4)
.addReg(DestReg, RegState::ImplicitDefine);
return;
} else if (Mips::MSACtrlRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(Mips::CTCMSA))
.addReg(DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
}
else if (Mips::FGR32RegClass.contains(DestReg, SrcReg))
Opc = Mips::FMOV_S;
else if (Mips::AFGR64RegClass.contains(DestReg, SrcReg))
Opc = Mips::FMOV_D32;
else if (Mips::FGR64RegClass.contains(DestReg, SrcReg))
Opc = Mips::FMOV_D64;
else if (Mips::GPR64RegClass.contains(DestReg)) { // Copy to CPU64 Reg.
if (Mips::GPR64RegClass.contains(SrcReg))
Opc = Mips::OR64, ZeroReg = Mips::ZERO_64;
else if (Mips::HI64RegClass.contains(SrcReg))
Opc = Mips::MFHI64, SrcReg = 0;
else if (Mips::LO64RegClass.contains(SrcReg))
Opc = Mips::MFLO64, SrcReg = 0;
else if (Mips::FGR64RegClass.contains(SrcReg))
Opc = Mips::DMFC1;
}
else if (Mips::GPR64RegClass.contains(SrcReg)) { // Copy from CPU64 Reg.
if (Mips::HI64RegClass.contains(DestReg))
Opc = Mips::MTHI64, DestReg = 0;
else if (Mips::LO64RegClass.contains(DestReg))
Opc = Mips::MTLO64, DestReg = 0;
else if (Mips::FGR64RegClass.contains(DestReg))
Opc = Mips::DMTC1;
}
else if (Mips::MSA128BRegClass.contains(DestReg)) { // Copy to MSA reg
if (Mips::MSA128BRegClass.contains(SrcReg))
Opc = Mips::MOVE_V;
}
assert(Opc && "Cannot copy registers");
MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc));
if (DestReg)
MIB.addReg(DestReg, RegState::Define);
if (SrcReg)
MIB.addReg(SrcReg, getKillRegState(KillSrc));
if (ZeroReg)
MIB.addReg(ZeroReg);
}
void MipsSEInstrInfo::
storeRegToStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned SrcReg, bool isKill, int FI,
const TargetRegisterClass *RC, const TargetRegisterInfo *TRI,
int64_t Offset) const {
DebugLoc DL;
MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOStore);
unsigned Opc = 0;
if (Mips::GPR32RegClass.hasSubClassEq(RC))
Opc = Mips::SW;
else if (Mips::GPR64RegClass.hasSubClassEq(RC))
Opc = Mips::SD;
else if (Mips::ACC64RegClass.hasSubClassEq(RC))
Opc = Mips::STORE_ACC64;
else if (Mips::ACC64DSPRegClass.hasSubClassEq(RC))
Opc = Mips::STORE_ACC64DSP;
else if (Mips::ACC128RegClass.hasSubClassEq(RC))
Opc = Mips::STORE_ACC128;
else if (Mips::DSPCCRegClass.hasSubClassEq(RC))
Opc = Mips::STORE_CCOND_DSP;
else if (Mips::FGR32RegClass.hasSubClassEq(RC))
Opc = Mips::SWC1;
else if (Mips::AFGR64RegClass.hasSubClassEq(RC))
Opc = Mips::SDC1;
else if (Mips::FGR64RegClass.hasSubClassEq(RC))
Opc = Mips::SDC164;
else if (TRI->isTypeLegalForClass(*RC, MVT::v16i8))
Opc = Mips::ST_B;
else if (TRI->isTypeLegalForClass(*RC, MVT::v8i16) ||
TRI->isTypeLegalForClass(*RC, MVT::v8f16))
Opc = Mips::ST_H;
else if (TRI->isTypeLegalForClass(*RC, MVT::v4i32) ||
TRI->isTypeLegalForClass(*RC, MVT::v4f32))
Opc = Mips::ST_W;
else if (TRI->isTypeLegalForClass(*RC, MVT::v2i64) ||
TRI->isTypeLegalForClass(*RC, MVT::v2f64))
Opc = Mips::ST_D;
else if (Mips::LO32RegClass.hasSubClassEq(RC))
Opc = Mips::SW;
else if (Mips::LO64RegClass.hasSubClassEq(RC))
Opc = Mips::SD;
else if (Mips::HI32RegClass.hasSubClassEq(RC))
Opc = Mips::SW;
else if (Mips::HI64RegClass.hasSubClassEq(RC))
Opc = Mips::SD;
// Hi, Lo are normally caller save but they are callee save
// for interrupt handling.
const Function *Func = MBB.getParent()->getFunction();
if (Func->hasFnAttribute("interrupt")) {
if (Mips::HI32RegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Mips::MFHI), Mips::K0);
SrcReg = Mips::K0;
} else if (Mips::HI64RegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Mips::MFHI64), Mips::K0_64);
SrcReg = Mips::K0_64;
} else if (Mips::LO32RegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Mips::MFLO), Mips::K0);
SrcReg = Mips::K0;
} else if (Mips::LO64RegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Mips::MFLO64), Mips::K0_64);
SrcReg = Mips::K0_64;
}
}
assert(Opc && "Register class not handled!");
BuildMI(MBB, I, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill))
.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO);
}
void MipsSEInstrInfo::
loadRegFromStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned DestReg, int FI, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI, int64_t Offset) const {
DebugLoc DL;
if (I != MBB.end()) DL = I->getDebugLoc();
MachineMemOperand *MMO = GetMemOperand(MBB, FI, MachineMemOperand::MOLoad);
unsigned Opc = 0;
const Function *Func = MBB.getParent()->getFunction();
bool ReqIndirectLoad = Func->hasFnAttribute("interrupt") &&
(DestReg == Mips::LO0 || DestReg == Mips::LO0_64 ||
DestReg == Mips::HI0 || DestReg == Mips::HI0_64);
if (Mips::GPR32RegClass.hasSubClassEq(RC))
Opc = Mips::LW;
else if (Mips::GPR64RegClass.hasSubClassEq(RC))
Opc = Mips::LD;
else if (Mips::ACC64RegClass.hasSubClassEq(RC))
Opc = Mips::LOAD_ACC64;
else if (Mips::ACC64DSPRegClass.hasSubClassEq(RC))
Opc = Mips::LOAD_ACC64DSP;
else if (Mips::ACC128RegClass.hasSubClassEq(RC))
Opc = Mips::LOAD_ACC128;
else if (Mips::DSPCCRegClass.hasSubClassEq(RC))
Opc = Mips::LOAD_CCOND_DSP;
else if (Mips::FGR32RegClass.hasSubClassEq(RC))
Opc = Mips::LWC1;
else if (Mips::AFGR64RegClass.hasSubClassEq(RC))
Opc = Mips::LDC1;
else if (Mips::FGR64RegClass.hasSubClassEq(RC))
Opc = Mips::LDC164;
else if (TRI->isTypeLegalForClass(*RC, MVT::v16i8))
Opc = Mips::LD_B;
else if (TRI->isTypeLegalForClass(*RC, MVT::v8i16) ||
TRI->isTypeLegalForClass(*RC, MVT::v8f16))
Opc = Mips::LD_H;
else if (TRI->isTypeLegalForClass(*RC, MVT::v4i32) ||
TRI->isTypeLegalForClass(*RC, MVT::v4f32))
Opc = Mips::LD_W;
else if (TRI->isTypeLegalForClass(*RC, MVT::v2i64) ||
TRI->isTypeLegalForClass(*RC, MVT::v2f64))
Opc = Mips::LD_D;
else if (Mips::HI32RegClass.hasSubClassEq(RC))
Opc = Mips::LW;
else if (Mips::HI64RegClass.hasSubClassEq(RC))
Opc = Mips::LD;
else if (Mips::LO32RegClass.hasSubClassEq(RC))
Opc = Mips::LW;
else if (Mips::LO64RegClass.hasSubClassEq(RC))
Opc = Mips::LD;
assert(Opc && "Register class not handled!");
if (!ReqIndirectLoad)
BuildMI(MBB, I, DL, get(Opc), DestReg)
.addFrameIndex(FI)
.addImm(Offset)
.addMemOperand(MMO);
else {
// Load HI/LO through K0. Notably the DestReg is encoded into the
// instruction itself.
unsigned Reg = Mips::K0;
unsigned LdOp = Mips::MTLO;
if (DestReg == Mips::HI0)
LdOp = Mips::MTHI;
if (Subtarget.getABI().ArePtrs64bit()) {
Reg = Mips::K0_64;
if (DestReg == Mips::HI0_64)
LdOp = Mips::MTHI64;
else
LdOp = Mips::MTLO64;
}
BuildMI(MBB, I, DL, get(Opc), Reg)
.addFrameIndex(FI)
.addImm(Offset)
.addMemOperand(MMO);
BuildMI(MBB, I, DL, get(LdOp)).addReg(Reg);
}
}
bool MipsSEInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
MachineBasicBlock &MBB = *MI.getParent();
bool isMicroMips = Subtarget.inMicroMipsMode();
unsigned Opc;
switch (MI.getDesc().getOpcode()) {
default:
return false;
case Mips::RetRA:
expandRetRA(MBB, MI);
break;
case Mips::ERet:
expandERet(MBB, MI);
break;
case Mips::PseudoMFHI:
Opc = isMicroMips ? Mips::MFHI16_MM : Mips::MFHI;
expandPseudoMFHiLo(MBB, MI, Opc);
break;
case Mips::PseudoMFLO:
Opc = isMicroMips ? Mips::MFLO16_MM : Mips::MFLO;
expandPseudoMFHiLo(MBB, MI, Opc);
break;
case Mips::PseudoMFHI64:
expandPseudoMFHiLo(MBB, MI, Mips::MFHI64);
break;
case Mips::PseudoMFLO64:
expandPseudoMFHiLo(MBB, MI, Mips::MFLO64);
break;
case Mips::PseudoMTLOHI:
expandPseudoMTLoHi(MBB, MI, Mips::MTLO, Mips::MTHI, false);
break;
case Mips::PseudoMTLOHI64:
expandPseudoMTLoHi(MBB, MI, Mips::MTLO64, Mips::MTHI64, false);
break;
case Mips::PseudoMTLOHI_DSP:
expandPseudoMTLoHi(MBB, MI, Mips::MTLO_DSP, Mips::MTHI_DSP, true);
break;
case Mips::PseudoCVT_S_W:
expandCvtFPInt(MBB, MI, Mips::CVT_S_W, Mips::MTC1, false);
break;
case Mips::PseudoCVT_D32_W:
expandCvtFPInt(MBB, MI, Mips::CVT_D32_W, Mips::MTC1, false);
break;
case Mips::PseudoCVT_S_L:
expandCvtFPInt(MBB, MI, Mips::CVT_S_L, Mips::DMTC1, true);
break;
case Mips::PseudoCVT_D64_W:
expandCvtFPInt(MBB, MI, Mips::CVT_D64_W, Mips::MTC1, true);
break;
case Mips::PseudoCVT_D64_L:
expandCvtFPInt(MBB, MI, Mips::CVT_D64_L, Mips::DMTC1, true);
break;
case Mips::BuildPairF64:
expandBuildPairF64(MBB, MI, false);
break;
case Mips::BuildPairF64_64:
expandBuildPairF64(MBB, MI, true);
break;
case Mips::ExtractElementF64:
expandExtractElementF64(MBB, MI, false);
break;
case Mips::ExtractElementF64_64:
expandExtractElementF64(MBB, MI, true);
break;
case Mips::MIPSeh_return32:
case Mips::MIPSeh_return64:
expandEhReturn(MBB, MI);
break;
}
MBB.erase(MI);
return true;
}
/// getOppositeBranchOpc - Return the inverse of the specified
/// opcode, e.g. turning BEQ to BNE.
unsigned MipsSEInstrInfo::getOppositeBranchOpc(unsigned Opc) const {
switch (Opc) {
default: llvm_unreachable("Illegal opcode!");
case Mips::BEQ: return Mips::BNE;
case Mips::BEQ_MM: return Mips::BNE_MM;
case Mips::BNE: return Mips::BEQ;
case Mips::BNE_MM: return Mips::BEQ_MM;
case Mips::BGTZ: return Mips::BLEZ;
case Mips::BGEZ: return Mips::BLTZ;
case Mips::BLTZ: return Mips::BGEZ;
case Mips::BLEZ: return Mips::BGTZ;
case Mips::BEQ64: return Mips::BNE64;
case Mips::BNE64: return Mips::BEQ64;
case Mips::BGTZ64: return Mips::BLEZ64;
case Mips::BGEZ64: return Mips::BLTZ64;
case Mips::BLTZ64: return Mips::BGEZ64;
case Mips::BLEZ64: return Mips::BGTZ64;
case Mips::BC1T: return Mips::BC1F;
case Mips::BC1F: return Mips::BC1T;
case Mips::BEQZC_MM: return Mips::BNEZC_MM;
case Mips::BNEZC_MM: return Mips::BEQZC_MM;
case Mips::BEQZC: return Mips::BNEZC;
case Mips::BNEZC: return Mips::BEQZC;
case Mips::BEQC: return Mips::BNEC;
case Mips::BNEC: return Mips::BEQC;
case Mips::BGTZC: return Mips::BLEZC;
case Mips::BGEZC: return Mips::BLTZC;
case Mips::BLTZC: return Mips::BGEZC;
case Mips::BLEZC: return Mips::BGTZC;
case Mips::BEQZC64: return Mips::BNEZC64;
case Mips::BNEZC64: return Mips::BEQZC64;
case Mips::BEQC64: return Mips::BNEC64;
case Mips::BNEC64: return Mips::BEQC64;
case Mips::BGEC64: return Mips::BLTC64;
case Mips::BGEUC64: return Mips::BLTUC64;
case Mips::BLTC64: return Mips::BGEC64;
case Mips::BLTUC64: return Mips::BGEUC64;
case Mips::BGTZC64: return Mips::BLEZC64;
case Mips::BGEZC64: return Mips::BLTZC64;
case Mips::BLTZC64: return Mips::BGEZC64;
case Mips::BLEZC64: return Mips::BGTZC64;
}
}
/// Adjust SP by Amount bytes.
void MipsSEInstrInfo::adjustStackPtr(unsigned SP, int64_t Amount,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
MipsABIInfo ABI = Subtarget.getABI();
DebugLoc DL;
unsigned ADDiu = ABI.GetPtrAddiuOp();
if (Amount == 0)
return;
if (isInt<16>(Amount)) {
// addi sp, sp, amount
BuildMI(MBB, I, DL, get(ADDiu), SP).addReg(SP).addImm(Amount);
} else {
// For numbers which are not 16bit integers we synthesize Amount inline
// then add or subtract it from sp.
unsigned Opc = ABI.GetPtrAdduOp();
if (Amount < 0) {
Opc = ABI.GetPtrSubuOp();
Amount = -Amount;
}
unsigned Reg = loadImmediate(Amount, MBB, I, DL, nullptr);
BuildMI(MBB, I, DL, get(Opc), SP).addReg(SP).addReg(Reg, RegState::Kill);
}
}
/// This function generates the sequence of instructions needed to get the
/// result of adding register REG and immediate IMM.
unsigned MipsSEInstrInfo::loadImmediate(int64_t Imm, MachineBasicBlock &MBB,
MachineBasicBlock::iterator II,
const DebugLoc &DL,
unsigned *NewImm) const {
MipsAnalyzeImmediate AnalyzeImm;
const MipsSubtarget &STI = Subtarget;
MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
unsigned Size = STI.isABI_N64() ? 64 : 32;
unsigned LUi = STI.isABI_N64() ? Mips::LUi64 : Mips::LUi;
unsigned ZEROReg = STI.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO;
const TargetRegisterClass *RC = STI.isABI_N64() ?
&Mips::GPR64RegClass : &Mips::GPR32RegClass;
bool LastInstrIsADDiu = NewImm;
const MipsAnalyzeImmediate::InstSeq &Seq =
AnalyzeImm.Analyze(Imm, Size, LastInstrIsADDiu);
MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
assert(Seq.size() && (!LastInstrIsADDiu || (Seq.size() > 1)));
// The first instruction can be a LUi, which is different from other
// instructions (ADDiu, ORI and SLL) in that it does not have a register
// operand.
unsigned Reg = RegInfo.createVirtualRegister(RC);
if (Inst->Opc == LUi)
BuildMI(MBB, II, DL, get(LUi), Reg).addImm(SignExtend64<16>(Inst->ImmOpnd));
else
BuildMI(MBB, II, DL, get(Inst->Opc), Reg).addReg(ZEROReg)
.addImm(SignExtend64<16>(Inst->ImmOpnd));
// Build the remaining instructions in Seq.
for (++Inst; Inst != Seq.end() - LastInstrIsADDiu; ++Inst)
BuildMI(MBB, II, DL, get(Inst->Opc), Reg).addReg(Reg, RegState::Kill)
.addImm(SignExtend64<16>(Inst->ImmOpnd));
if (LastInstrIsADDiu)
*NewImm = Inst->ImmOpnd;
return Reg;
}
unsigned MipsSEInstrInfo::getAnalyzableBrOpc(unsigned Opc) const {
return (Opc == Mips::BEQ || Opc == Mips::BEQ_MM || Opc == Mips::BNE ||
Opc == Mips::BNE_MM || Opc == Mips::BGTZ || Opc == Mips::BGEZ ||
Opc == Mips::BLTZ || Opc == Mips::BLEZ || Opc == Mips::BEQ64 ||
Opc == Mips::BNE64 || Opc == Mips::BGTZ64 || Opc == Mips::BGEZ64 ||
Opc == Mips::BLTZ64 || Opc == Mips::BLEZ64 || Opc == Mips::BC1T ||
Opc == Mips::BC1F || Opc == Mips::B || Opc == Mips::J ||
Opc == Mips::BEQZC_MM || Opc == Mips::BNEZC_MM || Opc == Mips::BEQC ||
Opc == Mips::BNEC || Opc == Mips::BLTC || Opc == Mips::BGEC ||
Opc == Mips::BLTUC || Opc == Mips::BGEUC || Opc == Mips::BGTZC ||
Opc == Mips::BLEZC || Opc == Mips::BGEZC || Opc == Mips::BLTZC ||
Opc == Mips::BEQZC || Opc == Mips::BNEZC || Opc == Mips::BEQZC64 ||
Opc == Mips::BNEZC64 || Opc == Mips::BEQC64 || Opc == Mips::BNEC64 ||
Opc == Mips::BGEC64 || Opc == Mips::BGEUC64 || Opc == Mips::BLTC64 ||
Opc == Mips::BLTUC64 || Opc == Mips::BGTZC64 ||
Opc == Mips::BGEZC64 || Opc == Mips::BLTZC64 ||
Opc == Mips::BLEZC64 || Opc == Mips::BC) ? Opc : 0;
}
void MipsSEInstrInfo::expandRetRA(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
MachineInstrBuilder MIB;
if (Subtarget.isGP64bit())
MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Mips::PseudoReturn64))
.addReg(Mips::RA_64, RegState::Undef);
else
MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Mips::PseudoReturn))
.addReg(Mips::RA, RegState::Undef);
// Retain any imp-use flags.
for (auto & MO : I->operands()) {
if (MO.isImplicit())
MIB.add(MO);
}
}
void MipsSEInstrInfo::expandERet(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
BuildMI(MBB, I, I->getDebugLoc(), get(Mips::ERET));
}
std::pair<bool, bool>
MipsSEInstrInfo::compareOpndSize(unsigned Opc,
const MachineFunction &MF) const {
const MCInstrDesc &Desc = get(Opc);
assert(Desc.NumOperands == 2 && "Unary instruction expected.");
const MipsRegisterInfo *RI = &getRegisterInfo();
unsigned DstRegSize = RI->getRegSizeInBits(*getRegClass(Desc, 0, RI, MF));
unsigned SrcRegSize = RI->getRegSizeInBits(*getRegClass(Desc, 1, RI, MF));
return std::make_pair(DstRegSize > SrcRegSize, DstRegSize < SrcRegSize);
}
void MipsSEInstrInfo::expandPseudoMFHiLo(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned NewOpc) const {
BuildMI(MBB, I, I->getDebugLoc(), get(NewOpc), I->getOperand(0).getReg());
}
void MipsSEInstrInfo::expandPseudoMTLoHi(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned LoOpc,
unsigned HiOpc,
bool HasExplicitDef) const {
// Expand
// lo_hi pseudomtlohi $gpr0, $gpr1
// to these two instructions:
// mtlo $gpr0
// mthi $gpr1
DebugLoc DL = I->getDebugLoc();
const MachineOperand &SrcLo = I->getOperand(1), &SrcHi = I->getOperand(2);
MachineInstrBuilder LoInst = BuildMI(MBB, I, DL, get(LoOpc));
MachineInstrBuilder HiInst = BuildMI(MBB, I, DL, get(HiOpc));
// Add lo/hi registers if the mtlo/hi instructions created have explicit
// def registers.
if (HasExplicitDef) {
unsigned DstReg = I->getOperand(0).getReg();
unsigned DstLo = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo);
unsigned DstHi = getRegisterInfo().getSubReg(DstReg, Mips::sub_hi);
LoInst.addReg(DstLo, RegState::Define);
HiInst.addReg(DstHi, RegState::Define);
}
LoInst.addReg(SrcLo.getReg(), getKillRegState(SrcLo.isKill()));
HiInst.addReg(SrcHi.getReg(), getKillRegState(SrcHi.isKill()));
}
void MipsSEInstrInfo::expandCvtFPInt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned CvtOpc, unsigned MovOpc,
bool IsI64) const {
const MCInstrDesc &CvtDesc = get(CvtOpc), &MovDesc = get(MovOpc);
const MachineOperand &Dst = I->getOperand(0), &Src = I->getOperand(1);
unsigned DstReg = Dst.getReg(), SrcReg = Src.getReg(), TmpReg = DstReg;
unsigned KillSrc = getKillRegState(Src.isKill());
DebugLoc DL = I->getDebugLoc();
bool DstIsLarger, SrcIsLarger;
std::tie(DstIsLarger, SrcIsLarger) =
compareOpndSize(CvtOpc, *MBB.getParent());
if (DstIsLarger)
TmpReg = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo);
if (SrcIsLarger)
DstReg = getRegisterInfo().getSubReg(DstReg, Mips::sub_lo);
BuildMI(MBB, I, DL, MovDesc, TmpReg).addReg(SrcReg, KillSrc);
BuildMI(MBB, I, DL, CvtDesc, DstReg).addReg(TmpReg, RegState::Kill);
}
void MipsSEInstrInfo::expandExtractElementF64(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
bool FP64) const {
unsigned DstReg = I->getOperand(0).getReg();
unsigned SrcReg = I->getOperand(1).getReg();
unsigned N = I->getOperand(2).getImm();
DebugLoc dl = I->getDebugLoc();
assert(N < 2 && "Invalid immediate");
unsigned SubIdx = N ? Mips::sub_hi : Mips::sub_lo;
unsigned SubReg = getRegisterInfo().getSubReg(SrcReg, SubIdx);
// FPXX on MIPS-II or MIPS32r1 should have been handled with a spill/reload
// in MipsSEFrameLowering.cpp.
assert(!(Subtarget.isABI_FPXX() && !Subtarget.hasMips32r2()));
// FP64A (FP64 with nooddspreg) should have been handled with a spill/reload
// in MipsSEFrameLowering.cpp.
assert(!(Subtarget.isFP64bit() && !Subtarget.useOddSPReg()));
if (SubIdx == Mips::sub_hi && Subtarget.hasMTHC1()) {
// FIXME: Strictly speaking MFHC1 only reads the top 32-bits however, we
// claim to read the whole 64-bits as part of a white lie used to
// temporarily work around a widespread bug in the -mfp64 support.
// The problem is that none of the 32-bit fpu ops mention the fact
// that they clobber the upper 32-bits of the 64-bit FPR. Fixing that
// requires a major overhaul of the FPU implementation which can't
// be done right now due to time constraints.
// MFHC1 is one of two instructions that are affected since they are
// the only instructions that don't read the lower 32-bits.
// We therefore pretend that it reads the bottom 32-bits to
// artificially create a dependency and prevent the scheduler
// changing the behaviour of the code.
BuildMI(MBB, I, dl, get(FP64 ? Mips::MFHC1_D64 : Mips::MFHC1_D32), DstReg)
.addReg(SrcReg);
} else
BuildMI(MBB, I, dl, get(Mips::MFC1), DstReg).addReg(SubReg);
}
void MipsSEInstrInfo::expandBuildPairF64(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
bool FP64) const {
unsigned DstReg = I->getOperand(0).getReg();
unsigned LoReg = I->getOperand(1).getReg(), HiReg = I->getOperand(2).getReg();
const MCInstrDesc& Mtc1Tdd = get(Mips::MTC1);
DebugLoc dl = I->getDebugLoc();
const TargetRegisterInfo &TRI = getRegisterInfo();
// When mthc1 is available, use:
// mtc1 Lo, $fp
// mthc1 Hi, $fp
//
// Otherwise, for O32 FPXX ABI:
// spill + reload via ldc1
// This case is handled by the frame lowering code.
//
// Otherwise, for FP32:
// mtc1 Lo, $fp
// mtc1 Hi, $fp + 1
//
// The case where dmtc1 is available doesn't need to be handled here
// because it never creates a BuildPairF64 node.
// FPXX on MIPS-II or MIPS32r1 should have been handled with a spill/reload
// in MipsSEFrameLowering.cpp.
assert(!(Subtarget.isABI_FPXX() && !Subtarget.hasMips32r2()));
// FP64A (FP64 with nooddspreg) should have been handled with a spill/reload
// in MipsSEFrameLowering.cpp.
assert(!(Subtarget.isFP64bit() && !Subtarget.useOddSPReg()));
BuildMI(MBB, I, dl, Mtc1Tdd, TRI.getSubReg(DstReg, Mips::sub_lo))
.addReg(LoReg);
if (Subtarget.hasMTHC1()) {
// FIXME: The .addReg(DstReg) is a white lie used to temporarily work
// around a widespread bug in the -mfp64 support.
// The problem is that none of the 32-bit fpu ops mention the fact
// that they clobber the upper 32-bits of the 64-bit FPR. Fixing that
// requires a major overhaul of the FPU implementation which can't
// be done right now due to time constraints.
// MTHC1 is one of two instructions that are affected since they are
// the only instructions that don't read the lower 32-bits.
// We therefore pretend that it reads the bottom 32-bits to
// artificially create a dependency and prevent the scheduler
// changing the behaviour of the code.
BuildMI(MBB, I, dl, get(FP64 ? Mips::MTHC1_D64 : Mips::MTHC1_D32), DstReg)
.addReg(DstReg)
.addReg(HiReg);
} else if (Subtarget.isABI_FPXX())
llvm_unreachable("BuildPairF64 not expanded in frame lowering code!");
else
BuildMI(MBB, I, dl, Mtc1Tdd, TRI.getSubReg(DstReg, Mips::sub_hi))
.addReg(HiReg);
}
void MipsSEInstrInfo::expandEhReturn(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
// This pseudo instruction is generated as part of the lowering of
// ISD::EH_RETURN. We convert it to a stack increment by OffsetReg, and
// indirect jump to TargetReg
MipsABIInfo ABI = Subtarget.getABI();
unsigned ADDU = ABI.GetPtrAdduOp();
unsigned SP = Subtarget.isGP64bit() ? Mips::SP_64 : Mips::SP;
unsigned RA = Subtarget.isGP64bit() ? Mips::RA_64 : Mips::RA;
unsigned T9 = Subtarget.isGP64bit() ? Mips::T9_64 : Mips::T9;
unsigned ZERO = Subtarget.isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
unsigned OffsetReg = I->getOperand(0).getReg();
unsigned TargetReg = I->getOperand(1).getReg();
// addu $ra, $v0, $zero
// addu $sp, $sp, $v1
// jr $ra (via RetRA)
const TargetMachine &TM = MBB.getParent()->getTarget();
if (TM.isPositionIndependent())
BuildMI(MBB, I, I->getDebugLoc(), get(ADDU), T9)
.addReg(TargetReg)
.addReg(ZERO);
BuildMI(MBB, I, I->getDebugLoc(), get(ADDU), RA)
.addReg(TargetReg)
.addReg(ZERO);
BuildMI(MBB, I, I->getDebugLoc(), get(ADDU), SP).addReg(SP).addReg(OffsetReg);
expandRetRA(MBB, I);
}
const MipsInstrInfo *llvm::createMipsSEInstrInfo(const MipsSubtarget &STI) {
return new MipsSEInstrInfo(STI);
}